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Abstract

Ensuring the integrity and security of the memory system
is critical. Recent studies have shown serious security con-
cerns due to “rowhammer” attacks, where repeated accesses
to a row of memory cause bit flips in adjacent rows. Re-
cent work by Google’s Project Zero has shown how to lever-
age rowhammer-induced bit-flips as the basis for security
exploits that include malicious code injection and memory
privilege escalation. Being an important security concern,
industry has attempted to defend against rowhammer at-
tacks. Deployed defenses employ two strategies: (1) dou-
bling the system DRAM refresh rate and (2) restricting ac-
cess to the CLFLUSH instruction that attackers use to bypass
the cache to increase memory access frequency (i.e., the rate
of rowhammering).

We demonstrate that such defenses are inadequte: we
implement rowhammer attacks that both avoid using the
CLFLUSH instruction and cause bit flips with a doubled re-
fresh rate. Our next-generation CLFLUSH-free rowhammer
attack bypasses the cache by manipulating cache replace-
ment state to allow frequent misses out of the last-level cache
to DRAM rows of our choosing.

To protect existing systems from more advanced rowham-
mer attacks, we develop a software-based defense, ANVIL,
which thwarts all known rowhammer attacks on existing sys-
tems. ANVIL detects rowhammer attacks by tracking the lo-
cality of DRAM accesses using existing hardware perfor-
mance counters. Our detector identifies the rows being fre-
quently accessed (i.e., the aggressors), then selectively re-
freshes the nearby victim rows to prevent hammering. Ex-
periments running on real hardware with the SPEC2006
benchmarks show that ANVIL has less than a 1% false posi-
tive rate and an average slowdown of 1%. ANVIL is low-cost
and robust, and our experiments indicate that it is an effec-
tive approach for protecting existing and future systems from
even advanced rowhammer attacks.
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1. Introduction

In recent years, hardware security has grown in importance
for all aspects of hardware design. The emergence of viable
hardware security vulnerabilities, such as side-channel at-
tacks [3] and malicious circuits [10, 22], ensures that this
trend continues today. Perhaps no recent hardware security
vulnerability has garnered more concern than the rowham-
mer attack [24]. The rowhammer attack allows the manip-
ulation of data in a row of a DRAM (referred to as the vic-
tim row) by repeatedly accessing (or “hammering”) adjacent
rows. Serious security concerns arise when, for example, ad-
jacent DRAM rows are not within the same memory protec-
tion domain [28].

1.1 Rowhammer Attacks

The rowhammer attack exploits the physical architecture of
modern DRAMs, which are composed of numerous rows
of densely packed capacitive bit cells. The bit cells hold
the charge that represent program data values. Natural leak-
age of charge out of capacitive bit cells requires that the
DRAM rows be refreshed (i.e., their charge restored through
a refresh operation) regularly. Current DRAM architectures
(e.g., DDR3) require a refresh command to be issued every
7.8us [4], refreshing individual rows once every 64ms. The
rowhammer attack exploits an electrical cross-talk property
within the dense interconnect of modern DRAMs. Repeated
accesses to one row (the aggressor) within a single refresh
cycle (e.g., 100’s of thousands of accesses) speeds up the dis-
charge of bit cells in adjacent rows (victim rows) [11]. This
causes bit-flips in the victim rows most sensitive to hammer-
ing.

Recent studies have demonstrated the rowhammer attack
on a wide variety of commercial system [24, 28]. These at-
tacks used the CLFLUSH x86 instruction to flush specific
cache lines, thereby allowing high locality rowhammer ac-
cesses to reach the DRAM unhindered by on-chip caches.
Shortly after viable rowhammmer demonstrations emerged,
work began to weaponize the mechanism, i.e., utilize it to
breach a secure system. Of note, Google’s Project Zero
demonstrates two such weaponizations of a CLFLUSH-
based rowhammer attack [28]. The first attack uses rowham-
mering to insert malicious code into Google’s Native Client
sandbox. The second attack is a privilege escalation attack



that allows a process to gain write access to its own page
tables, and hence gain read-write access to all of physical
memory.

1.2 Mitigating Rowhammer Attacks

The response from the hardware industry focuses on pro-
tecting both legacy and future systems. For legacy systems,
industry employs two mitigation strategies. The first miti-
gation strategy is to double the refresh rate of DRAM sys-
tems, from once every 64ms to once every 32ms. Many hard-
ware manufacturers, for example HP [15] and Lenovo [18],
deployed firmware updates that double refresh rates as a
rowhammer protection. However, this approach is insuffi-
cient, as shown by us in Section 2.1 and by others [24]. The
state of the art in rowhammer attacks are effective at caus-
ing bit-flips within a 32ms refresh window. The second mit-
igation strategy involves restricting access to the CLFLUSH
instruction which attacks use to flush cache lines and gain
direct access to DRAM rows. For example, Google recently
updated the Chrome Native Client sandbox (which allows
local execution of remotely downloaded binaries) to prevent
the loading of any code containing the CLFLUSH instruc-
tion [28]. Again, we show that this protection is insufficient
by detailing the first CLFLUSH-free rowhammer attack.

An emerging defense, as suggested by some manufactur-
ers, is that increasing ECC scrub rates could be a rowham-
mer protection mechanism [14]. But, prior work [24] shows
multiple bit-flips per word when executing rowhammer at-
tacks, making this approach of questionable value in pro-
tecting existing or future systems.

Protections for future DRAM architectures are begin-
ning to appear in industry announcements and the litera-
ture. For example, the upcoming LPDDR4 specification and
new DDR4 modules include a targeted row refresh (TRR)
capability designed to thwart rowhammer attacks [19, 21].
The mechanism tracks the number of row activations within
a fixed time window, and selectively refreshes rows neigh-
boring a too-frequently accessed DRAM row. However, Mi-
cron DDR4 documentation [19] suggests that this mecha-
nism is an “optional module”, thus there may exist future
DDR4 systems still susceptible to rowhammer attacks. In
fact, bit flips due to rowhammering in DDR4 system have
been reported [1]. Intel has partially disclosed the existence
of pseudo-targeted row refresh (pTRR) in Xeon-class Ivy-
bridge architectures to help in the mitigation of rowhammer
attacks, but Intel has yet to release the details of this mecha-
nism.

Finally, the architecture literature has seen a few rowham-
mer protection proposals. For example, one proposal, PARA,
utilizes probabilistic adjacent row activation to refresh the
neighboring rows of any DRAM row access, with low prob-
ability. The idea behind this approach is that the many re-
peated DRAM row accesses required to hammer a victim
DRAM row will result in an early refresh of the victim row

with extremely high (cumulative) probability [24]. Such so-
lutions require the introduction of new hardware.

1.3 Contributions of This Work

In this work, we show that current rowhammer mitigation
techniques for existing systems (i.e., disallowing cache flush
instructions and doubling refresh rates) do not work. We
demonstrate in this paper two attacks that defeat these pro-
tections. Specifically, we demonstrate the first CLFLUSH-
free rowhammer attack, thereby thwarting efforts to deter
rowhammering by restricting access to the CLFLUSH in-
struction. The attack manipulates cache replacement state to
ensure high-frequency misses out of the last-level cache to
DRAM rows of our choosing. The algorithm is able to effi-
ciently implement a successful rowhammer attack within
one 64ms DRAM refresh cycle, creating approximately
220,000 DRAM row accesses '. A critical implication of
the CLFLUSH-free attack is that now any program with
access to loads and stores can perform a rowhammer at-
tack. In addition, we demonstrate that is it straightforward to
rowhammer DRAM under a double-rate 32ms refresh cycle,
underscoring the futility of this popular, but costly, protec-
tion mechanism.

As such, existing systems immediately require a more
robust means of protection against rowhammer attacks. To
this end, we present ANVIL, a software-based rowham-
mer detector which protects existing and future commod-
ity DRAMs. We implement ANVIL using an existing hard-
ware performance monitoring infrastructure. ANVIL works
by monitoring the locality of DRAM row accesses out of
the last-level cache. In the event that row access locality be-
comes too high (i.e., indicating repeated accesses to the same
DRAM row), the detector selectively refreshes neighboring
potential victim rows with a read operation (for DRAM, a
read operation fully refreshes the accessed DRAM row).

We implement ANVIL as a Linux kernel module that uti-
lizes Intel architectures’ performance monitoring capabili-
ties to detect DRAM row access locality out of the last-level
cache. The performance monitoring capabilities we rely on
are also available on AMD-based systems [7]. The detec-
tor uses a multi-staged approach to reduce detector over-
heads, leading to an average slowdown (for non-malicious
programs running on real hardware) of about 1%, and worst-
case slowdown of 3.2%. In addition, our detector has a la-
tency of only 12ms. This enables the detection of rowham-
mer attacks that are more than twice as fast as the fastest
known technique today. Finally, the detector is accurate, with
no false negatives and less than 1% false positives. Beside
their small performance impact, false positives are innocu-
ous in that they incur only a small number of extra DRAM

'We were the first to disclose the existence of a CLFLUSH-free
rowhammer attack. The attack was announced on May 10, 2015 on the
Google Project Zero rowhammer forum. The details of the attack are be-
ing disclosed for the first time in this paper.



read operations. In summary, this paper makes the following
contributions:

e We demonstrate attacks that side-step existing mea-
sures to protect systems from rowhammer attacks. Our
CLFLUSH-free attack does not use the CLFLUSH in-
struction, instead, it cleverly manipulates cache replace-
ment state to allow frequent misses out of the last-
level cache to hammer DRAM rows of our choosing.
Moreover, we demonstrate the ease with which recent
rowhammer attacks can work successfully within double-
rate 32ms refresh cycles.

e We propose, implement and analyze a software-based
protection against rowhammer attacks, ANVIL, which
successfully thwarts all of the known rowhammer attacks
on commodity systems. ANVIL detects rowhammer at-
tacks by tracking the locality of DRAM row accesses
using existing hardware performance counters. When a
potential attack is detected, it is thwarted by selectively
refreshing identified victim DRAM rows with a simple
read operation. Running on real hardware, ANVIL has a
less than 1% false positive rate, and it uses a multi-stage
design to reduce average slowdowns to only 1% across
diverse benchmarks.

2. Breaking Current Mitigation Techniques

Multiple techniques have been proposed to protect existing
systems from DRAM rowhammering errors. Currently de-
ployed mitigation techniques include doubling the DRAM
refresh rate and disallowing cache flush instructions. In this
section, we show that these techniques are insufficient to
guarantee protection from rowhammer exploits. First, we
show that a refresh period of 32ms is sufficient time to im-
plement a rowhammer attack. Second, we show how to im-
plement a rowhammer attack without using the CLFLUSH
instruction.

2.1 Rowhammering under a Double Refresh Rate

After DRAM rowhammering errors and their security impli-
cations were widely recognized, a number of vendors pub-
lished BIOS updates that double the rate at which DRAM
refreshes its data [15, 18]. By refreshing the DRAM more
frequently, it is believed that there is insufficient time to
carry out a rowhammering attack. We perform experiments
on a commodity platform that show that this belief is indeed
false. Even when refresh intervals are reduced to 32ms, it is
still possible for a malicious program to cause bit flips by re-
peatedly accessing two rows adjacent to a victim row using
a rowhammering technique dubbed double-sided rowham-
mering [28]. Table 1 lists our experimental results for three
rowhammer attacks. The attacks are analyzed on a real sys-
tem with an Intel core i15-2540M processor (Sandy Bridge)
and a 4GB DDR3 DRAM module while running Ubuntu
14.04 LTS. As shown in the results of Table 1, it is possible
to employ double-sided rowhammering using the CLFLUSH

Hammer Minimum Number Time to
Technique of DRAM Row first

a Accesses bit flip
Single-Sided
with CLFLUsH 100K 58 ms
Double-Sided
with CLFLUSH 220K 15 ms
Double-Sided
without CLFLUSH 220K 45 ms

Table 1: Rowhammer Attack Characteristics: The mea-
sured performance of three rowhammer techniques, i.e.,
single and double-sided rowhammering and with/without
CLFLUSH to flush the cache. The experiments are run on
a Ubuntu-based Sandy Bridge laptop with a 4GB DDR3
DRAM module. The table gives the minimum number of
DRAM row accesses required to induce a bit-flip and the
time until the first bit-flip.

instruction to flip bits in only 15ms on our DDR3 module—
well below the 32ms window of deployed defenses.

Sequence (a) in Figure 1 shows the access sequence
used to implement our double-sided rowhammer attack us-
ing CLFLUSH instructions. The attack involves three rows:
Rows 0 and 2 are the aggressor rows, and Row 1 is the victim
row. The aggressor rows are repeatedly activated to increase
the discharge rate in the victim row. The attack works by
first accessing an address in Row 0 (i.e., A0(,0u0)); Then an
address in Row 2 (Al(,.4,2)) is accessed. After each access,
a CLFLUSH instruction is used to flush all levels of cache at
addresses A0(,0,0) and Al(,,2) thereby ensuring the next
access goes directly to the DRAM. This sequence is repeated
N number of times; for our experiments the minimum value
of N was equal to 110k to see a bit flip.

Given the results of our experiment, one might sug-
gest further increases in refresh rate. The problem with
this approach, in general, is that increasing the refresh rate
comes at the cost of increased power and reduced DRAM
throughput—as refresh commands compete with software-
requested memory accesses. Going from a 64ms refresh pe-
riod to the 15ms required to protect our DRAM requires
over a 4x increase in refresh power and throughput over-
head. Also, as DRAM continues to move to smaller feature
sizes, the vendors will likely have to lower the refresh rate
more to account for increased density (i.e., future DRAM
devices may be more susceptible to rowhammering at the
cell level).

2.2 Rowhammering without the CLFLUSH
instruction

Modern processors include multiple levels of cache for
faster access of frequently used data. It is common to have
three levels of cache with the last-level cache capable of
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Figure 1: Memory Access Patterns for CLFLUSH-based & CLFLUSH-free Double-sided Rowhammer Attacks: In (a),
a CLFLUSH instruction is used to flush caches after accessing aggressor DRAM rows Row 0 and Row 2. This sequence
of operations is repeated N times. In our experiments the minimum value of N observed was 110K. In (b) the CLFLUSH
instructions are replaced with sequences of memory accesses that force misses in the L3 cache at addresses that map to
aggressor Row 0 and aggressor Row 2. This is done by accessing conflicting data that belong to the same cache set as the
aggressor row addresses. AQ: address in aggressor row 1 and maps to set X; A/: address in aggressor row 2 and maps to set Y;
X1, X2, ... X12: addresses that map to cache set X and evict AO;Y/, Y2, ... YI12: addresses that map to cache set Y and evict Al.

storing megabytes of data. In order to repetitively access
a DRAM row, memory access to that DRAM row must
miss on all cache levels and the DRAM row buffer. One
way to achieve this is to use cache flushing instructions like
CLFLUSH on the x86 architecture. Previous works on ex-
ploiting the rowhammer problem all used the CLFLUSH
instruction to bypass caches. One counter measure that has
been taken to thwart CLFLUSH-based attacks is to disal-
low the CLFLUSH instruction [28]. Such measures thwart
rowhammmer attacks based on cache flushing, but we show
that it is possible to implement a rowhammer attack without
using cache flush instructions.

Rowhammering in the presence of caches: Caches are
limited in size; given varied enough accesses, eventually a
cache will fill and memory accesses will miss in the cache.
One way to force a miss from a cache is to evict previously
accessed data by accessing conflicting data that belongs to
the same cache set. To accomplish this, an eviction set that
contains addresses that belong to the same cache set is cre-
ated. Then the addresses in the eviction set are accessed one
after the other to force eviction of a particular data element
from the cache. If the access sequence is cleverly designed
to manipulate the cache eviction policy, it is possible to pre-
cisely control which addresses hit in the cache and which
addresses miss the cache and make it to main memory. This
minimizes the delay between subsequent target misses. By

repetitively evicting data from a target address and then re-
accessing it, corresponding DRAM rows can be accessed.

Nonetheless, there are significant challenges in devis-
ing efficient address reference streams that can implement
a rowhammer attack. First, last-level caches in modern pro-
cessors have high associativity, usually 8-way to 16-way. Be-
cause each way can hold the address of the aggressor row,
we must generate at least as many conflicting memory ac-
cesses that hit the cache as there are ways. Therefore, many
memory accesses are required to evict a cache block, which
slows down the rowhammering process. In addition, replace-
ment policies used on real hardware are not true LRU, and
vendors often do not publicly disclose their replacement al-
gorithms. This means that access patterns that assume true
LRU replacement policy often do not result in misses on
the required target addresses. Missing on the exact target ad-
dresses is important as creating extraneous memory acceses
dramatically decreases the rate of rowhammering. Finally,
creating eviction sets can be a challenge in situations where
the mapping of an address to a cache set is via physical ad-
dress, as the mapping algorithm is not publicly disclosed by
manufacturers and user-level application may not have ac-
cess to the virtual memory mapping.

Demonstration of the attack: In this section we describe
how we were able to overcome the challenges mentioned
above to do CLFLUSH-free rowhammering. For our demon-



stration, we use a processor with an Intel Sandy Bridge mi-
croarchitecture. The processor has three levels of cache. The
last-level cache is an inclusive, shared, physically indexed
12-way cache. It is an inclusive cache, therefore it is enough
to evict a word from the last-level cache to bypass the whole
cache hierarchy.

One way to create an eviction set is to directly use phys-
ical addresses and select memory addresses with the same
set-index bits. Previous work in this area has revealed the
mapping for the Intel Haswell microarchitecture [12]. We
discover that the Sandy Bridge microarchitecture uses a
slightly modified version of this mapping. In our eviction set,
we have one address that belongs to a row (which we call
an aggressor address). Since our cache is a 12-way cache,
we need 13 addresses in the eviction set, 12 conflicting ad-
dress and the aggressor address. We create an eviction set by
first picking the aggressor address and then using its physi-
cal address to find 12 more addresses with matching cache
set mappings. On our Intel Sandy Bridge machine, bits 6 to
16 of the physical addresses are used to map to last-level
cache sets. Furthermore, the last-level cache is organized
into slices [16], with one slice per processor core. Conflict-
ing addresses will have the same cache slice and cache set
bits.

The next step is to create an efficient memory access pat-
tern that has a high probability of misses on the aggressor
address. Creating such a pattern requires knowing the cache
replacement policy of the microarchitecture. We did this by
generating a high miss-rate pattern that cyclically accesses
the 13 addresses in the eviction set, and using performance
counters (particularly the last-level cache miss counter) to
determine whether each access was a cache hit or a cache
miss. Then we correlate the performance counter results with
results from different cache replacement policy simulators
that we built. Our results show that one of the replacement
algorithms Sandy Bridge favors (it uses more than one) is
Bit Pseudo-LRU (Bit-PLRU) which is similar to the Not Re-
cently Used (NRU) replacement policy [20]. In Bit-PLRU,
each cache line in a set has a single MRU (Most Recently
Used) bit. Every time a cache line is accessed, its MRU bit
is set. The least-recently used cache line is the line with the
lowest index whose MRU bit is cleared. When the last MRU
bit is set, the other MRU bits in the set are cleared.

A time efficient memory access pattern misses the last-
level cache only on the aggressor address and one additional
conflicting address, and hits on the rest of addresses in the
eviction set. This works by always driving the aggressor ad-
dress to the least recently used position in the replacement
state. Sequence (b) in Figure 1 outlines the access pattern
we used for our CLFLUSH-free double-sided rowhammer
attack. This attack is similar to the CLFLUSH-based at-
tack except here the CLFLUSH instructions are replaced
with memory accesses that drive the two aggressor DRAM
row addresses to the least recently used (LRU) position in

the L3 cache and subsequently evict them, thereby ensur-
ing their next access goes to the aggressor DRAM rows. In
Figure 1b, address AQ(;.o,0,sctz) belongs to Row 0 in the
DRAM, and Set X in the L3 cache. Address Al(,ou2,sety)
belongs to Row 2 in the DRAM, and Ser Y in the L3
cache. The two addresses constitute the aggressor addresses.
First, data at address A0(;.o0,set) 15 accessed. Then 10 ad-
dresses (X1(setq) 10 X10(set4)) that belong to Ser X are
accessed to put A0(,ou0,setz) to the LRU position of the
L3 cache. Then, when data from address X115, is ac-
cessed, data at address A0 (,4,,0,sets) 18 €victed from the L3
cache. The next 9 accesses (X1(setz) 10 X9 (se0)) hit in
the L3. Then, after data at address X124, is accessed,
address X 11(4c¢) is put to the LRU position and subse-
quently replaced by data at address A0 (,4,0,sete)- This ac-
cess sequence is repeated N times, with only two addresses
(A0 (row0,setz) and X 11(4¢4,)) missing for each iteration. In
Set Y, a similar access pattern is used to miss only from ad-
dresses Al(;ow2,sety) and Y11 (4.4, y. Using this technique,
accesses to Row 0 and Row 2 will always access the DRAM.

Access to the last-level cache on Sandy Bridge takes 26
to 31 cycles [16]. Considering a DRAM access latency of
150 cycles, the access pattern in sequence (b) in Figure 1
takes an estimated (29%20) + (2*150) = 880 cycles. On our
test machine, which runs at a nominal frequency of 2.6GHz,
this access pattern takes approximately 338 nanoseconds.
This allows up to 190K double-sided hammers with-in a
64ms refresh period. This is enough to produce a flip on our
test DRAM module—which only requires 110k accesses to
produce a bit flip.

In addition to rowhammering, the technique used in the
CLFLUSH-free rowhammering attack can be used in other
attacks that need to flush the cache at specific addresses.
For example the Flush + Reload cache side-channel attack
[29] relies on the CLFLUSH instruction. Our CLFLUSH-
free cache flushing method can extend this attack to situa-
tions where the CLFLUSH instruction is not available (e.g.,
JavaScript) — a similar approach was explored in [27].

2.3 Attack Implementations

The CLFLUSH-based and CLFLUSH-free attacks were im-
plemented as native C++ applications. The implementations
are based on the double-sided rowhammering attack imple-
mentation [2]. The CLFLUSH-free rowhammering attack
uses the Linux /proc/pagemap utility to convert virtual ad-
dresses to physical addresses in order to create conflicting
LLC access patterns (eviction set). We demonstrated the at-
tacks on a laptop with an Intel core i5-2540M processor
(Sandy Bridge) with a 4GB DDR3 DRAM module.

Table 1 compares the minimum number of DRAM row
accesses and the corresponding time required to produce
a bit flip for the CLFLUSH-based and CLFLUSH-free at-
tacks for our test DRAM module. Double-sided, CLFLUSH-
based rowhammering is the most aggressive of the three.
It is also worth noting that a double-sided CLFLUSH-free



rowhammering can produce bit flips faster than single-sided
CLFLUSH-based rowhammering.

It is interesting to note that if both of the protection
mechanisms detailed in this section are used in tandem
(i.e., double refresh plus restricted access to CLFLUSH),
such a system would still today have a measure of protec-
tion against rowhammer attacks, including those detailed
in this paper. As shown in Table 1, we are unable to yet
rowhammer memory in less than 32ms without use of the
CLFLUSH instruction. While we are unaware of any sys-
tems that combine these two protection measures, one that
did would likely only acquire a temporary measure of pro-
tection against novel rowhammer attacks. We continue to
optimize the performance of our CLFLUSH-free attack, and
if we are able to reduce its time-to-first bit flip by an addi-
tional 13ms, the combined protections will no longer work.
Recognizing the tenuous nature of today’s rowhammer pro-
tections, we feel a better approach to protect systems is to
provide in-situ mechanisms that detect and subsequently de-
feat rowhammer attacks.

In summary, current techniques used to protect systems
from rowhammer attacks are insufficient. We show that re-
ducing the DRAM refresh period to 32ms is not sufficient
as faster rowhammer attacks are possible using double-sided
rowhammering in as little at 15ms. Moreover, by manipulat-
ing the LRU chain of the last-level cache, enough DRAM
row activations can be performed in a single refresh cycle to
flip bits, without using the CLFLUSH instruction.

3. Software-Based Rowhammer Detection
and Protection

As Section 2 shows, currently deployed rowhammer de-
fenses are insufficient. What is needed is a more robust solu-
tion that can detect rowhammering activity in time to protect
any potential victim rows. In this section, we introduce a
software technique that uses existing hardware performance
counters in commercial processors to detect rowhammer-
ing activity and perform selective refresh on potential victim
TOWS.

3.1 Detecting Rowhammer Attacks

Rowhammering relies on repetitively accessing an aggres-
sor DRAM row within a single refresh cycle. We make
the observation that this fundamentally requires accesses
to the aggressor rows to miss on all cache levels. This re-
veals two identifying characteristics of rowhammering: high
cache miss rate and high spatial locality of DRAM row ac-
cesses. This is in contrast to general memory access patterns
where high locality results in high cache hit rates. As such
it is straightforward to discriminate between rowhammer at-
tacks and non-malcious programs by looking at DRAM ac-
cess patterns and rate.

Another property of rowhammer attacks is high bank
locality. DRAM disturbance errors occur due to repeated

opening and closing of a DRAM row. When a row is ac-
cessed, it is opened and its data is transfered to a row-buffer.
Subsequent accesses to the same row are served by the row-
buffer. In order to close the row, a different row located in
the same bank must be accessed. Therefore, a rowhammer
attack involves repeatedly accessing at least two rows within
the same bank—otherwise the row buffer would prevent the
rowhammering. This bank locality property can be used to
differentiate between “real” rowhammering and false posi-
tives that are caused by thrashing access patterns observed
in some applications.

To minimize the performance impact of rowhammer de-
tection, we propose a two-stage detection mechanism. In the
first stage, we monitor the last-level cache miss rate. If this
rate is high enough to successfully implement a rowhammer
attack, the second stage samples the physical addresses of
the memory accesses that miss from the last-level cache. If
the samples reveal DRAM row accesses with high temporal
locality, then the detector signals this as a potential rowham-
mer attack. To reduce the possibility of false positives, the
detector also verifies that the samples have high bank local-
ity. If there is enough bank locality among samples, then a
protection phase follows.

3.2 Protecting Potential Rowhammer Victims

When the detector identifies potential rowhammering activ-
ity, it identifies the potential victim DRAM rows. Victim
rows are adjacent to (preceding and following) identified ag-
gressor rows. To protect the victim rows we refresh them by
reading a word from them. Reading from a row opens that
row which has the effect of refreshing cells in the row [24].
This approach does not incur significant performance penal-
ties even in the case of false positives.

3.3 ANVIL: A Linux-Based Rowhammer Protection
Mechanism

To demonstrate the protection mechanism, we built ANVIL,
a Linux kernel module that prevents all known forms of
rowhammer attacks. The module uses hardware perfor-
mance counters found in modern processors to get memory
access information, such as the addresses of loads and stores
and the miss rate of the last-level cache. Specifically, we
used performance counters found in Intel microprocessors
with Sandy Bridge and later microarchitectures. AMD also
provides similar capabilities required for our implementa-
tion [7]. In this section we provide details of our imple-
mentation. We start by reviewing the performance counter
features used in our implementation.

Load Latency Performance Monitoring Facility: The
Load Latency performance monitoring facility is part of
Intel’s Performance Event Base Sampling (PEBS) feature.
PEBS uses a debug store mechanism and a performance
monitoring interrupt to store a set of architectural states [17].
The load latency facility measures latency of a load opera-
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that suggests potential rowhammer activity. Upon detection of potential rowhammer activity, ANVIL performs selective read

operations to refresh potential victim DRAM rows.

tion from the load’s first dispatch until final data writeback
from the memory subsystem. The load operation is sampled
probablistically by hardware. If the latency of the sampled
load operation exceeds a latency value specified by a dedi-
cated programmable register, the operation is tagged to carry
the following information:

e ] oad data virtual address
e Data source

e [atency value

When the next event categorized as a precise event (e.g.,
“load retired”, ’store retired”’) occurs, the last update of the
load information is written to a PEBS record which then
can be read by software. By setting the latency threshold
to match last-level cache miss latency, it is possible to sam-
ple last-level cache misses. The data source information con-
firms the source of the load operation.

Precise Store Facility: The Precise Store facility comple-
ments the Load Latency facility by providing additional in-
formation about sampled store operations. When a precise
event occurs, hardware samples the virtual address and data
source of the next store that retires. Similar to the Load
Latency event, data source information can be used to de-
termine if the store was a miss. The precise store facility
is replaced with the Data Address Profiling facility on In-

tel’s Haswell and later microarchitectures [17]. This facility
profiles load and store memory events similar to the other
facilities, but has support for more events like DRAM ac-
cess events. While we could implement ANVIL with either
performance counter, we use the Precise Store facility for
our implementation since it allows our rowhammer detec-
tion mechanism to support older micro-architectures.

In addition to the previously mentioned facilities, we uti-
lize the last-level cache miss counter facility that generates
an interrupt after N misses. The count is set such that if the
miss interrupt arrives before the sample window timer inter-
rupt, we know that the miss threshold has been breached.

Rowhammer Detection: Figure 2 shows the process of de-
tecting a rowhammer activity in ANVIL. In the first stage
of the detection phase, the last-level cache miss count event
(LONGEST_LAT_CACHE.MISS) is used to measure the
last-level cache miss rate. The miss rate is calculated by
reading the last-level cache miss count for a time duration
of t.. If this rate is beyond a last-level cache miss threshold,
the second stage of the detector is triggered. The last-level
cache miss threshold (LLC_MISS_THRESHOLD) is set by
considering the minimum cache miss rate that is enough to
cause bit-flips within a single refresh period. As will be de-
scribed in the next section, we set this value based on our
empirical observations, but it is adaptable to other systems
and attack scenarios.



In the second stage, ANVIL samples virtual addresses for
a time duration of ¢, using Load Latency (MEM_TRANS_
RETIRED.LOAD_LATENCY) and Precise Store (MEM_
TRANS_RETIRED.PRECISE_STORE) events. The load la-
tency facility allows sampling of loads that have latency be-
yond a preset clock cycle value. We set the clock cycle value
to match last-level cache miss latency so that we only sam-
ple loads that miss in the L3 cache. The counter also pro-
vides information about the source of the sample, therefore
we can ensure the load is accessing DRAM. The precise
store facility is used to sample stores. It also provides in-
formation about the source of a store operation. Which fa-
cility to use for sampling is selected based on a count of re-
tired memory load operations that missed from the last-level
cache (MEM_LOAD_UOPS_MISC_RETIRED_LLC_MISS)
for a time duration of ¢.. ANVIL compares this value with
the total number of last-level cache misses for that duration.
If load operations account for more than 90% of all misses
then only loads are sampled. On the other hand, if load op-
erations account for less than 10% of all misses, only stores
are sampled. For the remaining cases, both stores and loads
are sampled. A sampling rate of 5000 samples per second
is used which gives an average of 30 samples for a sam-
pling duration of 6ms. The second stage also samples the
process descriptor (task_struct) of the process that generated
the memory access. This structure is used to determine the
physical address and DRAM row of the memory access in
combination with the sampled virtual address.

At the end of sampling, sampled DRAM row accesses
are sorted and the sample distribution is analyzed to identify
high DRAM row locality. DRAM row locality is determined
by considering the number of samples, the number of last-
level cache misses for the sampling duration and the required
last-level cache miss rate for a successful rowhammr attack.
For each row that has high DRAM locality, a check is made
to see if there are other row access samples from the same
DRAM bank. If the cumulative of samples of the other row
accesses from the same DRAM bank is high enough, then
there is a potential rowhammer attack occurring.

Rowhammer Protection: Once ANVIL detects potential
rowhammering activity, it uses the physical addresses of the
identified aggressor rows to determine potential victim rows.
The kernel module was pre-configured using a reverse en-
gineered physical address to DRAM row and bank map-
ping scheme. We also make the assumption that sequentially
numbered rows are physically adjacent. Two potential vic-
tim rows are considered for each potential aggressor row:
rows that are directly above and below each potential aggres-
sor row (our approach easily extends to N adjacent rows).
ANVIL performs a single read operation per victim row to
refresh its value. The number of selective read operations
performed on a potential victim row is low enough (once
every t. + t, in the worst case) that it has little effect on per-
formance of non-rowhammering applications, even if they

experience a high incidence of false positive detection. Also,
it is not possible for an attacker to use the selective refresh
mechanism to rowhammer DRAM rows adjacent to the po-
tential victim row since the selective read rate is well be-
low the minimum access rate for a rowhammer attack. After
performing a selective refresh, ANVIL starts the detection
process again.

4. Experimental Evaluation

In this section we evaluate the accuracy and performance
of our software-based detection mechanism. All tests are
conducted on a real physical system with an Intel Core i5-
2540M processor and Ubuntu 14.04 LTS with Linux kernel
version 4.0.0.

4.1 Benchmark Applications

We use several benchmark programs for our evaluations.
To evaluate rowhammer detection accuracy, we use two
rowhammer attacks. The first is a CLFLUSH-based double-
sided rowhammer attack, CLFLUSH _hammer, adapted from
the original weaponization [2]. The second application is
CLFLUSH-free double-sided rowhammer attack, CLFLUSH-
free_hammer, used to demonstrate our CLFLUSH-free at-
tack in Section 2'. We measure the slowdown incurred on
non-malicious programs using SPEC2006 integer bench-
marks [9].

4.2 Rowhammer Detection Characteristics

We first evaluate ANVIL’s ability to detect rowhammer ac-
tivity. The evaluation is done for scenarios where the test ma-
chine is heavily and lightly loaded. To emulate heavy load,
we run the rowhammering applications along with memory-
intensive applications (mcf, libquantum and omnetpp run-
ning at the same time) from the SPEC2006 integer bench-
mark suite. The detector parameters used for our evalua-
tions are given on Table 2. The time values are selected to
be low enough so that any rowhammering activity can be
detected with enough time to deploy protection. With this
setting, hammering activity can be detected within 12 mil-
liseconds. The last-level cache miss threshold value was ex-
perimentally found by considering the minimum number of
memory accesses required to cause a DRAM bit flip. In our
experiments the minimum number of memory accesses that
caused a flip was 220K for CLFLUSH-based double-sided
rowhammering attack. In order to achieve this many activa-
tions within a refresh period of 64ms, a minimum of 20.6K
activations must occur within 6ms. Therefore, we will use
20K misses in 6ms as a threshold value for the first stage of
detection.

Table 3 shows the result of rowhammering detection for
applications CLFLUSH _hammer and CLFLUSH-free_hammer
under heavy and light load. For both attacks, the table shows

ICode for the CLFLUSH-free_hammer program and ANVIL can be
found at https://github. com/zaweke/rowhammer



Parameter Value
LLC_MISS_THRESHOLD 20K
Miss Count Duration (¢..) 6ms
Sampling Duration (%) 6ms

Table 2: Rowhammer Detector Parameters to Evaluate
Accuracy of Rowhammer Detection

Average Time Refreshes Total Bit
Benchmark .
to Detect per 64ms Flips
CLFLUSH 12.8 ms 12.35 0
(Heavy Load)
CLFLUSH 12.3 ms 10.3 0
(Light Load)
CLELUSH-free 35 3 1ng 453 0
(Heavy Load)
CLELUSH-ree =) 5 ms 5.10 0
(Light Loaded)

Table 3: Rowhammer Detection Result for Rowhammer-
ing Programs: The table shows the average time before
rowhammer activity is detected and the rate of selective re-
freshes performed.

the average time to detect a rowhammer attack within a 64ms
refresh cycle in which rowhammering was occurring. This
time includes the time to identify and selectively refresh
potential victim rows. The table also lists the average se-
lective refresh rate, which are refreshes that occur when
the rowhammer detector identifies potential DRAM victim
rows. As seen in these results, ANVIL is quite responsive,
with response times well within a single refresh cycle, and
with only slight increases in response time due to a heavy
loaded system. In addition, the selective refresh rates are
low, but sufficient for multiple refreshes within a single re-
fresh cycle for any detected victim row. The low selective
refresh rate ensures that a clever attacker cannot use the se-
lective refresh to hammer other DRAM rows. Finally, it is
good to note that our detector stopped all rowhammering,
resulting in zero bit flips for all of the attacks.

4.3 Performance Evaluation

We evaluated the slowdown incurred by ANVIL by ana-
lyzing the execution of non-malicious applications from the
SPEC2006 integer benchmark suite. We used the parameters
listed on Table 2 for the evaluation. In addition to this ex-
periment, we compare the performance overhead of ANVIL
with that incurred by doubling DRAM refresh rate. For these

Benchmark Refreshes/sec
astar 0.10
bzip2 1.05
gce 0.71
gobmk 0.19
h264ref 0.00
hmmer 0.00
libquantum 0.06
mcf 0.01
omnetpp 0.02
perlbench 0.00
sjeng 0.00
xalancbmk 0.05

Table 4: Rate of False Positive Refreshes: The table shows
rate of superfluous refreshes for SPEC2006 integer bench-
marks while running under ANVIL.

evaluations our baseline is an unprotected system with a re-
fresh period of 64ms.

Figure 3 shows relative execution times for ANVIL-
protected system relative to our baseline. The ANVIL-
protected system has peak and average overheads of 3.18%
and 1.17%, respectively. Most of the performance overhead
by ANVIL is attributed to the low last-level cache miss
rate threshold. libquantum, omnetpp, mcf and Xalancbmk
crossed the last-level cache miss threshold 95% to 99% of
the time. On the other extreme, h264ref, gobmk, sjeng and
hmmer crossed the threshold less than 10% of the time. This
indicates that sampling of addresses in the second stage of
the detection phase contributes to almost all of the perfor-
mance overhead. As can be observed from the results, the
overheads of continuously running ANVIL’s rowhammer
detection are very low. Low enough to protect existing sys-
tems from rowhammer attacks, and likely low enough to
obviate the need for dedicated hardware-based rowhammer
protection mechanisms in future systems.

Table 4 shows the false positive rate for the SPEC2006
integer benchmarks. The rate is measured as the average
number of superfluous selective refreshes per second. The
number of false positives is low enough that selective refresh
of rows has negligible effect on performance.

4.4 Comparison with Double Refresh Rate

As we have shown in Section 2, doubling DRAM refresh
rate is not sufficient to prevent all rowhammering attacks.
Equally important is the execution time and power overhead
incurred by the increased refresh rate. Previous studies have
shown that increasing refresh rate reduces parallelism in the
memory subsystem, affecting overall system performance
[6, 26]. Figure 3 shows performance overhead of doubling



DRAM refresh rate as compared with our software-based
protection mechanism. ANVIL’s performance overheads are
only marginally larger (on average) than doubling the refresh
rate, while providing a significantly higher level of protec-
tion against rowhammer attacks, as demonstrated in Section
2. As can be observed, memory intensive applications like
mcf suffer most from doubling DRAM refresh rate thus,
their performance benefits greatly from the use of ANVIL’s
protection.

4.5 Robustness to Potential Future Rowhammer
Attacks

As the density of DRAM devices increases, DRAM cells be-
come more susceptible to disturbance errors. It is then ex-
pected that for future DRAM devices, rowhammer attacks
will be possible with less DRAM row activations. An at-
tacker might take advantage of this to evade detection by
our software-based protection mechanism by: 1) Activating
DRAM aggressor rows at a high rate such that rowhammer
attacks will be faster than they can be detected by the pro-
tection mechanism. 2) Spreading out fewer DRAM row ac-
tivations over a refresh period such that the last-level cache
miss rate stays below the last-level cache miss threshold. Our
detection mechanism can cope with both situations by ad-
justing the detector parameters listed on Table 2. To evaluate
the effect that more nimble future attacks have on the per-
formance of non-malicious programs, we consider a future
scenario where bit flips can occur with 110K DRAM row ac-
cesses (i.e., half the number of accesses that produced flips
on our experiments).

Figure 4 examines the performance impact on a subset of
the SPEC2006 benchmarks for three cases. The benchmarks
are selected to be representatives of the memory access char-
acteristics of SPEC2006 benchmark suit. ANVIL-baseline is
our baseline detector with parameters as given on Table 2.
ANVIL-heavy considers the case where the 110K DRAM
row accesses can occur within 7.5ms (i.e., half the time we
observed for our experiments). For this case values of t.
and t, are set to 2ms while the value of the last-level cache
miss threshold remains unchanged at 20K. The third case,
ANVIL-light, considers a situation where the 110K DRAM
row accesses are spread out across a refresh period of 64ms
(i.e., half the number of accesses purposely spread out max-
imally). For this case values of ¢, and ¢, are set to 6ms, and
the last-level cache miss threshold is halved to 10K. As seen
in Figure 4, ANVIL has room to grow if future rowhammer
attacks become more aggressive. Overheads do grow to de-
tect these more nimble attacks, but only slightly. Decreasing
the last-level miss sample period to 2ms has the larger per-
formance impact, which is expected as the sampling over-
heads are experienced continuously.

Table 5 shows false positive refresh rates due to false
positives for ANVIL-light and ANVIL-heavy. Though both
configurations show an increase in false positive rates than
ANVIL-baseline, they do not incur significant overheads.

B ANVIL

[
§ ® Double Refresh
= 104

o o

Normalized Execution

0.97

£ & ¢

Figure 3: ANVIL’s Impact on Non-Malicious Programs:
The Figure shows execution times for selected benchmarks
on ANVIL-enabled system and a system with doubled
DRAM refresh rate. The values shown are normalized to ex-
ecution time without ANVIL and at a single refresh period.
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Figure 4: Sensitivity of Execution Overheads to Potential
Future Attacks: The figure compares normalized execution
times for selected benchmarks running on ANVIL-enabled
system with three configurations. ANVIL-Heavy is config-
ured to have the highest sampling rate while ANVIL-Light
has the lowest last-level cache miss threshold.

5. Related Work

Previous works have studied exploitation and prevention
of the rowhammer vulnerability. In this section, we detail
currently known attacks and proposed mitigations.

5.1 Rowhammer Vulnerability and Its Exploitation

Even if the rowhammer vulnerability on modern DRAMs
has been known by manufacturers since at least 2012 [24],
the first detailed experimental study was published in 2014
by Yoongu Kim, et. al [24]. Their study shows that bits in a
DRAM row (the victim row) can be flipped by repeatedly ac-
cessing adjacent rows in the same bank (the aggressor rows).
The authors used x86’s CLFLUSH instruction to bypass the
cache and enable frequent references directly to DRAM.
Leveraging the early attack demonstrations, Seaborn and
Dullien [28] demonstrated two security exploits that take ad-
vantage of rowhammer-induced bit flips. Their first attack



bypasses Google’s Native Client (NaCl) sandboxing system.
NaCl is a software sandbox, integrated with the Chrome
browser, that allows secure execution of untrusted client side
applications and plug-ins. NaCl works by carefully scanning
code for illegal code operations at load time (e.g., system
calls or arbitrary indirect jumps), and by funneling all I/O
operations through a security analyzer. The NaCl rowham-
mer attack works by having a securely loaded NaCl applica-
tion hammer its own code segment until an illegal arbitrary
code jump sequence is formed, then the application jumps to
the middle of an instruction where illegal operations can be
formed from validated code. Note that the attack is chang-
ing code that has been verified and deemed safe. Since the
instructions are modified at the hardware level, the sandbox
will not be aware of any of these changes. The authors’ cur-
rent proof-of-concept implementation can take advantage of
13% of the possible bit flips within an instruction.

Seaborn and Dullien’s second attack takes advantage of
the bit flips to bypass the memory page protection mecha-
nism of a Linux system running on x86-64 [28]. The attack
works by filling physical memory with page tables for a sin-
gle process, by repeatedly mmap()’ing a file into its memory.
This repeated file mapping sprays the memory with page
table entries (PTEs), that are used to translate the newly
mmap()’ed virtual addresses. By rowhammering the mem-
ory with page tables, there is a non-trivial probability that a
PTE will be changed to point to a physical page containing
a page table, thereby giving the application access to its own
page tables. This will give the attacker full R/W permission
to a page table entry, which in effect results in access to all
of physical memory.

Even if all of the exploits mentioned above rely on
CLFLUSH instruction in x86, the attack we presented in
Section 2 demonstrates how rowhammer attacks can be
launched without the use of any cache line flush instruc-
tion. Building from our CLFLUSH-free rowhammer attack
is a JavaScript-based attack that shows that it is possible to
cause bit-flips from within a JavaScript application running
in a browser [8].

5.2 Rowhammer Mitigation

In this section, we detail both software and hardware tech-
niques that have been proposed and deployed to protect
against data corruption and security exploits due to rowham-
mering.

5.2.1 Protections for Legacy Systems

Software Patches: To date, two open source projects have
released patches in response to the security vulnerabilities
explained above. Google’s NaCl sandbox was patched to dis-
allow the use of CLFLUSH instruction by applications run-
ning inside it. The attack mechanism we present in Section 2
defeats this protection and enables malicious applications to
effectively hammer rows without using CLFLUSH (or any
other explicit cache flush instructions).

Refreshes/sec Refreshes/sec
Benchmark K
(ANVIL-light) (ANVIL-heavy)
bzip2 1.61 1.09
gcc 7.12 1.88
gobmk 0.28 0.84
libquantum 0.13 0.08
perlbench 0.06 0.00

Table 5: Rate of False Positive Refreshes for ANVIL-
Heavy and ANVIL-Light: The table shows false positive
rates for selected SPEC2006 integer benchmarks while run-
ning under two ANVIL configurations. ANVIL-Heavy has a
relatively small sampling period which reduces the proba-
bility of misses with high address locality on non-malicious
applications. On the other hand, ANVIL-light allows more
samples for a longer sampling period thus resulting in a rel-
atively larger false positive rate.

Recently, the Linux kernel was updated to disallow the
use of the pagemap interface from the user space, as a mea-
sure to make it more difficult to do double-sided rowham-
mering in Linux-based systems. This change prevents mali-
cious applications from analyzing the physical address space
to launch targeted attacks. However, this attack still leaves
room for potential attacks that rely on side-channel infor-
mation to make inferences about the physical memory lay-
out. Furthermore, certain attacks such as the NaCl sand-
box escape attack can be implemented by repeatedly picking
two random addresses without having any knowledge of the
physical address mapping.

Doubling Refresh Rate: Some vendors published BIOS
updates that double DRAM refresh rates(i.e. halving the
refresh interval from 64ms to 32ms) [13, 15, 18]. Doubling
the refresh rate reduces the amount of time an attacker has to
mount an attack, since the discharging of a rowhammer’ed
bit must be completed within one refresh cycle. However,
our empirical studies show that it is still possible to induce
bit flips through double-sided hammering even when the
refresh period is as low as 16ms. Further increases in refresh
rates would have significant effects on system performance
and energy consumption [24].

5.2.2 Protections for Future Systems

Currently available hardware-based reliability features are
not capable of mitigating DRAM disturbance errors. Error
Correcting Codes (ECC) protection, aside from being ex-
pensive, is only capable of repairing single-bit flips. Further-
more, ECC will turn the problem of bit-flips into denial of
service if the system has to deal with machine check excep-
tions every time a flip is detected [28].

Due to the inability of current memory controllers and
memory modules to deal with rowhammer attacks, multiple



hardware enhancements have been proposed. The possibility
of having an activation counter for each row in a DRAM
module has been considered in literature [23, 24]. However,
due to the high overhead of maintaining and updating per-
row counters, other alternatives have been recommended.

Probabilistic row refreshing (e.g. PARA) has been pro-
posed as an alternative to per-row counters [23, 24]. In this
technique, when an activation command is sent to a row, a
random number generator is used to decide if adjacent row
has to be refreshed. Since requests to rows that are being
hammered will be encountered very frequently, there is a
high probability that it will trigger a refresh. Compared to
ANVIL, PARA can have lower overhead but requires a mod-
ification to the memory controller, therefore it can not be de-
ployed on existing systems.

Project Armor [25] introduces an extra buffer that will
cache data from rows with repeated activation commands.
By servicing requests to hammered rows from the extra
buffer, Armor prevents rows from being accessed repeatedly.

Processor and memory manufacturers are also deploying
products with capabilities to perform targeted row refreshes.
The current LPDDR4 standard and recent DDR4 modules
support targeted refresh of potential victim rows [19, 21].
Intel has published patents on memory controllers that sup-
port targeted row refresh [5]. The memory controllers are
designed to identify repeated reads to a row. However, the
actual physical placement of rows can differ among differ-
ent manufacturers. Hence, the controller only transmits the
row that is being repeatedly accessed, and the memory mod-
ule is responsible for refreshing the victim rows based on its
internal structure.

It is important to note that the mitigation techniques for
existing systems (i.e., doubling refresh rate and removing
access to CLFLUSH) are shown to be ineffective in this
work. We are able to implement the rowhammer attack in a
32ms double-rate refresh cycle, and we can also rowhammer
DRAMs without access to the CLFLUSH instruction. While
newly proposed hardware enhancements can protect future
systems from rowhammer attacks, a software solution is still
necessary to protect current hardware. As such, in this paper
we detail a low-cost software-based rowhammer detector
that thwarts attacks with little performance impact. It is our
claim that these protections are appropriate both for existing
and future designs.

6. Conclusion

Securing computing systems is a critical design goal. In
this paper, we systematically analyze a security vulnerability
found in commodity DRAM chips referred to as rowham-
mer. Rowhammer attacks use the CLFLUSH instruction to
accomplish hammering by bypassing processor caches and
repeatedly accessing memory.

We demonstrate that existing mitigation techniques such
as doubling refresh rates and disallowing CLFLUSH instruc-

tions are not sufficient—we show that it possible to rowham-
mer in as little as 15ms. We also provide the first CLFLUSH-
free rowhammer attack that does not require special cache
flushing instructions, thereby expanding the rowhammering
attack surface.

As an alternative protection mechanism to rowhammer-
ing attacks, we design, implement and evaluate ANVIL, the
first software-based defense that protects against all known
rowhammer attacks. Our defense leverages the insight that
rowhammer memory access patterns are fundamentally dif-
ferent from those of normal applications. Compared to prior
approaches, ANVIL is more effective, has lower cost, is
readily deployable and is adaptable due to its software-based
approach. Experiments with a diverse set of benchmarks on
a real system show that ANVIL has an average slowdown
of 1% and less than 1% false detections, while protecting
against all tested rowhammer attacks. We feel that these re-
sults show it is viable to protect current and future systems
against rowhammer attacks.
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