Fast Packet Classification using Condition
Factorization*

Alok Tongaonkar, R. Sekar, Sreenaath Vasudevan
Stony Brook University

Abstract. Rule-based packet classification plays a central role in network intru-
sion detection systems such as Snort. To enhance performancerulessare
typically compiled into anatching automatothat can quickly identify the sub-
set of rules that are applicable to a given network packet. The prinoiggics in

the design of such an automaton are its size and the time taken to match packets
at runtime. Previous techniques for this problem either suffered figmdpace
overheads (i.e., automata could be exponential in the number of,rotegptch-

ing time that increased quickly with the number of rules. In contrast, weeptex
new technique that constructs polynomial size automata. Moreovehavetbat

the matching time of our automata is insensitive to the number of rules. Gur ex
perimental results demonstrate substantial improvements in spacesrequts,

as well the runtime of Snort.

1 Introduction

Given a network packet and a set ofignaturegwhich capture a set of conditions on
the content of network packets), the problenpatket classificatiols that of identi-
fying the subset of signatures that majcHt is the central computation performed in
network intrusion detection systems (NIDS) such as Srdit [

A naive technique for packet classification is that of setjaiy matching each
signature against an incoming packet. The performanceaif auechnique degrades
linearly with the number of signatures. Since the numbeligriatures used in NIDS
applications is typically large (e.g., Snort rule sets @stnaf several thousand rules),
this naive technique will not scale to even moderate spetdonks.

A natural way to speed up classification is to build a seareb-like data structure
that can be used to narrow down the set of signatures thapalieable to a packet,
and then match the packet sequentially against each ofghatsires in this subset. A
common technique is to base the search tree on a small setl#ttributes that are
presentin almost all rules, e.g., Snort (versions 2.x) aseEsarch tree that first branches
on the protocol (e.g., IP or ICMP), and then on source andrdgain ports (for TCP-
and UDP-related rules).

By limiting to a small number of predefined attributes, we sanplify the search-
tree construction algorithm, and also ensure that the sremall in size. But the draw-
back is that the number of signatures that remain applicatdeleaf node can be sub-
stantial. As a result, the sequential matching phase chnaste significant time. To
further reduce this time, it would be desirable to build skdrees that can make use
of all (or most) of the attributes that occur in signaturestéad of limiting to a small
number of predefined attributes. However, building sucihctetaees becomes complex
because some of the attributes may not be present in alltaigisa Consider a search
tree node that examines such an attribute. If node has tvidrehj signatures that do

* This work was funded in part by NSF grants CNS-0627687 and CNe3Z83, and AFOSR
grant FA9550-09-1-0539.

not examine this attribute would need to be duplicated adfusse children. Repeated
duplication leads to search trees whose size, in the warst;dsexponential in the
number of signatureglg].

In contrast with previous techniques, we develop a newgesyatic approach that
ensures a polynomial bound on the size of the search treddltian to space-reductions,
our approach improves classification speed using a novahigae callectondition fac-
torizationthat breaks down tests involving packet fields in such a maas& expose
commonalities across different types of tests such as iguests, inequality tests,
tests involving bit-masking operations, etc. Our experitakresults indicate an over-
all performance gain of 30% for Snort. Moreover, as compé&ogatevious techniques
for constructing packet classification search trees su@nag-NG BJ, our techniques
lead to search trees that are tens to hundreds of times snigdlew, we present an
overview of our approach and summarize its key contribgtion

1.1 Overview of Approach and Contributions

— In Section2, we formalize the problem of packet classification as applie to
intrusion detection systems.

— In Section3, we develop the concept abndition factorizatiorthat provides the
foundation for the optimizations developed in this papendition factorization is
based on the notion ofrasidualof a condition with respect to another. Intuitively,
if we think of logical conjunction as analogous to the pradymeration on integers,
then residuals are analogous to the division operation adudivision provides the
basis for finding common factors among integers, residualgige the basis for
“factorizing” complex conditions originating from diffent rules so as to “share”
the testing of their common parts.

— In Section4 we present our automatbeonstruction algorithm. Condition factor-
ization is the core operation behind this algorithm, andittabutes directly to two
key optimizations:

e It can reason about the relationships between the typiaatipons that arise
inrules (e.g., equalities, inequalities, disequalitéag] bit-masking operations)
and leverage them to avos@mantically redundant testsen if they aren’t syn-
tactically identical. It is more general than the technjdeveloped in BPF8|
for eliminating semantic redundancies — our technique ¢ieely creates
opportunities for sharing computation, whereas BPF+ istéichto checking
whether previously performed tests obviate the need fometest.

e By working with residuals of rules, our automaton constiarcalgorithm can
recognize equivalence between automata states even losfios&ructing the
descendant states. Sudirect constructions important, since a tree automaton
is usually much larger (in theory, exponentially largegrita DAG automaton.
As a result, techniques that minimize tree automaton intcA& Rutomaton
are bound to significantly increase space and time needealifomata con-
struction.

— In Section5, we present several additional techniques for buildingepand time-
efficient automata:

! Henceforth, we use the term “automaton” instead of the term “seareli-tre

e In Section5.1, we develop the notion of discriminating testlf such tests are
selected at every state of the automaton, its size would ly@@mial in the
size of input rules. Unfortunately, discriminating testaymot always exist,
which can lead to an explosion in automaton size. We thezgiogsent a new
technique in Sectiob.2 that guarantees polynomial space bounds (where the
degree of the polynomial can be user-specified) by tradihgarvhe determin-
ism. We point out that this theoretical possibility of noteteninism wasn’t ob-
served in our experiments. Thus, our technigue was abledagtee quadratic
worst-case space requirement, without incurring, in jicacthe performance
penalties associated with nondeterminism.

e In Section5.3, we develop the notion dfenign nondeterminisjwhich enables
the introduction of nondeterministic branches in the awtmmwithout any
increase in matching time©ur experiments indicate dramatic reductions in
automata size as a result of this technique.

— In Section6, we describe our implementation, followed by an experirakeatalua-
tion in Section7. Our technique achieves ovefl@-fold reductiorin space require-
ments as compared to previous packet classification tegbsitpr NIDS, while
improving matching times. Moreover, the experimentallg@iyed matching time
remains virtually constant, regardless of the number @fs.uln contrast, previous
techniques experience a significant slowdown as the nunilveles are increased.
Our experiments also show that each of the techniques pegsenprevious sec-
tions contributes to significant reduction in space requéets.

— Related work is described in Secti@nfollowed by concluding remarks in Sec-
tion 9.

We point out that string-matching and regular-expressiatctiing techniques are or-
thogonal to the techniques developed in this paper. Inqudati, a common strategy
used in NIDS is to build a search-tree based on packet fiekdsagh leaf of this search-
tree, a string-matching (or finite-state) automaton c@ading to the signaturesas-
sociated with this leaf is built. In the case of Snort, an Abarasick automatonl]

is used, which identifies a subset®fof S whose longest string matches the current
network packet. Our techniques reduce the siz& &y building a search-tree based
on most packet fields, and hence the siz&"dt also correspondingly reduced, which
translates into faster times for the final (sequential) imate phase.

2 Preliminaries

In the rest of this paper, we use the tdilter to refer to signatures. We associate a label
to identify a filter.

Definition 1 (Tests, Filters and Priorities) Atestinvolves a variable: and one or two
constants (denoted ky and has one of the following forms.

— Equality tests of the form: = ¢

— Equality tests with bitmasks of the fori&cc; = ¢

— Disequality tests of the form # ¢

— Disequality tests with bitmasks of the forp&zc; # ¢

— Inequality tests of the form < c or =z > ¢
Afilter F'is a conjunction of tests.

An example of a filter, as defined above, is
(dport = 22) A (sport < 1024) A (flags&0xb = 0x3)
We exclude more complex conditions that don't satisfy thiendten of a filter, e.qg.,
(sport + dport < 1024) A (sport < ttl),

since they do not seem to arise in practice.

A filter F' can be “applied” to a network packet denotedF'(p), by substituting
variables, which denote the names of packet fields, with theesponding values from
p. We define the notion of matching based on whether the filigluetes tarue after
this substitution.

Definition 2 (Matching) For a setF of filters, we say that’ € F matches a packet
if F'(p) is true. Thematch sebf p, denotedM ~(p) consists of all filters that match

To illustrate matching, consider the following filter S€t

— Fy : (iemp_type = ECHO)
— Fy: (iemp-type = ECHO_REPLY) A (ttl = 1)
- F3 : (ttl = 1)

Also consider aficmp echgpacketp; and anicmp echo replypacketp,, both having a
ttl of 1. For these filters and packefs, matches,, F> matchess, and F3 matches
both. As aresultM £(p1) = {F, F3} and M z(p2) = {F», F3}

Examples ofpacket-matching automatalso known as matching or classification
automata) for the above filter set are shown in Figuremd 2. Figure 1 shows a
deterministic automatqrin which all of the transitions from any automaton state are
mutually exclusive. Anon-deterministic automatois shown in Figure2, where the
transitions may not be mutually exclusive. We make the ¥alhg observations about
the structure of matching automata:

— All but one of the transitions from each state are labeledh witestas defined
above; the remaining (optional) transition, called an &othransition, is labeled
with a more complex conditio6' as follows:

e In a non-deterministic automato®,is the conjunction of negations afsubset
of the tests on the rest of the transitions, e.g., the thadsition from the start
state in Figure2.

e In a deterministic automatou; is the conjunction of negations afl the tests
on the rest of the transitions, e.g., the third transitiamfrthe start state in
Figurel. In this case, the “other” transition is mutually excluswith the rest
of the transitions, and hence is also called an “else” ttemsi

— The transitions from each automaton statesameultaneously distinguishabliee.,

e apart from the éther’-transition, the tests on the rest of the transitions are
mutually exclusive

(R, B3} (R}
tl =1
4
{Fy, Fs} &
Fig. 1. A deterministic matching automaton.
{F\, Fy, Fy}

icmp_type # ECHO_REPLY

icmp-type = ECHO

iemp-type = ECHO_REPLY
{R} @ N

(B, B} ¢
Fig. 2. A non-deterministic matching automaton.

e it is possible to determine, using a single operation Wit) expected time
complexity, which of the transitions out of a state is aplle to a given
packet.

— Each final stateés' correctly identifies the match set corresponding to any g@iack
satisfying all the tests along a path from the start state to

Note that non-determinism has a runtime cost, as it needs sinulated using back-
tracking. For instance, consider a packet that satisfieathg_type = EC HO condi-

tion on the first transition from the start state of Fig@r&his packet is also compatible
with the conditionicmp_type # ECHO_REPLY on the third transition from the start
state. Thus, after exploring down the first transition, iésessary to explore down the

third transition as well. This need for backtracking is aégid in Figure2 using a dotted
transition.

3 Condition Factorization

In this section, we introduce the novel concept of condifactorization. It refers to
the process of decomposing filters into combination of mammigive tests — a pro-
cess that is intuitively similar to factorization of integeThis decomposition exposes

those primitive tests that are common across differens testd thus enables shared
computation of these common primitive tests.

The basis for condition factorization is the residue openatefined below. It is
analogous to integer division. Suppose that we want to ohéterif there is a match for
a filter C;. Also assume that we have so far tested a condifionA residue captures
the additional tests that need to be performed at this poimtify C .

Definition 3 (Residue) For conditionsC, and Cs, theresidueC, /C5 is another con-
dition C5 such that:

(1) Cz A\ Cg = Cl, and
(2) Cy NCy = (.

For afilter set, 7 /C = {F/C|F € F NF/C # false}.

Ideally, C3 would be the weakest condition such that (1) holds. In pcectiowever,
we may not want the minimal condition since it may be expensivcompute, or be
inefficient to use, e.g., may contain many disjunctions tRisrreason, we do not require
C'5 be the weakest such condition. Bu shouldn’t be too strong, or else we may miss
matches foiC; . This motivates the condition (2) above.

The rules in Figure8 specify how to compute residues on tests. In the figure, the
notationz denotes bit-wise complement of while & denotes bit-wise “and” opera-
tion. In addition, inequalities are expressed using irgkoonstraints, e.gay < 7 is
represented as € [—oo, 7], if « is an integer-valued variable. Note that a single in-
terval constraint can represent a pair of inequalitieslinmg a single variable, e.g.,
(x <7) A (x> 3) can be represented asc [4, 7].

For any pair of test§; andT5, the first row in the table that matches the structure
of Ty andTs, yields the value of’; /T5. We illustrate residue computation using several
examples:

— (z # a)/(x = a) Is false, as given by the second row in the table (which defines
T/-T).

— (x =5)/(2&0x3 # 1) is false, as given by the 5th row.

— for (x = 5)/(x&0x3 # 0), 5th row is no longer applicable since the condition
c&cy = co does not hold. (Here; = 5, ¢; = 0x3, andec; = 0.) Hence the
applicable row is the last row, which yields = 5)/(z&0x3 # 0) = (z = 5).
The result is understandable: although the two conditioesampatible with each
other, the test&0x3 # 0 does not contribute to proving= 5.

— (x €[1,10))/(z # 5) is also given by the last row to e € [1,10]).

Note that theminimalresidue in the last example would be € [1,4]) V (z € [6,10]).
In this sense, Figur8 makes approximations in computing residues. Intuitively,
make this approximation since there does not seem to be apytovavaluate(x €
[1,4]) V (x € [6,10]) more efficiently thar{z € [1, 10]).

In general, approximations such as those used above hapetdmstial to lead our
matching algorithm to perform multiple tests that have s@@@antic overlap. How-
ever, the first line in Figur8 ensures that two syntactically identical tests would never
be performed.

I Tn | T, | T/T» | Conditons |
T T true
T =T false
L 7T | z=c [Tle—d | |
r=c |z&ci=clz&keci=c&keci| c&ker =co
false c&ci # e
r=c |z&c #ca false c&ci =co
r=c |x€lc1, e false ¢ & le1, e
r#c |z&c =cole&er #cker| c&ker =ca
true c&ec1 # e
r#c |z&ea #ce true c&c1 =co
rF#c |z € e, true (c <)
V(e > ¢2)
x € [c1, 2] |x € [c3, ca) true a1 <cs
Sca<ce
x € [—00,c2] |1 <3
<c2<c
z € [e1,00] |es <
Sca<ce
z € le1,e2] |es<ar
S<c2<c
false (c2 < c3)
\/(64 < Cl)
z € [er, o] |z &es =y false cq4 > C2
x&ci =calz&es =ca| v& (c1 &C3) c2 & c3
:(CQ&E) =c1&ey
false otherwise
x&c1 = ca|x € [c3, 4] false Cco > Cy
x&ec1 #c2lz&es =ca| v& (c1 &) c2 & c3
75(02&@) =c1&cy
true otherwise
&1 # ca|x € [e3, ca) true Co > cy
7t [7 [7 | H

Fig. 3. Computation of Residue on Tests.
To illustrate residues on filter sets, consider
F={F:(x=5), Fo: (z=7), F53:(x <10)}.
Then

— F/(x =5) = {F : true, F3:tlrue}
— F/(x <7)={F,: (x=05), F3: true}

Finally, we specify how to compute residues on more complaxditions that are
formed using conjunction and disjunction operations otstes

- (C1®C2)/C3 = (C1/C3) @ (C2/C3), for® € {A,V}

- C1/(Ca AN C3) = (C1/C2)/C3

We have ignored the case where the second operand to theeegdrator contains
a disjunction, since this case does not arise in our autoowiatruction algorithm.
Using this definition, we can see that:

- ((z>2)Vv(y>T17))/(x=5)istrue, and
—((z>2)A(y>T7))/(x=5)is(y > 7).

4 Matching Automata Construction

Our algorithmBuild for constructing a matching automata is shown in FigutBuild

is a recursive procedure that takes an automaton steets first parameter, and builds
the subautomaton that is rootedsalt takes two other parameters: (i) thratch set\1

that consists of all filters for which a match can be annoumtegdand (ii) thecandidate
setC, that consists of filters that haven't completed a match, ltwiré matches can't be
ruled out either, i.e., matches for these filters will be régabat some of the descendants
of s. To illustrate the concepts of match and candidate setsawe &innotated the final
states in Figure& and2 with match sets, and non-final states with the union of match
and candidate sets.

We maintain only the residuals of the original filtersdnand M, after factoring
out the tests performed on the path from the root of the autmmia the state. For
example, in Figurd, at state2, we have completed a match fbY, and hence its match
set is{F} : true}. Note that the condition component 6§ has becomerue since
we computed the residue of the original condition (i(écinp_type = ECHO)) with
respect to the conditioemp_type = ECHO) on the path from the automaton root
to state2. In addition, note that we can rule out a match ferat this state, but a match
for F3 is still possible. Thus, the candidate set for this statgfis: (ttl = 1)}.2

A final state is characterized by the fact that there are nefilters left inC,. This
condition is tested at line 2, andis marked final, and is annotated to indicdt¢, as
its match set. If the condition at line 2 isn't satisfied, tie@ construction of automaton
is continued in lines 5-16. First, a procedurgect (to be defined later) is used at line
5 to identify a set of test%}, ..., T}, that would be performed on the transitions from
s. This procedure also indicates whetligris going to be a deterministic transition or
not: in the former casd; is set totrue, while in the latter casej; = false. Based
on whichT; are deterministic, the conditidf, associated with the “other”-transition is
computed on line 6:7; is included inT, iff T; is to be a deterministic transition.

The actual transitions are created in the loop at line 7-16in& 8, we compute
the subsef; of filters inC, that are compatible witl;. However, if this is going to be
a nondeterministic transition, then a match would be triedrdthe transition labeled
T; and then subsequently down the “other”-transition. Fa¥ teason, we can eliminate
from C; any filter that will be considered on the “other’-transitidrhis elimination is
performed on line 9. At line 1QM,, andC;, for the new stats, are computed.

2 M, andC, can be formally defined as follows. L&t denote the conjunction of tests on the
path from the start state of the automaton to the stathen M, = {F € F/P;|(F =
true)}. Similarly,Cs = {F € F/Ps|(F # true)}

1. procedure Build(s, Ms,Cs)

2. if Cs is empty /* No more filters to match */

3. then match[s] = M, I* Annotate final state with match set */
4. else

5 (D, T) = select(Cs) I* T; € T is tested orith transition */

/* d; € D indicates if this transition is deterministic */

6. T, = {/\diGD\di:true T3}
/* Compute test corresponding to the “other”-transition */
7. for eachrl’; € (7 U {T,}) do
8. Ci =Cs/T;
9. if (T; #T,) A—d;)thenC; =C; —C/T, endif
/* For a non-deterministic transition, do not duplicate */
/* filters from the “other” branch */
10. computeM, andCs, from C; and M
11. if a states; corresponding t¢Cs,, M,) isn’t present
12. create a new state
13. Build(si, Ms,;,Cs;)
14. endif
15. create a transition fromto s; onT;
16. end
17. endif

Fig. 4. Algorithm for Constructing Matching Automaton

Since the behavior aBuild is determined entirely by the parametérsand M,
two invocations ofBuild with the same values of these parameters will yield idehtica
subautomata. Hence a check is made at line 11 to examine iftamaton state already
exists corresponding t6,, and M, and if not, a new state is created at line 12, and
Build recursively invoked on this state. Finally, a transitiorthts state is created at
line 15.

5 Improving Automata Size

The algorithm presented in the last section incorporatedmain optimizations to re-
duce automaton size and matching time, both derived frondefinition of condition
factorization: detecting and sharing equivalent states azoiding repetition of (seman-
tically) redundant tests. In this section, we present tegles for realizing theelect
function that yields significant additional reduction in@mata size.

Although our experimental evaluation considers the nurobautomaton states as a
measure of its size, for simplifying mathematical analysis discussion in this section
will use the automaton breadth as the size metric. Sinceutwmreaton is acyclic, and
since tests are never repeated, it can be shown that thetwtdler of automaton states
can, in the worst case, be at méstimes its breadth, wherg is the number of distinct
tests across all the filtets

% In practice, the factor is closer to average size of filters, which can h#isantly smaller than
S.

5.1 Discriminating Tests

Definition of select amounts to determining the test that should be performegbat-a
ticular state of the automaton. Since the test identifiep#uket field to be examined,
select can be viewed as defining an order of examination of packelsfidlot all or-
ders of examination may be acceptable, since some packds fielg., the protocol
field) may need to be examined before others (e.g., the ptd}.f\e use a type sys-
tem similar to packet typed] that captures such ordering constraints among tests. Our
implementation okelect ensures that these constraints are respected.

The simplest approach for defininglect is to test the fields in the order of their
occurrence in a network packet, as done in some of the previouks R,5]. We call
such a traversal order dsft-to-right traversaland refer to an automaton using this
traversal order ak-R automatonA better strategy, calleddaptive traversalyas first
proposed in the context of term-matchiri], and was then generalized to deal with
binary data in 7]. In the terminology of this paper, an adaptive traversalildselect a
set of test¢” at an automaton stateas follows. It identifies a packet fieldthat occurs
in every filter inC;. (If no such field can be found, it falls back to another chpég.,
choosing the left-most field that hasn't yet been examingdwy, 7 consists of all tests
on x that occur in any of the filters i@;.

Since adaptive traversal was developed in a context wherdéests were all re-
stricted to be simple equalities with constants, it is eassele that the sét described
above consists of tests that can be simultaneously disthgd, and hence can form
the transitions froms. Moreover, it has been shownif§] that, as compared to other
choices, this choice of transitions will simultaneouslguee the automaton size as
well as matching time. Unfortunately, none of these holdhia inore general setting
of packet matching, where disequalities and inequalitiss aeed to be handled. For
instance, consider a candidate set that consists of twisfflte/£ 25) and(x < 1024).
These tests are not simultaneously distinguishable. Mereoeither of these tests con-
tributes towards verifying a match with the other. More gatig, it can be shown that,
in the presence of disequality and inequality tests, thécelsdhat decrease automaton
size do not necessarily decrease matching time (and visaeélNe therefore focus
first on a criterion for reducing automaton size.

Definition 4 (Discriminating Set) A set7 of conditions is said to be discriminating
setfor a filter setF iff for every ' € F there exists at most orlE € 7 such thatF
belongs to the candidate set &7/ T

The setT = {z = 5,z = 6,(x # 5) A (x # 6)} is discriminating for the filter set
C ={x =52 =6, > T}, butnot for{x = 6,2 > 4}. This means if we create
3 outgoing transitions corresponding to the three tests finom an automata state
with the candidate s&t, none of the filters ir€ will be duplicated among the children
of s. As a result, in an automaton that uses only discriminatstst the candidate sets
(as well as the match sets) associated with the leaves wiligp@nt. Since there are at
mostn disjoint subsets of a set of size it immediately follows that any automataon
that is based entirely on discriminating tests will have astd(n) breadth.

* Recall that simultaneous distinguishability refers to the ability to identify the rirj¢ransi-
tion in O(1) expected time.

5.2 Ensuring Polynomial-Size Automata

Since discriminating tests may not always exist, it may beessary to choose non-
discriminating tests. This choice introduces overlapsragbe candidate sets of sibling
states in the automaton. These overlaps, in turn, meantthay éevel in the automaton,
there may be as many a8 distinct candidate sets. Thus, the breadth of the automa-
ton can become exponential in the number of filters. Expaalelotver boundshave
previously been established even in the simple case whigiesstd are restricted to be
equalities 16]. Although some of the previously developed techniquesasanid such
explosion, this has been accomplished at the cost of intindwsignificant backtrack-
ing at runtime 11,5,2,3], especially for the kinds of filters that occur in the cortek
intrusion detection. Other techniques avoid exponeniza By introducingO(n) op-
erations for each transition at runtime, as they requirdimemaintenance of match
sets [L3,7]. With large filter sets that are often found in enterpris®©R] O(n) time
complexity for transitions becomes unacceptable.

We present a new technique that can provide a polynomialbgined, while lim-
iting nondeterminism in practice. Indeed, any desired pofyial boundP(n) can be
achieved by our technique. However, by using a larger boaugdy? instead ofr log n,
one can obtain deterministic automata in almost all cases.

Our technique is based on the observation that the breadihbafutomaton rooted
at s can be captured, in terms of the sizes of candidates setsiatgsbwiths and its
children, using the recurrence

k

B(c)) =Y B(lC,

i=1

);

whereB(1) = 1. Let P(n) be the desired polynomial enthat bounds the automaton
size. Based on the above recurrence, we can show, by indwrtithe height of that
the bound will be satisfied as long as the following conditiaids at every state of
the automaton.

k

P(lcs]) = > P(Cs,) (1)

=1
By selecting tests that satisfy this constraint, our impatation ofselect ensures that
the automaton size will b®(P(n)). If no such test can be found, our technique picks a
test that comes the closest to satisfying this constraiattlaen makes some of the out-
going transitions nondeterministic so as to ensure thassfcandidate sets associated
with the descendant automaton states satisfy the abovéaimnsRecall from line€) of
Build that making a tesf; nondeterministic enables us to avoid overlaps betwken
andC,. So, our algorithm makes one or more transitions out of aoraaton state non-
deterministic until Inequalityl is satisfied. In our implementation, we have Bé¢h) to
ben?, which guarantees a quadratic worst-case automaton size.

To understand the importance of the above technique, natatpurely determin-
istic technique ensures good performance at runtime, bki$ Gatastrophic failure on
large rulesets that cause an exponential blow up — memohbwiéxhausted in that
case and hence the ruleset can't be supported. In conttastpproach converts this
catastrophic risk into the less serious risk of performategradation. Unlike previous

techniques for space reduction that led to increases iimnenin practice, performance

degradation remains a theoretical possibility with ouhteéque, rather than something
observed in our experiments. (This is because of the fatititia the rulesets we have

studied in our experiments, the quadratic bound was newereeled, and hence nonde-
terminism was not introduced.)

5.3 Benign Nondeterminism

For our final space-reduction technique, we define the caéégnign non-determinism,
which enables us to benefit from the space-savings enabledrygleterminisnwith-
out incurring any performance penaltiels.is based on the following notion ohde-
pendencemong filter sets.

Definition 5 (Independent Filters) Two filters £} and F; are said to bendependent
of each other ity /T = Fy,VT € Fy,andFy /T = F, VT € F.

JF; and F;, are said to be independentif’, € F,,VF, € Fy, Fi and F; are indepen-
dent.

Suppose that there is a filter sEtthat can be partitioned into two independent subsets
F; and F,. We can then build separate automatafgrand F,. Packets can now be
matched using the first automaton and then the second one.tReabove definition,
itis clear that the tests appearing in the two automata arpleiely disjoint, and hence
no decrease in runtime can be achieved by constructing Eesingpmaton forr.

Our experiments show that the above technique leads to ticanealuctions in
space usage. The intuition for this is as followsFif and F, are independent, then
a packet may matcli, Fy, both, or neither. A deterministic automaton must have a
distinct leaf corresponding to each of these possibilitiedending this reasoning to
independent filter sets, if an automaton for theBghask; states, and the automaton
for 75 hask, states, then a deterministic automaton faru F» will have ki * ko
states. In contrast, using benign non-determinism, theisitimited tok; + k.. If there
arem independent filter sets, then the use of benign nondetesmioan reduce the
automaton size from a product of numbers to their sum.

The second reason for significant reductions in practicas i®llows. After exam-
ining some of the fields that are common across many ruleseagetvcloser to the
automaton leaf, independent sets arise frequently. Ftarine, we may be left with one
set that examines only the destination port, another seéettaamines only the source
port, yet another set that examines only the destinatiomor&t and so on. Thus, inde-
pendent rule sets tend to arise frequently, and lead to ueas&ireases in space usage
if they are not recognized and exploited using our benignaeterminism technique.

There is a simple algorithm for checking & contains two independent subsets.
First, partitionF into singleton subsets corresponding to each rule. Nowgtbabsets
are taken two at a time, and merged if theymoeindependent. This process is repeated
until no more merges are possible. If there are multiple stsbieft at this point, then
these subsets are independent.

To deal with benign non-determinism, the interface betwedact and Build
needs to be extended so that the former can return a set gfendent filter sets
{Fi1,...,F}, instead of a test set. At this poinBuild will create ak-way non-
deterministic branch. On thih branch, it will invokeBuild(s;, F;, Fi N M).

6 Implementation: Putting It All Together

Our implementation first compiles the given filter set int@atomaton using thBuild
algorithm. Residues were computed as specified in Tallar select implementation
proceeds as follows:

— select first attempts to find a discriminating test set (Secbdt).

— if no discriminating test sets exist, it examines oppotiaaifor benign non-determinism
(Section5.3).

— if neither of the above steps succeed, it returns a set o tiegt achieves the poly-
nomial size target specified, as described in Sed&ian

In order to speed upelect, our implementation starts by examining fields that occur
in all filters in a candidate set, giving preference to thosklé that contain primarily
equality tests. Such fields have a high likelihood of yiefdufiscriminating tests at
which pointselect returns this set. As mentioned earlier, any constraintarcigg the
order of examination of fields are enforced dayect.

Once the automaton is constructed, our compiler generatsd€ corresponding
to the automaton, which is then compiled into native codagisi C-compiler. The
code generation is straight-forward and not described taildeere, except to note that
the code explicitly uses an if-then-else, a binary search, ltash-based branching to
implement transitions.

A runtime system is responsible for reading network packats calling the gen-
erated code to perform matching. For experiments on netimdmksion detection, our
runtime system was essentially Snort, with modificatiors there needed to integrate
with our automata code.

7 Evaluation

The goal of our experimental evaluation is demonstrateopeidince improvements that
can be gained in typical network intrusion detection syste® a result of using the
packet classification techniques presented in the prewecisons. To this end, we un-
dertook two main experiments, both performed on a Linuxesysivith 1.70Ghz Pen-
tium 4 processor and 520MB memory, running CentOS-4.2 (Lkarnel 2.6.9).

10000

" Condition Factorization—— 20000 Condition Factarization——
Snort-2.6 ——x-—- Sn"OI"[-NG]

15000 -

8000 -

B000F e IS

| 10000}
4000 + x
/ 5000
- 7’;‘ | x

Detection time in nano seconds per packet
%
No. of states
X,

0) ‘ ‘ ‘
ol
1100 300 500 700 900 1100 1300 1500 0 50 100 150 200 250 300
Number of Rules Number of Filtering Rules
Fig. 5. Total Matching Time Fig. 6. Automaton Size for Snort Rules

7.1 End-to-End Performance Improvement of NIDS

In the first experiment, we replaced the simple packet dleabn used in Snort 2.6,
the popular open-source NIDS, with our technique. Snoitldivsignatures into groups
based on protocol, source port and destination port. Fdr ®ach group, it extracts the
longest string contained within the content-matching pétthe signature, and builds an
Aho-Corasick automaton for these signatures. At runtinsén@le packet classification
technique is used to identify the rule group against whichckpt needs to be matched.
Then the content of the packet is matched using the Aho-@drasitomaton associ-
ated with this group. Since this automaton only considezddahgest string from each
signature, some of the signatures returned by this auterma#y not really match the
packet. (However, the automaton will always return a sigien®t a subset of matching
signatures.) Moreover, the signatures may contain congalegitions, e.g., a constraint
on the distance between two strings within a signature. Talleethese aspects, Snort
performs a one-on-one match between a packet and each aftia¢uses returned by
the automaton.

In our experiment, we replaced the first stage with the magchiutomaton con-
structed by our technique. At each leaf of this automatonrepéicate the technique
used by Snort, i.e., we build an Aho-Corasick automatondogrize the longest string
contained in each of the signatures in the candidate seteofetiP. Finally, a one-
on-one match is perfomed between the signatures return¢tisogutomaton and the
network packet. Our implementation reuses almost all ofSiomle, including the code
for Aho-Corasick automaton, and the final one-on-one méttoinly replaced the initial
packet classification component. As a result, the perfoomamprovements obtained
by our technique are entirely due to the use of our sophtsticpacket classifier.

We measured the total time taken by original Snort, and thsime of Snort we
modified to use our matching automaton. These times were atatifor a 21-million
packet trace collected at a University laboratory congistif about 30 hosts. Since the
firewall is fully open to the Internet (i.e., the traffic is moe-screened by another layer
of firewalls in the University or elsewhere), the traffic issmsonable representative of
what one might expect a NIDS to be exposed to. We used theltsigwature set that
is shipped with Snort.

In this experiment, we observed that the one-on-one majghiirmse was invoked
about 120M times in the original Snort, whereas it was indoiely 40M times with our
packet classifier in place. This reduction in the number efon-one matches translates
to about 30% reduction in the overall time taken by Snort.

Figure5 shows the overall time taken by Snort with and without our ification,
as we vary the number of rules. While the performance is négelytical for small rule
sets, it quickly increases to (and stabilizes at) about 30&few hundred signatures.

5 In the presence of non-determinism, we needed to modify the aboveideetso as to avoid
repetition of string-matching tests after backtracking. Specifically, we thglAho-Corasick
at the first non-deterministic node encountered on a root-to-leaf patl autbomaton, and per-
formed an intersection of the set of signatures returned by the Ahas@&rwith the signature
sets of each of the matching leaves.

7.2 Improvement in Space Usage

In this experiment, we evaluated gains in space usage @lotaising our packet classi-
fication technique. We first compared our technique agaiastf Snort-NG 9], which
was the only other implementation of a sophisticated paakssifier that we are aware
of that is applicable to NIDS like Snort. Snort-NG uses aatéht strategy from ours for
eliminating redundant tests: they convert all tests intaonical form so that seman-
tically identical tests would also be syntactically ideati However, tests in canonical
form can in general be more expensive than the original éegt, in order to support
tests on IP addresses that may sometimes involve bit-ngsiiarations and at other
times involve equality, they convert both tests into snraists that examine one bit
of address at a time. Secondly, Snort-NG uses an entromdlagorithm (instead of
the criteria developed in Secti@of this paper) to decide which packet field to test at
each node. These factors lead to significant differencelsersizes of the automaton
constructed, as illustrated in Figuge

We focused this evaluation on packet classification, anarigghthe content-matching
components of signatures. (Recall that content-matchiag considered in the ex-
periments in the previous section.) Since many signatueegdantical except for the
content-matching part, the default signature set that caitheSnort-NG was reduced
from a size of 1635 to 305.

Figure 6 shows the effect of increasing the number of rules on the rurabau-
tomaton states. We can see from the graph that as the numbdesfincreases, the
number of states iBnort NGincreases much faster than our technique. For 300 rules,
Snort-NG automaton contains over 45K states whereas tlognaton constructed by
our technigue has only about 4K states, representing am ofdeagnitude improve-
ment in space utilization.

40000 T - 90 . .
LR Tree ——+
¢ g Snort 2
35000 LR DAG -y 80 - Snort-NG -~
Adaptive Tree-#-- —~ . Bl
30000 Adaptive DAG o | 2 70 b Condition Factorization >
" Adaptive DAG w/ benign nor-det;-=--- =
4 P I
g 25000] £
(2] 7 '_
% 20000 P >
S s 4
Z 15000 5
®
10000 . s
5000 r
0 R g T,,,,ﬂ——‘r’"") 0 . . . , ,
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Filtering Rules Number of Filtering Rules

Fig. 7. Effect of Optimizations on Automatdhig. 8. Matching Time for Packet Classifica-
Size for Snort Rules tion

Effect of Optimization Techniques Figure7 illustrates the effects of different opti-
mizations on the automaton size. We studied different coatlmns of techniques: with
and without sharing of equivalent states in the automathyath different traversal or-
ders.

— Order of testing fieldsAs compared to left-to-right (L-R) order for examining
packet fields, our technique (which uses taéect function as described in Sec-

tion 6 produces tree automata that are much smaller: for 120 riled.-R au-
tomaton had 150,000 states, whereas the tree automatoadsatthén 3000 states.

— DAG Vs tree automat®ur results show that DAG automata were smaller than tree
automata by about 25% for our technique. Larger space redscivere achieved
with DAG optimization for L-R automata, but still, L-R aut@ta remain signifi-
cantly larger than the one constructed by our technique.

— Benign nondeterminisnBy exploiting benign non-determinism, we were able to
achieve dramatic reductions in space usage. This is be@n¢ contains many
rules which test some common fields. Our technique prefesettommon fields
for testing, since they are the ones that are likely to beridiscating. Once these
common fields are tested, the residual rule sets contain mdependent subsets.

We point out that a combination of our techniques was necgssachieve the size
reductions we have reported. In particular, benign nomgetésm leads to large im-
provements in size when combined with discriminating tdsis much less effective
when used with L-R technique, since the factors contrilgutinthe occurrence of inde-
pendent filter sets do not arise frequently when the L-R tieghenis used.

7.3 Packet Classification Performance

In this section, we describe experiments to study the runfp@rformance of packet
classification. Unlike Sectioid.1, which considered packet classification as well as
content-matching time, this section focuses exclusivalthe packet classification time
in order to measure the raw performance benefits providedibtechnique. For these
experiments, we used the same 21M packet trace mentionlezt.ear

Figure8 shows the matching time taken by Snort, Snort-NG and oumnigake for
classifying these packets as the number of rules changkelRigure8, it can be seen
the matching time remains essentially constant with ourriggie, even as the number
of rules are increased from about 10 to 300. In contrast, thiemng times for Snort
and Snort-NG increase significantly with the number of ruldge base matching time
for all the techniques (with no rules enabled) is basicdily same, as it corresponds
to the time spent by Snort to read the packets from a file andl delated processing
except matching.

8 Related Work

[29],[20],[20], [17] are techniques targeted at routers where they can retteigirob-
lem so as to work on a small, predefined set of attributes ssi¢dR address and port.
Our focus is on NIDS, where a much larger number of attributey be tested, and
moreover, the tests can be complex.

Pattern matching automata have been extensively studidtkicontext of term
rewriting and theorem provind.p]. Sekar et al 16] presented a technique for adapting
the order of examination of fields in order to reduce spacengaitgdhing time complex-
ity of term-matching automata. Gustafsson and Sagofiaxfended this technique to
handle binary data such as network packets. Our technicuergees their technique

further by adding support for inequalities and disequsltdoreover, our bit-mask op-
erations are more general than their bit-field operationgteMmportantly, their au-
tomata has an exponential worst-cast space complexityoadth they describe a tech-
nique for constructing linear-sizgiarded sequential automatdese automata require
runtime operations to manipulate match and candidate setsesult, their transitions
have anO (V) complexity (whereN is the number of patterns), while our transitions
areO(1) expected time.

Techniques such as BPE]], DPF [5] and Pathfinderd] can also be viewed as
building matching automata where the packet fields are exanin the order they
occur, i.e., they rely on a left-to-right traversal instezdrelying on the techniques
described in Sectiob for selecting the the tests that are performed. As showniin ou
evaluation, our techniques result in significant gains iacspusage, as compared to a
left-to-right traversal.

BPF+ [3] uses global dataflow techniques to identify opportuniteseliminating
redundant tests. Our condition factorization techniqgum@e general than those of
BPF+, being able to reason about semantic redundancies prelsence of bit-masking
operations, and comparisons involving different constavibre importantly, condition
factorization takes a step beyond the passive approactcofmézing redundant tests
and eliminating them: it proactively decomposes complstst&to more primitive ones
so that their common components are exposed and shared.

DPF uses dynamic code generation, which allows dynamidegimg of tests. Dy-
namic reordering improves performance by detecting maidurés earlier. Al-Shaer
et al [8] and Gupta et al] significantly improve on the dynamic reordering technique
used in DPF by using efficient algorithms to maintain statistegarding the traffic.
Their techniques are analogous to profile-based optinizatin compilers, whereas
ours is analogous to static-analysis based optimizatibimss, the two techniques can
complement each other.

Vern Paxson12] developed Bro which is another popular NIDS. Sommer and Pax
son [L8] enhanced Bro signature matching to use regular expressfim important
difference between Bro and Snort is that Bro is primarilyeatn-oriented: it assem-
bles packet sequences into streams before applying sigsattlommercial NIDS such
as those from CISCO and IBM employ a combination of packietrbed and stream-
oriented matching techniques. The packet classificatiohnigues developed in this
paper fit naturally in the context of packet-oriented NID®d® or commercial sys-
tems), and can speed them up. Integrating them into a stogi@mted NIDS can be
a bit more involved, as these systems may apply certain ¢espacket fields against
some packets (e.qg., the first packet in a stream) but not stgatimers.

9 Conclusions

In this paper we presented new techniques for packet-nmafciur approach is based
on the concept of condition factorization, and proactivelates opportunities for shar-
ing common tests across different signatures. Unlike pressitechniques, our tech-
niques provide a worst-case polynomial bound on the sizeadéiing automata, while
ensuring excellent runtime performance in practice. Oyeerental results demon-
strate a 30% gain in end-to-end performance of the populart 8BiDS due to the use

of our techniques. They also demonstrate an order of magmiteduction in space us-
age as compared to previous systematic packet classifidathniques developed in
the context of NIDS, as well as matching times that remaituglty constant as the
number of rules is increased.

References

1. A. Aho and M. Corasick. Efficient string matching: An aid to bibliograpbearch. In
Communications of the ACM, vol 18, nq.pgages 333-343, 1975.

2. M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. SarRathfinder: A pattern-
based packet classifier. Dperating Systems Design and Implementatmages 115-123,
1994.

3. A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting glob&-flaw optimization
in a generalized packet filter architecture SIGCOMM pages 123-134, 1999.

4. S. Chandra and P. McCann. Packet typesSédnond Workshop on Compiler Support for
Systems Software (WCSSS), May 1,90809.

5. D.R.Englerand M. F. Kaashoek. DPF: Fast, flexible messageltiplexing using dynamic
code generation. IBIGCOMM pages 53-59, 1996.

6. P. Gupta and N. McKeown. Packet classification on multiple fieldsAGM SIGCOMM
1999.

7. P. Gustafsson and K. Sagonas. Efficient manipulation of binaryudatg pattern matching.
J. Funct. Program.16(1):35-74, 2006.

8. E. A.-S. Hazem Hamed, Adel El-Atawy. On dynamic optimization ofkgaenatching in
high-speed firewalls. IfEEE Journal on Selected Areas in Communications, Vol 24, No. 10
Oct 2006.

9. C. Kruegel and T. Toth. Using decision trees to improve signatuseebiatrusion detection.
In 6th Symposium on Recent Advances in Intrusion Detection (RAUD3.

10. T.V. Lakshman and D. Stiliadis. High-speed policy-based packetiding using efficient
multi-dimensional range matching. 8iIGCOMM pages 203-214, 1998.

11. S. McCanne and V. Jacobson. The BSD packet filter: A new acthitefor user-level packet
capture. INUSENIX Winteyrpages 259-270, 1993.

12. V. Paxson. Bro: A system for detecting network intruders in real-tim&SENIX Security
1998.

13. R. Ramesh, |I. Ramakrishnan, and D. Warren. Automata-dimasExing of prolog clauses.
In Seventh Annual ACM Symposium on Principles of Programming Laegyzages 281—
290, San Francisco, 1990. Revised version appears in Journabaf Brogramming, May
1995.

14. M. Roesch. Snort - lightweight intrusion detection for networks13th Systems Adminis-
tration Conference, USEN|X999.

15. R. Sekar, I. Ramakrishnan, and A. Voronkov. Term indexinq@ Al Robinson and
A. Voronkov, editors,Handbook of Automated Reasoninglume II, chapter 26, pages
1853-1964. Elsevier Science, 2001.

16. R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptiverpatigtching. InAutomata,
Languages and Programmingages 247-260, 1992.

17. S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packsfick®n using multidimen-
sional cutting. INSIGCOMM 2003.

18. R. Sommer and V. Paxson. Enhancing byte-level network intraigitaction signatures with
context. INACM CCS 2003.

19. V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fassaalable layer four switch-
ing. In Proceedings of ACM SIGCOMM ’'9®ages 191-202, sep 1998.

20. T. Y. C. Woo. A modular approach to packet classification: Algorithand results. In
INFOCOM, 2000.

	[-.5in]Fast Packet Classification using Condition Factorization[-.25in]
	 Alok Tongaonkar, R. Sekar, Sreenaath Vasudevan [-.26in]

