
Isolated Program Execution: An Application Transparent Approach for
Executing Untrusted Programs

�

Zhenkai Liang, V.N. Venkatakrishnan and R. Sekar
Department of Computer Science

Stony Brook University, Stony Brook, NY 11794.�
zliang, venkat, sekar � @cs.sunysb.edu

Abstract

In this paper, we present a new approach for safe exe-
cution of untrusted programs. This approach is based on
isolating the effects of untrusted program execution from
the rest of the system. Isolation is achieved by intercepting
and redirecting file modification operations made by the un-
trusted process so that they access a “modification cache”
invisible to other processes in the system. To ensure a con-
sistent view of system state, the results of file read opera-
tions made by the untrusted process are modified to incor-
porate the contents of the modification cache. Any opera-
tion with a potential to modify a non-file resource is dis-
allowed for untrusted processes. On termination of an un-
trusted process, the user is presented with a concise sum-
mary of the files modified by it. Additionally, the user can
inspect these files to determine if the modifications are ac-
ceptable. The user then has the option to commit these
modifications, or simply discard them. Essentially, our ap-
proach provides “play” and “rewind” buttons for running
untrusted software. Key benefits of our approach are that it
requires no changes to the untrusted programs (to be iso-
lated) or the underlying operating system; it cannot be sub-
verted by malicious programs; and it achieves these bene-
fits with acceptable runtime overheads. We describe a pro-
totype implementation of this system for Linux called Alca-
traz and discuss its performance and effectiveness.

1. Introduction
The widespread deployment of firewalls and related so-

lutions for network security has significantly raised the bar
for remote attacks on an enterprise network. However, even
the best perimeter solutions can be easily defeated by an at-
tacker that can induce users inside the enterprise to down-
load and execute malicious code. While virus detection and
similar techniques can be deployed to detect widely preva-
lent instances of malicious code, such techniques are lim-
ited in theory (by the fact that detection of malicious code

� This research is supported in part by an ONR grant N000140110967
and an NSF grant CCR-0208877.

is undecidable in general) as well as practice (by the dif-
ficulty of object code analysis and factors such as encryp-
tion).

A more promising approach for defending against mali-
cious code is based on sandboxing, wherein the resource ac-
cesses made by untrusted code are suitably restricted to en-
sure security. However, use of such approaches in practice
has been hampered by the difficulty of policy selection: de-
termining resource access rights that would allow the code
to execute successfully without compromising system secu-
rity. Too often, sandboxing tools incorporate highly restric-
tive policies that preclude execution of most useful applica-
tions. The net result is that users end up choosing function-
ality over security, and thus execute untrusted code outside
such sandboxing tools, exposing themselves to unbounded
damage if this code turned out to be malicious.

An alternative to sandboxing is isolated execu-
tion, wherein the actions of untrusted code are isolated
from other applications and resources to be protected. Iso-
lated execution has previously been studied by researchers
[14, 6] in the context of Java applets. Such applets do not re-
quire much access to system resources, other than being
able to interact with a user. Hence the implementation ap-
proach used by these works relied on executing untrusted
applets on a “remote playground”, i.e., an isolated com-
puter (other than a user’s desktop). However, applica-
tions that perform more useful functions will require access
to resources such as the file system on the user’s com-
puter. To provide such access, the entire environment on the
user’s computer, including file system contents, must be du-
plicated on the remote playground.

Logical isolation, wherein the effects of a malicious pro-
cess are logically isolated from other processes, can achieve
the benefits of isolated execution without the drawback of
requiring dedicated hardware or solving the difficult prob-
lem of accurate duplication of environment. It was proposed
in [18] to permit continued operation of compromised pro-
cesses without alerting attackers and without risking dam-
age to the rest of the system, and in [10] in the context of
databases. The theory of data isolation was further devel-



oped systematically in [13] in the context of databases as
well as file systems, and isolation protocols that demon-
strate the feasibility of the approach were presented. How-
ever, practical issues that arise in implementing this ap-
proach on contemporary operating systems were not stud-
ied. In contrast, this paper develops an application- and
OS-transparent approach for isolated execution of untrusted
programs, and describes a tool called Alcatraz that imple-
ments this approach on the Linux operating system.

Our approach is based on system-call interposition. It
permits untrusted applications to access the entire file sys-
tem that is accessible to the end users, thereby making it
possible for most applications to carry out their tasks. Us-
ing a copy-on-write semantics, modifications to the file sys-
tem that are performed by the application are hidden from
the rest of the system, which ensures that malicious actions
of the untrusted code will not compromise the integrity of
the system. Accesses to non-file resources are restricted as
needed to ensure integrity. At the completion of execution,
the users can examine the accesses made by the untrusted
code to see if it changed any files of interest to them, and
if so, examine these changes. If the users are convinced
that these changes are benign, then they can commit these
changes, so that they become visible to the rest of the sys-
tem. Otherwise, the users can abort these changes. The key
benefits of our approach are:

� Application and operating system transparency. Our ap-
proach requires no changes to the underlying operating
system or the untrusted application itself. Moreover, the
technique can be applied regardless of whether the files
accessed by the application are local, or are located on
a remote file server.

� Secure yet application-friendly. Our approach provides
security against malicious code without imposing un-
due restrictions on such code. This makes it possible
for a large class of existing software to execute success-
fully, unlike sandboxing based approaches.

� Convenient and user-friendly. Our approach provides a
compact summary of the file system resource accesses
made by untrusted code at the end of its execution. This
contrasts with sandboxing approaches that prompt users
every time an application accesses a file that is not per-
mitted by the sandboxing policy. In addition, the user
is given the ability to examine these files to determine
whether the application carried out the functionality that
the user wanted.

Our implementation does not require the users of our system
to possess administrator privileges. It imposes modest over-
heads for isolation (below 20% for all the applications we
have studied). However, the mechanism we have used for
system call interposition poses moderate overheads, ranging
from under 10% for CPU-intensive applications to nearly
100% for I/O-intensive applications.

The description in the rest of the paper is set in the con-
text of the Linux operating systems, but the techniques are
applicable to most modern operating systems. The organi-
zation of the rest of paper is as follows. We begin with two
motivating examples in Section 1.1. Section 2 provides an
overview of the system design, followed by more detailed
descriptions of the system components. Implementation re-
sults are discussed in Section 3, followed by related work in
Section 4. Finally, concluding remarks appear in Section 5.

1.1. Motivating Examples

Photo organizer. Consider an application that scans spec-
ified directories for image files and generates photo album
files that are written to the same directories. It also gener-
ates thumbnail pictures from these files (for creating index
files) and has the ability to modify/resize these files. Sim-
ilar applications that modify images and other media such
as audio files) are available as freeware on the Internet, e.g.,
the picturepages [20] package.

Safe execution of applications such as the photo orga-
nizer poses two challenges for sandboxing approaches.

� apriori policy selection: Users have to anticipate the re-
source access requirements of a program prior to its
execution, which is often difficult. To overcome this
problem, some sandboxing approaches allow changes
to policies through runtime prompts to the user: when
the sandboxed application violates the initially speci-
fied policy, the user is informed and queried whether
he/she wants to permit this access. Unfortunately, such
repeated prompts lead to “click-fatigue,” as a result of
which the user simply grants (or refuses) all subsequent
prompts without reviewing them carefully.

� policy granularity: Development of enforceable poli-
cies [17] that permit the application to perform the file
access operations that it needs to perform, while ensur-
ing that these files are not corrupted or deleted. Such
a policy would have to permit “legitimate” changes to
files, as needed for resizing files or including preview
images, while disallowing other changes. Development
of a policy that can capture such legitimate transforma-
tions on files is likely to be hard. Even if they can be
expressed, enforcement of such policies is likely to be
inefficient, if not impossible.

Due to these difficulties, sandboxing policies tend to be con-
servative and often disallow a large class of useful programs
such as the picturepages program. In contrast, our pro-
posed approach will permit execution of programs as long
as they don’t make system changes other than file modifi-
cation operations. Few applications violate this constraint,
and hence a majority of applications can be run safely using
isolation. Moreover, users need not develop safety policies
ahead of time. Finally, they have the opportunity to exam-
ine the system state resulting due to the execution of the un-



trusted program, and then decide whether to “keep” or “roll
back” these changes. They can use standard system utilities
such as find and diff, as well as arbitrary helper applica-
tions such as image viewers, to examine the system state.

Software installation. Users are all too familiar with
poorly packaged software that crashes during its installa-
tion, or simply does not function correctly. Even worse,
the new package may “break” other applications in-
stalled on the system. In all these cases, the users are
faced with the daunting task of rolling back the instal-
lation. If the package made use of standard package
management utilities, this roll back is usually not burden-
some. However, if the package came as a self-installing
executable or as a source package, roll backs are al-
most always very difficult. The package may install its
files into standard directories such as /usr/local/bin

and /lib. It may also modify system configuration files
such as /etc/passwd, /etc/mime.types or user pro-
file files such as ˜/.bashrc. Identifying the exact set
of files that were modified is cumbersome. It is also
prone to errors as the user does not know the directo-
ries where the package installed files, and hence has to
search the entire file system. This may result in identify-
ing many files that may have been modified by applications
other than the installer. Even if the modified files are identi-
fied correctly, roll back is still a hard problem: it is possible
only if the user had backed up modified files, but un-
fortunately, the user doesn’t know which files to back
up.

Using our isolation approach, all of the above problems
can be tackled easily. The user simply installs the package
in isolation. Within the isolation environment, the user can
then try out the package. They can then examine the files
modified by the package, and see if it includes security-
critical files, or files that may be used by other packages.
System configuration databases, such as the Redhat Pack-
age Manager (RPM) database, can help in identifying files
used by other packages. If so, they can examine these files
to identify the changes made. Alternatively, they can try out
the applications that depend on these modified files to en-
sure that they are not broken. If the user is convinced, af-
ter making all these checks, that the new packages were in-
stalled correctly and are functioning properly, he/she can
commit the installation. Otherwise the user can discard the
installation — at this point, the file system state will be as if
the installation never took place.

2. System Description

2.1. Technical Goals and Design Approaches

The goal of logical isolation is to preserve system in-
tegrity. (Confidentiality can be preserved to the extent the
untrusted application can be prevented from making net-

work communications, but this not our main goal in this pa-
per.) In particular, if the file system changes made by an un-
trusted application were not committed, then the integrity
of the system must not be compromised by this application.

Our approach is based on preserving the contents of the
file system. However, in order to ensure overall system in-
tegrity, we also need to consider operations other than those
involving file systems. Such operations must be prevented
from being executed if they can change the system state.
We need to be conservative in determining whether an op-
eration can change system state: unless we know for sure,
an operation made by an untrusted process must be pre-
vented. A simple implementation of such a conservative ap-
proach may disallow all network communications (as they
can modify the state of other hosts), file operations that
modify devices, ioctl operations, etc. A more usable ap-
proach will recognize a subset of these operations that do
not change system state, and permit them. For instance, it is
reasonable to consider that DNS queries do not modify sys-
tem state. Similarly, sufficient intelligence may be built into
the implementation to recognize and permit certain ioctl

and device-level operations that query system state without
modifying it. More generally, service-specific proxies may
be built that can forward those service requests that do not
change system state, while disallowing other requests. Such
service-specific proxies may be built to access X-windows,
web servers, audio devices, etc. For the rest of this paper, we
do not dwell on these topics, but focus on achieving file sys-
tem level isolation.

In our approach, file-level isolation is achieved using iso-
lation contexts. An isolation context can be thought of as a
“private copy” of the entire file system. It is implemented
using a copy-on-write technique, so that its storage require-
ment is proportional to the changes made within the isola-
tion context, and not on the size of the entire file system.
A new isolation context is created when an untrusted pro-
cess needs to be executed. If this process forks children,
then all such children and their descendants are executed
within the same isolation context. This ensures that the un-
trusted process and its descendants have an identical (and
consistent) view of the file system state. Multiple untrusted
applications may be executed independently, each within
its own isolation context. (We note that copy-on-write pro-
vides one-way-isolation, i.e., changes made within an iso-
lation context are shielded from the rest of the system, but
the changes made outside of isolation contexts may be visi-
ble inside. This is sufficient to achieve our goal of preserv-
ing system integrity.)

To implement isolation contexts, file system changes
made by an untrusted process should be redirected so that
they do not change global system state. Such redirection
may be built into the application itself or within the system
libraries that are used to access files. Neither approach is



System Call Interceptor Manager

CWD
Tracking

GUI
Untrusted
Processes

Engine
Isolation 

Modification 
Cache

Confinement
Engine

Alcatraz

Operating System

Mapping
Table

Figure 1. System Architecture

satisfactory, since they require the applications to be trusted.
In particular, a malicious application can bypass such redi-
rection, and make direct access to the system calls provided
by the OS for manipulating files. We therefore rely on OS-
level mechanisms that can support secure redirection. There
are two main choices in this regard:

� System-call interposition: Since all accesses to system
resources (including accesses to files, devices and the
network) are effected through system calls, interposing
at this level provides a secure way to achieve isolation.

� Interposition at the VFS layer: The Virtual File System
layer provides an abstract interface within the OS ker-
nel for accessing all file systems. One benefit of inter-
posing at this layer is that of higher performance: only
file system operations are interposed, as opposed to all
system calls.

Of these choices, we have adopted system call interposition
for two reasons. First, it can be implemented without requir-
ing changes to the operating system. Indeed, the ptrace

mechanism in Linux permits ordinary users to intercept sys-
tem calls made by their processes, without requiring them
to make any OS-level changes that need superuser privilege.
Second, as discussed earlier, we need to monitor non-file
operations made by the untrusted process, and hence sys-
tem call interposition would be necessary even if file level
isolation were implemented using VFS interposition.

2.2. System Overview

The architecture of our system, called Alcatraz, is shown
in Figure 1. The isolation engine consists of several com-
ponents. The manager module coordinates the operations
of the isolation engine. It uses the modification cache as a
scratch-pad area where new files (or directories) created by
the untrusted process are held. The modification cache is
a dedicated area within the file system, and uses a distinc-
tive name so that multiple Alcatraz sessions can run on the

same system. For files (and directories) stored in the modifi-
cation cache, the mapping table provides the translation be-
tween file names used by an untrusted process and their cor-
responding names within the modification cache. The table
also records other information pertaining to modified files,
e.g., whether a file is deleted, time stamp of original file and
so on.

Note that the isolation engine holds all the information
about modifications to the file system, and the operating
system kernel does not know about these changes. There-
fore the isolation engine needs to modify the arguments
and/or the return values of system calls that access files.
In particular, when a system call is invoked in an isolated
process, the system call interceptor sends a notification to
the manager module. The manager module handles file sys-
tem modification operations, while forwarding the rest of
the system calls to the confinement engine. If the file opera-
tion refers to objects that have been modified, then the man-
ager modifies the path name argument so that it refers to
the modified object located within the modification cache.
These (possibly modified) arguments are returned back to
the system call interceptor. When the system call returns,
the manager module is once again notified, so that it may
modify the results returned by the system call as necessary.

The mapping table maps one absolute file name into an-
other. However, not all the system calls are invoked with a
absolute path names. Hence path names must be resolved
into an absolute path name, with symbolic links expanded,
and the “.” and “..” entries resolved. The CWD Tracking
module helps this process. It maintains the current work-
ing directory of each process and updates them when a pro-
cess makes a system call that results in changes to that di-
rectory. The current working directory of a parent process
will be inherited by its children.

After the untrusted process finishes execution, the isola-
tion engine invokes a GUI (graphical user interface), which



Read Only Modification Operations
Operations Regular Files Directories Inodes

execve, chdir, access, chroot,

readlink, uselib, statfs, stat,

lstat, stat64, lstat64, oldstat,

getdents, getdents64, readdir

open,

truncate,

truncate64

creat, link, unlink,

mknod, rename, mkdir,

rmdir, acct, symlink,

open

chmod, lchown,

utime, oldlstat,

chown, lchown32,

chown32

Figure 2. Classification of system calls

presents a compact summary of the security relevant actions
made by the process. If these changes are accepted by the
user, then they are “copied over” so that they become visi-
ble to other processes in the system. Criteria for determin-
ing whether such copying can be done while preserving iso-
lation semantics is described later in the paper. Below, we
describe the key components of Alcatraz in further detail.

2.3. Manager

As mentioned above, the key problem in implementing
the isolation engine is that of modifying file-related system
calls in a manner that provides a consistent view of the sys-
tem state to the isolated process. This becomes a challeng-
ing task when we consider the different kinds of file sys-
tem objects (regular files, directories, symbolic links, etc.)
and the large number of file system related operations (34
out of the 243 system calls in Linux). To tackle the above
complexity, we make the following observations about the
kinds of file system objects that need to be considered: reg-
ular files, directories, symbolic links, and inodes. (Inodes
contain meta data about files, such as permission, owner-
ship etc. They also indicate whether the type of object ref-
erenced by the inode: whether it is a file, directory, device,
etc.) File modification operations may be different across
these file types. For example, regular files are viewed as a
stream of bytes, and can be modified by seeking to any loca-
tion (expressed as a byte offset) within the file, and perform-
ing a write system call. Directories, on the other hand, are
viewed as a sequence of directory entries, which are records
containing information about the files within the directory.
For the other types, such as symbolic links, the only modifi-
cation operation permitted is that of deleting the file. In this
sense, it is nothing more than a directory modification oper-
ation. So from the modification point of view, there are only
three types of objects on the file system: regular files, direc-
tories, and inodes.

Let us now consider the system call operations on the
file system. For the isolation operation, we only need to
consider system calls that are pathname related. System
calls that operate on file descriptors (e.g., read, write
and mmap) can be left to the operating system to handle.
These operations can be classified as shown in Figure 2
based on whether they modify the file system, and if so,

the type of file system object modified. Since the manner in
which “read” operations are implemented is determined by
the way modifications are implemented, our description be-
low is organized by the three categories of modification op-
erations.

Regular file modifications. Consider a process that opens
a file

�
for writing. The natural way to isolate the execu-

tion of the process, is to create a new copy
���

of
�

that
is stored within the modification cache. All future accesses
to
�

, whether they be modifications or reads, will be redi-
rected to

���
. To enable this redirection, an entry that asso-

ciates
�

with
� �

is inserted into the mapping table. An opti-
mization that avoids copying of files is possible in the com-
mon case when file is truncated to zero length at the open,
or immediately afterward.

Directory modifications. The above simple implementa-
tion of copy-on-write does not directly extend to directo-
ries. In particular, to implement copy-on-write for directo-
ries, we would need to copy the contents of the directory,
as well all of the file system contents located below the di-
rectory. Clearly, such an approach would be far too ineffi-
cient.

To develop a more efficient approach for copy-on-write,
we observe that unlike a regular files, a directories are ac-
cessed in a structured manner using specialized directory
operations such as mkdir and getdents. Thus, our ap-
proach is one of modifying these operations in a manner that
achieves copy-on-write semantics without having to per-
form actual copies of directory contents. In particular, modi-
fications to directories, such as creation/deletion of new files
or directories, are recorded in the modification cache.

When the contents of such modified directories are read
using the getdents operation, one way is to modify the di-
rectory entries returned by getdents to incorporate the in-
formation stored in the modification cache after the call re-
turns. In particular, a directory entry

�
that is mapped into

���
by the mapping table is replaced so as to contain the in-

formation about
���

. If the file
�

has been deleted by the iso-
lated process, then the entry corresponding to

�
is deleted

from the getdents return value must be deleted before the
results are forwarded to the isolated process. It is possible
that all the entries returned by getdents may be deleted in



this step. If, as a result of this, no entries are returned to the
isolated process, it would conclude that the end of the direc-
tory has been reached. (This is how getdents works under
Linux.) To solve this problem, we retrieve all the directory
entries during the first directory read operation into a buffer
and apply the changes to the buffer. After the changes are
applied, we append new directory entries that are recorded
in the modification cache but not present in the rest of the
file system. The result is returned to the isolated process.

Inode Modification. Modification can also be made to In-
odes which store file system meta data. Inodes are associ-
ated with files and cannot be copied separately. Therefore,
if the modification is made to a file that has already been
copied to the temporary location (i.e., just created or mod-
ified file), we can redirect this operation to its counterpart
in the temporary location. If the modification is made to an
unchanged regular file, we can also use the copy-on-write
mechanism. However, this mechanism does not work on di-
rectories because we cannot copy a directory in a similar
fashion. One possibility is to use the isolation layer to record
the changed Inode information of directories and let all re-
lated system calls make use of this information. However,
this solution is not very useful in all cases, as the kernel does
not know about the existence of such information. For ex-
ample, if the untrusted program adds write permission to an
existing directory, using this approach, this change will be
stored in the isolation layer, but the kernel will still not al-
low it to write into that directory because this changed per-
mission information is not visible to the kernel. In our im-
plementation, the isolation layer records an error message
in such situations, and allows continued execution of the
isolated process. This is a limitation of our current imple-
mentation. We note that it is abnormal for untrusted code to
change (especially relax the permission) meta data associ-
ated with existing directories (i.e., those not created by un-
trusted software), so this limitation has not been a signifi-
cant problem in practice.

Since the latest inode information is held within the iso-
lation layer, system calls to access or manipulate meta data,
such as stat, need to be intercepted by the manager and
redirected if necessary. Moreover, since the correct permis-
sion information is not available to the file system, permis-
sion checking needs to be handled by the isolation layer.
To understand the need for this, consider the case when the
isolated process modifies a file that it does not own but has
the write permission. The isolation engine will copy the file
into the modification cache before making these changes.
During copying process, the operating system will automat-
ically set the ownership of the copy to that of the owner of
the isolated process. It would be preferable to change the
ownership back to the owner of the original file, but this
will be disallowed by the kernel unless the isolation engine
runs with root privileges. Since it was one of our design

goals to support isolation without requiring superuser priv-
ileges, we cannot change the ownership information on the
file. This means that the OS will interpret the permissions
incorrectly, thus requiring the isolation engine to take over
this task.

2.3.1. Confinement Engine The untrusted program may
perform other operations that are unrelated to the file sys-
tem. Some of these operations do not cause difficulties in
preserving isolation semantics, e.g., system calls for obtain-
ing timing information, process ownership, host attributes,
etc. Others, such as those involving network communica-
tion or interaction with processes outside its isolation con-
text, will pose a problem. It is the responsibility of the con-
finement engine to deal with all system calls that are unre-
lated to file systems. It determines which system calls can
be permitted without compromising the isolation semantics.

The confinement engine is built from security policy
specifications that specify which system calls can be per-
mitted, and in what context. These policies are specified in
text using a language called BMSL (Behavior Monitoring
Specification Language) [19, 21]. BMSL can express de-
scribe conventional access control policies, history sensitive
policies (e.g., an application cannot access the network after
reading sensitive files) and resource usage policies (e.g., an
application can write no more than � bytes of data). These
policies are compiled using the BMSL compiler to produce
the confinement engine. A detailed description of BMSL
syntax, semantics, and compilation can be found in [21].

The confinement engine currently disallows networks re-
quests such as web access, DNS queries, and X-windows
operations. As outlined earlier, these limitations can be re-
laxed using service-specific proxies. For instance, we can
have a proxy that receives DNS requests from the isolated
process, and forwards them to the DNS server if it can be
ascertained that this query will not change the system state.
Otherwise, the proxy refuses the request.

2.4. System Call Interceptor

The system call interceptor is responsible for intercept-
ing system calls and forwarding them to the isolation en-
gine. The interceptor is implemented in such a way that it is
portable with minimal changes to other Unix variants (that
do not support ptrace for instance). The architecture of
our interceptor is based on the design presented in [9].

The implementation of the interceptor (the tracing pro-
cess) is based on Linux’s ptrace system call, which al-
lows one process, called the monitoring process to trace an-
other process, called the monitored process. Tracing capa-
bilities include the ability to intercept system calls made by
the monitored process, and examination or modification of
the virtual memory of the monitored process. When using
ptrace for monitoring and confining untrusted processes,



we face a number of difficulties that can compromise secu-
rity. Below, we summarize how our implementation tackles
these difficulties.

Rogue processes may cause the interceptor to terminate.
A malicious process may try to terminate the process that is
monitoring it. For instance, it can send SIGKILL signal to
the interceptor. However, this must again be done through a
system call. To protect our system, the system call intercep-
tor simply aborts those system calls that can interfere with
the operation of the monitoring process.

Fork/clone race condition. When a monitored process ex-
ecutes a fork system call, the child process is not traced au-
tomatically. The monitoring process must explicitly request
tracing of the child process by invoking ptrace with the
child PID (process identifier) as an argument. However, the
child PID is unavailable until the fork system call returns
to the parent. By then, it is possible that the child process
may have started running, and executed system calls that the
monitoring process would not permit. To solve this prob-
lem we adopt a clever trick that was devised in the strace
[] program. Specifically, when the monitoring process inter-
cepts the parent’s entry into fork system call, it replaces the
the instruction in the parent’s code at its instruction pointer
(IP) register with a loop instruction. Note that the child will
inherit this code, as well as the value of IP. This means that
when control returns to the child, it will execute the loop in-
struction, and hence will be stuck in an infinite loop. In par-
ticular, it won’t be able to make any system calls. When the
fork system call returns to the parent, the monitoring pro-
cess obtains the child PID, and issues a ptrace system call
to attach to the child. It then restores the original instructed
that was stored at the instruction pointer, so that the child
process can continue with its normal execution, but now un-
der the control of the monitoring process.

Even after the above enhancement, there still exists a
possibility of a race condition: if the child process receives
a signal, this will interrupt the loop and cause execution of
its signal handler, which can execute system calls that may
not be permitted by the monitor. Such a signal may be sent
on purpose by another process in order to “free” the child
and allow it to execute damaging system calls. To prevent
this possibility, we note that if another intentionally cooper-
ates with the child process to free it, then that process must
itself be an untrusted process under the control of the mon-
itoring process. For this reason, the system call used by the
cooperating process to send a signal can be intercepted by
the monitor and delayed until it has control of the child pro-
cess.

Argument race condition. There is a delay between the
time when the arguments of a system call is checked by
the monitoring process and the time when the arguments

Figure 3. Graphical user interface

are actually read by the kernel. If the arguments are stored
in a memory region shared by several processes or threads,
it is possible for these processes/threads to modify the ar-
guments during that time delay. We address this problem
by moving security-critical arguments to a random location
on the stack [9]. In order for the attack to succeed in spite
of this change, collaborating threads (or processes) need to
scan the entire stack to find the location where the argument
is stored, and this scan must be completed within the short
interval between the time when arguments are checked by
the monitoring process and the time they are used by the
kernel. If the random number is chosen over a reasonably
large range, e.g., ����� or ����� , then the likelihood of success-
ful attacks becomes very small.

2.5. User Interface

After the isolated process and its children finish execu-
tion, the information maintained in the mapping table is
sent to the user interface (GUI). The GUI sorts/groups file
changes by path names, and then presents them to the user
in a tree like representation as shown in Figure 3. The user
can select the kinds of changes that they wish to see, e.g.,
new files created, files overwritten, etc. For modified files,
users can view the difference between the original and the
new version by simply clicking on the file name.

Optionally, the user can use a shell that runs in the same
isolation context as the untrusted process, but has access to
the original file system through the /alcatraz virtual di-
rectory. Moreover, the children of this shell are permitted
to access X-windows, so that arbitrary helper applications
(e.g., image viewers) can be launched by the user to view
the modified files.

2.5.1. Commit Criteria. After examining the changes
made by the untrusted process, a user can determine
whether these changes can be committed to the sys-
tem. However, it is possible that other processes, running
outside of the isolation context of the untrusted pro-



cess, may have made modifications to the file system. If
these changes interfere with the changes made by the un-
trusted process, then commitment of the changes made
by the untrusted process can lead to an inconsistent sys-
tem state. Hence, we adopt an approach in which the com-
mit operation is allowed to go through only if the files
modified by the isolated process were neither read nor writ-
ten by outside processes since the instant the files were first
accessed by the isolated process.

It may seem that this approach is too conservative and
may reject results that can be consistently committed. While
this is true, we observe that aborts do not cause too much
difficulty in Alcatraz. In particular, the untrusted program
can be executed again. Since the changes made by the un-
trusted program were discarded, rerunning the program will
likely produce the same results. At this point, the same in-
terference may not have taken place (assuming that such in-
terference was a rare coincidence), and hence the results can
be committed.

Our current implementation of commitment contains a
race condition. In particular, interference (by processes out-
side of isolation) may happen during the time files are
copied from the modification cache to the file system. This
race condition can be avoided using file system locks. Un-
fortunately, mandatory locks are not supported by default
on Linux due to the possibility that they may lead to dead-
locks. If this were not the case, then the race condition can
be avoided. In practice, however, we note that the race con-
dition is not a significant problem in the context of untrusted
program execution, as it is unlikely that the files accessed
by such a program would also be concurrently accessed by
other unrelated processes.

3. Implementation results
We have implemented Alcatraz on the Linux operating

system [1]. The implementation has been tested on Red Hat
Linux 7.3 and Red Hat Linux 8.0 distributions. The perfor-
mance figures given below were obtained on a PC running
Red Hat Linux 7.3 on a 1.7GHz P4 processor with 1GB
memory.

3.1. Example Applications

Our implementation was tested with three applications:
two freeware program that organize image/audio files, and
the installation of a software package.

Picturepages is a photo editing program similar to the
example presented in Section 1.1. We tested it with a direc-
tory of jpeg photos. Alcatraz reported the creation of a di-
rectory and changes to the picture files. We further used an
image viewer to examine some of the generated pictures to
make sure that they were properly modified.

The second program that was used is mpls, which takes
a list of mp3 files and creates a playlist sorted by artist, al-

bum, track, or title on the standard output. A directory con-
taining various mp3 files was used as the input. After the
program finished execution, the user-interface presented a
report that summarized that no changes were made to the
file system.

The third program we tested was the installation of
mozilla, a freeware web browser. The installation pro-
gram modified three configuration files of a previous ver-
sion of mozilla and installed all files into a new directory.
All these changes were captured by our isolation system and
reported through the user interface, as shown in Figure 3.

In all these examples, the isolation operation guaranteed
the safety of the user’s resources, as well as provided the
convenience of concise summaries on the outputs of these
executions.

3.2. Performance results

We have measured the performance using two sets of ap-
plications. The first set of applications are the above exam-
ples. The second set included common UNIX utilities such
as make gcc, gzip, ghostscript, and tar.

The following testing data was used:
� for make gcc, we compiled the openssh package ver-

sion 3.7p1 under isolation. It contained 69849 lines of
C code.

� for tar, a directory tree containing several mp3 files
were used as the input for the archive operation. The
size of output file was 85MB.

� for gzip, the output of the above tar command was used
as input

� for ghostscript, a 10-page paper, containing 170K
bytes is used as the input.

In order to know how each module in Alcatraz contributes
to the overhead, we performed three time measurements of
the sample application. They are the execution time without
any system call interception, the execution time with only
the system call interceptor, and the execution time with iso-
lation, respectively. The normalized execution time (ratio to
the execution time without isolation and without system call
interposition) is shown in Figure 4.

From the performance results, we can see that the isola-
tion mechanism itself (the difference between the overhead
of “Interception Only” and the overhead of “Isolation”)
contributes to a modest overhead of less than 20%. How-
ever, the system call interposition mechanism contributes
to a significant overhead for some programs. This over-
head varies linearly with the frequency of system calls made
by an application. Compute-intensive applications such as
gzip and picturepages make much fewer system calls
per unit time of execution, while other applications such as
tar make system calls at a much higher rate.

A kernel interception mechanism will provide a much



Interception Only
Isolation

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

mozilla
Installation

mplspicturepages

 0

 0.5

 1

 1.5

 2

1.01 1.02

1.60

1.80 1.79 1.92
Interception Only
Isolation

make and
gcc

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

ghostscript tar gzip
 0

 0.5

 1

 1.5

 2

1.321.26

1.77 1.80

1.01 1.02

1.43

1.61

(a) Downloaded program examples (b) Common Unix applications

Figure 4. Normalized Performance Results

lower overhead due to the absence of context switches be-
tween our system process and the monitored process. How-
ever, we aimed to keep the performance overhead accept-
able while keeping the system portable and completely at
the user level such that it does not require kernel patches or
modules. This balances our requirements of usability and
performance.

An in-kernel implementation of system call interception
would the interception overhead to a very small value (usu-
ally under 10%). However, if we had based Alcatraz on
kernel-based interception, it would be harder to port, and
moreover, cannot be downloaded, installed or run by users
that do not have superuser privilege. Compared to this draw-
back, the additional overhead seems to be quite acceptable
for the class of applications targeted by Alcatraz.

4. Related work

Sandboxing systems. Janus [8] incorporates a proc file
system based system call interposition technique for the So-
laris operating system. A more recent version has been im-
plemented on Linux, and uses a kernel module for interpo-
sition. Chakravyuha [7] is a monitoring system that uses a
kernel interception mechanism to implement a sandboxing
approach. MAPbox [3] is a sandboxing mechanism where
the goal is to make the sandbox more configurable and
usable by providing template classification of behaviors.
Consh [4] provides a similar sandboxing environment while
addressing transparent local and remote access to files.

SoftwarePot [11] incorporates a secure software circula-
tion model that confines the behavior of the untrusted pro-
gram. In this case, the software to be run is encapsulated
with a file system in an archive that is transferred from the
code producer to the consumer. At the consumer end, a se-
curity policy determines the resources of the consumer that
could be accessed by this untrusted code. Furthermore, all
the operations to the files are confined to the “pot” archive.
The scheme still requires apriori policy selection, that (as

pointed out in the introduction) is often difficult.
Systrace [15] is a sandboxing system that notifies the

user about all system calls that an application tries to ex-
ecute. It then uses the response from the user to generate a
policy for the application.

The disadvantages of sandboxing approaches, as com-
pared to isolation, was discussed in Section 1.1.

Isolation systems. [14] and [6] use physical isolation to
protect against damages to the client’s machine. The incom-
ing mobile code (java applet) is sent to another set of ma-
chines, called “playground” (some machines containing no
important data), to execute. As mentioned in the introduc-
tion, these two systems only target Java applets (which only
constitutes a small fragment of the large body of untrusted
code on the Internet), require additional resources (such as
new machines), and disallow any access to the user’s en-
vironment. In contrast, our approach is language indepen-
dent, and requires no additional physical resources and al-
lows safe access to the user’s environment.

Logical isolation provides many benefits over physi-
cal isolation. It has been suggested before and analyzed
[13, 10, 18]. Algorithms and protocols for realizing logi-
cal isolation in the context of databases as well as file sys-
tems was presented in [13]. However, practical issues that
arise in implementing the approach on a modern operating
system were not considered. Our work in this paper com-
plements these works, and developing an application- and
OS-transparent approach for practical approach and tool for
realizing logically isolated execution of programs.

Recovery-oriented systems. The Recovery-Oriented
Computing (ROC) project at Berkeley [2] is develop-
ing techniques for fast recovery from failures, focusing
on failures due to operator errors. [5] presents a broad ap-
proach that assists recovery from operator errors in
administering a network server, with the specific exam-
ple of an email server. In spite of the apparent similarities



in the goals of this work and ours, the technical require-
ments are quite different. They target network-oriented ap-
plications whose actions (and their effects) needs to be
visible to other processes and/or hosts. In contrast, our ap-
proach targets file-oriented applications whose actions
should be invisible to the rest of the world.

[22] presents an approach for safe execution of malicious
applications on Microsoft Windows by intercepting oper-
ations made by the malicious code. Their approach is to
create backup copies of files before they are modified by
the malicious application. A drawback of this approach, as
compared to ours, is that the modifications are visible to
other benign processes in the system. If a benign process
modifies the system based on the files modified by the ma-
licious process, then there may be no way to undo these ef-
fects. In contrast, our approach provides a guarantee that the
actions of the isolated process(es) cannot corrupt the sys-
tem.

File System approaches. The Elephant file system [16] re-
tains all the important versions of a file, and has an interface
for users to select a specific version. RFS (Repairable File
Service) [23] is specifically designed to facilitate repair of
a compromised network file server by maintaining previous
versions of files. These approaches generally have a signif-
icant storage overhead, since storing versions can consume
significant additional space. In contrast, our approach does
not impose high storage overheads. More importantly, our
isolation approach provides a guarantee that the effects of a
malicious process can be undone. In contrast, the version-
ing approaches will have to undo the effects of malicious as
well as benign processes.

3D file system [12] provides a convenient way for soft-
ware developers to work with different versions of a soft-
ware package. In this sense, it is like a versioning file sys-
tem. It uses a technique called viewpathing which is based
on translating file names used by a process. They imple-
ment their system in an application and OS-transparent way
by intercepting and modifying library calls made by an ap-
plication. However, as they do not deal with untrusted code,
their implementation does not ensure non-bypassability and
hence applications can freely access all the files in the local
filesystem. In addition, library interception cannot be used
in our case since malicious applications may bypass such
interception and perform sensitive operations.

5. Summary

In this paper, we presented an approach that supports
safe execution of untrusted programs. Our approach uses
the idea of logical program isolation, where actions of the
code are invisible to the rest of the system until they are
committed by a user. Before committing, the user can in-
spect the system state to determine if the actions of the pro-

gram compromised the integrity of the system. We have pre-
sented a tool called Alcatraz [1] that incorporates this ap-
proach. Our approach provides security for the end-user and
enjoys many benefits such as application transparency and
user friendliness. We have discussed the design and imple-
mentation and presented results from an evaluation.

References
[1] Alcatraz. http://www.seclab.cs.sunysb.edu/alcatraz.

[2] Recovery-oriented computing. http://roc.cs.berkeley.edu.

[3] A. Acharya and M. Raje. Mapbox: Using parameterized be-
havior classes to confine applications. In USENIX Security
Symposium, 2000.

[4] A. Alexandrov, P. Kmiec, and K. Schauser. Consh: A con-
fined execution environment for internet computations, 1998.

[5] A. Brown and D. Patterson. Undo for operators: Building an
undoable e-mail store. In USENIX Annual Technical Confer-
ence, 2003.

[6] T. Chiueh, H. Sankaran, and A. Neogi. Spout: A transpar-
ent distributed execution engine for java applets. In Interna-
tional Conference on Distributed Computing Systems, 2000.

[7] A. Dan, A. Mohindra, R. Ramaswami, and D. Sitaram.
Chakravyuha: A sandbox operating system for the controlled
execution of alien code. Technical report, IBM T.J. Watson
research center, 1997.

[8] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A se-
cure environment for untrusted helper applications: confin-
ing the wily hacker. In USENIX Security Symposium, 1996.

[9] K. Jain and R. Sekar. User-level infrastructure for system call
int erposition: A platform for intrusion detection and con-
finement. In ISOC Network and Distributed System Secu-
rity, 2000.

[10] S. Jajodia, P. Liu, and C. D. McCollum. Application-level
isolation to cope with malicious database users. In ACSAC,
1998.

[11] K. Kato and Y. Oyama. Softwarepot: An encapsulated trans-
ferable file system for secure software circulation. In Proc.
of Int. Symp. on Software Security, 2003.

[12] D. G. Korn and E. Krell. A new dimension for the unix file
system. Software: Practice & Experience, 20(S1), 1990.

[13] P. Liu, S. Jajodia, and C. D. McCollum. Intrusion confine-
ment by isolation in information systems. Journal of Com-
puter Security, 8, 2000.

[14] D. Malkhi and M. K. Reiter. Secure execution of java applets
using a remote playground. Software Engineering, 26(12),
2000.

[15] N. Provos. Improving host security with system call policies,
2002.

[16] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C.
Veitch. Elephant: The file system that never forgets. In Work-
shop on Hot Topics in Operating Systems, 1999.

[17] F. B. Schneider. Enforceable security policies. ACM Trans-
actions on Information and System Security, 3(1):30–50,
2000.



[18] R. Sekar, Y. Cai, and M. Segal. A specification-based ap-
proach for building survivable systems. In National Infor-
mation Systems Security Conference, Oct 1998.

[19] R. Sekar and P. Uppuluri. Synthesizing fast intrusion pre-
vention/detection systems from high-level specifications. In
Proceedings of the USENIX Security Symposium, 1999.

[20] K. Sitaker. http://www.canonical.org/picturepages.
[21] P. Uppuluri. Intrusion Detection/Prevention Using Behavior

Specifications. PhD thesis, Stony Brook University, 2003.
[22] J. A. Whittaker and A. D. Vivanco. Neutralizing windows-

based malicious mobile code. In Symposium on Applied
Computing, 2002.

[23] N. Zhu and T. Chiueh. Design, implementation, and evalua-
tion of repairable file service ,. In The International Confer-
ence on Dependable Systems and Networks, 2003.


