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Abstract. Taint-tracking is emerging as a general technique in software securityre c
plement virtualization and static analysis. It has been applied for acalesetion of
a wide range of attacks on benign software, as well as in malwares#efatthough it
is quite robust for tackling the former problem, application of taint analgsimtrusted
(and potentially malicious) software is riddled with several difficulties that teayaping
holes in defense. These holes arise not only due to the limitations of infomfiow
analysis techniques, but also the nature of today’s software archéesetnd distribution
models. This paper highlights these problems using an array of simppotetful eva-
sion techniques that can easily defeat taint-tracking defenses. Golayiddinary-based
software distribution and deployment models, our results suggest foamation flow
techniques will be of limited use against future malware that has beégneeswith the
intent of evading these defenses.

1 Introduction

Information flow analysis has long been recognized as aniitapbtechnique for de-
fending against attacks on confidentiality as well as intg¢,8]. Over the past quarter
century, information flow research has been concentratesatic analysis techniques,
since they can detecbvert channelge.g., so-called implicit information flows) missed
by runtime monitoring techniques.

Static analyses for information-flow have been developethéncontext of high-
level, type-safe languages, so they cannot be directlyieppd the vast majority of
COTS software that is available only in binary form. Worsaffware obfuscation and
encryption techniques commonly employed in malware (a$ asebome benign soft-
ware for intellectual property protection) render any kiridtatic analysis very difficult,
if not outright impossible. Even in the absence of obfustgtbinaries are notoriously
hard to analyze: even the basic step of accurate disassefnbl/not have solutions
that are robust enough to work on large x86 binaries. As atrgawduction-grade
tools that operate on binaries rely on dynamic (rather thaticy analyis and instru-
mentation [3,7,17,24,26].

Following this observations, several researchers hawentlcdeveloped dynamic
information-flow techniques for COTS binaries [10,15,2038]. These techniques,
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along with source-to-source based transformation appesadave enabled accurate
detection of a wide range of attacks on trusted softfvameluding those based on
memory corruption [15,36], format-string bugs, comman@&QL injection [2,28,43],
cross-site scripting [40], and so on. More recently, resfeens have reported significant
successes in applying dynamic information flow techniquesxasting malware, both
from the perspective of understanding their behavior [&§l detecting runtime viola-
tion of policies [13,34]. Although dynamic taint analys&chnique is quite robust for
protecting trusted software, its application to untrugtet potentially malicious) soft-
ware is subject to a slew of evasion techniques that significhmit its utility. We point
out that understanding the limitations of defensive teghes is not just an academic
exercise, but a problem with important practical conseqesnemerging malware does
not just employ variants of its payloads by using metamayplolymorphic techniques,
but instead has begun to embed complex evasion techniquietdot monitoring en-
vironments as a means to protect its “intellectual progdrom being discovered. For
instance, W32/MyDoom [19] and W32/Ratos [38] adopt self-&erand code execu-
tion timing techniques to determine whether they are undalyais or not. Likewise,
self-modifying techniques — among others — are used as Wed2(HIV [18]) to
make malware debugging sessions harder [37,39]. Thus,ess&y first step for de-
veloping resilient defenses is that of understanding thakwesses and limitations of
existing defenses. This is the motivation of our work. Weeharganized our discussion
into three major sections as follows, depending on the &britewhich information
flow is being used.

Stand-alone malware. When applied to malware, a natural question is whether the
covert channels that were ignored by dynamic techniquekl dmiexploited by adap-
tive malware to thwart information-flow based defenses.s€heovert channels were
ignored in the context of trusted software since their “cityawas deemed too small
to pose a significant threat. More importantly, attackeraatdhave any control over the
code of trusted software, and hence cannot influence themresr capacity of these
channels. In contrast, malware writers can deliberatelpezhrcovert channels since
they have complete control over malware code. In this paperirst show that it is
indeed very easy for malware writers to insert such coveahnokls into their software.
These evasion techniques are simple enough that they carceporated manually,
or using simple, automated program transformation tectesgwe show that it is very
difficult to defeat these evasion technigues, unless vengewative reasoning is em-
ployed, e.g., assuming that any information read by a prograuld leak to any of its
outputs. Unfortunately, such weak assumptions can grbutitythe purposes to which
dynamic information flow analysis can be used. For instaBtiasonet al.[34] use in-
formation flow analysis to detect “remote-control” behavaobbots, which is identified
when arguments to security-critical system calls are ¢alinif a conservative notion of
tainting is used, then all programs that communicate oven#twork would have to be
flagged as “bots,” which would defeat the purpose of thatysisl

Malware plug-ins. Next, we consider recent evolution in software deploymeod-m
els that has favored the use of plug-in based architechtBresvser helper objects
(BHOs), which constitute one of the most common forms of naaéwin existence to-

4 In this paper, the term “trusted software” is used to refer to softwarésttraisted to be benign.



day, belong to this category. Other examples include doatwiewer plug-ins, media

codecs, and so on. We describe several novel attacks thpdssible in the context of

plug-ins:

— Attacks on integrity of taint informatiorMalware can achieve its goal indirectly
by modifying the variables used by its host application,,evgpdifying a file name
variable in the host application so that it points to a file thaants to overwrite. Al-
ternatively, it may be able to bypass instrumentation caderted for taint-tracking
by corrupting program control-flow.

— Attacks based on violating application binary interfaegiereby malware violates
assumptions such as those involving stack layout and ezgisage between callers
and callees.

— Race-condition attacks on taint metadakanally, we describe attacks where mal-
ware races with benign host application to write securéiysitive data. In a success-
ful attack, malware is able to control the value of this dathile the taint status of
the data reflects the write operation of benign code.

While conservative notions of tainting could potentially bged to thwart these at-
tacks [33], this would restrict the applicability of infoation-flow techniques even
more.

Analyzing future behavior of malware. Today's malware is often packaged with
software that seems to provide legitimate functionalitithwnalicious behavior ex-
posed only under certain “trigger conditions”, e.g., whe@ommand is received from a
remote site controlled by an attacker. Moreover, malwarg imeorporate anti-analysis
features so that malicious paths are avoided when execlitieith @n analysis environ-
ment. To uncover such malicious behavior, it is necessatg¥elop techniques that can
reason about program paths that are not exercised duringaring. While one may
attempt to force execution of all program paths, such ancsgmpr is likely to be very
expensive, and more likely to suffer from semantic incdesisies that may arise due to
forcing execution down branches that are not taken duriegugion. A more selective
approach has been proposed by Ma=taal. [1] that explores paths guarded by tainted
data, rather than all paths. This technique has been quitessful in the context of ex-
isting malware. The heart of this approach is a techniquielses a decision procedure
to discover memory locations that could become tainted asultrof program execu-
tion, and explores branches that are guarded by such da®&ection 4, we show that
these trigger discovery mechanisms (and more generadiyetthnique for discovering
which data items can become tainted) can be easily evadedrppgefully embedding
memory errors in malicious code.

Paper organization. Sections 2 through 4 describe our evasion techniques, iagghn
along the lines described above. Where possible, mitigatitinese evasions and their
implications on information flow analyses are discussedels ¥ summary of related
work is provided in Section 5, followed by concluding rensik Section 6.

2 Stand-Alone Untrusted Applications

For the sake of concreteness, we discuss the impact of evattacks, as well as mit-
igation measures, in the context of the “remote control”awédr detection technique



presented by Stinsoet al. [34], although the evasion techniques themselves are-appli
cable against other defenses as well, e.g., dynamic spyleseetion [13].

Stinsoret al.observed that bots receive commands from a central sité-(iaer”)
and carry them out. This typically manifests a flow of infotimoa from an input op-
eration (e.g., a ead system call) to an output operation (e.g., the file named in an
open system call). Their implementation relied @ontent-based tainting.e., taint
was assumed betweenandy if their values matched (identical or had large com-
mon substrings) or if their storage locations overlappesindted by the paper authors,
content-based tainting is particularly vulnerable: it easily be evaded using simple
encoding/decoding operations, e.g., by XOR'’ing the dath wimask value before its
use. However, the authors suggest that a more traditioraenrentation of runtime
information flow tracking [15] would provide “thorough caege” and hence render
attacks much harder. Below, we describe simple evasionunemthat allow malware
to “drive a truck” through the gaps in most dynamic taintkiag techniques, and pro-
ceed to discuss possible mitigation mechanisms and thplrdations.

2.1 Evasion using Control Dependence and Implicit Flows

Dynamic information flow techniques that operate on trusttivare tend to focus on
explicit flowsthat take place via assignments. It is well known that infation can flow
from a variabley to another variable without any explicit assignments. Indeed, a num-
ber of covert channels for information flow have been ideedifby previous research
in this area. We demonstrate the ease of constructing evatticks using these covert
channels. We focus on two forms of non-explicit flow, namebntrol dependences and
implicit flows.
Control dependence arises when a variable is assigned within an if-then-ebse st
ment whose condition involves a sensitive (taifjedriable, e.g.,

if (y=1)thenz :=1; elsex := 0; endif
Clearly, the value of: is dependent om, even though there is no assignment of the
latter to the former. In particular, the above code snippabées copying of a single bit
from y to = without using direct assignments between them. Using-away branch
(e.g., a switch statement with cases) will allow copying ofogn bits. A malware
writer can propagate an arbitrarily large amount of infaliorawithout using explicit
flows by simply enclosing the above code snippet within a loop

Implicit flows arise by virtue of semantic relationships that exist betwtde values
of variables in a program. As an example, consider the faliguwcode snippet that
allows copying of one bit of data from a sensitive variapte w without using explicit
flows or control dependences:
l.x:=0; 2:=0;
if (y =1) thenz := 1; elsez := 1; endif
if (x =0) thenw := 0; endif
4 if (z=0)thenw := 1; endif

5 Typically, the term “taint” is used in the context of integrity, while “sensitive'uiged in the
context of confidentiality.



Atline 2, if y = 1 thenz is marked sensitive because of control-dependent assign-
ment in the then-clause. Since there is no assignmeninidhe then-clause of line 2,
it is not marked sensitive. Moreover, the condition at linei8 not hold becauser
was assigned a value of 1 at line 2. But the condition at lineldd) sow is assigned
the value ofl, but it is not marked sensitive sineds not sensitive at this point. Now,
consider the case when= 0. Following a similar line of reasoning, it can be seen that
w will be assigned the value at line 3, but it will not be marked sensitive. Thus, in
both casesy gets the same value gsbut it is not marked as sensitive.

As with control dependences, a malware writer can copy aitrariy large number
of bits using nothing but implicit flow by simply using a slidjyp more sophisticated
example of the above code. It is thus trivial for a malwardevitio evade taint-tracking
techniques that track only direct data dependencies artdotdiependencies.

2.2 Difficulty of Mitigating Evasion Attacks

To thwart control-dependence-based evasion, a tainkitrgéechnique can be enhanced
to track control dependences. This is easy to do, even imib&)dy associating tint
labelwith theprogram counter (PCJ13]°. Unfortunately, this will lead to an increase in
false positives, i.e., many benign programs will be flaggeexdibiting remote-control
behavior. To illustrate this, consider the following coaéppet that might be included
in a program that periodically downloads data from the netwand saves it in differ-
ent files based on the format of the data. Such code may be mgedgrams such as
weather or stock ticker applets:

int n = read(network, y, 1);
if (xy=="1)

fp = fopen("data.txt”, "w");
else if(xy ="1")

fp = fopen("data.jpg”, "w");

Note that there is a control dependence between data readheveetwork and
the file name opened, so a technique that flags bots (or otHemane based on such
dependence would report a false alarm. More generally,timplidation checks can
often raise false positives, as in the following example.

int n = read(network, ysizeofy));
if (sanity.check(y)){
fp = fopen("data”, "w");

} eiée{ ...Il report error }

In the context of benign software, false positives due tarobdependence tracking
can be managed using developer annotations (so-calledsemdent or declassification
annotations). We obviously cannot rely on developer ariwotsiin untrusted software;
it is also impractical for code consumers, even if they a@Wadgeable programmers
or system administrators, to understand and annotatestetraode, especially when it
is distributed in the form of binaries.

5 Specifically, the PC is tainted within the body of a conditional if the condition irestainted
variables. Moreover, targets of assignments become tainted wheéneWC is tainted. Finally,
the taint label of the PC is restored at the merge point following a conditiraakh.



Mitigating implicit-flow based evasion is even harder. Isleeen shown that purely
dynamic techniques cannot detect implicit flows [42]. Thlisbecause, as illustrated
by the implicit flow example above, it is necessary to readmoutiassignments that
take place orunexecutegbrogram branches. On binaries, this amounts to identify the
memory locations that may be updated on program branchearthaot taken. Several
features of untrusted COTS binaries combine to make thisl@nointractable:

— Address arithmetic involving values that are difficult toqaute statically

— Indirect data references and indirect calls

— Lack of information about types of objects

— Absence of size information for stack-allocated and stattjects (i.e., variables)

— Possibility that malicious code may violate low-level centions and requirements
regarding the use of stack, registers, control-flow, etc.

As a result, it is unlikely that implicit flows can be accutgteracked for the vast ma-
jority of today’s untrusted software that gets distribugesdk86 binaries.

2.3 Implications

Evasion measures described above can be mitigated byngg&ali all data written by
untrusted code as tainted (i.e., not trustworthy), and ([idaa written by untrusted
code as sensitive if any of the data it has read is sensitorestind-alone applications,
these assumptions mean that all data output by an untrusbeegs is tainted, and
moreover, is sensitive if the process input any sensititva. dia other words, this choice
means that fine-grained taint-tracking (or information flamalysis) is not providing
any benefit over a coarse-grained, conservative techriigieperates at the granularity
of processes, and does not track any of the internal acticapmcess.

In the context of detecting remote-control behavior, weeobs that in the absence
of evasion measures, the use of dynamic information flowrtiecies enables us to dis-
tinguish between malicious behavior, which involves the ofssecurity-critical system
call arguments that directly depend on untrusted data, anijb behavior. The use
of evasion techniques can easily fool taint-tracking téghes that only reason about
explicit flows. If the technique is enhanced to reason abouotrol dependences, eva-
sion resistance is improved, but as illustrated by the exasrgbove, many more false
positives are bound to be reported, thus significantly dishing the ability of the tech-
nique to distinguish between malicious and benign behavibmwe further enhance
evasion resistance to address all implicit flows, we willdhawtreat all data used by an
untrusted application to be tainted, thereby completedinigp the ability to distinguish
between benign and malicious behavior.

In summary, the emergence of practical dynamic taint-frectechniques for bina-
ries enabled high-precision exploit detection on trustatec This was possible because
the presence of explicit information flow from untrusted re@uto a security-critical
sink indicated the ability of an attacker to exert a high éegof control over opera-
tions that have a high risk of compromising the target apgiibi;n — a level of control
that was unlikely to be intended by the application developeseemed that a similar
logic could be applied to untrusted code, i.e., a clearrtititn could be made between
acceptable uses of tainted data that are likely to be fourimign applications from



malicious uses found in malware. The discussion so far stivatshis selectivity is lost
once malware writers adapt to evade information flow tealesq

3 Analyzing Runtime Behavior of Shared-Memory Extensions

A significant fraction of today’s malware is packaged as atemsion to large soft-
wares such as client-side web applications or the operatiagem. Applications such
as web browsers and email clients are attractive targetsé&bware authors, because
of the ubiquitous use of these applications in online finalnttansactions and private
information exchange.

Nearly all large web browsers have software extension nmésins that that allow
adding various forms of additional functionality, such agtér GUI services, auto-
matic form filling, and viewing various forms of multimediarmtent. We refer to such
browser extensions as browser helper objects (BEH@rhaps surprisingly, almost
all browsers today have extensibility mechanisms that allawresion packages to be
shipped with third-party libraries in binary form. Due t@tgrowing user trends towards
installing off-the-shelf extensions and due to increaslrige-by-downloads, malware
spread in form of BHOs has been rampant.

Recent works [13] have proposed using information flow tokte flow of confi-
dential data such as cookies, passwords and credentialsindata as it gets processed
by web browser. The idea is to monitor the actions of malwaasquerading as benign
BHOs, which is loaded in the address space of the browsetpathetect if confidential
data is leaked by the BHOs. The crux of the problem is to Se&dgtidentify mal-
ware’s actions. Essentially, their technique uses anbattdn mechanism to classify
actions that access system resources, to trusted and tedtossitexts System calls
or operations made directly by the BHO or by a host browsectfan called on its
behalf, are attributed to the untrusted context, while ¢hiog the host browser itself
belong to the trusted context. In the untrusted context,semgitive data processed is
flagged “suspicious.” The presence of this data at outputatipas that perform writes
to networks/files signals the leakage of confidential ddtctdd by the BHO. Although
these methods are successful in analysis and detectiomrefhtualware, they are not
carefully designed to detect adaptive malware that empagsion techniques against
the specific mechanisms proposed in these defenses. Betoywragent several such
evasion attacks. We remind our readers that the techniqesemted in the previous
section continue to be available to malware that operatdsmthe address space of a
(benign) host application. In this section, our focus is dditional evasion techniques
that become possible due to this shared address space.

3.1 Attacks using Arbitrary Memory Corruption

Corruption of untainted/insensitive data to effect leakag. By corrupting the mem-
ory used by the host application, a malicious BHO can indheehbst application to
carry out its tasks outside the untrusted context. Foriit&tga privacy-breaching mal-
waredoes notecessarily need to read the confidential data itself ans/q@sy it to

" Browser extensions are named in different ways. Internet Explmes the terms “BHOs”,
“extensions” and “toolbars”, while Gecko-based browsers (eigeFBx) use the terms “plug-
ins” and “extensions”. We use the term BHO for all these terms interarabig in the paper.



external network interfaces. Instead, it could corruptdhta used by the browser (i.e.,
the host application) such that the browser unknowinglkdethis information. We
present the basic idea for an attack that avoids direct mtatipn of any sensitive data
or sensitive pointers. Instead, it corrupts higher levahimted pointers that point to
the sensitive data. Consider a pointer varigbie the browser code that refers to data
items to be transmitted over the network. A malware can @bnuto point to sensi-
tive data (say) of its choice, stored within the browser memory. This wayadioous
BHO can arrange fos to be transmitted over the network, without being detected b
techniques described in [13]. Similarly, a BHO may corrufiteadescriptor as well, so
that any write operation using this file pointer will resulthe transmission of sensitive
data over the network. Vulnerable pointers and data buffeesled for these attacks are
rife in large systems. Moreover, they are easily forgeablmhse of the high degree of
address space sharing between the host browser and extensio

Optimistic assumptions about data originating from untrusted code. Another ba-

sic idea for attack involves using seemingly harmless dateh as constants, which are
treated as untainted by most techniques [13,45] for caonpif browser data struc-
tures. Treating constants in untrusted code or any data tineleontrol of the malware
as untainted is anyway problematic, and specially so inrpicade where constants
may be addresses. The attack involves overwriting an uethipointerp, that may
initially point to a sensitive data, with an untainted value such as constant memory
addressn. When the browser uses for a critical operation, such as determining the
destination for sending, this threat becomes very significant as shown below.

A real attack. We now present an example that illustrates how a BHO can gbrru
a data pointer to violate a policy that prevents leakagerapting of sensitive infor-
mation, like the user'sookies by the BHO. The example has been tested on Lynx, a
textual browser which does not have a proper plugin framkwappor®. However, it
uses libraries to enhance its functionalities and, as theyoaded into Lynx’s address
space, they can be considered as untrusted componentst, lthéaattack’s result could
be applied to a different browser application (e.g., IntéfBxplorer, FireFox) with a
full-blown plug-in framework.

The attack consists of modifying the domain name in the aa@dd is illustrated in
the figure below. In Lynx, all cached cookies are stored imkeld-listcooki e_I i st
(note thatcooki e_I| i st is not sensitive as only the sequence of bytes containing
cookies value is). Subsequently, when the browser has th&enokie, the domain is
compared usingost _conpar e (not shown) which callst ri ngcasecnp. A plug-
in can traverse the linked list, and write its intended URIthedonai n pointer field
in cookie record. On enticing the user to visit a malicioudwsée, such as evil.com,
these cookies would automatically be sent to the attackérsite, thereby subverting
the implementation of the Same Origin Policy. The point tterio this example is that
thedonai n pointer will be untainted; the object it points to will beritéd or sensitive.
These higher level pointers themselves are not sensitigesfore they can be corrupted
without raising suspicion.

8 Lynx has been chosen to simplify the example.



typedef struct _cookie{
char xdomain; /I pointer to the domain this cookie belongs to

} cookie;

typedef struct _HList {

void xobject;
HTList xnext;
} HTList;
extern HTList xcookielist; /I declared by the core of the browser
;/.(.)id changedomaingoid) { /I untrusted plugin functions
HTList xp = cookielist; // untainted ptr— — the list itself is not tainted
char xnew.domain = strdup("evil.com”); /' untainted string
for (; p; p = p—>next){ Il iterating over an untainted list gives untainted ptrs
cookiextmp = (cookiex)p— >object; /I tmp takes the address of a cookie object untainted
tmp—>domain = newdomain; /I changing an untainted pointer with an untainted address
}
} /I Function exit
Implications

The above example shows how confidential data can leak witieing read. The ap-
proach proposed in [13] does not deal with this threat. Rebat sensitive data is
marked “suspicious”(to use the terminology defined in [18f)ly when the untrusted
BHO uses the sensitive data itself or propogates it to thereat interfaces. Conse-
quently, the malware can overwrite tHenai n pointer with an address value (which
is untainted) of choicayithoutcausing thesuspicious flago be set.

To detect the aforementioned evasion attacks, an infoomditbw technique needs
to incorporate at least the following two features. Finstpider to detect the effect of
pointer corruption (of pointers such as those used to poidata buffers), the technique
must treat data dereferenced by (trusted) browser codg asiainted pointer as if it
is directly accessed by untrusted code. Second, it musgnéo® corruption of point-
ers with constant values. Otherwise, the above attack uditsed since it overwrites a
pointer variable with a constant value that correspondedgariemory location of sen-
sitive datd. Considering every write performed by the untrusted BHOgdainted, as
suggested previously (therefore, considering everythirigten by the untrusted BHO
as “suspicious”), may be a too conservative a strategy. ytyiedd high false positives
in the cases where plugins access sensitive data but doatoitlerhough, applying
conservative tainting specifically to recognize contrdiadas done in [44] seems rea-
sonable, this may raise significant false positives whetiegfor identifying all data
that is possibly controlled by the plugin.

3.2 Attacking Mechanisms Used to Determine Execution Contéx

In a shared memory setting, it is necessary to distinguishettecution of untrusted
extension code from that of trusted host application coden@ke this distinction, the
detection approach needs to keep track of a code exeauditiext The logic used for

% Such pointers reside often enough on global variables whose locationsecpredicted in
advance and hard-coded as constants in the malware.



maintaining this context is an obvious target for evasidacks: if this logic can be
confused, untrusted code could execute with the privilefé&sisted code. A more sub-
tle attack involves data exchanged between the two contgixtse execution in trusted
context affords more privileges, untrusted code couldeaghits objectives indirectly
by corrupting data (e.g., contents of registers and thé&}sthat is communicated from
untrusted execution context to the trusted context.

Although the targets of evasion attack described above emerglly independent
of implementation details, the specifics of evasion attagilsneed to rely on these
details. Below, we describe how such evasion attacks cah inghe specific context
of [13].

Attacking context-switch logic. The approach proposed [13] for context tracking
uses the following algorithm. For each instruction, thetesyschecks whether the in-
struction belongs to the BHO code region. If so, then it sdkiesvalue of the current
stack pointer agspsq.cq, and the instruction is executed in untrusted context. When-
ever the instruction pointer points outside the code regfahe BHO, the system has to
determine whether the instruction is executed on behalf@BHO (i.e., untrusted con-
text) or not. For this, the proposed technique utilizes #wt that on their platform the
stack grows downwards and checks if the current stack paigte,,rc.:, is below the
espsaved- The context identification logic implicitly assumes a lgmcall stack model
—itassumes that the activation records are pushed on ttle 8ta stack data belonging
to the caller is left unchanged by the callee, and that thieedlinction cleans up its
activation leaving the stack pointer restored after itogation. We point out that these
assumptions are reasonable for calls across benign codelesanhly. Specifically, if
the espeyrrent 1S NOL lESS tharsp,qved, the context switching logic assumes that the
last untrusted BHO code stack frame has been popped off thvatéan stack and the
execution context does not belong to the BHO anymore. Thibation mechanism
allows valid (benign) context switches (from untrustedrtsted context) at call/return
function boundaries, when the last BHO functifis about to return and there are no
other browser functions invoked Ly

Unfortunately, we show that this attribution mechanismmisecure. Malware may
employ simple low-level attacks that subvert the contrakflotegrity of the applica-
tion at the host-extension interface leading to devagjadittacks. The taint analysis
approach and the attribution mechanism employed in [13]jtpmit that the mechanism
can deal with two threats that may circumvent context attiélm — execution of injected
code, and attempts to adjust the stack pointer above thehtblcklimit by changing the
ESP register in its code. However, it does not protect agaiher low-level integrity
violations, such as return-into-lib(c) style [31,35] aka, which aim to eventually exe-
cute already present code.

To be concrete, consider the scenario where the maliciou® Bétrupts control
pointers, such as return addresses pushed by the callibuination, to refer to target
locations in the browser or its trusted libraries. It coulididionally create a compatible
stack layout required for a return-into-lib(c) attack tafpem intended action and let
its last invoked function simply exit. Changing control pt&rs such as return address
above the recorded threshold stack pointer value, with@kimg any modification to
ESP itself, is sufficient and touches no sensitive/taintath.dSuch returns from un-



trusted code trigger control transfers to the attackerrodiad target functions, and fur-
thermore, with arbitrarily controlled parameters on thefterd stack layout. As no other
BHO instructions are executed after such a return, subseégode will be executed in
the browser context fulfilling the attacker’s objectives.

Implications

To counteract such a return-into-lib(c) style attack, amaat analysis has to strengthen
the attribution mechanism, to allow information flow to bereatly captured for the
different contexts.

Another work in this area, Panorama [45], proposes to |labelyewrite operation
performed by a BHO for the purpose of being able to track dyoalfy generated code.
But, it seems to rely on a similar attribution mechanism ueefd 3], and seems vulner-
able to the attack presented in the previous section asttiteuibn mechanism can be
circumvented. HookFinder [44], instead, is able to cat@rghook implanted into the
system by an untrusted binary. To do so, they use an apprdaich 8 similar to infor-
mation flow-based techniques: they label every write opmraterformed by untrusted
binaries, as they want to be able to analyze any hooking ptge(regardless it they
are made by benign or potentially malicious modules). Thienss to be a promising
approach for the attribution problem. In fact, an extensmtheir strategy, as the one
proposed in [33], which marks context as untrusted whenewetrol transfers involve
tainted pointers resolves the issue of correctly attritgitontext.

3.3 Attacking Meta-Data Integrity

Corrupting meta-data maintained by a dynamic informatiow flechnique is another
avenue for attack. Typically, meta-data consists of one @renbits of taint per word
of memory, with the entire metadata residing in a memorjdesg data structure in
memory. An obvious approach for corrupting this data ineslvnalware directly ac-
cessing the memory locations storing metadata. Most egistiynamic information
flow techniques include protection measures against st@tkat Techniques based on
emulation, such as [13] can store metadata in the emulatwisory, which cannot
be accessed by the emulated program. Other techniques ${#8] &nsure that direct
accesses to metadata store will cause a memory fault. Iagbign we focus our atten-
tion onindirect attacksthat is, those that manifest an inconsistency betweendateta
and data values by exploiting race conditions.

Attacks based on data/meta-data races. Dynamic information flow techniques need
to perform two memory updates corresponding to each upddbeioriginal program:
one to update the original data, and the other to update thadata (i.e., the taint
information). Apart from emulation based approaches whiegse two updates can be
performed “atomically” (from the perspective of emulatedle), other techniques need
to rely on two distinct updates. As a result, in a multithegrogram where two
threads update the same data, it is possible for an incensisto arise between data
and metadata values. Assume, for instance, that metaddddagprecede data updates,
and consider the following interleaved execution of twetds:



time| Benign Thread Malicious Thread

t1 settag, to tainted

to settag, to untainted

i3 write untaintedvalue tox

tk write taintedvalue tox

Note that at the end, memory locatigncontains a tainted value, but the corre-
sponding metadata indicates that it is untainted. Such@masistency can be avoided
by using mandatory locks to ensure that the data and metagdtges are performed
together. But this would require acquisition and release lotk for each memory up-
date, thereby imposing a major performance penalty. Asdtresisting information
flow tracking techniques generally ignore race conditi@ssuming that it is very hard
to exploit these race conditions. This can be true for utdlistand-alone applications,
but it is problematic, and cannot be ignored in the contexhafware that share their
address-space with a trusted application.

To confirm our hypothesis, we experimentally measured thbalility of success
for a malicious thread causing a sensitive operation withaising an alarm, against
common fine-grained taint tracking implementations knowately. The motivation of
this attack is to show that, by exploiting races between dathmetadata updates op-
erations, it is possible to manipulate sensitive data witthaving them marked as sen-
sitive. To demonstrate the simplicity of the attack, in oxperiment we used a simple
C program shown below (a) that executes as a benign threadsdisitive operation
open (line 10 (a) column) depends on the poinfaname which is the primary target
for the attacker in this attack. We transform the benign ¢odack control-dependence
and verified its correctness, since the example is small.

char xfname = NULL, oldfname = NULL;
void checkpreferences ({

void s«maliciousthreadgoid q) {

int attempts = 0;
while (attempts++< MAX _ATTEMPTS)
if (getpref.name () == OK) fname ="/.../.mozilla/.../cookies.txt”;
old_fname ="/.../.mozilla/.../pref.js";
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while (...) {
fname = oldfname;
9 if (fname){ 9
10 fp = open (fname, “w"); 10
11 11
12 } 12
13} 13}
@) (b)

The attacker’s thread (b) runs in parallel with the benigedl and has access to the
global data memory pointéman®e. The attacker code is transformed for taint tracking
to mark all memory it writes as “unsafe” (i.e., tainted).

We ran this synthetic example on a real machines using tverdiit implementa-
tions of taint tracking. For conciseness, we only presentéisults for the taint tracking
that uses 2 bits of taint with each byte of data, similar to],[4dth all taint track-
ing code inlined, as this minimizes the number of instruwtidor taint tracking and
hence the vulnerability window. Assuming that thet _pr ef _nane call fails to re-
turn CK, on a quad-core Intel Xeon machine running Linux 2.6.9 SMidlewe found



that chances that thepen system call executes with the corresponding poihteane
marked “safe” (i.e., untainted) varies fra¥6% — 80% across different runs. The reason
why this happens is because the transformed benign thradd tke taint fof nanme

on line 8 and sets the control context to tainted scope, before erectlte original
code for performing conditional comparison on lihelrhe malicious thread tries to in-
terleave its execution with the one of the benign threadhdryo achieve the following
ordering of operations on the shared varidharre:

Time| Operation Thread (Line No.)
t1 readtag frname — untainted Benign (9)

to Write tag trname = tainted Malicious (4)

t3 write fname := "lhome/user/.mozilla/.../cookies.txtMalicious (4)

ty readfname Benign (9)

If such an ordering occurs, theg,.m. read by the benign thread is markea-
tainted as the benign thread has cleared the taint previously, wihdedata happens
to contain an attacker controlled value about user bronsekies. Consequently, con-
trary to the intention of the instrumentation of trackingitrol-dependence, the attacker
manages to prevent control scope from switching to tainteges at line 9 in the benign
code. In practical settings, the window of time betweemandt, varies largely based
on cache performance, demand paging, and scheduling loehafispecific platform
implementations. Finally, it is worth noting that the akteccould improve the likeli-
hood of success by increasing the scheduling priority oftaicious thread and lower,
where possible, those of benign thread.

Implications

Attacks on direct corruption of metadata has been studiéord¢43] and thwarted
by implementations using virtual machines and emulatorghviexplicity manage
the context switches between threads or processors. Howaueh of the design of
such metadata tracking monitors has not been carefullyestud the context of multi-
threaded implementations (or multi-processor emulatars) techniques in this section
highlight the subtle importance of these.

4 Analyzing Future Behavior of Malware

Several strategies have been proposed to analyze unteaste@re. Broadly speaking,
these strategies can be divided in two main categories,rtbe based ostatic analy-

sis and the others which adoptignamicanalysis approach. While static analysis has
the potential to reason about all possible behaviors ofvso#, the underlying com-
putational problems are hard, especially when working wWittary code. Moreover,
features such as code obfuscation, which are employed byarelas well as some
legitimate software, make it intractable in practice. Agsutt, most practical malware
analysis techniques have been focussed on dynamic analysis

Unfortunately, dynamic analysis can only reason aboutelg®cution paths in a
program that are actually exercised during the analysiger@etypes of malware do
not display their malicious behavior unless certain triggenditions are present. For
instance, time bombs do not exhibit malicious behavior antertain date or time. Bots



may not exhibit any malicious behavior until they receiv@mmand from their master,
usually in the form of a network input.

In order to expose such trigger-based behavior, Mesat. [1] suggested an inter-
esting dynamic technique that combines the benefits ofia atad dynamic information-
flow analyses. Specifically, they taint trigger-relatedutsp such as calls to obtain time,
or network reads. Then, dynamic taint-tracking is used soalier conditionals in the
program that are dependent on these inputs. When one of thieramahes of such a
conditional is about to be taken, their technique creatdseakpoint and a snapshot of
the analyzed process, and keeps exploring one of the br&outisequently, when the
exploration of the taken branch ends or after a timeout Hulelss reached, their tech-
nique forces the execution of the unexplored branch. Sucimigrequires changing the
value of a tainted variable used in the conditional, so that the value of the condition
expression is now negated. By leveraging aleaision procedur& generate a suitable
value forv, the proposed approach also identifies any other variablései program
whose values are dependent:grand modifies them so that the program is in a consis-
tent staté’. We observe that this analysis technique has applicabiliegrtain kinds of
anti-virtualization or sandbox-detection techniques a#i.\iFor instance, suppose that
a piece of malware detects a sandbox (or a VM) based on thermresf a certain file,
process, or registry entry. The approach proposed canairéritie functions that query
for such presence, and proceed to uncover malicious cotléstagecuted only when
the sandbox is absent.

Since the underlying problems the analysis proposed by Mxs#. has to face are
undecidable in general, their technique is incomplete sbatns to work well in prac-
tice against contemporary malware. However, this incoteplkess can be exploited by
a malware writer to evade detection. For instance, as ngté¢lodbauthors of [1], a con-
ditional can make use of one-way hash function. It is contmnally hard to identify
values of inputs that will make such a condition true (oréal8/ore generally, malware
authors can force the analysis to explore an unbounded nuofiteanches, thereby
exhausting computational resources available for armliowever, the approach pro-
posed in [1] will discover this effort, and report that theta@mre under analysis is
suspicious. A human analyst can then take a closer look atreatware. Nonetheless,
today’s malware writer places high value on stealth, and&evould prefer alternative
anti-analysis mechanisms that do not raise suspicionsywargescribe such primitives
next.

4.1 Evasion using Memory Errors

Binary code is generally hard to analyze, as briefly pointetiio Section 2.2. For
instance, this is due to the absence of information aboidhigs boundaries and types,
which makes many source-based analyses inapplicable twidsn We observe that
given an arbitrary binary, it is hard to say whether it patEht contains a vulnerability
such as a memory error (e.g., buffer overflow), and to detezrttie precise inputs to

19 This is required, or else the program may crash or experience emditons that would not
occur normally. For instance, consider the cgde= x; if (x == 0) z = 0; else
z = 1/y; If we force the value ok to be nonzero, they must also take the same value or
else the program will experience a dive-by-zero exception.
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exploit it. Exhaustively running the binary on all possibiputs is often infeasible for
benign code, leave alone malware which is expected to éxpeiexponential nature
of exhaustive searches to cause the worst-case hit each run.

Motivated by this observation, we present an attack agaiyisamic information
flow-based analyses used to analyze malware behaviorasitoilthe one presented
in [1]. This attack is able to hide malicious code from beingcdvered and further
strengthen it such that extensions to analysis employed.]rarg unable to detect it.
Our attack leverages on the introductionnaémory errorsas shown in the following
example.

int trigger;

;/.(.)id proclnputgoid) {
int xp = &buf[0];
char buf[4096];
.rﬁly,gets(buf);

;b =1;

if"(trigger)
malcode();

The introduced memory error is a plain stack-based bufferftow vulnerabilityL.
The attacker’s goal is to write past the endbaff (line 7) and corrupt the pointep
to make it point to the variabler i gger . Eventually, when the vulnerability will be
exploited, the malware will s¢tr i gger to1 (line9) which in turn has the effect to dis-
close the malicious code representedviay code() atlinel2, guarded by ri gger.

It can be observed that the lack of proper bound checkingearctide snipped shown
above is not to be considered as a suspicious pattern bfy itéel mere use of an un-
safe function agy_get s*? does not imply that there is a memory error. In fact, bound
checking could have been performed elsewhere by the prageaitwhich justifies the
use of an unsafe function), or the programmer knows thataitghint the input can
never be bigger thabuf .

In order to disclose the malicious code during analysisytir@ablet r i gger has
to eventually be marked as tainted, so that the code it guzdide further analyzed.
The variablet ri gger is never tainted unlegs, which can potentially be corrupted
with tainted data by the malware, points to it. The problendetermining whethep
could pointtat r i gger is undecidable statically, thus augmentations to [1] usomge
form of static analysis do not help. On the other end, one tragjue that the dynamic
approach proposed in [1] could potentially accomplishdbgectionof the overflow, at
least (while it is unlikely that the correct vulnerabilitxpoitation can be achieved).
In fact, given the aforementioned example, it is fairly e&mythe analysis technique
considered to generate a big-enough input which will exahtwworrupt the pointep.

1t is important to note that there are no constraints on the type of vulnerabiiitduced. A
generic buffer overflow, an integer overflow, or a (custom) forastahg vulnerability would
have done as well.

12 This function resembles the well-known liget s. The malware author can either use its own
implementation or the one provided by the C library.



Even if such a technique is employed, we show that we can @xtémexample to make
it even harder — if not unfeasible — to achieve this step.

To this end, it would be desirable to have a functiprthat is easy to compute,
but hard to reason about some properties of it. By doing ss, pbssible to modify
the previous example in such a way to make it harder for théya@mato even detect
whether a memory error vulnerability is present or not. Saislituation is depicted by
the following code snippet (the action performed by thisecodn be found in benign

program as well).

int trigger;

void procinputfoid) {
int pad, n, [;
char buf[4096+256];
int «p = &pad;
char xdst;

n = read(s, bufsizeof(buf));

| = computespace(buf, n);

/I make sure we have enough room
dst = alloca(l + 128);

decode(buf, I, dst);

*p =1

i.f”(trigger)
malcode();

}

int computespacehar xsrc,int nread){
inti,k=0;
for (i=0;i < nread; i++){
switch(src[i]) {
case0: k++; break;

case255: k++;break;

}

return k;

}

void decodeghar xsrc,int nread char *dst) {
inti, j;
for (i=0,j=0;i < nread; i++, j++){
switch(src[i]) {
case0: dst[j] = srcfi]; break;

casell3: dst[j++] = srcfi];
dst[j] = srcfi];
break;

casell4: dst[j] = src[i];break;

;:.ése255: dst[j] = src[i];break;

}
}

Itis worth noting that the functiononput espace is easy to compute, but is relatively
hard to reason about some properties of it. For instanceydiirig at the source code,
it is easy to understand that at the end of the computdtibolds the same value as
the length of the data read into the buffesf . On the other end, the same reasoning
can be hard to do on binaries and in an automated way. Thushard to correlate
n, the number of read bytes, tg the minimum number of space to allocate to be
sure the functiordecode does not cause overflow. The functidecode presents a
problem by itself, by deliberately introducing the conalitifor an overflow to occur. In
fact, it can causest to overflow intop if the number of bytes given as inpuiyf )
whose ASCII value ig13 exceed a certain threshold. Only an exhaustive search tbver a
the possible input values and combination would deterridaily trigger this memory
error. Unfortunately, such an enumeration would be exthgomerous if not impossible
to perform. Similar to NP-complete problems which are harsidlve while verification

of correct answers is easy, it is rather simple for the attatk provide the right input
which will causedst to overflow so thap can be corrupted in such a way to eventually
disclose the malicious behavior. From the analysis pointesf, instead, an exhaustive
search will probably start with a sequence of lengttrying all the possibl@56 ASCII



values. This does not cause overflow as there is a safe paoflig bytes fordst .
Following this reasoning, a sequence of lengmd256* combination have to be tried.
For instance, & equal tol 28 can reach the boundariesadgt (dst lengthis256 bytes
and128 times 'q’ reaches its boundaries). This, however, wouldyhdy require to test
25527 combinations to try out on average which is a fairly huge nemb

Hiding malicious payload using interpreters. As a final point, we note that the ma-
licious payload need not even to be included in the progracan be sent by an attacker
as needed. We can use the techniques described above totghevenalware analyzer
from identifying this possibility.

One common technique for hiding payload has been based an exuctyption.
Unfortunately, this technique involves a step that is heddif unusual: data written by a
program is subsequently executed. This step raises soispatid may prompt a careful
manual analysis by a specialist. Malware writers would gréd avoid this additional
scrutiny, and hence would prefer to avoid this step. Thislmdone relatively easily
by embedding an interpreter as the body of the functimh code() in the attack
described above. As a result, the body of the interpreteesaape analysis. Moreover,
note that interpreters are common in many types of softvdar@aments viewers such as
PDF or Postscript viewers, flash players, etc, so their paseven if discovered, may
not be unusual at all. Finally, it is relatively simple to d&yp a bare-bones assembly
language and write an interpreter for it. All of these fastamggest that malware writers
can, with modest effort, obfuscate execution of downloactste using this technique,
with the final goal to hide malicious behavior without ragimny suspect.

4.2 Implications

The implications on whether dynamic information flow-basechniques can help to
disclose, analyze, and understand the behavior of thegemeration of malware is
similar to the ones pointed out in the rest of this paper. t, fio detect the evasion
technique proposed in the previous section, an informdlkionbased approach should
ideally be able to triggeany memory error which may be present in the analyzed soft-
ware, and automatically exploit the vulnerability so thaeresting (i.e., tainted) pre-
viously disabled conditions will be examined. In the presection we have shown
how this could be hard — if not impossible — at all to achiefeljrectly faced. Alter-
natively, information flow analyses could taiaby memory location, considering all
the possible combinations, and see how information is gatea. While this would
eventually taint r i gger and thus disclose the malicious behavior, it would drop the
benefits provided by taint-tracking mechanisms which fabesanalysis ointeresting
data, agverypaths would be forced to be explored. For instance, thetiegw@nalysis
would be similar to the one proposed in [9] where, even if thdarlying technique is
different, the end result is thaverypath can potentially be explored, which of course
is a hard task by itself. For instance, one may attempt taeferecution of all program
paths, but this is likely to be very expensive, and to suffemf semantic inconsisten-
cies that may arise due to forcing execution down branchegsatte not taken during
execution.



5 Related Work

Information flow analysis has been researched for a long f81%2,14,20,23,32,41].
Early research was focused on multi-level security, wheve-firained analysis was
not deemed necessary [6]. More recent work has been focuskshguage-based ap-
proaches, capable of tracking information flow at variablel [27]. Most of these tech-
nigues have been based on static analysis, and assumeesabédcooperation from
developers to provide various annotations, e.g., seitgitabels for function param-
eters, endorsement and declassification annotationsminelie false positives. More-
over, they typically work with simple, high-level languagevhile much of security-
critical contemporary software is written in low-level guages like C that use pointers,
pointer arithmetic, and so on. Finally, it can be noted trestpite their benefits static
analyses are generally vulnerable to obfuscation schesirecantly remarked by [22].
Therefore, it is reasonable to rely on dynamic or hybrid apphes, instead. As a re-
sult, information flow tracking for such software has beemparily based on run-time
tracking of explicit flows that take place via assignments.

Recently, several different information flow-based apphas have been proposed
in the literature [11,15,16,30,36,43]. They give good armhpsing results when em-
ployed to protect benign software from memory errors anémtypes of attacks, by
relying on some implicit assumptions (e.g., no tainted cpdmters should be de-
referenced). The reason is because benign software is sigingel to facilitate an at-
tacker task, while malware, as we have seen, can be carefafgd to embed evasion
attacks, such as covert channels, and general memory torrup

Probably, an ideal solution would require that untrustedbées would carry proofs
that some properties are guaranteed. This is achieved lof-paorying code [25]. To
be successful, this technique relies on some form of colitlom between the code
producer and consumer. For instance, Medell. [21] and Yuet al. [46] proposed in-
formation flow analyses for typed assembly languages. LisevBartheet al. provided
non-interference properties for a JVM-like language [4] aealt with timing attacks
by using ACID transactions [5], as well. Unfortunatelystuinlikely that malware writ-
ers (i.e., the code producer, in this context) are goingue this form of collaboration
which is necessary for the success of these approachesfdtegrit is unlikely that
these strategies would soon be adopted as is in the contendl@fious software anal-
ysis and containment.

Driven by the recent practical success of information flaxgdd techniques, sev-
eral researchers have started to propose solutions basgghamic taint analysis to
deal with malicious or, more generally, untrusted code3;22,34,40,44,45]. During
the last years, these techniques have been facing diffeasks (e.g., classification,
detection, and analysis) related to untrusted code asalysifortunately, even if pre-
liminary results show they are successful when dealing withusted code that has not
been designed to stand and bypass the employed technique hape the discussion in
this paper highlighted, information flow is a fragile teaiuné that has to be supported
by new analyses to be more resilient to evasions purposelgtad by ever-evolving
malware.



6 Conclusion

Information flow analysis has been applied with significardcess to the problem of
detecting attacks on trusted programs. Of late, there hexs significant interest in ex-
tending these techniques to analyze the behavior of upttissiftware and/or to enforce
specific behaviors. Unfortunately, attackers can modigirthoftware so as to exploit
the weaknesses in information flow analysis techniques. &described using several
examples, it is relatively easy to devise these attackstals@k significant amounts of
information (or damage system integrity) without beingedétd.

Mitigating the threats posed by untrusted software mayirequore conservative
information flow techniques than those being used today falmare analysis. For in-
stance, one could mark every memory location written byustéd software as tainted;
or, in the context of confidentiality, prevent any confidahthformation from being
read by an untrusted program, or by preventing it from wgitamything to public chan-
nels (e.g., network). Such approaches will undoubtedlyt fitre classes of untrusted
applications to which information flow analysis can be agupliAlternatively, it may be
possible to develop new information flow techniques thatlmasafely applied to un-
trusted software. For instance, by reasoning about qyaftinformation leaked (mea-
sured in terms of number of bits), one may be able to suppaoithaintrusted software
that leaks very small amounts of information. Finally, seshers need to develop ad-
ditional analysis techniques that can complement infoionaflow based techniques,
e.g., combining strict memory access restrictions witbrimfation flows.
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