
Protecting Function Pointers in Binary

Chao Zhang
LiST, Peking University

Beijing, China
chao.zhang@pku.edu.cn

Tao Wei
∗

LiST, Peking University
UC Berkeley

wei_tao@pku.edu.cn

Zhaofeng Chen
LiST, Peking University

Beijing, China
chenzhaofeng@pku.edu.cn

Lei Duan
LiST, Peking University

Beijing, China
lei_duan@pku.edu.cn

Stephen McCamant
University of Minnesota

USA
mccamant@cs.umn.edu

Laszlo Szekeres
Stony Brook University

USA
lszekeres@cs.stonybrook.edu

ABSTRACT
Function pointers have recently become an important attack
vector for control-flow hijacking attacks. However, no pro-
tection mechanisms for function pointers have yet seen wide
adoption. Methods proposed in the literature have high over-
heads, are not compatible with existing development pro-
cess, or both. In this paper, we investigate several protec-
tion methods and propose a new method called FPGate (i.e.,
Function Pointer Gate). FPGate rewrites x86 binary exe-
cutables and implements a novel method to overcome com-
patibility issues. All these protection methods are then eval-
uated and compared from the perspectives of performance
and ease of deployment. Experiments show that FPGate
achieves a good balance between performance, robustness
and compatibility.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; D.2.4 [Software Engineering]: Software/Pro-
gram Verification—Validation

Keywords
Function Pointer Protection; Binary Rewriting

1. INTRODUCTION
Control-flow hijacking attacks [4, 16] have a long histo-

ry, and corresponding protections [3, 17] have also existed
for more than a decade, in an ongoing arms race. The cur-
rent state of the art of protections pay much attention to
the return addresses on the stack (i.e. targets of return in-
structions), but provides few protections against function
pointers (i.e. targets of indirect call and jump instructions).

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

And thus, function pointers have recently become an impor-
tant attack vector. For instance, a buffer overflow or integer
overflow vulnerability can be exploited to overwrite func-
tion pointers in the heap to hijack the control flow [6, 8].
Moreover, recent exploits [19] against use-after-free vulnera-
bilities replace objects’ virtual function tables (i.e. vtables)
to turn benign method calls into jumps to shellcode.

Representative protection schemes which protect function
pointers from exploiting including PointGuard [7] and CFI
(Control-Flow Integrity [1]). However, they require cooper-
ation from developers or code-producers, or suffer from in-
efficiency and compatibility problems. We propose a new
method called FPGate to achieve a balance.

First, FPGate needs no source-level information (e.g., PDB
files or debug information needed by CFI). It utilizes relo-
cation tables which are already required by ASLR (Address
Space Layout Randomization [17]) in modern x86 binary
executables, to disassemble binaries and identify all indirect
transfer instructions and all valid jump targets.

Second, FPGate overcomes compatibility issues by encod-
ing each valid function pointer into a pointer to a new tram-
poline chunk. Unlike other schemes, modules hardened by
FPGate can inter-operate seamlessly with un-hardened ones.

Moreover, optimizations are introduced by FPGate to ac-
celerate the run time execution, without any loss of security.
As a result, FPGate introduces a negligible run time over-
head, about 0.4% on SPECint2006.

FPGate fills most of the gap between existing lightweight
protections on one hand, and CFI on the other. Combin-
ing FPGate with robust protections of return addresses is
a sweet spot for security and usability. This combination
provides a protection almost as strong as the original CFI.
At the same time, it has low overhead and can be applied
directly and progressively to a binary.

The key contributions of this paper are:

• We investigate several existing function pointer protec-
tion mechanisms, and point out their advantages and
disadvantages.

• We propose a new efficient mechanism FPGate to pro-
tect function pointers in binary executables and pro-
vide incremental deployment.

• We compare FPGate with existing mechanisms in an
experimental evaluation. The results show that FP-
Gate achieves a good balance between performance,
robustness and compatibility.



 cmp [ecx-4], ID

 jne ERRORprefetchnta [ID]
 cmp [ecx+4], ID

 jne ERROR

xor [foo_ptr],SEC_KEY

xor ecx,SEC_KEY

mov [foo_ptr], eax
call EncodePointer

mov ecx,eax

push foo_ptr

push foo_ptr
call DecodePointer

foo_ptr:  wrap_foo

jmp foo
7 dup (0xCC)
dd ID

 call ecx

 ret

 mov ecx,[foo_ptr]

foo():

 call ecx

 ret

 mov ecx,[foo_ptr]

foo():

 call ecx

 ret

 mov ecx,[foo_ptr]

foo():

call ecx

ret

mov ecx,[foo_ptr]

foo():

initializer:

call ecx

 ret

foo():

initializer:

.data:

foo_ptr:    foo
.data:

foo_ptr:    foo

.data:

foo_ptr:    foo

.data:.data:

foo_ptr:    foo

.trampoline:

wrap_foo:

(b) PointGuard (c) EncodePointer(a) original

(d) original CFI (e) FPGate

Figure 1: (a) An indirect call whose target is from memory. (b)-(e) Overview of existing function pointer protection schemes and FPGate.

2. STUDY OF EXISTING PROTECTIONS
As an important attack vector, the function pointer has

drawn researchers’ attentions for years. In existing protec-
tion techniques, legal function pointers are differentiated
from illegal ones by encoding (or encrypting), by attaching
identifiers (IDs), or by memory alignments. Several repre-
sentative mechanisms are discussed here.

2.1 PointGuard
PointGuard [7] uses encryption to provide integrity for

function pointers. A per-process secret key, i.e., SEC_KEY, is
kept to encrypt and decrypt pointers and thus protect legal
pointers from tampering. Before a function pointer is stored
into memory, it is encrypted (i.e. XOR) with the secret key
first. After the function pointer is read from memory, it is
decrypted (i.e. XOR) and then stored in registers for use.
Figure 1(a) shows an indirect call example whose target is

read from memory. After PointGuard is applied to this code
snippet, the hardened version is shown in Figure 1(b). It
is worth noting that a special initializer is instrumented by
PointGuard to re-initialize all statically initialized pointers.
The integrity of function pointers hardened by PointGuard

depends on the confidentiality of the secret key. However,
the secret key is vulnerable to be stolen by attackers, such
as through information leakage vulnerabilities. In addition,
because the XOR operation is linear, an attacker may be
able to manipulate an encoded pointer by overwriting only
the lower bits of an address and launch an attack [2].
PointGuard works as a compiler extension and thus needs

a target application’s source code. Besides, with encryption
and decryption, function pointers cannot flow between hard-
ened modules and un-hardened ones.

2.2 EncodePointer
As PointGuard was never released, Microsoft implement-

ed a similar approach beginning in Windows XP SP2. It
provides two API routines that can be called at the discre-
tion of the programmer, named EncodePointer and Decode-

Pointer [13]. Figure 1(c) shows the hardened version using
EncodePointer for the code snippet in Figure 1(a).

Rather than storing the secret key in user space like Point-
Guard, EncodePointer queries the system API NtQueryIn-
formationProcess to acquire the secret key. It prevents a
user-level attack from accessing the secret key directly, ame-
liorating the problem of information leakage vulnerabilities.

However, programmers have to decide which points to in-
voke EncodePointer and DecodePointer manually. In ad-
dition, each call to EncodePointer/DecodePointer queries
the kernel, and introduces a significant run time overhead.

The requirement for source code and the compatibility
problems between hardened and un-hardened modules in
this protection scheme are analogous to those in PointGuard.

2.3 CFI
CFI [1] is a natural protection against control-flow hijack-

ing attacks. It guarantees that all control-flow transfers in a
program will be the ones intended in the original program
(i.e., those represented in the compiler’s control-flow graph).

In general, it inserts an ID (e.g., the prefetchnta instruc-
tion in Figure 1(d)) before each legal target (e.g., a function
entry), and a check before each indirect transfer instruction.
Before transferring to the computed target at runtime, the
dynamic check validates whether the target’s ID is correct.

CFI defeats a broad range of shellcode injection attacks,
including sophisticated ROP (Return Oriented Programming
[4]). However, despite its long history, CFI has not seen wide
industrial adoption.

It is in part because CFI imposes a significant overhead.
Even if only function pointers are protected by CFI (called as
CFI-fp), it also introduces an overhead of 7.2%, as shown in
Section 4.3. In addition, it requires source-level information
(e.g., debug information) which are usually not available in
COTS binary. Moreover, modules hardened by CFI cannot
inter-operate seamlessly with un-hardened ones. For exam-
ple, the instrumented runtime check will fail if the computed
jump target falls into an un-hardened module.



FPGate

BitCover

(Disassemble)

Original PE 

File

FPWriter

(Encode/Validate)

Hardened 

PE file
Disasm 

info

Figure 2: Architecture of FPGate

3. DESIGN & IMPLEMENTATION

3.1 Approach Overview
As PointGuard, FPGate encodes legal function pointers

to differentiate them from illegal ones. Unlike PointGuard,
pointers encoded by FPGate are valid code pointers, and can
flow into un-hardened modules without compatibility issues.
On the other hand, a unique ID is attached to each en-

coded pointer for validating, as CFI. A novel code section,
i.e., the trampoline section, is thus introduced for encoding
pointers and holding IDs. Each valid function pointer is en-
coded into a pointer to a code chunk in the trampoline. Un-
like CFI, most instructions’ addresses will not change after
rewriting. Meanwhile, with the trampoline layer, computed
jump targets which fall into un-hardened modules can also
be encoded to overcome compatibility issues.
The architecture of FPGate is shown in Figure 2. It con-

sists of two core modules: BitCover and FPWriter. BitCov-
er disassembles target binary and identifies all indirect call
and jump instructions in addition to all valid jump targets.
FPWriter then instruments runtime checks before indirect
transfers, encodes valid jump targets with new code point-
ers, and creates the trampoline section. Figure 1(e) shows
the code snippet which is rewritten by FPWriter.

3.2 Disassembling and Identifying
In general, it is challenging to disassemble an x86 PE [14]

file correctly, because x86 is a CISC platform. However, we
can take advantage of the fact that ASLR and DEP (Da-
ta Execution Prevention [3]) are widely adopted in Win-
dows/x86 executables, particularly those whose developers
care about security.
Combined with other policies, a custom disassembler Bit-

Cover [21] is built and can disassemble PE files generated
by modern compilers. With BitCover, all indirect jumps or
calls and their valid targets can be identified.

3.3 Validating Jump Targets
After identifying all indirect call/jmp instructions by Bit-

Cover, FPWriter instruments runtime checks before them.
As shown in Figure 1(e), a check which verifies the exis-

tence of a predefined ID around the jump target is inserted
before the indirect call instruction (i.e., call ecx).
Similar as the CFI, the ID is carefully chosen in order to

avoid conflicting with bytes in the application.

3.4 Encoding Legal Targets
Valid jump targets should be encoded to distinguish from

invalid targets. According to our observation, legal jump tar-
gets fall into the following categories:

(A) Hard-coded function pointers in the executable file,
such as those stored in the vtables and global variables.

(B) Entries in the import table.

(C) Function pointers generated at runtime by API, such
as GetProcAddress().

(D) Function pointers generated by setjmp().

For function pointers of kind (A), they are simply encoded
into a trampoline chunk pointer, as shown in Figure 1(e).

Considering the performance, hard-coded pointers which
are directly used in call/jmp instructions, e.g., call foo,
would not be encoded. Exception handlers used by the op-
erating system are skipped encoding too. Moreover, code en-
tries in switch tables [5] are not encoded. All these skipped
pointers are protected by SafeSEH [12] or DEP, and cannot
be tampered by attackers, and thus can be skipped safely.

The remaining cases B-D involve pointers from external
modules, even un-encoded pointers, and thus cause compati-
bility issues. Unlike existing protections (e.g., CFI), FPGate
can handle these issues with the extra trampoline layer.

3.5 Trampoline & Compatibility
FPWriter encodes each valid jump target into a pointer

to a chunk in the trampoline. Each of these chunks holds
a same ID and has 16 bytes. These chunks are continuous
and can pass the validations instrumented before indirect
jumps. As Figure 1(e) shows, the chunk will jump back to
the original target to ensure applications behave correctly.

In the case of (B), function pointers are imported from
external modules and will be updated when loading. As
shown in Figure 3(a), a wrapper section (.wrap) is intro-
duced to simulate the original IAT (Import Address Table,
.iat). Whereas the IAT stores imported function pointers,
the wrapper section stores pointers to trampoline chunks.
Then, all references to the IAT are replaced with references
to the wrapper section. Similarly, directly used imported
function pointers, such as call [imp_slot], are skipped en-
coding too in order to promote the performance.

For function pointers of kind (C), they are retrieved through
API GetProcAddress, so they need be encoded at runtime.
GetProcAddress is usually imported, and thus it can be pro-
cessed in a same way as (B), except that the trampoline
chunk for GetProcAddress does not jump back to original
imported GetProcAddress directly. In fact, it jumps to a
wrapper function for GetProcAddress (i.e. gpa_wraper), as
shown in Figure 3(b). The wrapper function will call original
GetProcAddress, and then stores the runtime retrieved func-
tion pointer into a preserved trampoline slot. And then the
pointer to the preserved slot is returned as the new return
value. As a result, the runtime retrieved function pointer is
also encoded. It is worth noting that, the wrapper function
has to set the preserved trampoline slots writable at runtime
and turn it off when the wrapper function exits, in order to
protect the preserved trampoline slots from tampering.

Function pointers of kind (D) are generated at runtime as
well. The function setjmp retrieves its caller’s (un-encoded)
return address from the stack and saves it into a jmp_buf

structure. Finally, this return address will be used by an
indirect jump instruction in another API longjmp through
querying the jmp_buf structure. We then replace each call
instruction which invokes setjmp with two instructions: PUSH
ret_addr; JMP setjmp;. The pushed return address ret_addr
is a trampoline slot pointer, and it will jump back to the
original return address, as shown in Figure 3(c).

As discussed above, the trampoline provides a demilita-
rized zone between hardened modules and un-hardened ones,
and thus can help overcome the compatibility issues. This
novel method can also be utilized and applied to other bi-
nary protection schemes, such as [21].



jmp next

7 dup (0xCC)

dd ID

 jmp setjmp
push wrap_next

jmp gpa_wraper

6 dup (0xCC)

dd ID

mov ecx,[imp_wrap]

imp_wrap:  wrap_gpa

call [imp_gpa]

# fill new stub

# ret stub ptr

jmp [imp_slot]

6 dup (0xCC)

dd ID
mov ecx,[imp_wrap]

imp_wrap:  wrap_foo

 call ecx

 mov ecx,[imp_slot]

.iat:

imp_slot:  imp_foo

.trampoline:

wrap_foo:

 call ecx

.iat:

imp_slot:  imp_foo

.wrap:

 call ecx

 mov ecx,[imp_slot]

.iat:

imp_slot:  imp_gpa

.trampoline:

wrap_gpa:

 call ecx

.iat:

imp_slot:  imp_gpa

.wrap:

.wrap_code:

gpa_wraper:

next:

 call setjmp

.trampoline:

wrap_next:

 jmp [edx+14h]

longjmp():

next:

 jmp [edx+14h]

longjmp():

Original

Hardened

(a) Imported function pointers (b) Pointers retrieved through GPA() (c) Pointers saved through setjmp()

Figure 3: Special function pointers and FPGate’s encoding countermeasures

4. EVALUATION
We implement a prototype of FPGate using C++ for the

Windows platform targeting x86 PE executables. BitCover
takes about 5K LOC and utilizes the Udis86 library (8K
LOC, [18]) to parse x86 instructions, while FPWriter takes
another 5K LOC and a custom PE file parser has 2K LOC.
We port PointGuard, EncodePointer and CFI discussed

in Section 2 using binary rewriting, and then evaluate and
compare their compatibility and performance with FPGate.

4.1 Correctness of FPGate
FPWriter encodes function pointers and instruments run-

time checks before indirect call/jmp instructions in the ex-
ecutable. If there is an error in this rewriting process, the
final hardened application will fail or crash at runtime. For
example, if a function pointer fails to be identified by Bit-
Cover, then it will not be encoded by FPWriter, and finally
cannot pass the instrumented runtime check.
Two groups of experiments are made to evaluate FPGate’s

correctness. First, FPGate is tested with 11 applications
from the SPECint2006 benchmark [9]. Second, FPGate is
tested with two real world browsers, Firefox 3.6.16 (FF3)
and Internet Explorer 6 (IE6)1. In particular, the core mod-
ules xul.dll in FF3 and mshtml.dll in IE6 are hardened
by FPGate, and other modules are left intact. These exper-
iments show that hardened applications work correctly; i.e.,
they are semantically equivalent to original applications.

4.2 Compatibility Comparison
In this section, we discuss the compatibility of FPGate,

and make a comparison with the other three protection schemes,
i.e. PointGuard, EncodePointer and CFI-fp (a limited ver-
sion of original CFI which protects only function pointers).

4.2.1 Compatible with Binary Applications
FPGate can be applied directly on binaries containing re-

location tables, even without source-level information. For
(seldom) binaries without relocation tables, FPGate work
fine with the help of other tools or experts. For example,

1Core modules of newer IE cannot be replaced with custom
modules because of the system protection. In addition, there
are no public available exploits for newer browsers. As a
result, we chose these two old softwares as a benchmark.

the commercial disassembler IDA Pro [10] can be easily uti-
lized to generate a fake relocation table and help FPGate to
be applied on these binaries.

On the other hand, original implementations of Point-
Guard and EncodePointer depend on source code, while the
CFI-fp depends on debug information. However, in our port-
ing, they are all ported successfully using binary rewriting.

4.2.2 Compatible with Un-hardened Modules
Function pointers may flow from hardened modules to un-

hardened modules and vice-versa, and thus cause compati-
bility issues. With countermeasures presented in Section 3.5,
modules hardened by FPGate can work seamlessly with un-
hardened modules. The previous section which evaluates cor-
rectness of FPGate also proves this compatibility.

But for other three schemes, the compatibility issue is crit-
ical. Special efforts are need to fix this issue when porting.

In the case of PointGuard and EncodePointer, encoded
function pointers are not valid pointers, i.e. they cannot be
used directly in any un-hardened module. When porting, the
binary has to be rewritten in such a way that each function
pointer is decoded before it flows into external modules. For
each specific application, lots of manual efforts are needed
to identify and fix such pointer flows between modules.

On the other hand, function pointers from un-hardened
modules may fail the runtime checks of the hardened mod-
ules. For imported function pointers, a bootstrap code chunk
is inserted to encode them. For pointers retrieved by GetP-

rocAddress, similar wrappers as FPGate are provided too.
For setjmp and other cases, it is also handled like FPGate.

In the case of CFI-fp, compatibility issues occur when
computed jump targets fall into un-hardened modules. In
our porting, the error handler is set to be empty and will
redirect the control flow to its original position.

In summary, FPGate has a good compatibility. Point-
Guard or EncodePointer needs a lot of manual effort to
achieve a good compatibility. Compatibility issues of the
original CFI implementation are hard to be fixed unless an-
other layer (like the trampoline in FPGate) is introduced.

4.3 Performance Comparison
The performance experiments are made on a Windows

7 32-bit system, with an Intel Core2 CPU of 3.00GHz. The



per
lben

ch bzip
2 gcc mcf

gob
mk

hm
me

r
sjen

g
h26

4re
f

om
net

pp asta
r

Ave
rag

e

-0.5%

0

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%
7.0%

7.2%

7.4%

 

Pe
rfo

ra
m

ce
 O

ve
rh

ea
d

 PointGuard
 FPGate
 CFI

Figure 4: Overheads of PointGuard, FPGate and CFI-fp.

scripts in SPECint2006 are used to evaluate the original and
hardened versions of applications’ performance. And the av-
erage performance overheads are computed based on 9 trials.

Runtime overhead.
Figure 4 shows the performance overheads caused by FP-

Gate, PointGuard and CFI-fp. The average/maximum over-
head is about 0.11%/1% for PointGuard, about 0.42%/1.03%
for FPGate, and about 1.53%/7.23% for CFI-fp. For most
applications, the overhead brought by PointGuard is small-
est, while that brought by CFI-fp is largest.
In addition, EncodePointer’s performance is quite poor.

Its average/maximum overhead is about 92%/750%, not shown
in this figure due to the space limitation.

Statistics.
The upper half of Table 1 lists the count of modifications

made by FPGate to the SPECint2006 applications, and the
lower half for other real world applications.
More specifically, the columns under Encoded pointers in

the table represent the count of pointers encoded by FPGate,
including hard-coded function pointers, imported function
pointers, pointers returned by GetProcAddress and pointers
generated by setjmp functions.
The column under Checks records the count of indirect

call/jmp instructions which are instrumented by FPGate,
while the final column (i.e. the column under Opt.) collects
the count of function pointers those are skipped encoding.

Performance Analysis.
PointGuard is fastest because it only needs one XOR in-

Table 1: Modifications made by FPGate to applications

Benchmarks
Encoded pointers Checks Opt.

#fp #imp #GPA#setjmp #indirect #skipped
call/jmp fp/import

SPECint2006

400.perlbench 1,380 46 5 1 495 2,702
401.bzip2 73 20 3 0 123 290
403.gcc 3,501 26 3 1 774 10,254
429.mcf 73 20 3 0 105 238
445.gobmk 1,967 22 3 0 185 566
456.hmmer 117 23 3 0 125 429
458.sjeng 84 20 3 0 107 407
464.h264ref 185 20 3 0 465 369
471.omnetpp 4,798 30 3 1 1,853 1,065
473.astar 95 20 3 0 109 256

Browsers

mshtml.dll (IE6) 1,526 139 21 0 10,452 29,557
xul.dll (FF3.6) 145,224 283 34 0 55,025 17,273

Table 2: Real World Exploit Samples Prevented by FPGate.

ID App Vul Type Vul Module Protected

CVE-2011-0065 FF 3.6 Use After Free xul.dll yes
CVE-2010-0249 IE 6 Use After Free mshtml.dll yes
CVE-2008-0348 coolplayer Stack Overflow core exe yes
CVE-2010-5081 RM-MP3 Stack Overflow core exe yes
OSVDB-83362 urlhunter Stack Overflow core exe yes
CVE-2007-1195 XM ftp Format String core exe yes
OSVDB-82798 ComSndFTP Format String core exe yes

struction to encrypt and decrypt the jump targets. Encode-
Pointer is slowest, because it queries the kernel heavily.

For the porting of CFI-fp, its overhead is about 1.5%,
much faster than the original implementation in [1]. That
is because this porting only protects function pointers but
not return addresses.

But the CFI-fp is slower than FPGate, mainly due to the
optimizations introduced by FPGate. As shown in the last
column of Table 1, the count of function pointers skipped
encoding is quite large, usually larger than the count of en-
coded function pointers. This optimization can greatly pro-
mote the performance of FPGate. However, this optimiza-
tion cannot be deployed easily to CFI-fp. For example, for
instruction call foo, FPGate can skip encoding the foo and
thus introduce no overheads, but CFI cannot skip inserting
an ID at the beginning of function foo because foo may be
used as the target of another indirect jump.

In addition, the ID inserted by CFI-fp at the beginning
of each jump target (e.g. function entries) is the prefetch-

nta instruction. This instruction has no side-effect but is
extremely slow. For each direct (relative or absolute) jump
or call instruction, the instrumented slow prefetchnta in-
structions at the beginning of the jump target will be always
executed. As a result, CFI-fp is a little slower than FPGate.

4.4 Security Comparison
FPGate limits indirect instructions transfer only to valid

targets with IDs. There is only one ID in FPGate, and thus
it provides a weaker protection than CFI. However, due to
the complexity of building a complete control flow graph,
the count of unique IDs introduced by CFI for a given ap-
plication is also small. And thus, the security gap between
FPGate and CFI is not so much.

We chose 7 publicly available exploits from Metasploit [11]
and ExploidDB [15] and tested them in a virtual machine
running Windows XP SP3 within a separate experiment net-
work. These exploits are tested against the original vulner-
able applications and corresponding hardened applications.
Table 2 shows the 7 vulnerabilities attacked by exploits we
used. Results show that all these protection schemes can
protect target browsers from attacking.

4.5 Miscellaneous
FPGate disassembles target binary and rewrites them.

The static analysis time is positively correlated with the tar-
get file size and is usually small. As our experiments shows,
it costs 63 seconds for gcc which is 1,200KB, and costs only
0.16 seconds for mcf which is 80KB.

FPGate instruments a trampoline section and allocates
16-bytes for each encoded function. The runtime memory
overhead it introduced is positively correlated with the count
of functions. For example, perlbench has about 700 func-
tions, and the runtime memory overhead is about 10KB.



5. DISCUSSION
FPGate relies on relocation tables to disassemble binary

and rewrite them. A recently published work REINS [20]
utilizes IDA Pro to provide similar protection without relo-
cation tables. However, IDA Pro is heuristic and suffers sig-
nificant disassembly errors. REINS cannot identify all valid
function pointers and thus maintain a lookup table to encode
function pointers at runtime. A larger runtime overhead is
then introduced. Moreover, if the computed jump targets
fall into external modules and are retrieved through meth-
ods like GetProcAddress, REINS fails to protect the control
flow, and causes compatibility issues.
FPGate uses only one ID and thus permit jumps to any

valid target with an ID. This is vulnerable to jump-to-libc
attacks. Attackers can hijack controls to valid jump targets
and launch an attack. Further work is needed to defend
against this kind of attack.

6. CONCLUSION
In this paper, we investigate several protection methods

against function pointers, including PointGuard, Encode-
Pointer and CFI. Inspired by them, a new approach called
FPGate is proposed. FPGate limits all indirect calls and
jumps to known valid targets. It can block various attacks
against function pointers.
FPGate can be applied through binary rewriting on ex-

ecutables generated by modern compilers. It is compared
with existing protections from the perspectives of perfor-
mance, robustness, and ease of deployment. Results show
that FPGate achieves a good balance between performance,
robustness and compatibility.

Acknowledgments
This research was supported in part by the National Natural
Science Foundation of China under the grant No. 61003216
and No. 61003217, the Chinese NDRC InfoSec Foundation
under Grant No.[2010]3044, the National Science Founda-
tion under Grant No. 0842695, 0831501 CT-L, CCF-0424422
and CNS-0831298, the Office of Naval Research under MURI
Grant No. N000140911081, N000140710928 and award FA9550-
09-1-0539, the AFOSR under grant FA9550-09-1-0539, and
DARPA under award HR0011-12-2-005. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

7. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity: Principles, implementations,
and applications. In Proceedings of the 12th ACM
Conference on Computer and Communications
Security, pages 340–353, 2005.

[2] S. Alexander. Defeating compiler-level buffer overflow
protection. The USENIX Magazine ;LOGIN,
30(3):59–71, 2005.

[3] S. Andersen and V. Abella. Data execution
prevention: Changes to functionality in microsoft
windows xp service pack 2, part 3: Memory protection
technologies. http://technet.microsoft.com/en-us/
library/bb457155.aspx, 2004.

[4] E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When good instructions go bad: generalizing
return-oriented programming to risc. In Proceedings of
the 15th ACM conference on Computer and
communications security, pages 27–38, 2008.

[5] C. Cifuentes and M. Van Emmerik. Recovery of jump
table case statements from binary code. In Proceedings
of the 7th International Workshop on Program
Comprehension, pages 192–199. IEEE, 1999.

[6] CORE Security Technologies Advisories.
Core-2007-0219: Openbs’s ipv6 mbufs remote kernel
buffer overflow. http://www.securityfocus.com/
archive/1/462728/30/150/threaded, 2007.

[7] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointguardTM: protecting pointers from buffer
overflow vulnerabilities. In Proceedings of the 12th
conference on USENIX Security Symposium,
volume 12, pages 91–104, 2003.

[8] M. Daniel, J. Honoroff, and C. Miller. Engineering
heap overflow exploits with javascript. In Proceedings
of the 2nd conference on USENIX Workshop On
Offensive Technologies, 2008.

[9] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34:1–17, Sept. 2006.

[10] Hex-Rays SA. IDA Pro: a cross-platform
multi-processor disassembler and debugger. http:
//www.hex-rays.com/products/ida/index.shtml.

[11] Metasploit Open Source Commitment. Metasploit
penetration testing software & framework.

[12] Microsoft Visual Studio 2005. Image has safe
exception handlers. http://msdn.microsoft.com/
en-us/library/9a89h429%28v=vs.80%29.aspx.

[13] MSDN online library. EncodePointer function: provide
another layer of protection for pointer values.
http://msdn.microsoft.com/en-us/library/

bb432254(v=vs.85).aspx.

[14] MSDN online library. Microsoft Portable Executable
(PE) and Common Object File Format (COFF)
Specification. http://msdn.microsoft.com/en-us/
windows/hardware/gg463119.aspx.

[15] Offensive Security. Expoit database.

[16] A. One. Smashing the stack for fun and profit. Phrack
magazine, 7:14–16, 1996.

[17] PaX Team. Pax address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[18] V. Thampi. Udis86 disassembler library for x86.
http://udis86.sourceforge.net/.

[19] P. Vreugdenhil. Pwn2Own 2010 Windows 7 Internet
Explorer 8 exploit. http://vreugdenhilresearch.nl/
Pwn2Own-2010-Windows7-InternetExplorer8.pdf,
2010.

[20] R. Wartell, V. Mohan, K. Hamlen, and Z. Lin.
Securing untrusted code via compiler-agnostic binary
rewriting. In Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC’12),
Orlando, FL, December 2012.

[21] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical control
flow integrity & randomization for binary executables.
In Proceedings of the 34th IEEE Symposium on
Security and Privacy, San Francisco, CA, May 2013.


