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ABSTRACT
Large-scale attacks, such as those launched by worms and zombie
farms, pose a serious threat to our network-centric society. Exist-
ing approaches such as software patches are simply unable to cope
with the volume and speed with which new vulnerabilities are being
discovered. In this paper, we develop a new approach that can pro-
vide effective protection against a vast majority of these attacks that
exploit memory errors in C/C++ programs. Our approach, called
COVERS, uses a forensic analysis of a victim server’s memory to
correlate attacks to inputs received over the network, and automati-
cally develop a signature that characterizes inputs that carry attacks.
The signatures tend to capture characteristics of the underlying vul-
nerability (e.g., a message field being too long) rather than the char-
acteristics of an attack, which makes them effective against variants
of attacks. Our approach introduces low overheads (under 10%),
does not require access to source code of the protected server, and
has successfully generated signatures for the attacks studied in our
experiments, without producing false positives. Since the signa-
tures are generated in tens of milliseconds, they can potentially be
distributed quickly over the Internet to filter out (and thus stop) fast-
spreading worms. Another interesting aspect of our approach is that
it can defeat guessing attacks reported against address-space ran-
domization and instruction set randomization techniques. Finally,
it increases the capacity of servers to withstand repeated attacks by
a factor of 10 or more.
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1. Introduction
The past few years have witnessed an alarming increase in large-

scale attacks: automated attacks carried out by large numbers of
hosts on the Internet. These may be the work of worms, zombies,
or large numbers of hackers running attack scripts. Such attacks
have the following characteristics: they originate from many dif-
ferent hosts, target a non-negligible fraction of vulnerable hosts on
the Internet, and are repetitive. Buffer overflow attacks (or more
generally, attacks that exploit memory errors in C/C++ programs)
are the most popular choice in these attacks, as they provide sub-
stantial control over a victim host. For instance, virtually every
worm known to date has been based on this class of attacks.

The best protection available today against such large-scale at-
tacks is the deployment of software patches that correct the under-
lying software flaw targeted by the attack. The benefit of this ap-
proach is that it can filter out attacks without impacting legitimate
requests. Moreover, neither the performance nor the availability
of a patched application is degraded by attacks. Unfortunately,
patches are not available for previously unknown vulnerabilities
that are targeted by zero-day attacks. Even for known vulnerabili-
ties, there is often a long period of time between the identification
of a vulnerability and the availability of a patch; and a further delay
in installation of these patches due to the need for extensive testing
at each site where the software is deployed. Consequently, patches
aren’t adequate against large-scale, repetitive attacks.

A second line of defense against zero-day attacks is memory-
error exploitation detection techniques such as StackGuard [10],
address-space randomization [1, 4, 5], and complete memory-error
protection [13, 14, 20, 27, 41]. Although these techniques can de-
tect attacks before system resources (e.g., files) are compromised,
they cannot protect the victim process itself, whose integrity is
compromised by the time of detection. For this reason, the safest
approach for recovery is to terminate the victim process. With
repetitive attacks, such an approach will cause repeated server
restarts, effectively rendering its service unavailable during peri-
ods of attack. Even worse, [29, 35] have shown how such repeti-
tive attacks can defeat probabilistic protection techniques such as
address-space and instruction set randomization.

In contrast to the above approaches, we present a new approach
that can provide effective protection against large-scale, repetitive
attacks. Our approach, called COVERS (COntext-based,
VulnERability-oriented Signature), is based on automatic genera-
tion of attack signatures by observing ongoing attacks, and using
these signatures to filter out future occurrences of these attacks. By
doing so, our approach preserves not only the integrity of the ser-
vice, but also its availability. The filters can deployed inside the ad-
dress space of a protected server (by intercepting library calls that
read network input) or as an in-line network filter. Our signatures



tend to capture the underlying vulnerability, which means that they
would likely block other attacks exploiting the same vulnerability.
This makes the approach effective against polymorphic worms.

1.1 Overview of Approach and Key Contributions
Our approach relies on the following four steps to generate attack

signatures:
• Attack detection. We can use previously developed techniques

for detecting buffer overflow attacks, such as StackGuard [10],
address-space randomization (ASR) [1, 4, 5], and instruction-set
randomization (ISR) [3, 15].

• Correlation to input. The correlation step identifies the specific
network packet (or flow) involved in an attack, and the bytes
within this packet that were responsible. This enables the signa-
ture search to be focused on the relevant parts of input, enabling
higher-quality signature generation. Previous work [22] has sug-
gested the use of taint analysis to track the input data that led to
the attack, but their implementation incurs significant runtime
overheads, often slowing down programs by a factor of 10.
A key contribution of this paper is that of developing efficient
techniques for correlation. Our approach is based on the observa-
tion that all known memory error exploits involve corruption of
pointer values, and that this value must be included in the attack
input. Based on this observation, we develop a forensic analysis
of the victim process memory to identify the memory region sur-
rounding the corrupted pointer value, and match this region with
recent inputs. Since the correlation step is performed only when
an attack is detected, it does not impact the performance of the
server during normal operation.

• Identifying input context. This step is concerned with identify-
ing the logical input context within which an attack appears. For
instance, an attack may appear within a particular field of a spe-
cific type of message. Knowing this information, we can restrict
signature matching to this field, thereby avoiding some false pos-
itives that may otherwise arise. In addition, note that it is likely
that the same piece of code processes a particular message field.
An attacker that wishes to exploit a vulnerability in this code
needs to embed the attack in this message field, thereby making
it harder to evade detection. This contrasts with approaches that
use byte offsets to identify attack context, since these offsets can
be easily changed by modifying the length of some (benign) field
preceding the vulnerable field.
Our approach uses a simple specification of message formats
(consisting of a few lines for most services) to guide the input
context identification step. The relevant information for these
specifications is readily available from network protocol specifi-
cations such as the IETF RFCs.
Development of input-context-aware signatures is another im-
portant contribution of this paper. In our experiments, this step
was necessary for generating accurate signatures in five out of
seven attacks. Previous approaches have largely ignored this
step, compensating for this weakness either by requiring a large
number of attack instances, which delays signature generation;
or by including non-essential details in the attack signature, rais-
ing the odds of false negatives.

• Signature generation. This step exploits the characteristics of
the underlying vulnerability, such as excessively long message
fields or the presence of binary data within text-valued fields.

1.2 Benefits of Approach
We have experimentally evaluated the effectiveness and perfor-

mance of our approach, as described in Section 7. Our experiments

involved several popular server programs, and exercised different
types of buffer overflow attacks such as stack-smashing, heap over-
flows, and format-string attacks. These results demonstrate the fol-
lowing benefits of our approach.
• Effectiveness against attacks. Our approach generated effective

signatures to stop all the attacks used in our experiment.
• Fast generation of signatures. Our approach is typically able

to generate signatures with just a single sample, and the overall
time for signature generation is of the order of ten milliseconds.

• Low overheads under normal operation. Our approach intro-
duces low overheads of under 10% during normal operation.

• No false positives. For all the attacks evaluated, our approach
does not produce any false positives.

• Applicable to COTS software, without access to source. Our ap-
proach does not require any modifications to the protected server
software, or access to its source code.

These features of the approach make it possible to achieve the fol-
lowing objectives using our approach.
• Effective protection against denial-of-service effect of repet-

itive attacks. Servers protected by our technique were able to
withstand repetitive attacks at a rate that is at least 10 times
higher than that of unprotected servers.

• Protection from attacks on randomization. [29] has devel-
oped an attack that defeats the 16-bits of randomness in PaX [1]
by using an attack that successively tries out all possible 16-bit
values. Our approach can defend against this attack by filtering
out all but the first few attack attempts. In a similar manner, our
approach can also defend against guessing attacks on instruction
set randomization [35].

• Protection from polymorphic attacks. Our approach tends
to generate signatures that characterize underlying vulnerability,
e.g., excessive length of a message field, rather than specific de-
tails such as the instruction sequence contained within an attack.
As a result, these signatures can stop attack variants that exploit
the same vulnerability.

• Network-wide signature deployment to defeat fast-spreading
attacks. The speed of our signature generation makes it possi-
ble to distribute and deploy these signatures in the Internet to
stop fast-spreading worms. Moreover, the nature of our signa-
tures permit the receivers of signatures to verify them before de-
ployment — they can compare the signatures against their recent
input, and verify that the signature would not cause recently re-
ceived legitimate inputs to be discarded.

1.3 Organization of the Paper
The rest of the paper is organized as follows. We describe the

four steps in our approach in Sections 2–5. Implementation of
these steps in described in Section 6. We evaluate our approach
in Section 7. Related work is discussed in Section 8, followed by
concluding remarks in Section 9.

2. Attack Detection
For attack detection, we can make use of any of the existing tech-

niques for memory-error exploit protection, such as StackGuard
[10, 11, 7], address-space randomization (ASR) [1, 4, 5], instruc-
tion set randomization (ISR) [3, 15], and complete memory-error
protection [13, 14, 20, 27, 41]. Of these techniques, we use ASR
in this paper, since it provides broad coverage against memory er-
ror exploits, has low overheads, and unlike complete memory error
protection techniques, does not pose any backward compatibility
problems.
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Figure 1: Buffer overflow attack scenario.

All memory error exploits reported so far have been based on
pointer corruption. In particular, these exploits use a software vul-
nerability (such as out-of-bounds array access) to change a security-
critical pointer with an attacker-provided value. Code injection at-
tacks overwrite a function pointer value (e.g., return address) with
the address of an input buffer that holds attacker-provided code.
Existing-code attacks (sometimes called return-to-libc attacks) are
based on overwriting code pointers with the locations of functions
such as execve. Attacks that target security-critical data [6] are
usually based on overwriting data pointer values.

ASR defeats pointer corruption attacks by randomizing the loca-
tion of various data and code objects in the process address space.
Thus, the attacker can no longer guess the address of the input
buffer containing attacker-provided code, the address of any spe-
cific function in the process memory (such as execve), or any
vulnerable data items (e.g., file names). The only choice for the
attacker is to guess the locations of these objects. Since most pro-
grams use only a small fraction of the address space available to
them, the probability p of the attacker guessing a valid address
within the process memory is small. For instance, p = 0.024 for a
process using 100MB of memory on a 32-bit processor. This means
that a dereference of the pointer will, with a high probability, cause
a memory exception, which leads to a UNIX signal (segmentation
fault, bus error or illegal instruction). The receipt of this signal
initiates a forensic analysis described in the next section. Before
proceeding to describe this analysis, we make two observations:
• There is a non-negligible probability p that an attack does not

lead to a memory fault immediately, but crashes after executing
several (possibly random) instructions1. While a more complex
forensic analysis can cope with some cases of delayed detection,
in other cases, execution of random code can corrupt process
memory to the point of making such analysis impossible. Our
approach to the problem of delayed detection is to simply wait
for the next instance of the attack. Thus, if p is large, we may
need multiple attack instances to generate a signature — for in-
stance, if p = 0.5, we need an average of two attack instances
before a signature is generated. Since the value of p is much
smaller in practice (see above), signatures were generated with
just one attack instance in all our experiments.

• The ability to carry out forensic analysis is not closely tied to
ASR. Indeed, techniques that provide more prompt error detec-
tion, such as complete memory-error protection or ISR (for code-
injection attacks) will make forensic analysis simpler.

1The likelihood that the attack will actually succeed on the first
attempt is very small (of the order of 10−4 in the case of PaX). If
this risk is unacceptable, then one can rely on complete memory-
error protection techniques that can stop all memory-error exploits.

3. Input Correlation
The correlation step identifies the specific network packet (or

flow) involved in an attack, and the bytes within this packet that
were responsible. This enables the signature search to be focused
on the relevant parts of input, enabling higher-quality signature
generation. Our correlation approach uses a forensic analysis of
victim process memory at the point of attack detection.

Figure 1 shows the input processing cycle in a buffer overflow
attack. First, some malicious input is received by a victim pro-
cess. The manner in which this input is handled will depend on
the internal state of the process, as well as the content of the input.
If the attack is properly crafted, control-flow will eventually reach
a vulnerable fragment of the victim program. Here, some part of
the input gets copied into a buffer that is too small, and hence the
input overwrites a pointer value that is past the end of the buffer.
As discussed previously, the attack is detected when this corrupted
pointer is used, and causes a memory exception. Note that in Fig-
ure 1, the address that causes memory exception is M , and it can be
obtained by querying the OS. At this point, a simple approach for
correlation is to search for the occurrence of M within recent in-
puts. However, due to the small size (i.e., 32-bits) of M , there may
be occurrences of M within benign inputs. This likelihood is in-
creased when “offset errors” are present, i.e., the attacker misjudges
the distance between the beginning of the buffer and the vulnera-
ble pointer, and as a result, the intended pointer value may be P

rather than M . In this case, M may contain a benign, commonly
occurring value rather than a pointer value.

To minimize the likelihood of matching with benign inputs, our
approach searches for the entire buffer contents (“DEF · · ·P ” in
Figure 1) within recent inputs. To do this, we first need to locate
the address a2 at which M is stored – the value of M alone isn’t
sufficient. Location of a2 is described in Section 3.1. Once a2 is
obtained, our analyzer searches for the longest common substring
between recent inputs, and the region of memory surrounding a2.
In the example of Figure 1, this step will identify the highlighted
part of external input as constituting the attack.

The method described so far handles buffer overflows, which are
associated with most memory error exploits such as stack-smashing
and heap overflows. Although format-string attacks do not involve
a buffer overflow, they share the key characteristic used in the anal-
ysis described above: namely, the forged pointer (i.e., attacker spec-
ified pointer value such as M ) occurs in the middle of attacker-
provided data residing in a buffer. Consequently, they can be han-
dled by our analysis. This leaves certain forms of integer overflows,
where the forged pointer value does not occur contiguously with
any other attacker-provided data, as the only class among memory
error exploits that cannot be handled by our approach. This limita-
tion is further addressed in Section 3.2.

3.1 Identifying the Location of Vulnerable Pointer
Depending on the type of corrupted pointer, we consider 3 cases.

Return address corruption. In this case, a memory exception oc-
curs immediately after the return, i.e., when the processor attempts
to fetch the instruction at the return address. By the semantics of
the return instruction in x86, the stack pointer (SP) register will
contain the value a2 + 1 in this case. We confirm a return address
corruption attack by checking for the presence of M , which has the
same value as the instruction pointer (IP), at location SP − 1, and
then take SP − 1 as the value of a2. In the x86 architecture, a
return instruction can take an operand that specifies the number of
additional bytes to pop off the stack. To handle this case, we need
to search the region near SP for M , since we don’t know the exact
number of bytes that were supposed to be popped off.



PC1: mov 0x10(%ebp),%eax
PC2: mov 0xfffffa90(%ebp),%ecx
PC3: addl $0x4,0x10(%ebp)
PC4: mov (%eax),%eax
PC5: mov %ecx,(%eax)

Figure 2: Code involved in a format string attack

Function pointer corruption. In this case, a memory exception
occurs immediately after the call. By the semantics of the call in-
struction on x86, the location of the instruction following the call
instruction will be stored at address SP . Using this information,
we can decode the call instruction to determine its operand. Note
that a call involving a function pointer must be an indirect call,
which means that the address will be stored in some location, and
this location will be specified as an operand to the call instruction.
In the following paragraph we describe how to obtain a2 from the
operand to this instruction.

Data pointer corruption. In this case, a memory exception
arises in the instruction that takes the corrupted pointer value as
an operand. At this point, we can obtain both the instruction caus-
ing the fault (by querying the OS for the value of IP), as well as
the address of invalid memory dereference. Once the instruction is
determined, we proceed in the exact same manner as with function
pointers. In particular, the operand may be a memory location or
a register. In the first case, the location specified in the instruction
is the value of a2 we are likely looking for. In the second case, we
need to trace back further to determine the memory location from
which the register operand was loaded. A general solution to this
problem requires accurate disassembly and data-flow analysis of
binaries, which is a hard problem.

In order to ensure simplicity and practicality of our technique,
we developed a simpler implementation technique that relies on
the following observations about buffer overflows. First, stack-
smashing is the most common exploit, and it does not require this
sort of binary analysis at all. Second, most other attacks rely on
vulnerabilities in commonly used library functions, e.g., heap over-
flows rely on a section of code in heap management functions
(malloc family), while format-string attacks rely on a code sec-
tion within vfprintf. Therefore, we can statically construct a
table that identifies the instruction sequences associated with com-
monly exploited code sections, and specify in advance the source
of a2. For instance, consider Figure 2, which shows the vulnerable
code fragment within vfprintf on RedHat Linux 7.3. A memory
exception arises when the instruction at PC5 is executed. By ex-
amining instructions at PC1 and PC4, it can be seen that the value
of EAX register came from the contents of EBP + 10. However,
this location has been incremented by 4 by the instruction at PC3.
Thus, the value of a2 is given by [EBP +10]−4. Our table stores
the byte sequence corresponding to the instructions stored at PC1
through PC5, and associates it with the expression [EBP +10]−4
for computing a2.

Using the above table-based approach, we were able to identify
a2 in all the attacks used in our evaluation. So far, we have needed
to include only two entries in our table, one corresponding to for-
mat string attacks and another corresponding to heap overflows.
Although we discuss only one instance of each of these types of
attacks in our evaluation, we have actually tested our system with
other attacks (on lesser known servers) and found that the two table
entries worked in those cases as well.

3.2 Limitations and Their Impact
Our input correlation assumes that an exact copy of some part of

the attack input would be found around the corrupted pointer. As
discussed earlier, this assumption may be violated by some integer

overflow attacks, in which case our correlation step can only point
out the occurrence of M within recent inputs. Even worse, some
form of encoding/decoding (e.g., URL encoding) may be applied
to an input before it is copied to a vulnerable buffer. In this case,
we cannot even locate M within the input.

In the cases mentioned above, the correlation step may fail to
provide information to pinpoint the inputs (or locations within these
inputs) that led to attacks. Nevertheless, signature generation can
still succeed — we simply need to consider all recent inputs as sus-
picious, and proceed from there. Indeed, successful signatures can
be generated in spite of a failed correlation step for the examples
used in our evaluation. This is because of the large difference (in
terms of size as well as character distribution) between benign and
malicious inputs. If the differences weren’t as pronounced, or if
the attacker specifically crafts an attack that misdirects the signa-
ture generator as to the fields involved in the attack, then signature
generation may not succeed, or may produce overly specific signa-
tures.

4. Identifying Input Context
Most network protocols involve many different types of mes-

sages and message fields, each of which may have different charac-
teristics. However, attacks typically exploit a specific vulnerability
that affects only a single message type, and/or specific fields of a
message. As a result, a signature that is matched against all types
of messages (and its fields) can lead to false positives. To mini-
mize this likelihood, our approach uses a simple specification of
message formats to parse a message and break it up into its com-
ponents. This enables signature generation (and matching) to focus
on meaningful components of the message, rather than quantities
such as offsets within network packets. As we show later in this
section, very simple input specifications are sufficient for our pur-
poses, and the information needed to write these specifications is
readily available from network protocol specifications such as the
IETF RFCs.

4.1 Input Format Specification Language
Network servers may use text-based protocols or binary proto-

cols. Regular expressions are an obvious choice for specifying the
format of text-based protocols. Thus, our format specification lan-
guage extends regular expressions to support binary protocols. The
syntax of the language is based on the syntax of format strings in
C and the regular expression language used by the Lex lexical ana-
lyzer generator tool.

A format specification in our language describes input format
using a sequence of format definitions. These definitions have the
form name = format, where name denotes a name for a format
specification, and format denotes its value. The format argu-
ment may directly describe the format of a message field, or may
refer to other format specifiers using their name. A special format-
specifier name message is used to specify the format of the entire
message. Input to the server is expected to be a sequence of strings
that match message.

Below, we describe the syntax and semantics of format speci-
fiers. The semantics is given in terms of the set of strings that match
a given pattern. There are three types of basic format specifiers.
• binary specifier: %B matches any single byte, while %b matches

any single bit.
• text specifier: a regular expression can be used to specify text

formats, and its semantics is as usual.
• named specifier: %name matches the same set of strings as for-

mat specifier x, where name has been previously defined using
a definition of the form name = x.



The following two constructs enable the value matching a pattern
to be remembered and used subsequently.
• binding: The format specifier name = format matches the

same string as format, but has the additional effect of assign-
ing the string that matches format to the variable name. For
efficiency of matching, bindings are restricted so that they are
deterministic. This enables bindings to be handled without back-
tracking.

• conditional pattern: The format specifier <cond>format matches
the exact same strings as format, provided cond is true. Other-
wise, it doesn’t match any string. The condition component may
refer to variables that have previously been bound using the pre-
vious construct. They may also use simple arithmetic and string
operations.

The basic specifiers can be composed by the following operators.
• Concatenation: A string s1s2 matches a format specifier F1F2

iff s1 matches F1 and s2 matches F2.
• Repetition: A format specifier F∗ matches s if s = s1s2 · · · sn,

where n ≥ 0, and each si matches F . A tighter bound on the
value of n can be specified using bounded repetition: F{l, m}
has the same meaning as F∗, provided l ≤ n ≤ m. F{m, m}
is abbreviated as F{m}. F+ is a short form of F{1,∞}.

• Choice: A string s matches a format specifier F1| · · · |Fn iff s

matches any of F1 through Fn.

4.2 Illustrative Examples
In this section, we illustrate the format specification language

with a few examples, starting with the FTP protocol.

WORD = [ˆ \t\n]*
LINE = [ˆ\n]*\n
message = ([ \t]*)(cmd=%WORD)(params=%LINE)

This specification states that each message is on a line by itself.
The first word in the line, which matches the regular expression
named WORD, specifies the name of an FTP command. The rest of
the line describes the parameters to this command. The above spec-
ification does not attempt to capture the format of these parameters
in detail, but simply states that, for the purposes of signature gen-
eration, every thing until the end of line should be considered as
one field. This ability to leave out detailed specifications (for some
parts of the protocol) is the reason for the simplicity of our format
specifications.

In the context of generating signatures, bindings have an addi-
tional effect: only those parts of an input that are matched and
bound to variables are used in signature generation. This provides a
way for programmers to exert some control over the message fields
that are used in signature generation.

We now illustrate the specification of a more complex protocol,
namely, SMTP:
CMD = [ˆ \t\n]*
WORD = [ˆ \t\n]+
LINE = [ˆ\n]*\n
HEADER = ([ \t]*)(hdrtype=%WORD)(%LINE)
BODYLINE = (\n)|(\.[ˆ\n]+\n)|([ˆ\.][ˆ\n]*\n)
EMAILBODY = (%BODYLINE*)(\.\n)
EMAILMSG = (%HEADER+)(%EMAILBODY)
EXTRA = <type == "DATA">%EMAILMSG
message = ([ \t]*)(cmd=%CMD)(%LINE)(%EXTRA|ε)

At the top level are SMTP protocol messages such as HELO. The
actual email message appears immediately following the protocol
command DATA. Following this line, there are a list of email head-
ers, followed by an email body. The boundary between the header
and message body is given by a blank line. The end of email mes-
sage body is identified by a line consisting of just one “.” character.

In spite of the fact that SMTP is a complex protocol, our input
specification is only several lines long.

Next, we illustrate the language for the SMB file-sharing proto-
col that uses binary data.
message = (%b{15})(len=%b{17})(%B{4})

(type=%B)(%B{len-5})

In SMB specification, the first four bytes correspond to the ses-
sion header, in which the last 17 bits specify the length of the mes-
sage. Following the header is the message body, of which the fifth
byte specifies the message type. This specification ignores the de-
tails of the first 4 bytes of message (captured by the format string
%B{4}), and then stores the fifth byte in a variable named type.
Finally, the remaining sequence of bytes must have a length of five
bytes less than the length specified in the session header.

5. Signature Generation
After the three preceding steps have identified the potentially

malicious field and malicious data within it, our signature gener-
ation algorithm generates a signature by comparing this malicious
data with data appearing in the same field in benign messages. The
signature generation algorithm needs to satisfy the following re-
quirements:
• Virtually zero false positive rate. It is critical that automatically

generated filter doesn’t discard legitimate inputs.
• Protection from variations of previously encountered attacks. Any

sophisticated attack, including those launched by polymorphic
worms, is characterized by the fact that the exact details of the
attack vary from one attack instance to the next.

• High performance. In order to meet our goal of sub-second de-
ployment of filtering rules, the filter generation must be very fast.

General-purpose classifiers such as RIPPER [8] provide powerful
rule generation capabilities, but do not satisfy all of the above re-
quirements. Therefore, we have developed a simple, light-weight
rule generation algorithm that exploits unique features of buffer
overflows to satisfy the above requirements. Our algorithm makes
use of all available benign input samples, which can include all of
the inputs ever seen by a server. It ensures that none of these in-
puts will be filtered out, thereby minimizing the likelihood of false
positives. In order to provide high performance, it operates in an
incremental fashion: it maintains certain summary statistics about
all benign inputs, which can be quickly compared with those of
attack inputs when they are encountered.

Our algorithm uses two basic characteristics of inputs: (a) length
of input fields, and (b) distribution of characters in a field. A gen-
erated signature may use (a), (b), or both. Buffer overflows are
usually characterized by excessively long input fields, and more-
over, contain binary data such as addresses and executable code
that significantly alters the statistical characteristics of input. By
using rules based on these characteristics, we increase the likeli-
hood that the signature captures properties of the underlying vul-
nerability, over which the attacker has no control, as opposed to the
specifics of the attack string that he/she can control.

We illustrate signature generation with a few examples. The sig-
natures are internally represented in our system using a binary for-
mat. We present them using a textual representation for readability.
The first example is a size based signature, which is generated for
the OpenSSL heap overflow vulnerability (discussed in Section 7).

{type = 2, data.size > 420}

Here, type and data refer to variable names defined in the input
format specification for OpenSSL. This signature says that the sys-
tem needs to drop an input if one of its field’s type is 2, and the
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field’s size is greater than 420. The next example is uses character
distribution based signature for FTP.

{cmd = "SITE", params.size > 452 && non-ASCII(params)}

This signature specifies that an attack has size greater than 452 and
contains non-ASCII characters.

6. Implementation
We have prototyped COVERS on Red Hat Linux 7.3. The ar-

chitecture of our prototype system is shown in Figure 3. The com-
ponents are divided into two groups: internal components and ex-
ternal components. Shown in the dashed box, internal components
hook into the protected program by means of library interposition.
They implement the functionalities of attack detection, attack input
correlation, and input context identification. The external compo-
nent runs in a separate process, which implements the functionality
of signature generation.

We chose library interposition, rather than system call interpo-
sition, to implement the internal components. This is because the
former has less overhead and can intercept operations at higher lay-
ers, e.g., scanf function, as opposed to read. The main weakness
of library interception is that it can be bypassed by a successful
attack. However, in our case, we are interested in examining in-
puts before an attack compromises the protected application, and
hence this weakness does not pose a problem for us. Moreover,
ASR stops the attack before it can cause any damage, and hence
bypassing itself is a non-issue.

Library interposition is implemented by providing wrapper func-
tions for the library functions we are interested in, and using the
LD PRELOAD mechanism to redirect calls to these wrappers.

6.1 Input Filter and Logger
The input filter intercepts all inputs consumed by the protected

application. Inputs from different sessions are kept separate, while
inputs corresponding to a single session are aggregated together
into a single string2. This string is broken into fields, based on the
input specifications. The result of this matching is a series of bind-
ings to variables used in signatures. With these bindings in place,
the active signatures are evaluated. The input filter drops any in-
put that matches a signature. For TCP-based services, the associ-
ated connection is severed, and an error-code signifying a broken
2Session aggregation is simplified in our approach since we rely on
library interposition. Specifically, a series of input actions involv-
ing a single file descriptor are assumed to belong to a session until
the descriptor is closed.

connection is returned as the return code for the most recently inter-
cepted input call. As network servers expect and handle these types
of network errors, they invoke appropriate error recovery code on
such an error return, and bring the server back to a normal state
without the need for a restart.

Unmatched inputs are forwarded to the protected program, as
well as logged by the input logger to maintain a history of inputs
to the program. These logs are buffered in memory3 . Those inputs
that do not trigger the detector are labeled as benign inputs. Period-
ically, the main-memory buffer is examined, and the key character-
istics of each benign input (such as the length of each recognized
field, its character distribution, etc.) are written to the disk for sub-
sequent use in signature generation.

The most complex part of the input filter is that of parsing them
using format specifications described in Section 4. This parsing
code is generated by first translating our format specifications into
Lex specifications, and then using Flex to compile them down to
C-code. The details of this translation aren’t very important for the
purposes of this paper, and hence to conserve space, they are not
provided here. Our compiler relies on the capability of Lex specifi-
cations to describe regular-expression based as well as FSA based
lexical specifications. (The concept of start states provides support
for FSA-based lexical specifications in Lex.) The regular expres-
sion capability is useful for matching text-based inputs, while an
FSA based specification is useful for handling binary data.

The parser needs operate in an incremental fashion, parsing the
input as it is read, and making the results available to the signature
generator and matcher. However, the program generated by Flex
expects to read all its input all at once, and provides no way to
“suspend” itself while awaiting more input. In order to make this
parser incremental, we take the following steps. First, we use a
separate stack to run the parsing program. Next, when the parser
attempts to read more input when there is no more available, it
is effectively suspended by switching back to the original stack,
and continuing. Essentially, the parsing code and the rest of the
application (including all the rest of our defense code) run as co-
routines.

6.2 Detector and Memory Analyzer
The detector monitors the execution of the protected program,

and activates memory analyzer to correlate a crash to its corre-
sponding input event when an attack is observed. Both components
are implemented as signal handlers.

In order to detect an attack and analyze the process memory,
we replace the signal handler for SIGBUS (bus error), SIGSEGV
(segmentation violation) and SIGILL (illegal instruction) signals
with our own. This is done when our interposing library initializes.
When the protected server attempts to install a new signal handler
or change it, our wrapper functions intercept these calls, and ensure
that our library will continue to be the one to get these signals first.

Our signal handler uses a separate stack, so that it can function
even if the stack pointer contents are invalid at the time of signal de-
livery. Moreover, this approach helps preserve the process memory
image at the point of memory exception, thereby permitting a more
accurate forensic analysis. The Linux signal mechanism provides
a way to access the program’s context when the signal occurs, such
as the value of processor registers, which is used in our analysis.

3In-memory buffering may seem to be vulnerable to corruption by
an attack, but since we rely on ASR to detect attacks before any
damaging code can be executed, this is not a problem.



6.3 Signature Generator
The signature generator uses the input identified by the memory

analyzer to generate a signature as described in Section 5, which
is then deployed in the input filter to make the system immune to
future attacks.

7. Evaluation
In this section, we present an experimental evaluation of our ap-

proach. Our experiments were conducted on Red Hat Linux 7.3
operating system running over VMWare Workstation 4.5. Runtime
measurements were conducted without using VMWare on a dual
Intel Xeon 1.70GHz CPUs and 2GB main memory. All servers
programs used in our experiments were protected using address-
space randomization.

7.1 Experience
In this section we describe our experience with three types of

attacks, stack overflow, heap overflow, and format string. We illus-
trate how our system works using examples from each category.

OpenSSL heap overflow attack. OpenSSL 0.9.6d and older ver-
sions have a remotely exploitable vulnerability in handling client
master keys. This was the vulnerability exploited by the Linux
Slapper worm. Our evaluation was performed on an Apache web
server with the vulnerable SSL module. Normal requests were gen-
erated using a Mozilla web browser, which requests web pages us-
ing a version 2 SSL protocol. The attack was then launched, which
caused the vulnerable server to crash with a memory error. Our
system detected the SEGV signal. Using our table-based analysis,
our system identified the address in the vulnerable buffer. Our ap-
proach then searched recent inputs, and found that the second most
recent input contained the longest matching substring (of length
418 bytes) with the vulnerable buffer. Using input format specifi-
cation, the attack was linked to the “Client Master Key” message
(represented using a integer), whose length was found to be 421
bytes. The signature generation module then retrieved the statistics
on all “Client Master Key” messages seen during normal execution,
and found that the maximum message length was 204 bytes. There-
fore, a signature was generated to filter out all “Client Master Key”
messages larger than 420 bytes. After the signature was deployed,
the attack did not affect the server, while normal server operation
was unaffected.

Samba stack overflow attack. Samba server versions 2.2.8 and
earlier have a vulnerability in processing a “transaction 2” open re-
quest. The server fails to perform bounds-checking on a buffer that
holds the name of the file to be opened. A long name in the request
will overwrite the return addresses on the stack. In our evaluation,
the server crashed when the overflowed return address was used.
Our system successfully identified the vulnerable buffer near the
stack top. The correlation step matched the vulnerable buffer with
a recent input, with the length of the match being 900 bytes. Using
input format specification, this message was identified as a “trans-
action 2” open. This request had not been observed under normal
operation, i.e., maximum benign size was 0, while the attack size
was 2080. A signature based on this length was successfully gen-
erated.

WU-ftpd format string attack. There is a format string vulnera-
bility in wu-ftpd server version 2.6.0 and earlier. The vulnerability
is in “SITE EXEC” command, in which user-provided data can be
used as a format string to printf-family functions. When the ex-
ploit program specified an address to be changed via the format
string, it resulted in a memory error. As in the above two cases, our

system successfully identified the vulnerable buffer, and matched
the attack-bearing input message. The input message is 453 bytes,
while normal message is around 50 bytes. Moreover, normal com-
mands are all ASCII characters, while the attack contains binary
characters. Based on these facts, a signature that uses both the
length and character distribution information was generated.

Importance of input specification. We can see the importance
of input specification through the above examples. For example, in
the OpenSSL heap overflow vulnerability, the server accepted other
types of messages larger than the malicious “Client Master Key”
message. If the input format specification was not used, we could
not generate a length-based signature. Moreover, since OpenSSL
is a binary protocol, it is unlikely that a robust signature based on
character distributions can be derived,

For Samba, once again the protocol uses a binary format. In
addition, some of the messages, especially those involving file data
transfer, can be much larger than the transaction2 open request.
Thus, it is unlikely that a successful signature can be generated
without input format specification.

For WU-ftpd, signature generation would likely succeed without
input format specification, as the attack-bearing input contains bi-
nary data, instead of pure ASCII data in normal ftp sessions. How-
ever, if the attacker’s goal is to cause denial-of-service, he/she can
use pure ASCII as the attack payload to evade detection.

7.2 Performance

Effectiveness in signature generation. In our evaluation, we
are interested in the result of our approach on “real-world” attacks.
The attacks used in our evaluation were selected from the website
securityfocus.com. In selecting attacks, our first criterion is the
vulnerable program’s popularity, as popular programs’ vulnerabil-
ity have more real-world impact. Also, it is less likely for these
programs to contain obvious bugs, and thus the attacks on them
tend to be more sophisticated. Another criterion is the availabil-
ity of exploit code. Since developing exploit code is a non-trivial
effort, we limited our selection to the attacks that have working ex-
ploit on Linux. The attacks evaluated are shown in Table 1, and our
approach successfully generated signatures for all the attacks.

Speed of signature generation. In all the evaluated examples,
our approach generated signatures within 10 milliseconds after the
attack is detected.

Performance overhead. We measured the performance overhead
of our system on an Apache web server, in which the server’s CPU
time is used as the metric. (The server throughput and latency met-
rics are likely to show much lower overheads because the work-
loads tend to be limited by the 100Mbps network bandwidth.) The
workload was produced by a script that downloads a set of files with
size ranging from 500 bytes to 5M bytes. The script was repeated
for 100 times in each test.

The regular Apache server took a CPU time of 2.52 seconds to
complete the task. The Apache server protected by our approach
took 2.70 seconds to finish the task, a moderate 7.1% overhead. In
this test, no filters were deployed. To test the performance impact
caused by filtering inputs, we loaded 100 character distribution fil-
ters into our system, and the CPU time increased to 2.74, a total
8.7% overhead. As the character distribution filter is more expen-
sive than length-based filters, in common case, the performance
overhead caused by deploying filters is rather small.

Protecting service availability. We also measured the availability
of three key servers under repeated attack. The servers are Apache,
BIND, and NTPD. Our results shows that COVERS enables the



Program Name Attack Type Bugtraq ID Vulnerable Message Type Ratio of Attack/Benign Size

ntpd Stack Overflow #2540 Read variables 234%
samba Stack Overflow #7294 Trans2open 4333%

passlogd Stack Overflow #7261 Log Type 18000%
epic4 Stack Overflow #8999 CTCP nickname 7780%

gtkftpd Stack Overflow #8486 MKDIR command 1130%
wu-ftpd Format String #1387 SITE command 860%

apache mod ssl Heap Overflow #5363 Client master key 207%

Table 1: Attacks used in effectiveness evaluation and the ratio of attack input size to benign input size.

protected servers to tolerate at least 10 times attacks per second
at a given server availability. For example, 50 attacks/second can
reduce an unprotected Apache server’s availability to 70%, but to
achieve the same effect on a server protected by our approach, the
attack rate need to be 500 attacks/second. On NTPD and BIND,
the availability gains were even more significant.

7.3 Quality of Signatures

False positives. In order to evaluate the quality of signatures,
we manually verified the signatures by analyzing the source code
of the vulnerable programs. For some of the programs, such as
passlogd, ntpd, and gtkftpd, the generated signature won’t have
false positives: Any input matching the signature will definitely
cause memory error in the program. For the rest of the programs,
as we can see from the last column of Table 1, the difference be-
tween the size of attack input and that of benign input is very large.
Therefore, the probability of a false positive is low.

Polymorphic attacks. Polymorphic attacks are based on chang-
ing the attack payload frequently. But they cannot change the fact
that the vulnerable buffer is overflowed, and the fact that binary
data such as return addresses must be included in the attack input.
Because the signatures generated by our approach tends to capture
the characteristics of the underlying vulnerability, and not the char-
acteristics of a specific instance of an attack, polymorphic attacks
will likely be defeated by our signatures.

7.4 Protection from Guessing Attacks on Random-
ization

Randomization-based approaches such as ASR and ISR are vul-
nerable to brute-force and guessing attacks. [29] describes an attack
on PaX address-space randomization that can successfully guess
the value used in randomization in about 104 attempts. [35] de-
scribes an attack on instruction set randomization that succeeds,
once again, using thousands of attack attempts.

With our approach protecting a vulnerable server, an effective
signature will be generated within the first few unsuccessful attack
attempts. After this point, all attacks will be dropped even before
they reach the server, thereby ensuring that these attacks don’t com-
promise it.

[29] suggests that perhaps the ASR used in PaX is “unfixable.”
They claim that (a) there is no effective response that an automated
system can take when faced with such attacks, and (b) shutting
down servers is unacceptably expensive. The results presented in
this paper counters their claim, and provides an effective protection
against attacks that require multiple attempts before succeeding.

Of course, it is possible that an attack against randomization may
succeed on the first attempt, in which case, no attack is ever de-
tected and hence no signatures can be generated. However, the
probability of succeeding on the first attempt is very small with the
technique of [29]. The technique of [35] requires a large random
mask (several 32-bit words) to be broken step-by-step, one byte at a

time. Thus, the probability of mounting a successful attack in one
attempt is negligibly small. Moreover, when considering a large
population of hosts, it is clear that even if some machines are suc-
cessfully attacked, most other attempts will fail, and these systems
will then become immune to the attack. Moreover, the immunized
systems can distribute the signature to other machines, thereby pro-
viding even better protection for the population.

8. Related Work
Detection of Memory Errors and/or Exploits. Several tech-
niques have been developed to detect attacks that exploit memory
errors in C/C++ programs. Initial efforts were targeted at stack-
smashing attacks [7, 10, 11]. Broader protection is provided by
approaches such as address-space randomization [1, 4, 5], which,
in its general form [5], can detect exploitation of all memory errors;
and instruction set randomization [3, 15] (and OS features such as
non-executable data segments) that can detect all code injection at-
tacks. There have also been more comprehensive techniques for
detecting all memory errors, regardless of whether they are being
used in an attack [13, 14, 20, 27, 41]. When these approaches
detect an attack, the victim process is generally terminated. Re-
peated attacks (such as those due to worms) will require repeated
and expensive application restarts, effectively rendering the service
unavailable.

Approaches for Recovering from Memory Errors. Automatic
patch generation (APG) [30] proposed an interesting approach that
uses source-code instrumentation to diagnose a memory error, and
automatically generate a patch to correct it. STEM [31] improved
on APG by eliminating the need for source code access. It uses
binary emulation instead, which can be very expensive. By limit-
ing emulation to a small section of code preceding the vulnerability,
they have shown that the overall performance overheads can be kept
surprisingly low (about 30%). STEM relies on code instrumenta-
tion to detect faults before there is substantial corruption of mem-
ory, so that recovery can be attempted. At this point, STEM uses
a memory update log to restore the memory changes performed
within the faulting function, and forces an error return from this
function. A similar error-recovery strategy was used in APG as
well. The difficulty with this strategy is that the application may
be unprepared to handle the error-code, and as a result, may not
recover. In their experiments, this strategy causes an application
crash in about 10% of cases. Even when the application contin-
ues to run, it isn’t clear that it will always work correctly. In con-
trast, our approach forces error returns for input functions. Since
server applications handle such errors, and implement application-
specific logic to recover from them, recovery is more reliable in our
approach.

Failure-oblivious computing [26] uses CRED [27] to instrument
program source-code to detect all memory errors at runtime. When
it detects an out-of-bounds write, it stores the data in a separate
section of memory, and returns this data when a corresponding read



operation is issued. This approach makes attacks harmless, and
allows for recovery as well. The main drawback of this approach is
that it often slows down programs by a factor of 2 or more.

DIRA [33] uses a source-code transformation for runtime log-
ging of memory updates. When an attack is detected, DIRA uses
this log to revert program state to a point before the last network in-
put, and restarts execution from this point. It achieves good runtime
performance by logging only global variable updates, and by sup-
porting recovery at the granularity of function calls. This choice (to
limit logging) leads to total restarts for some applications, thereby
losing the benefits of light-weight recovery.

ARBOR [18] is similar to the approach presented in this paper
in terms of its reliance on an application’s built-in error handling
capabilities for recovery. It differs from the approach described in
this paper in its use of program behavior models [28] (rather than
input format specifications) to identify input context. For some
programs, the context information provided by the behavior model
isn’t sufficient to generate accurate signatures. Other differences
include the absence of correlation step in ARBOR, and its inability
to generate network level attack signatures.

Network-level Detection of Buffer Overflows. Buttercup [23]
and [12] detect buffer-overflow attacks in network packets by rec-
ognizing jump addresses within network packets. Buttercup re-
quires these addresses to be externally specified, while [12] detects
them automatically, by leveraging the nature of stack-smashing at-
tacks and the memory layout used in Linux. [37] suggested a more
robust approach for detecting buffer overflow attacks using abstract
execution of the attack payload. PayL [39] develops a new tech-
nique for anomaly detection on packet payloads that can detect
a wider range of attacks. However, the technique has a higher
false positive rate than the above techniques. Shield [38] uses
vulnerability-specific (but exploit-generic) signatures to filter out
attacks, but these signatures need to be specified manually.

Network Signature Generation. Earlybird[32] and Autograph[16],
two of the earliest approaches for worm detection, relied on charac-
teristics of worms to classify network packets as benign or attack-
bearing. Honeycomb [17] avoids the classification step by using a
honeynet, which only receives attack traffic.

From the packets classified as worm-related, these techniques
compute a signature that consists of a single contiguous byte se-
quence that repeats across them. Unfortunately, polymorphic worms
can modify themselves as they propagate from one host to another,
thereby confusing signature generation. To mitigate this problem,
Polygraph [21] can generate multiple (shorter) byte-sequences as
signatures. They argue that there must be some invariants even
in network flows produced by polymorphic worms, and their tech-
nique is tuned to identify these invariants. PADS [36] develops
a technique called position-aware distribution signatures to detect
certain kinds of polymorphic attacks.

Compared with our approach, all of the above approaches op-
erate with rather coarse information about location and context of
attacks within network flows. They don’t have the benefit of ei-
ther our correlation step (which identifies the bytes within network
flows that are related to attacks) or the input context identification
step (which identifies the location of these attack bytes within the
structure of an input message). As a result, there is no way for
these techniques to distinguish between relevant parts of attack-
bearing flows from irrelevant parts. To compensate for this, they
need sufficient number of attack samples such that only the “rele-
vant” parts remain invariant across these samples. In contrast, using
correlation and input context identification, our approach is able to
generate signatures from single attack instances. Moreover, these

signatures only capture message types and/or fields relevant to the
attack, thereby reducing false negatives and false positives.

Nemean [42] improves on the above approaches by incorporat-
ing protocol semantics into the signature generation algorithm. By
doing so, they are able to handle a broader class of attacks than pre-
vious signature generation approaches that were primarily focused
on worms. Like other network-based approaches, Nemean does not
have the benefit of a correlation step to pinpoint attack-containing
bytes, but its knowledge of service semantics provides capabilities
similar to our input context identification. However, our approach
requires only simplified message format specifications, whereas
their approach seems to require more detailed knowledge of ser-
vice semantics that needs to be incorporated into their implemen-
tation. Another significant difference is that our technique does
not require expert knowledge about which message fields are more
likely to contain attacks.

Hybrid Approaches for Signature Generation. The HACQIT
project [25] uses software diversity for attack detection. A rule-
based algorithm is then used to learn characteristics of suspect in-
puts. The approach generates an effective signature for Code Red.

TaintCheck [22] and Vigilante [9] track the flow of information
from network inputs to data used in attacks, e.g., a jump address
used in a code-injection attack. Vigilante also develops the no-
tion of self-certifying alerts (SCAs) that can be shared over the
network without requiring recipients to trust each other. The sig-
natures generated by the two approaches are somewhat simplistic
— Taintcheck uses the 3 leading bytes of a jump address as a sig-
nature, whereas Vigilante relies on absolute offsets of the jump ad-
dress from the beginning of input. In our terminology, these ap-
proaches don’t employ context identification step, but do provide
a more robust implementation of correlation. For instance, accu-
rate correlation can be achieved even when input is transformed
(e.g., using URL encoding) before overwriting a pointer. In our
approach, we have traded this level of accuracy in favor of signif-
icantly better performance — zero overheads under normal opera-
tion, as compared to 10x slowdown in the case of Taintcheck.

FLIPS [19] uses PayL [39] to detect anomalous inputs. If the
anomaly is confirmed by an accurate attack detector (which, in
their implementation, was based on instruction set randomization),
a content-based signature (using longest-common substring) is gen-
erated after several attack instances. In our terminology, their ap-
proach consists of a detection and a signature generation step, but
doesn’t use the correlation and input context identification steps.

Independent of our work, Xu et al. [40] developed an approach
for signature generation that uses a post-crash forensic analysis of
address-space randomized programs, similar to our technique. In
addition to analyzing program memory, they use attack replay tech-
niques to re-execute the vulnerable sections of code and pinpoint
the source of the vulnerability. However, since their approach lacks
the correlation and input context identification steps, their signa-
tures cannot get to the root cause of a vulnerability, but rather rely
on jump addresses used in an attack. Such an approach can suffer
from false positives, especially with protocols that use binary data.

9. Conclusion
In this paper we presented a new approach, called COVERS, for

protecting servers from repetitive buffer overflow attacks, such as
those due to worms and zombies. Our approach combines off-the-
shelf attack detection techniques with a forensic analysis of the vic-
tim server memory to correlate attacks to inputs received from the
network, and automatically generates signatures to filter out future
attack instances. This improves the ability of victim applications to
withstand attacks by one to two orders of magnitude.



As compared to previous techniques, COVERS introduces mini-
mal overheads of under 10% during normal operation. In our eval-
uation, we showed that COVERS signatures capture the charac-
teristics of underlying vulnerabilities, thereby providing protection
against attack variants that exploit the same vulnerability. In con-
trast with previous approaches, which required many attack sam-
ples to produce signatures that are sufficiently general to stop poly-
morphic attacks, our approach is able to generate signatures from a
just a single attack instance. This is because of the use of a 4-step
approach that allows COVERS to localize the source of attacks to a
small part of an input message. We believe that other signature gen-
eration techniques, which often employ more powerful algorithms
at the signature generation step, can derive significant benefit by
incorporating our correlation and input context identification steps.

The signatures generated by COVERS can be distributed and de-
ployed at other sites over the Internet. This deployment can take the
form of an inline filter at the network layer. As a proof of this con-
cept, we recently implemented a Snort [34] plug-in that filters out
network flows that match the signatures generated by COVERS.
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