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Condition Factorization: A Technique for Building
Fast and Compact Packet Matching Automata

Alok Tongaonkar and R. Sekar

Abstract—Rule-based matching on network packet headers is
a central problem in firewalls, and network intrusion, mon-
itoring and access-control systems. To enhance performance,
rules are typically compiled into a matching automaton that
can quickly identify the subset of rules that are applicable to
a given network packet. While deterministic automata provide
the best performance, previous research has shown that such
automata can be exponential in the size and/or number of rules.
Nondeterministic automata can avoid size explosion, but their
matching time can increase quickly with the number of rules. In
contrast, we present a new technique that constructs polynomial
size automata. Moreover, we show that the matching time of our
automata is insensitive to the number of rules. The key idea in
our approach is that of decomposing and reordering the tests on
packet header fields so that the result of performing a test can be
utilized on behalf of many rules. Our experiments demonstrate
major reductions in space requirements over previous techniques,
as well as significant improvements in matching speed. Our
technique can uniformly handle prioritized and unprioritized
rules, and support applications that require single-match as well
as multi-match.

Index Terms—Packet Classification, Intrusion Detection Sys-
tems, Firewalls, Network Monitoring.

I. INTRODUCTION

Firewalls, network monitoring and intrusion detection sys-
tems (NIDS) are ubiquitous today. These systems process
network packets according to a set of rules:
• Firewalls and access control systems permit or block net-

work packets based on the conditions specified in firewall
or access-control rules. These systems typically look for
the first matching rule in a linearly ordered rule set.

• Network intrusion detection systems such as Snort [26]
define suspicious activity in terms of conditions over
network packet contents. To ensure that all attacks are
detected, NIDS need to identify all matching rules.

• Network monitoring applications monitor or record a sub-
set of network packets as specified by a set of rules. These
systems are concerned with packet filtering, i.e., detecting
the presence of a match, without necessarily identifying
the specific rule that matched.

Many of these applications use rules involving packet header
fields, while others (e.g., NIDS) rely on a combination of
header field matching and deep packet inspection that uses
string and regular-expression matching on packet payload.
The focus of this paper is on efficient packet field matching,
a problem that has often been called packet classification
in the literature. While we do not address string or regular
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expression matching directly, we show that our approach can
be used to narrow down the size of rule sets involved in
payload matching, and that this factor can improve the overall
performance of systems such as Snort.

Firewalls, network monitoring systems and NIDS face the
dual challenges of massive increases in network traffic vol-
umes, and rapid increases in rule set sizes. As a result,
these systems need to process many more rules in a much
shorter time per network packet. This paper therefore develops
techniques for improving the performance of packet matching:
given a network packet p and a set of signatures, which capture
a set of conditions on packet fields, identify the subset of
signatures that can match p. Our focus in this paper is on
software implementations that can run on a general-purpose
CPU, a configuration that is common for NIDS such as Snort,
as well as many firewalls and network monitoring and logging
systems that run on general-purpose hardware.

A naive technique for packet matching is that of sequentially
matching each signature against every incoming packet. The
performance of such a technique degrades linearly with the
number of signatures. To speed up the process, a natural
approach is to build a search-tree-like data structure that can be
used to quickly narrow down the set of signatures applicable to
a packet. The packet can then be matched sequentially against
this subset, and this second phase can include more complex
operations such as regular expression matching that were not
included in the search tree. The popular NIDS Snort builds
such a data structure based on a handful of predefined header
fields that occur in virtually all rules, such as the protocol
(e.g., IP or ICMP) and the source and destination ports.

Limiting to a small predefined attribute set simplifies the
search-tree and ensures its compactness. But the drawback
is that the number of signatures that remain applicable at a
leaf node can be large, thereby slowing down the sequential
match phase. To overcome this problem, it is necessary to
develop search tree construction algorithms that leverage as
many packet fields as possible, instead of limiting to a small
number of predefined attributes. However, previous research
[31, 32] has shown that the size of such search tree structures
can increase exponentially with the number of signatures.

Another challenge is that different applications require dif-
ferent flavors of packet matching. Firewalls and NIDS require
the identification of the matching rule, while packet filtering
does not. Moreover, applications such as NIDS don’t rely on
rule priorities, while firewalls do. Finally, some applications
just need the first match, while others (e.g., intrusion detection)
require all matches. We therefore develop a new approach
that addresses all these flavors of matching within a uniform
framework. Our approach improves matching speed using
a novel technique called condition factorization that breaks
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down tests involving packet fields in such a manner as to
expose commonalities across different types of tests such
as equality tests, inequality tests, tests involving bit-masking
operations, and so on.

Overview of Approach and Contributions

• In Section III, we formalize prioritized packet matching,
and show how it can capture the flavors of matching re-
quired in firewalls, NIDS, and packet filtering applications.

• In Section IV, we develop the concept of condition factor-
ization, the foundation for the optimizations developed in
this paper. Condition factorization is based on the notion
of a residual of a condition with respect to another. Intu-
itively, if we think of logical conjunction as analogous to
the product operation on integers, then residuals are analo-
gous to the division operation. Just as division provides the
basis for finding common factors among integers, residuals
provide the basis for “factorizing” complex conditions
originating from different rules so as to “share” the testing
of their common parts.

• In Section V we present our automaton construction algo-
rithm. Condition factorization, the core operation behind
this algorithm, forms the basis of two key optimizations:
– It can reason about the relationships between typical

tests such as equalities, inequalities and bit-masking
operations, and leverage them to avoid semantically
redundant tests. This is more powerful than the (pas-
sive) common subexpression elimination techniques
used in previous approaches such as BPF+[5]. Our
technique proactively creates opportunities for sharing
computation, as shown in Section IX-A.

– By working with residuals of rules, our automaton con-
struction algorithm can recognize equivalence between
automata states even before constructing the descen-
dant states. Such direct construction reduces space and
time requirements for automaton construction by as
much as an exponential factor.

• In Section VI and VII, we present several additional
techniques for building space- and time-efficient automata:
– In Section VI-A, we develop the notion of a discrimi-

nating test. If such tests are selected at every state of
the automaton, its size would be polynomial in the size
of input rules. Unfortunately, discriminating tests may
not always exist, which can lead to an explosion in
automaton size. We therefore present a new technique
in Section VI-B that ensures polynomial space bounds
by trading off some determinism.

– In Section VI-C, we develop the notion of benign
nondeterminism, which achieves substantial space re-
duction without degrading matching time.

– In Section VII, we develop the concept of utility that
measures a test’s contribution in determining a match.
By picking tests with high utility values at each state,
we can reduce the matching time of the automaton.

• In Sections VIII and IX, we describe our implementa-
tion and experimental evaluation. Our algorithms achieve
major reduction in space requirements for packet header

matching, while also improving matching time. Moreover,
the match time remains virtually constant, regardless of
the number of rules. In our experiments with Snort, this
improvement led to a 30% reduction in overall matching
time that includes both header and payload matching.

II. RELATED WORK

Early Works on Packet Classification. A number of previous
research efforts on packet header matching were targeted at
routers, where all of the rules examine the same set of fields
such as the source and destination IP addresses and ports.
For each of these fields, the tests can examine if the field
is within a range, or if the prefix bits have a certain value.
In contrast, our focus is on rule sets where each rule may
examine a different set of fields, and moreover, disequality
and bit-masking operations are used. Such rules are common
in NIDS, e.g., the default rule set that ships with Snort contains
rules that examine a total of about 15 fields, with each rule
referencing only a small subset of them. Moreover, four of
these 15 fields contain tests that use bit-masking operations.

Taylor [38] presents a comprehensive survey of these early
works on packet classification. He divides them into three
main categories: (i) decision-tree based, (ii) decomposition
based, and (iii) tuple search based techniques. Decision tree
based techniques are the closest to the technique we present
here. One of the seminal works in this area is HiCuts [13],
which views the classification problem geometrically. Each
filter is viewed as a hyper rectangle in a d-dimensional space,
where d is the number of packet fields used in the filters.
A test performed at a tree node corresponds to a cut in
the hyper space. Unfortunately, n filters with d fields can
lead to O(nd) distinct hyper rectangles, with each region
corresponding to a distinct leaf in a decision tree. Thus, the
worst case space use can be O(nd). HyperCuts [33] improves
the HiCuts algorithm by selecting multiple cuts at each level.
While this cuts down the number of interior nodes, it does
not fundamentally alter the lower bound on the number of
leaves. In particular, Vamanan et al [41] report that on rule
sets of sizes 1K to 100K, HyperCuts duplicates rules by a
factor of thousands. They therefore propose EffiCuts, which
reduces rule duplication among the decision tree leaves by
(a) separating the rules into different groups based on their
overlap and (b) creating a separate decision tree for each
group. They report orders of magnitude reduction in space
usage over HyperCuts, but the lookup cost increases since
multiple trees need to be traversed for matching a packet. In
contrast, we identify two criteria (Sections VI-A and VI-C)
by which rule duplication can be avoided without impacting
matching time. Another contribution of ours is that we present
techniques to ensure polynomial worst-case space use, whereas
the above works don’t establish any polynomial bound.

Decomposition based techniques decompose multi-field
search problem into several instances of a single-field search
and aggregate the results. These techniques tend to provide
high throughput in hardware due to their amenability to paral-
lel implementation. Cross-producting [37] is perhaps the most
representative work in this category. It performs independent



TONGAONKAR et al.: EFFICIENT TECHNIQUES FOR FAST PACKET CLASSIFICATION 3

field searches over d fields and then combines the results in
a single step. It essentially precomputes the matching filter
for every possible combination of results from the d field
searches. However, the size of the cross-product table for a set
containing n filters can grow to O(nd), which is acceptable
only for small values of d. Gupta et al [12] analyzed several
rule sets in use, and identified several important characteristics.
Based on these observations, they developed a new technique
called Recursive Flow Classification (RFC) that provided
high lookup rates in practice. However, no improvement in
worst-case space usage was established, in contrast with our
polynomial bound.

Tuple search based techniques initially targeted rules con-
sisting only of prefix tests. By dividing the rule sets into groups
that examine the same prefix bits for equality, matches within
each group can be performed using hashing. However, each
packet needs to be matched separately with each distinct tuple.
Tuple space techniques can take advantage of parallelism by
performing independent probes for separates tuples. However,
in the absence of parallelism (e.g., on general-purpose hard-
ware, where the memory accesses needed for these probes
will need to be serialized), it is similar to exhaustive search
but performs better as the number of distinct tuples is less than
the number of filters. (In their experiments, the reduction was
by a factor of 4 to 7.)

Hardware-based Techniques. There are many works that
exploit hardware based parallelism using either TCAM [44]
or GPU [42]. The core of most TCAM based techniques is
an exhaustive search, but the search is highly parallelized to
achieve very good performance. GPU-based techniques rely on
parallelism available on modern GPUs. These techniques are
complementary to ours: our focus in this paper is on improving
the performance of software-based packet matching techniques
that can run on general-purpose hardware.

Term-rewriting. This is another domain where early work
on matching complex structures was performed [30]. Terms
are used to model composite data in declarative languages,
in much the same way structs are used in C/C++. Sekar
et al [31, 32] presented a technique for adapting the order of
examination of fields in order to reduce the space and matching
time complexity of term-matching automata. Gustafsson et al
[14] extended this technique to handle binary data such as
network packets. Our technique generalizes their technique
further by adding support for inequalities and disequalities.
Moreover, our bit-mask operations are more general than
their bit-field operations. More importantly, their automata has
an exponential worst-cast space complexity. Although they
describe a technique for constructing linear-size guarded se-
quential automata, these automata require runtime operations
to manipulate match and candidate sets. Consequently, their
transitions have an O(n) complexity (where n is the number
of filters), while our transitions are O(1) expected time.

Program analysis. Condition factorization descends from
constraint-solving framework for analyzing logic programs
[24], which, in turn, evolved from previous works [9, 29]. This
paper considerably extends those works to handle constraints
involving bitmasks, inequalities, disequalities and ranges.

Packet filtering. Techniques such as BPF [20], DPF [10],
Pathfinder [2] and SPAF [27] can also be viewed as building
matching automata where the packet fields are examined in the
order they occur, i.e., they rely on a left-to-right traversal. As
shown in our evaluation, our techniques result in significant
gains in space usage, as compared to a left-to-right traversal.

BPF+ [5] uses global dataflow techniques to identify oppor-
tunities for eliminating redundant tests. pFSA [18] improves
on BPF+ by handling redundancies in comparisons involving
different constants. Our condition factorization technique is
more general than those of pFSA, being able to reason about
semantic redundancies in the presence of bit-masking opera-
tions. More importantly, condition factorization takes a step
beyond the passive approach of recognizing redundant tests
and eliminating them: it proactively decomposes complex tests
into more primitive ones so that their common components are
exposed and shared.

DPF uses dynamic code generation, which allows dynamic
reordering of tests. Dynamic reordering improves performance
by detecting match failures earlier. Al-Shaer et al [15] sig-
nificantly improve on the dynamic reordering technique used
in DPF by using efficient algorithms to maintain statistics
regarding the traffic. Their techniques are analogous to profile-
based optimizations in compilers, whereas ours is analogous to
static-analysis based optimizations. Thus, the two techniques
can complement each other.
NIDS Systems. Bro [23, 36] is a popular NIDS that first
assembles packet sequences into streams before applying
signatures. In contrast, many firewalls, packet filtering appli-
cations as well as NIDS such as Snort operate primarily by
matching network packets, as they apply some tests selectively
to some packets (e.g., the first packet in a stream) but not
against others. Our work is targeted at such systems.

Today’s NIDS have come to rely increasingly on regular
expression based rules for matching packet payload. Determin-
istic finite-state automata (DFA) provide the fastest matching
performance for regular expressions, but their size can increase
exponentially with the number of regular expressions. As
a result, several new techniques have been developed to
control space usage of NIDS regular expression matching
[17, 43, 3, 34, 4, 22]. Our work is complementary to these
approaches, and can be combined with them. In particular,
our approach, by making fuller use of conditions on packet
fields, can reduce the number of rules involved in regular
expression matches, thus warding off space explosion in some
cases. Tongaonkar [39] describes a more direct and complete
technique to integrate string matching into our automata.

In recent years, there has been a growing interest in
using signatures to capture vulnerability conditions rather
than specific exploits. This has led to the development of
vulnerability signatures [6] (a.k.a., data patches [8]) that are
based on accurate modeling of both the network protocol
and the application context. Early works on vulnerability
signatures relied on matching one signature at a time.
Netshield [19], which is based on a systematic design of
vulnerability based parsing, achieves high throughput by
using techniques similar to Pathfinder for rule matching.
It reorders rules to increase sharing of tests across rules.
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However, it relies on left-to-right traversal of fields. The
techniques presented in Section VII can be used to improve
its matching time.

Our work differs from, and complements, the above works
in the following ways:
• We present a unified framework in which different flavors

of packet header matching can be supported.
• Almost all previous works in packet matching have been

based on left-to-right examination of packet fields. Our
results show that substantial gains in space and runtime
can be obtained by using a customized order of exam-
ination. This traversal order is based on our notions of
discriminating tests that provide high utility.

• Our condition factorization, first proposed in [40], is novel
in its ability to proactively create opportunities for sharing
tests, as opposed to post hoc elimination of tests that
happen to be redundant.

• Our approach can classify on a large number of packet
fields, and it does not require all filters to use the same
set of fields. More importantly, our automaton construc-
tion algorithms can naturally handle disequalities and bit-
masking operations.

III. PRIORITIZED PACKET MATCHING AUTOMATA

In the rest of this paper, we use the term filter to refer to
signatures. We associate a label to identify a filter.

Definition 1 (Tests, Filters and Priorities): A test involves a
variable x and one or two constants (denoted by c) and has
one of the following forms.
• Equality tests of the form x = c
• Equality tests with bitmasks of the form x&c1 = c
• Disequality tests of the form x 6= c
• Disequality tests with bitmasks of the form x&c1 6= c
• Inequality tests of the form x ≤ c or x ≥ c

A filter F is a conjunction of tests. A set F of filters may
be partially ordered by a priority relation. The priority of F
is denoted as Pri(F ). An example of a filter is:

(dport = 22) ∧ (sport ≤ 1024) ∧ (flags&0xb = 0x3)

We exclude more complex conditions in filters, e.g.,

(sport + dport < 1024) ∧ (sport < ttl),

since they do not seem common in practice.
A filter F can be “applied” to a network packet p, denoted

F (p), by substituting variables, which denote the names of
packet fields, with the corresponding values from p. We define
the notion of matching based on whether the filter evaluates
to true after this substitution.

Definition 2 (Prioritized Matching): For a set F of filters,
F ∈ F is said to match a packet p, denoted MF (F, p), if:
• F (p) is true, and
• ∀F ′ ∈ F such that Pri(F ′) > Pri(F ), F ′(p) is false.

The match set of p, denotedMF (p) consists of all filters that
match p, with the exception that among equal priority filters,
at most one is retained in MF (p).
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Fig. 1. A deterministic matching automaton.

Thus, a filter cannot match a packet unless matches with
higher priority filters are ruled out. To illustrate matching,
consider the following filter set F :

• F1 : (icmp type = ECHO)
• F2 : (icmp type = ECHO REPLY ) ∧ (ttl = 1)
• F3 : (ttl = 1)

Also consider an icmp echo packet p1 and an icmp echo reply
packet p2, both having a ttl of 1.

• If these filters have incomparable priorities, then F1

matches p1, F2 matches p2, and F3 matches both. As a
result, MF (p1) = {F1, F3} and MF (p2) = {F2, F3}

• If Pri(F1) > Pri(F2) > Pri(F3), then MF (p1) =
{F1}, and MF (p2) = {F2}.

• If Pri(F3) > Pri(F2) > Pri(F1), then MF (p1) =
MF (p2) = {F3}.

• If Pri(F1) = Pri(F3) > Pri(F2), then MF (p1) can
either be {F1} or {F3}, while MF (p2) = {F3}.

These examples illustrate how various flavors of matching can
be captured using priorities.

• Packet-filtering can be done by setting equal priorities for
all filters. By virtue of the definition of match sets, this
priority setting causes a match to be announced as soon
as a match for any filter is identified.

• Ordered matching, as used in firewalls and access control
lists can be done by assigning priorities that decrease
monotonically with the rule number.

• Multi-matching, as used in NIDS, can be solved by using
incomparable priorities among filters.

Figures 1 and 2 illustrate packet-matching automata (also
known as classification automata) for the above filter set.
Figure 1 shows a deterministic matching automaton (DMA),
in which all of the transitions from any automaton state are
mutually exclusive. A nondeterministic matching automaton
(NMA) is shown in Figure 2, where the transitions may not
be mutually exclusive. We make the following observations
about the structure of matching automata:

• All but one of the transitions from each state are labeled
with a test as defined above; the remaining (optional)
transition, called an “other” transition, is labeled with a
more complex condition C as follows:
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Fig. 2. A nondeterministic matching automaton.

– In a deterministic automaton, C is the conjunction of
negations of all the tests on the rest of the transitions,
e.g., the third transition from the root of Figure 1. In
this case, the “other” transition is mutually exclusive
with the rest of the transitions, and hence is also called
an “else” transition.

– In a nondeterministic automaton, C is the conjunction
of negations of a subset of the tests on the other trans-
itions, e.g., the 3rd transition from the root of Figure 2.

• The transitions are simultaneously distinguishable, i.e.,
– apart from the “other”-transition, the tests on the rest

of the transitions are mutually exclusive
– it is possible to determine, using a single operation

taking expected O(1) time, which of the transitions
out of a state is satisfied by a given packet.

• Each final state S correctly identifies the match set corre-
sponding to any packet satisfying all the tests along a path
from the start state to S.

Note that nondeterminism has a runtime cost, as it needs
to be simulated using backtracking. For instance, consider
a packet that satisfies the icmp type = ECHO condition
on the first transition from the start state of Figure 2. This
packet is also compatible with the condition icmp type 6=
ECHO REPLY on the third transition from the start state.
Thus, after exploring down the first transition, it is necessary
to explore down the third transition as well. This need for
backtracking is depicted in Figure 2 using a dotted transition.

A. Computational Issues

The two main computational issues in constructing a match-
ing automata are its size and matching time. Typically, most
filters contain a small number of tests, while the number of
filters is large. As a result, path lengths in the automata are
short as compared to its breadth.

The matching time of an automaton is closely related to path
lengths. In particular, the worst-case matching time equals the
longest path length in a DMA. The average matching time is
dependent on the distribution of packets observed at runtime,
but it is common to use the average path length of a DMA
as an estimate of average matching cost. In an NMA, note
that at each state, two branches may have to be followed at
runtime, and this has to be taken into account in computing
the worst-case as well as average matching times.

IV. CONDITION FACTORIZATION

In this section, we introduce the novel concept of condition
factorization. It refers to the process of decomposing filters
into combination of more primitive tests — a process that is
intuitively similar to factorization of integers. This decompo-
sition exposes primitive tests that are common across different
tests, thus enabling their shared computation.

The basis for condition factorization is the residue operation
defined below. Suppose that we want to determine if there
is a match for a filter C1, and that we have so far tested a
condition C2. A residue captures the additional tests that need
to be performed at this point to check if C1 holds.

Definition 3 (Residue): For conditions C1 and C2, the residue
C1/C2 is another condition C3 such that:

(1) C2 ∧ C3 ⇒ C1, and
(2) C1 ∧ C2 ⇒ C3.

For a filter set, F/C = {F/C|F ∈ F ∧ F/C 6= false}.
Ideally, C3 would be the weakest condition such that (1)

holds. In practice, however, we may not want the minimal
condition since it may be expensive to compute, or be inef-
ficient to use, e.g., may contain many disjunctions. For this
reason, we do not require C3 be the weakest such condition.
But C3 shouldn’t be too strong, or else we may miss matches
for C1. This motivates the condition (2) above.

The rules in Figure 3 specify how to compute residues on
tests. In the figure, the notation x denotes bit-wise complement
of x, while & denotes bit-wise “and” operation. In addition,
inequalities are expressed using interval constraints, e.g., x ≤
7 is represented as x ∈ [−∞, 7], if x is an integer-valued
variable. Note that a single interval constraint can represent
a pair of inequalities involving a single variable, e.g., (x ≤
7) ∧ (x > 3) can be represented as x ∈ [4, 7].

For any pair of tests T1 and T2, the first row in the table that
matches the structure of T1 and T2 yields the value of T1/T2.
We illustrate residue computation using several examples:
• (x 6= a)/(x = a) is false, as given by the second row in

the table (which defines T/¬T ).
• (x = 5)/(x&0x3 6= 1) is false, as given by the 5th row.
• for (x = 5)/(x&0x3 6= 0), 5th row is no longer applicable

since the condition c&c1 = c2 does not hold. (Here, c = 5,
c1 = 0x3, and c2 = 0.) Hence the last row is applicable,
yielding the result (x = 5). (Although the two conditions
are compatible with each other, the test x&0x3 6= 0 does
not contribute to proving x = 5.)

• Also from last row, (x ∈ [1, 10])/(x 6= 5) is (x ∈ [1, 10]).
Note that the minimal residue in the last example would be
(x ∈ [1, 4]) ∨ (x ∈ [6, 10]), but it is easier to check (x ∈
[1, 10]). Figure 3 returns T1 in such cases.

To illustrate residues on filter sets, consider

F = {F1 : (x = 5), F2 : (x = 7), F3 : (x < 10)}.
Then
• F/(x = 5) = {F1 : true, F3 : true}
• F/(x < 7) = {F1 : (x = 5), F3 : true}

Finally, we define residue for conjunctions and disjunctions:
• (C1 ⊕ C2)/C3 = (C1/C3)⊕ (C2/C3), for ⊕ ∈ {∧,∨}
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T1 T2 T1/T2 Conditions
T T true
T ¬T false

T x = c T [x← c]

x = c x& c1 = c2 x& c1 = c& c1 c& c1 = c2
false c& c1 6= c2

x = c x& c1 6= c2 false c& c1 = c2
x = c x ∈ [c1, c2] false c 6∈ [c1, c2]

x 6= c x& c1 = c2 x& c1 6= c& c1 c& c1 = c2
true c& c1 6= c2

x 6= c x& c1 6= c2 true c& c1 = c2
x 6= c x ∈ [c1, c2] true (c < c1)

∨ (c > c2)

x ∈ [c1, c2] x ∈ [c3, c4] true c1 ≤ c3
≤ c4 ≤ c2

x ∈ [−∞, c2] c1 ≤ c3
≤ c2 ≤ c4

x ∈ [c1,∞] c3 ≤ c1
≤ c4 ≤ c2

x ∈ [c1, c2] c3 ≤ c1
≤ c2 ≤ c4

false (c2 < c3)
∨(c4 < c1)

x ∈ [c1, c2] x& c3 = c4 false c4 > c2

x& c1 = c2 x& c3 = c4 x&(c1 & c3) c2 & c3
= (c2 & c3) = c1 & c4

false otherwise
x& c1 = c2 x ∈ [c3, c4] false c2 > c4

x& c1 6= c2 x& c3 = c4 x&(c1 & c3) c2 & c3
6= (c2 & c3) = c1 & c4

true otherwise
x& c1 6= c2 x ∈ [c3, c4] true c2 > c4

T T ′ T

Fig. 3. Computation of Residue on Tests.

• C1/(C2 ∧ C3) = (C1/C2)/C3

We do not handle the case of the second operand being a
disjunction since it is never encountered by the automata
construction algorithm. Using this definition, we can see that:
• ((x > 2) ∨ (y > 7))/(x = 5) is true, and
• ((x > 2) ∧ (y > 7))/(x = 5) is (y > 7).

V. MATCHING AUTOMATA CONSTRUCTION

Our algorithm Build for constructing a matching automata
is shown in Figure 4. It is a recursive procedure that takes
an automaton state s as its first parameter, and builds the
subautomaton that is rooted at s. It takes two other parameters:
(i) the match set Ms (see Definition 2) that consists of all
filters for which a match can be announced at s, and (ii) the
candidate set Cs that consists of filters that haven’t completed
a match, but future matches are possible. To illustrate the
concepts of match and candidate sets, we have annotated the
final states in Figures 1 and 2 with match sets, and non-final
states with the union of match and candidate sets.

In the algorithm, we maintain only the residuals of the
original filters in Cs and Ms, after factoring out the tests
performed on the path from the root of the automaton to the
state s. For example, in Figure 1, at state 2, we have completed
a match for F1, and hence its match set is {F1 : true}.
Note that the condition component of F1 has become true
since we computed the residue of the original condition
(i.e., (icmp type = ECHO)) with respect to the condition
(icmp type = ECHO) on the path from the automaton root

1. procedure Build(s,Ms, Cs)
2. if Cs is empty /* No more filters to match */
3. then match[s] =Ms /* Annotate final state with match set */
4. else
5. (D, T ) = select(Cs) /* Ti ∈ T is tested on ith transition */

/* di ∈ D indicates if this transition is deterministic */
6. To = {

∧
i|di=true

¬Ti}
/* Compute test corresponding to the “other”-transition */

7. for each Ti ∈ (T ∪ {To}) do
8. if (Ti 6= To) then
9. if di then Ci = Cs/Ti else Ci = Cs/Ti − Cs/To endif

/* For a non-deterministic transition, do not duplicate */
/* filters from the “other” branch */

10. else Ci = Cs/Ti −
⋃

j|dj=false
Cs/Tj endif

11. compute Msi and Csi from Ci and Ms

12. if no state si corresponding to (Csi ,Msi) is present then
13. create a new state si
14. Build(si,Msi , Csi)
15. endif
16. create a transition from s to si on Ti

17. end
18. endif

Fig. 4. Algorithm for Constructing Matching Automaton

to state 2. In addition, note that we can rule out a match for
F2 at this state, but a match for F3 is still possible. Thus, the
candidate set for this state is {F3 : (ttl = 1)}.

A final state is characterized by the fact that there are no
more filters left in Cs. This condition is tested at line 2, and s is
marked final, and is annotated to indicateMs as its match set.
If the condition at line 2 isn’t satisfied, then the construction
of automaton is continued in lines 5–17. First, a procedure
select (to be defined later) is used at line 5 to identify a set
of tests T1, ..., Tk that would be performed on the transitions
from s. This procedure also indicates whether Ti is going to
be a deterministic transition or not: in the former case di is
set to true, while in the latter case, di = false. Based on
which Ti are deterministic, the condition To associated with
the “other”-transition is computed on line 6: ¬Ti is included
in To whenever Ti is a deterministic transition.

The actual transitions are created in the loop at line 7–17.
At line 9, we compute the subset Ci of filters in Cs that are
compatible with Ti. If this is a deterministic transition, then
Ci consists of those filters in the candidate set (of the current
state) that are compatible with Ti. However, if this is going
to be a nondeterministic transition, then a match would be
tried down the transition labeled Ti and then subsequently
down the “other”-transition. For this reason, we can eliminate
from Ci any filter that will be considered on the “other”-
transition. This elimination is performed in the else clause
of line 9. Symmetrically, those filters that are considered on
non-deterministic transitions are eliminated from the “other”
transition at line 10 of the algorithm. At line 11, Msi and
Csi for the new state si are computed. (The procedure for
computing match and candidate sets is described below.)

Since the behavior of Build is determined entirely by the
parameters Cs and Ms, two invocations of Build with the
same values of these parameters will yield identical subau-
tomata. Hence a check is made at line 12 to examine if
an automaton state already exists corresponding to Csi and
Msi , and if not, a new state is created at line 13, and Build



TONGAONKAR et al.: EFFICIENT TECHNIQUES FOR FAST PACKET CLASSIFICATION 7

recursively invoked on this state. Finally, a transition to this
state is created at line 16.

Computing Match and Candidate Sets Line 10 of the
above algorithm requires a method for computing match and
candidate sets for a newly-constructed automaton state si. This
method starts with the match set Ms of the parent state s,
and the set Ci computed in the preceding line, and uses the
following steps:
• M′ = {M ∈ Ci|(M = true)}, i.e., M′ consists of the

subset of filters in Ci whose tests have all been checked
on the automaton path to si.

• M′′ = {M∈M′|¬∃C∈Ci Pri(C) > Pri(M)}, i.e., we
delete those filters fromM′ for which a future match with
higher priority filters can’t be ruled out at this point1.

• Msi is obtained by considering filters with equal priorities
in M′′, and deleting all but one of them.

Now, Csi can be computed using the following equation:

Csi = {C∈Ci | ¬∃M∈Msi with Pri(M) ≥ Pri(C)}
A procedural interpretation of this equation will amount to
deleting filters in Ci that are superseded by higher (or equal)
priority filters for which a match has already been completed.

Note once again that we are computing residues of original
filters, thereby conveniently keeping track of those tests in
each filter that haven’t yet been performed2. In Figures 1 and
2, we have annotated final states with match sets, and non-final
states with the union of match and candidate sets; however,
we show only the filter labels in these sets, but omit residues.

VI. IMPROVING AUTOMATA SIZE

The algorithm presented in the last section incorporated two
main optimizations to reduce automaton size and matching
time, both derived from our definition of condition factor-
ization: detecting and sharing equivalent states, and avoiding
repetition of (semantically) redundant tests. In this section, we
present techniques for realizing the select function that yields
significant additional reduction in automata size.

Our experimental evaluation considers the number of au-
tomaton states as a measure of its size. However, for sim-
plifying mathematical analysis, our discussion in this section,
similar to previous works [32], will measure the automaton
size in terms of it breadth. Note that the automaton depth
is linearly dependent on filter sizes, but the breadth can be
exponential. For this reason, breadth is the dominating factor
in automaton size, thus justifying our choice.

A. Discriminating Tests

Since select determines which packet field is to be exam-
ined at each automaton state, it effectively defines an order
of examination of packet fields3. The simplest approach is to
examine the protocol fields in the order of their occurrence

1Recall that a match with a filter M cannot be completed until we eliminate
the possibility of a match for any filter with a higher priority than M .

2Or more accurately, we are keeping track of those tests that aren’t already
known to be satisfied.

3Section VIII-A describes how our algorithm ensures protocol-specified
constraints on the order of examination of packet fields.

in a network packet, as done in most previous works [2, 10].
We call this left-to-right traversal. An automaton using this
traversal is called an L-R automaton. A better strategy, called
adaptive traversal, was first proposed in the context of term-
matching [32], and was then generalized to deal with binary
data [14]. In the terminology of this paper, an adaptive
traversal would select a set of tests T at an automaton state
s as follows. It identifies a packet field x that occurs in every
filter in Cs. If no such field can be found, it falls back to
another choice, e.g., choosing the left-most field that hasn’t
yet been examined. Now, T includes all tests on x that occur
in Cs.

Since adaptive traversal was developed in a context where
the tests were all restricted to be simple equalities with
constants, it is easy to see that the set T described above
consists of tests that can be simultaneously distinguished4, and
hence can form the transitions from s. Moreover, it has been
shown [32] that, as compared to other choices, this choice of
transitions will simultaneously reduce the automaton size as
well as matching time. Unfortunately, none of these results
hold in the more general setting of packet matching, where
disequalities and inequalities also need to be handled. For
instance, consider a candidate set that consists of two filters
(x 6= 25) and (x < 1024). These tests are not simultaneously
distinguishable. Moreover, neither of these tests contributes
towards verifying a match with the other. More generally,
it can be shown that, in the presence of disequality and
inequality tests, the choices that decrease automaton size do
not necessarily decrease matching time (and vice-versa). We
therefore focus first on reducing automaton size.

Definition 4 (Discriminating Set): A set T of conditions is
said to be a discriminating set for a filter set F iff for every
F ∈ F there exists at most one T ∈ T such that F belongs
to the candidate set of F/T .

The set T = {x = 5, x = 6, (x 6= 5) ∧ (x 6= 6)} is dis-
criminating for the filter set C = {x = 5, x = 6, x > 7}. This
means that if we create 3 outgoing transitions corresponding
to the three tests in T from an automata state s with the
candidate set C, none of the filters in C will be duplicated
among the children of s. As a result, in an automaton that
uses only discriminating tests, the candidate sets (as well as
the match sets) associated with the leaves will be disjoint.
Since there are at most n disjoint subsets of a set of size n, it
immediately follows that any automaton that is based entirely
on discriminating tests will have at most O(n) breadth.

Note that whether a set of tests is discriminating depends on
the filter set as well. For instance, the same set T discussed
above is not a discriminating set for the set of filters {x =
6, x > 4}. This is because the filter x > 4 is compatible with
more than one of the tests in T .

B. Ensuring Polynomial-Size Automata

Since discriminating tests may not always exist, it may
be necessary to choose non-discriminating tests. This choice
introduces overlaps among the candidate sets of sibling states

4Recall that simultaneous distinguishability refers to the ability to identify
the matching transition in O(1) expected time.
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in the automaton. These overlaps, in turn, mean that at
any level in the automaton, there may be as many as 2n

distinct candidate sets. Thus, the breadth of the automaton
can become exponential in the number of filters. Exponential
lower bounds have previously been established even in the
simple case where all tests are restricted to be equalities [32].
Although some of the previously developed techniques can
avoid such explosion, this has been accomplished at the cost of
introducing significant backtracking at runtime [20, 10, 2, 5],
especially for the kinds of filters that occur in the context of
intrusion detection. Other techniques avoid exponential size by
introducing O(n) operations for each transition at runtime, as
they require runtime maintenance of match sets [25, 14]. With
large filter sets that are often found in enterprise firewalls and
NIDS, O(n) transition time can become unacceptably large.

We present a new technique that can provide a polynomial
size bound, while limiting nondeterminism in practice. Indeed,
any desired polynomial bound P (n) can be achieved by our
technique. However, use of a larger bound, e.g., n2 instead of
n log n, reduces the number of instances where nondetermin-
istic transitions are needed, thus providing better runtime.

Our technique is based on the observation that the breadth of
subautomaton rooted at s can be captured using the recurrence:

B(|Cs|) =

k∑
i=1

B(|Csi |),

where B(1) = 1, and |Cs| denotes the size of candidate
set associated with s. Let P (n) be the desired polynomial
on n that bounds the automaton size. Based on the above
recurrence, we can show, by induction on the height of s that
the bound will be satisfied as long as the following condition
holds at every state s of the automaton.

P (|Cs|) ≥
k∑

i=1

P (|Csi |) (1)

By selecting tests that satisfy this constraint, our implementa-
tion of select ensures that the automaton size will be O(P (n)).
If no such test can be found, our technique picks a test that
comes the closest to satisfying this constraint, and then makes
some of the outgoing transitions nondeterministic so as to
ensure that sizes of candidate sets associated with the de-
scendant automaton states satisfy the above constraint. Recall
from line 9 of Build that making a test Ti nondeterministic
enables us to avoid overlaps between Ci and Co. So, our
algorithm makes one or more transitions out of an automaton
state nondeterministic until Inequality 1 is satisfied. In our
implementation, we have set P (n) to be n2, which guarantees
a quadratic worst-case automaton size.

To understand the importance of the above technique, note
that a purely deterministic technique ensures good perfor-
mance at runtime, but risks catastrophic failure on large rule
sets that cause an exponential blow up — memory will be
exhausted in that case and hence the rule set can’t be sup-
ported. In contrast, our approach converts this catastrophic risk
into the less serious risk of performance degradation. Unlike
previous techniques for space reduction that led to increases
in runtime in practice, performance degradation remains just

a worst-case possibility: with the rule sets studied in our
experiments, the quadratic bound was not exceeded, and hence
nondeterminism was not introduced, except in the special case
described below where it does not degrade performance.

C. Benign Nondeterminism

For our final space-reduction technique, we define the
concept of benign nondeterminism, which enables us to benefit
from the space-savings enabled by nondeterminism without in-
curring any performance penalties. It is based on the following
notion of independence among filter sets.

Definition 5 (Independent Filters): Two filters F1 and F2 are
said to be independent of each other if
• for every test T in F1, F2/T = F2, and
• for every test T in F2, F1/T = F1.
F1 and F2 are said to be independent if ∀F1 ∈ F1,∀F2 ∈ F2,
F1 and F2 are independent.

Suppose that there is a filter set F that can be partitioned
into two independent subsets F1 and F2. We can then build
separate automata for F1 and F2. Packets can now be matched
using the first automaton and then the second one. The above
definition indicates that the tests appearing in the two automata
must be totally disjoint, and hence no runtime reduction is
achieved by constructing a single automaton for F .

Our experiments show that the above technique leads to
dramatic reductions in space usage. The intuition for this is as
follows. If F1 and F2 are independent, then a packet may
match F1, F2, both, or neither. A deterministic automaton
must have a distinct leaf corresponding to each of these
possibilities. Extending this reasoning to independent filter
sets, if an automaton for the set F1 has k1 states, and the
automaton for F2 has k2 states, then a deterministic automaton
for F1 ∪F2 will have k1 ∗ k2 states. In contrast, using benign
nondeterminism, the size is limited to k1 + k2. If there are m
independent sets, then this technique can reduce the automaton
size from a product of m numbers to their sum.

The second reason for significant reductions in practice is as
follows. After examining some of the fields that are common
across many rules, as we get closer to the automaton leaf,
independent sets arise frequently. For instance, we may be
left with one set that examines only the destination port,
another set that examines only the source port, yet another
set that examines only the destination network, and so on.
Thus, independent rule sets tend to arise frequently, and lead
to large increases in space usage if they are not recognized
and exploited using our benign nondeterminism technique.

There is a simple algorithm for checking if F contains two
independent subsets. First, partition F into singleton subsets
corresponding to each rule. Now, these subsets are taken two at
a time, and merged if they are not independent. This process is
repeated until no more merges are possible. If multiple subsets
are left at this point, they must be independent.

To deal with benign nondeterminism, the interface between
select and Build needs to be extended. Instead of returning
a test set, select will return a partitioning of the candidate
set Cs of the current automaton state. Let this partitioning
consist of sets C1, . . . , Ck, where every pair Ci and Cj is
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mutually independent. At this point, Build will create a k-
way nondeterministic branch, and for 1 ≤ i ≤ k, create a
child state si and invoke Build(si,Ms, Ci).

VII. IMPROVING MATCHING TIME

To reason about matching time, we need to define a function
that assigns computational costs to each test. We discuss
two alternatives here. The first, and the simpler, of the two
alternatives is to assign the same cost to all tests. Note that
such a measure would treat tests on 1-bit fields the same as on
32- or 64-bit fields. While this may seem reasonable, it does
not capture the intuition that checking a test y&0xff = 3
contributes partially towards checking y = 0x703. For this
reason, a preferable alternative is to assign a cost of r to tests
involving r-bit quantities. In this case, cost(y&0xff = 3)
will be 8, while cost(y = 0x703) will be 16, assuming y is
a 16-bit field. For the discussion below, both alternatives will
work well. However, in our evaluation, we have opted for the
first alternative due to its simplicity, and because it is a better
match for real-world cost of these tests.

The actual matching time is a function of both the automa-
ton and the packet that is matched against it. As a result,
obvious cost estimates for an automaton, such as average
packet matching time, have to be defined with respect to
expected distribution of input packets. In particular, a weighted
average path length can be defined as the matching cost of
an automaton, provided we have the relative frequencies with
which each path in the automaton is taken. Unfortunately, such
input distributions are often unavailable, e.g., when a new rule
set is installed, or an existing rule set undergoes significant
modifications. Moreover, distributions can vary widely across
time and/or network installations. For these reasons, we fo-
cus on cost measures and optimization techniques that don’t
require input distributions.

Another difficulty of measures such as average path length
is that they can be computed only after the entire automaton
is constructed. This makes them unsuitable for use during
automaton construction: we need cost estimates before decid-
ing on the transitions from an automaton state, not after all
descendant states have already been constructed! We therefore
define a notion of utility that estimates the local effect of a set
of transitions on the overall matching times from an automaton
state. Utility is a negative number, with the highest possible
value of zero, which indicates the absence of any potentially
redundant computation.

Definition 6: The utility U(T, F ) of a test T for a filter F is
• 0, if a match for F is ruled out when T is satisfied
• cost(F )− cost(F/T )− cost(T ), otherwise.

This definition extends naturally to a filter set:

U(T,F) =
∑
F∈F

U(T, F )

Consider the following examples to illustrate this definition:
• U(x > 1, x = 1) = 0, since the test x > 1 ensures that

x = 1 cannot hold.
• U(x > 1, x > 1) = 0, since the test x > 1 is 100% useful

for verifying a match with the filter x > 1.

• U(x > 1, x > 2) = −1, since the test x > 1 does not
reduce the cost of verifying x > 2.

• U(x > 1, {x = 1, x > 1, x > 2}) = −1, by adding up the
costs of U for each filter.

• U(x = 1, {x = 1, x > 1, x > 2}) = 0
• U(x = 2, {x = 1, x > 1, x > 2}) = 0
• U(x > 2, {x = 1, x > 1, x > 2}) = 0

We now extend the notion of utility to an automaton state s:

Definition 7 (Utility of automaton state): Let T = T1, . . . , Tk

be the set of tests performed on transitions out of an automaton
state s. If the transitions are all deterministic, then:

Ud
s =

1

k

k∑
i=1

U(Ti, Cs)

If s has n ≥ 0 nondeterministic branches:

Us = Ud
s −

n

k
∗ cost(Csk)

At most one of the deterministic transitions can be applicable
at any time, and hence Ud

s is simply the average of the
utilities of tests on each of the transitions from s. For a
nondeterministic state, in addition to one of the deterministic
transitions, it may be necessary to backtrack and traverse the
“other” transition. The entire time spent within the “other”-
transition, given by cost(Csk), would then be additional work
over that given by the term Ud

s . We weight this extra work by
the factor n/k that approximates the likelihood of taking one
of the n nondeterministic transitions.

Building on the example used to illustrate the utility of a
single test, consider a state s with Cs = {x = 1, x > 1, x > 2}
and 3 outgoing transitions on the tests x = 1, x = 2 and x > 2.
Since these transitions are deterministic, the utility is

U(x = 1, Cs) + U(x = 2, Cs) + U(x > 2, Cs)
3

= 0

If s uses transitions x = 1, x > 1 and x > 2, then Us is:
U(x = 1, Cs) + U(x > 1, Cs) + U(x > 2, Cs)

3
−cost(x > 2)

3
= −2

3

A. Match verification cost: A metric for matching time

We now present a metric for the matching time of an
automaton that avoids assumptions about input distributions.
Moreover, it provides a way to compare the efficiency of
the automata without being closely tied to exact implemen-
tations. Such a metric is preferable to raw runtimes that are
heavily influenced by low-level implementation decisions. For
instance, since our matching automaton is compiled into native
code, it is many times faster than some of the techniques that
rely on interpretation. Thus the raw numbers won’t accurately
capture the benefits of the techniques developed in this paper,
which are applicable to compiled as well as interpretation-
based implementations.

Our metric is based on lower bounds on match verification
cost. In particular, suppose that there exists a nondeterministic
matching algorithm that can “guess” the subset of rules that
match a given packet p, and then proceeds to verify the
soundness of this guess. One can reasonably expect that a
deterministic matching algorithm would need to perform more
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computation than such a nondeterministic algorithm. For this
reason, a deterministic algorithm that comes fairly close to
the lower bound for nondeterministic algorithms, say, within
a factor of two, could be considered a very good algorithm.
We therefore use the ratio of actual matching cost to the lower
bound for match verification cost as a metric for evaluating
an automaton. In our experiments, we computed this metric
statically: in particular, we computed the average of this ratio
across all paths in the automaton.

Observation 8 (Minimum Match Verification Cost):
• Verifying a match of a filter F is Ω(|F |).
• Verifying a successful match of all filters in a set M is

Ω(k), where k is the number of distinct fields (or field-
bitmask combinations) tested across all the filters in M.

It is clear that a match cannot be announced without testing
all conditions in F and hence the bound in the first case. In
the second case too, it is clear that all the fields present in
all the filters in M have to be examined before announcing a
match for all of them, and hence the lower bound.

VIII. PUTTING IT ALL TOGETHER

We now describe how the techniques described so far can
be combined to build an end-to-end system. We begin with
our language for specifying filters. We then discuss how to
combine our space and matching-time reduction techniques,
and generate safe native code. Finally, we describe integra-
tion with payload matching, otherwise known as deep-packet
inspection.

A. Filter Specification Language

As we detail below, filter specifications consist of a set of
packet type declarations, followed by packet processing rules
of the form filter → response.

Packet Structure Description. A simple way to access a
packet field is by specifying a numeric offset (from the
packet beginning) and width. However, this approach is error-
prone, as the same offset can denote different packet fields
depending on (a) header lengths for lower-layer protocols,
(b) presence of optional fields, and (c) values of preceding
fields such as those representing protocol types such as TCP
or ICMP. Specification errors can lead to memory safety errors,
especially if the filters are translated to native code. It is critical
to avoid memory errors in these systems since they are exposed
to network traffic from every corner of the Internet. Previous
works have proposed safe type systems for network protocols
[7, 28] to avoid memory errors in packet field accesses. Our
language is based on the latter reference as it provides better
decoupling between lower and higher layer protocols. We note
that later works such as SPAF [27] and pFSA [18] also take a
similar approach of using a specialized type system to ensure
the memory safety of the resulting packet filtering code. We
begin with an example that illustrates a type declaration for
an Ethernet header:
#define ETHER_LEN 6
struct ether_hdr {

byte e_dst[ETHER_LEN]; /* Ethernet dest. address */
byte e_src[ETHER_LEN]; /* Ethernet source address */

short e_type; /* Protocol of carried data */
};

Layering of protocols is captured through inheritance. For
instance, IP header can be defined as a subtype of ether_hdr.
However, in order for the Ethernet protocol code to forward the
higher layer payload (i.e., IP) to the appropriate handler, some
fields in the lower layer header need to identify the higher layer
protocol. This requirement is captured in our language using
inheritance constraints, specified using the keyword with:

#define ETHER_IP 0x0800
struct ip_hdr : ether_hdr with e_type == ETHER_IP {

bit version[4]; /* IP Version */
bit ihl[4]; /* Header Length */
byte tos; /* Type Of Service */
short tot_len; /* Total Length */
...
short check_sum; /* Header Checksum */
unsigned int s_addr; /* Source IP Address */
unsigned int d_addr; /* Destination IP Address */

};

Our language is expressive enough to capture the fact that a
higher layer protocol may be carried over multiple lower layer
protocols. If P1 can be layered over P2 or P3, then it will be
captured in our language using the declaration:

struct P1 : (P2 with C2) OR (P3 with C3) {. . .};

where C2 and C3 denote respectively the conditions on P2

and P3 that signify that the higher layer protocol is P1.

Rules. Rules take the form filter → response, where
response specifies the action to be taken when a packet that
matches the filter filter. The syntax and semantics of filters
has already been described in the preceding sections of this
paper. Actions correspond to function calls into a runtime
support library, and are not described further. Note that if
multiple filters match at the same time, actions associated with
each filter are launched. However, as noted previously, a lower
priority rule is considered to match a packet only after matches
with higher priority rules have been eliminated. Rules may
have optional labels. An example rule is:

F1: (p.s_addr & 255.255.255.0 == 192. 168.2.0)
&& (p.d_addr == 192. 168.1.103)
&& (p.tcp_dport == 80) -> alert(...);

While the type of packet p needs to be declared, it is only
necessary to specify its base type, which, in our example, is
ether_hdr. Our compiler can infer higher layer types from
the use of p, as we describe in subsequent sections.

Priorities are specified using rule labels. By default, rule
priorities are incomparable, a setting suitable for NIDS. Other
options need to be explicitly specified.

B. Compilation into Native Code

Our compiler translates a rule set into a C function that takes
a network packet as input, performs the requisite matching
steps, and returns the filters that match. This C-function is then
compiled using the C-compiler into native code, and linked
with a runtime support library that calls this function for each
network packet, and provides the functions used in the action
component of the rules.
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Packet-field access and precondition insertion. Our com-
piler translates packet-field names into appropriate offsets. It
also accounts for issues such as field width, endianness, etc.
For memory/type safety, the compiler takes two steps. Before
any field access, it inserts a precondition that the packet length
is at least as large as the maximum byte offset of the field. The
compiler then adds the applicable constraints from packet type
definitions as additional preconditions. For instance, consider
the example rule described in the preceding section. From
the access p.tcp_dport, the compiler infers that p’s type
is ip_hdr, and automatically inserts the constraint associated
with ip_hdr, namely, p.e_type == ETHER_IP. This means
that the rule won’t match non-IP packets, e.g., ARP packets.

Note that Build may examine tests within a filter in any
order, which can defeat the purpose of introducing precon-
ditions. To address this problem, the compiler records the
preconditions for each test in a filter. Our implementation of
select considers only those tests whose preconditions have all
been tested (and are determined to hold).

Blindly attaching preconditions to each test can result in
duplications. By the nature of condition factorization, these
redundancies will be recognized and eliminated, so we do not
do any thing special to avoid them.

Automaton Construction. Our implementation uses our
Build algorithm to construct a matching automaton for the
given filter set. Residues are computed as specified in Table 3,
and match and candidate sets computed as described on
page 7. Our select implementation considers only those tests
whose preconditions have all been satisfied. While selecting
from such tests, our implementation prioritizes size reduction
over matching time reduction. This is because many of the
size reduction techniques also improve matching time:
• Discriminating tests: For every filter in the candidate set,

a discriminating test will either rule out a match for that
filter, or will perform a test that is compatible with that
filter. For this reason, the utility of states performing
discriminating tests will typically have the (maximum
possible) value of zero. (This can be formally proved for
the common case of filters containing equality conditions.)

• Benign nondeterminism: Since the efforts in matching each
independent subset is completely disjoint from those of
matching others, none of the tests performed within the
subautomata for one of these subsets will be repeated
in another. Thus, as in the previous case, we have not
performed any additional work that is over and above the
minimum that may be required to match these filter sets.

As a result, size reduction techniques will usually have the
effect of minimizing utility as well, and hence improving
the matching time. So, our implementation of select first
identifies a set of choices to minimize automata size, and
among these choices, picks the one that provides the lowest
utility. Specifically, it proceeds as follows:
• select first attempts to find a discriminating test set (Sec-

tion VI-A). If several of them exist, our technique selects
a set that maximizes utility.

• if no discriminating test sets exist, it examines opportuni-
ties for benign nondeterminism (Section VI-C).

• if neither of the above steps succeed, it returns a set of
tests that achieves the polynomial size target specified,
as described in Section VI-B. Typically, multiple sets
satisfy this criteria, and we prefer those sets that minimize
nondeterminism. If there are still multiple options, then we
pick the one that with the maximizes utility.

An exhaustive search through all possible tests in a candidate
set can be quite expensive. To speed up the process, our
implementation utilizes a “fast selection” phase. This phase
examines the subset of fields that occur in all filters in a
candidate set, giving preference to those fields that contain
primarily equality tests. Such fields have a high likelihood
of yielding discriminating tests with zero (i.e., maximum
possible) utility.

Code Generation. Once the automaton is constructed, our
compiler generates C-code corresponding to the automaton.
The code generation is straight-forward and not described in
detail here, except to note that the generated code explicitly
uses an if-then-else, a binary search, or a hash-based branching
to implement transitions efficiently. This choice is dependent
on the nature of the test (e.g., inequality tests cannot use
hashing), as well as the number of transitions.

The C-code is compiled using a C-compiler into a shared
library. If a rule set needs to be updated, then we first compile
it into another shared library. At this point, our system can
unload the original shared library and load the updated version.
We note that this approach is not much more disruptive
than that of Snort where the rules need to be re-read and
recompiled.

C. Payload Matching

In addition to examining packet header fields, modern NIDS
examine packet payloads as well. In this section, we describe
how such deep packet inspection (DPI) can be integrated with
the techniques presented in this paper. For concreteness, our
discussion is set in the context of Snort.

Snort rules consist of tests on packet header fields and all
of the strings that must be found within the payload. Hence,
rule matching in Snort involves matching the packet header
fields, together with string matching over the packet payload.
To reduce false positives, Snort allows rule writers to specify
additional constraints on string matching, e.g.,
• match a string s1 at position k from the payload beginning
• match two strings s1 and s2 such that:

– they are separated by a specific distance d, or,
– they occur within a certain distance l.

For efficiency, string matching operations across different
rules should be shared, so that all matches can be identi-
fied in a single scan of payload data. Unfortunately, multi-
pattern matching algorithms such as Aho-Corasick [1] cannot
be directly used because of the need to support the above
constraints. The alternative of matching rules one-by-one is
unacceptably slow because Snort operates on thousands of
rules. Therefore, Snort uses the following two-stage process
to filter out most of the inapplicable rules. In the first stage,
it uses a small set of packet fields that appear in almost all
rules, e.g., source and destination ports, to divide the rules
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into subsets R1, . . . ,Rn, each of which agree on these fields.
For the second stage, it constructs an Aho-Corasick automaton
for each Ri. This automaton includes the longest strings from
each rule R ∈ Ri, and is used to quickly select a subset of Ri

whose longest string matches the payload. Finally, each rule
in this subset is matched one-by-one against the payload. We
will refer to this final step as slow search, and the preceding
steps as fast filtering.

Since the one-by-one match phase can be time-consuming,
the primary goal of the fast filtering phase is to reduce the
number of rules that are involved in the slow search. The
algorithms presented in this paper are effective in this regard:
our technique uses as many packet fields as possible in the first
stage to reduce the sizes of the subsets Ri. We then replicate
Snort’s use of Aho-Corasick automata for each of these sets.
Section IX-C shows the improvements that we achieve in the
end-to-end performance of Snort using this approach.

In the presence of non-determinism, a modification to this
procedure is needed in order to avoid repetition of string-
matching tests after backtracking. Specifically, we build the
Aho-Corasick at the first non-deterministic node encountered
on a root-to-leaf path in the automaton, and perform an
intersection of the set of rules returned by the Aho-Corasick
automaton with those identified by our algorithm.

We can extend this approach to take advantage of all the
strings in a filter, as opposed to using just the longest one.
The idea is to replace each distinct string match in a filter
with a corresponding (boolean-valued) variable, and build a
matching automaton for this new set of filters. Next, an Aho-
Corasick automaton is constructed for all the strings. Now,
given a packet, we initialize all boolean variables to false, and
then scan the packet through the Aho-Corasick automaton.
Whenever a match for a string is identified by this automaton,
the corresponding boolean variable is set to true. We then
process the packet, together with these boolean variables, using
our packet matching automata. For details, see [39].

IX. EVALUATION

We evaluated the effectiveness of our techniques in the
context of NIDS (Section IX-B) and firewalls (Section IX-D).
Whereas we generate native code from our matching automata,
most previous techniques such as Snort [26] and Snort-NG
[16] represent the automaton as a data structure that is inter-
preted at runtime. This factor alone makes our packet matcher
many times faster than the corresponding component of most
previous systems. Thus, comparison of raw performance does
not bring out the benefits many of our techniques. Hence,
we focus our evaluation on metrics that are independent of
low-level implementation such as the number of states in the
automata, path lengths in the automata, etc.

We begin with a comparison of the automata constructed
by our technique and the BPF+ packet filtering technique. We
then compare performance with Snort [26] and Snort-NG [16],
two NIDS systems that operate on network packets. Finally, we
present the performance of our algorithms for firewall rules.
A. Packet Filtering

Our goal in this section is to visually illustrate the dif-
ferences in the automata built by our technique and the one
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Fig. 5. Backdoor detection: BPF+ (left) and Condition factorization (right)

constructed by the BPF+ [5] technique. Although both works
avoid redundant tests, our approach for achieving this goal
differs from theirs. In particular, condition factorization proac-
tively creates opportunities for sharing computation, whereas
BPF+ takes a more passive approach, eliminating later tests
whose satisfaction can be proved using data-flow analysis.

A visual illustration is necessarily limited by space con-
straints, so we consider just a single example here, namely,
the signatures used for detecting backdoors [45] for services
such as ssh and ftp. We instrumented a version of pcap library
that uses BPF+ to compile the filter expressions to generate
the corresponding automata. Figure 5 shows that even for
a small number of simple filters. The height of automaton
generated by BPF+ can be significantly larger than that of our
technique. The longest path in the BPF+ automaton is thrice as
long as that of condition factorization. Note that path lengths
correspond closely to matching times.

It is important to note that shorter path lengths of condition
factorization result from our techniques for select, whereas
the long path lengths of BPF+ result from its use of left-
to-right traversal order. For this reason, similar differences in
path lengths are to be expected for many other works that also
examine packet fields in the order of their occurrence.

B. Packet-field matching in NIDS

For our experiments we use Snort [26] which is a popular
open-source NIDS. Snort signatures consist of two main com-
ponents: tests involving packet fields, and content-matching
operations on the payload. According to [11], packet-field
matching and content-matching are the most expensive parts
of Snort, accounting for 21% and 31% of the execution time.
This section presents a comparative evaluation of packet-
field matching, while the next section evaluates end-to-end
performance that includes content-matching time as well.

Although earlier versions of Snort relied largely on sequen-
tial matching (i.e., matching a packet against one signature
at a time), subsequent versions (specifically, version 2.0 and
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later) match the signatures in parallel. An ad-hoc approach
for parallelizing is utilized, where a small set of hand-picked
packet fields, such as destination ports, are tested first, but
there is no systematic technique for matching other packet
fields in parallel. In contrast, Kruegel and Toth developed the
Snort-NG [16] system, which demonstrated the performance
gains achievable by parallelizing signature matching. They use
an entropy-based algorithm to decide which packet field to test
at each node. Their technique is the only one that we are aware
of that uses a sophisticated packet-matching algorithm for
Snort-type rules. Hence we compare our performance results
with them. To simplify this comparison, we used all the alert
rules from the rules that come with Snort-NG-1.8.7 [35],
which total 1635 rules. (This rule set is available at http://www.
seclab.cs.sunysb.edu/seclab/cfac/snortng/exp.html.) Since our
focus is on matching packet fields, we combined the rules that
differ only in payload contents, leading to 305 unique rules.
Fifteen distinct fields were tested in these rules. Of these:
• 5 fields involve only equality tests
• 4 fields involve bitmasking with equality and disequality
• 3 fields involve only equality and inequality, and
• 3 fields involve equality, inequality, and disequality.

Automata size comparison with Snort-NG. Figure 6 shows
the effect of increasing the number of rules on the number
of automaton states. We note that Snort-NG decision trees
contain some states that perform tests and others that are used
for purposes such as identifying the type of field being tested.
For our experiments we only counted the states which actually
perform some test. We can see from the graph that as the
number of rules increases, the number of states in Snort-NG
increases much faster than our technique.

For 300 rules, Snort-NG automaton contains over 45,000
states. This happens in spite of the fact that Snort-NG divides
the rules into several subsets, and builds an independent
decision tree for each group. This is done because Snort NG
experiences an unacceptable space explosion if it attempts to
build a single decision tree for the entire rule set. This means
that packets have to be processed sequentially by each of these
decision trees, leading to repeated computation. In contrast,
condition factorization is able to construct a single matching
automaton that avoids repetition of any tests. Despite this, it
achieves more than an order of magnitude size reduction.

Effect of Optimizations on Automaton Size. Figure 7 shows
the effects of various optimizations on the automaton size.
• Order of testing fields. As compared to left-to-right (LR)
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order for examining packet fields, our techniques for realiz-
ing select produce tree automata that are much smaller: for
120 rules, the LR automaton has 150,000 states, whereas
our automaton has less than 3000 states.

• DAG Vs tree automata. For our technique, DAG automata
were smaller than tree automata by about a quarter to one-
third. Much larger space reductions were achieved for LR
automata. Despite these reductions, space usage for LR
automata remains much higher than with other techniques.

• Benign nondeterminism. By exploiting benign non-deter-
minism, we achieved dramatic reductions in space usage.
This is because Snort contains many rules which test some
common fields. Our technique prefers these common fields
for testing, since they are the ones that are likely to be
discriminating. Once these common fields are tested, the
residual rule sets contain many independent subsets.

Some combinations of our techniques worked much better than
others. For instance, benign nondeterminism leads to large
improvements in size when combined with discriminating
tests. It was much less effective when used with LR order.
In contrast, LR automata provide far more opportunities for
DAG optimization, as compared to alternative techniques.

Matching time comparison with Snort and Snort-NG. For
measuring runtime performance, we used two sets of data. The
first one consists of all packets captured at the external firewall
of a medium-size University laboratory that hosts about 30
hosts. Since the firewall is fully open to the Internet (i.e.,
the traffic is not pre-screened by another layer of firewalls
in the University or elsewhere), the traffic is a reasonable
representative of what one might expect a NIDS to be exposed
to. Our trace contains about 21 million packets collected over a
few days. Figure 8 plots the matching time against the number
of rules for Snort, Snort-NG and our technique.

We also used a second packet trace for performance mea-
surement. This data corresponds to 10 days of packets from
the MIT Lincoln Labs IDS evaluation data set [21], consisting
of 17 million packets. Figure 9 shows the matching times for
this data. While there has been some criticism of this data for
the purpose of evaluating IDS, they primarily concern artifacts
in the data that may make it easier to detect attacks. Since our
focus is not on evaluating the quality of the rule set, these
concerns are not that significant in our context. Moreover, we
note that the results obtained with both data sets are similar.

In the Figures 8 and 9, it can be seen the matching time
remains essentially constant with our technique, even as the

http://www.seclab.cs.sunysb.edu/seclab/cfac/snortng/exp.html
http://www.seclab.cs.sunysb.edu/seclab/cfac/snortng/exp.html
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number of rules are increased from 0 to 300. In contrast, the
matching times for Snort and Snort-NG increase significantly
with the number of rules. The base matching time for all the
techniques is roughly the same, as it corresponds to the time
spent by Snort to read network packets and perform other
book-keeping operations related to matching.

The flatness of the graph for condition factorization can be
attributed to two factors.
• Our automata are compiled into native code, whereas

Snort-NG and Snort use an interpreted approach. Native
code provides much faster performance.

• Our techniques yield automata that are mostly determinis-
tic, and don’t repeat tests. As a result, the number of tests
performed won’t increase significantly as the number of
rules is increased. In contrast, Snort and Snort-NG end up
repeating tests, and these repetitions increase as the rule
set size increases.

In an effort to separate these two factors, we undertook
additional experiments on our system. In particular, Figure 10
plots the average path lengths of our automata as the number
of rules is increased. As the number of rules increases from
10 to 300 — a factor of 30 — the average path length
increases by less than a factor of 3. Since path lengths capture
the number of tests performed before announcing a match,
they correlate well with matching times, and hence provide
a measure of automaton “goodness” that is decoupled from
lower level implementation choices.

We also compared the rate of increase in path lengths of
our automata with the match verification cost (MVC) metric
defined in Section VII-A. Recall that MVC(F) defines a lower
bound on the time taken by any packet matching technique
to announce a match for all the filters in F . We plotted
the average of MVC(Fl) for each leaf l in our automata in
Figure 10, as the number of rules is increased. Given that
MVC is typically an unachievable lower bound, the fact that
our technique comes within a factor of two is remarkable.

C. End-to-end Performance of NIDS

In this experiment, we compare the aggregate performance
benefits of our techniques. In particular, we compare the total
time taken by Snort (when using its original packet and string
matching components) with a Snort-version that we modified
to use condition factorization. The times measured include the
total processing time, including the times for reading packets,
matching them against rules, and raising alerts. Our modified

Snort version uses the payload matching techniques described
in Section VIII-C. The performance measurements use the
laboratory packet trace described previously.

Figure 11 shows the overall time taken by Snort with
and without our modification, as we vary the number of
rules. While the performance is nearly identical for small
rule sets, it quickly increases to (and stabilizes at) at about
a 30% performance advantage for condition factorization at
few hundred signatures. (Recall that our default signature set
had about 1600 rules, but the number was reduced to about
300 if content-matching conditions were deleted.)

According to Fisk et al [11], only about 50% of Snort’s
execution time is attributable to packet-field and content
matching, the two tasks whose performance is improved by our
techniques. As a result, even a 3-fold reduction in matching
times can be expected to yield just one-third reduction in
end-to-end runtime. This suggests that the 30% reduction we
achieve in end-to-end performance must be underpinned by a
much larger improvement in matching times. To get a better
handle on this, we measured the number of times the slow-
search phase was invoked in original and modified Snort. It
was invoked about 120M times originally, but was reduced
by a factor of three to 40M by condition factorization — an
observation that seems consistent with our expectation on the
degree of improvement needed in the matching phase.

D. Firewall Rule Matching

The firewall rule set we considered is typical for a small
to medium scale organization such as a department in a
University. It divides a network into several subnets: the
main network (all servers, workstations, etc), DMZ network, a
wireless network, and a testbed network. The firewall is used
for the traffic between these subnets and to the outside world.
The rules are in the form of iptable rules for a Linux machine.
There were a total of 140 filtering rules.

Figure 12 shows the automaton size as a function of the
number of rules. The automaton size increases at a somewhat
faster rate than in the case of NIDS because firewall rules
are totally ordered in terms of priorities. As a result, they can
never have independent subsets of filters, and hence the benign
nondeterminism technique cannot be applied.

Figure 13 compares the cost of our automata with the lower
bounds for match verification. Although the results in this case
seem similar to that obtained for NIDS rules, we point out
that they are actually better than what they appear to be. In
particular, to verify a match for a filter F in the presence of
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priorities, it is not sufficient to just verify if the tests in F
hold, but we also need to verify that at least one of the tests
in each of the higher priority rules don’t match. As a result,
the match verification lower bound is strictly higher than the
number for unprioritized rules used with NIDS.

X. CONCLUSIONS

In this paper we presented a new technique for fast packet-
matching. Unlike previous techniques, our technique is flexible
enough to support filtering as well as classification applica-
tions. It can support prioritized rules such as those used in
firewalls, as well as unprioritized rules requiring all matches to
be reported, such as those used in intrusion detection systems.
We developed novel techniques and algorithms that guarantee
polynomial size automata, while, in practice, avoiding repeti-
tions of tests. Our experiments show that the technique is very
effective in reducing automata size as well as matching time.
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