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ABSTRACT
Fine-grained binary instrumentations, such as those for taint-
tracking, have become very popular in computer security
due to their applications in exploit detection, sandboxing,
malware analysis, etc. However, practical application of
taint-tracking has been limited by high performance over-
heads. For instance, previous software based techniques for
taint-tracking on binary code have typically slowed down
programs by a factor of 3 or more. In contrast, source-code
based techniques have achieved better performance
using high level optimizations. Unfortunately, these opti-
mizations are difficult to perform on binaries since much
of the high level program structure required by such static
analyses is lost during the compilation process. In this
paper, we address this challenge by developing static tech-
niques that can recover some of the higher level structure
from x86 binaries. Our new static analysis enables effec-
tive optimizations, which are applied in the context of taint
tracking. As a result, we achieve a substantial reduction in
performance overheads as compared to previous works.

Categories and Subject Descriptors
D.3.4 [Languages]: Processors, Optimization

General Terms
Languages, Security, Performance

1. INTRODUCTION
A number of recent advances in software security are based

on fine-grained program transformation techniques. Run-
time policy enforcement techniques (e.g., program shepherd-
ing [16], CFI [1] and XFI [13]), memory error detection tech-
niques (e.g., bounds-checking C [15], Valgrind [29]), exploit-
protection techniques (e.g., StackGuard [11] and some ran-
domization techniques [5]) are all examples of such trans-
formation based defenses. More recently, dynamic taint-
tracking (also known as information flow tracking) has be-
come very popular due to its applicability for detecting a
wide range of attacks [24, 25, 14, 33], malware analysis [32,
12, 35], automated signature generation [10, 24], and so on.

∗This research is supported in part by an ONR grant
N000140710928 and an NSF grant CNS-0627687.
†This author is currently at University of California, Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CGO’08,April 5–10, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

Many security-enhancing transformations maintain and
check metadata associated with a program’s data. For in-
stance, memory error detection requires instrumentation to
maintain metadata about memory allocations, pointers and
arrays used in a program. Similarly, taint-tracking requires
every data move (or arithmetic) operation to be instrumented
to compute the taint of the destination operand. Archi-
tectural modifications (for metadata maintenance) can sup-
port efficient fine-grained instrumentation [31, 8], but are
not as flexible or practical as software-based implementa-
tions. Consequently, most practical implementations rely on
software-based approaches for fine-grained instrumentation.

Since source code is often unavailable for COTS software,
binary (rather than source-code) instrumentation is prefer-
able. Moreover, binary instrumentation is applicable to code
written in many languages, including C, C++, and assem-
bly1. Unfortunately, fine-grained binary instrumentation in-
curs significant performance penalties. For instance, some
of the earlier works on taint-tracking slowed down programs
more than ten times, while the best known performance
overheads come in at above 300% [26]. In contrast, source-
code transformations have achieved much lower overheads
(in the range of 50%) [33, 17] due to the following factors.

• Source-code instrumentation techniques can “piggy-back”
on powerful optimizations provided by the compiler for
the source language. In contrast, static analysis and op-
timizations are much harder on binaries due to the lack
of high-level information such as variable and function
boundaries, data types, etc.

• Robustness requirements of fine-grained transformations
have so far driven the use of dynamic translation [16,
20, 23, 6] for handling large COTS binaries, as opposed
to static binary rewriting. Since these techniques oper-
ate entirely at runtime, they are constrained to use very
light-weight analysis techniques. Moreover, since they
transform each basic block during its first execution, it
is difficult to perform static analyses across basic blocks,
thereby further limiting the nature and effectiveness of
optimization techniques that can be used.

We bridge this performance gap in this paper by developing
effective yet scalable static analysis techniques for binaries.
We then develop static binary instrumentation techniques
that achieve substantial improvements in performance as
compared to the best results reported previously [26]. Al-
though our implementation targets taint-tracking, our anal-
ysis techniques are more broadly applicable. Below, we de-
scribe the challenges of efficient binary instrumentation and
summarize the contributions of this paper.

1Many popular applications such as Mozilla Firefox, GIMP, and
several media players make significant use of assembly code.



typedef struct {int a;} ABC;

ABC array[10], min = {0};

int subtract (int a, int b) {

return (a - b);

}

int (*comp)(int, int)

= subtract;

ABC get_min(ABC* x) {

ABC temp = min;

if (less_than(x, &min))

temp = *x;

return temp;

}

int less_than(ABC *x, *y) {

return comp(x->a, y->a);

}

void main () {

int i = 0, size = 10;

for (i=1; i<size; i++)

min=get_min(&array[i]);

}

<get_pc_thunk_bx>:

mov [esp], ebx

ret

<get_min>:

sub 28, esp

mov ebx, 12[esp]

call get_pc_thunk_bx

add STATIC_OFF_2,

ebx

.....

mov ebp, 24[esp]

mov 32[esp], ebp

.....

call less_than

.....

mov esi, [ebp]

mov ebp, eax

mov 24[esp], ebp

add 28, esp

ret 4

<subtract>:

mov 4[esp], eax

sub 8[esp], eax

ret

<less_than>:

push ebx

sub 8, esp

mov 20[esp], eax

call get_pc_thunk_bx

add STATIC_OFF_1,

ebx

mov [eax], eax

mov eax, 4[esp]

mov 16[esp], eax

mov [eax], eax

mov eax, [esp]

mov off_funcptr[ebx],

eax

call [eax]

add 8, esp

pop ebx

ret

<main>:

lea 4[esp], ecx

and -16, esp

push -4[ecx]

push ebp, edi, esi, ebx

.....

lea 20[esp], edx

Z: mov edx, 16[esp]

mov array_offset[ebx], eax

mov min_offset[ebx], ebp

lea 4[eax], esi

lea 40[eax], edi

L: mov 16[esp], eax

X: mov esi, 4[esp]

add 4, esi

Y: mov eax, [esp]

call get_min

sub 4, esp

cmp edi, esi

.....

jne L

pop ecx, ebx, esi, edi, ebp

lea -4[ecx], esp

ret

Figure 1: A simple C program that finds the minimum element in an array, and its compiled code.

Challenges in Efficient Binary Instrumentation
Consider the C-program shown in Figure 1 that finds the
smallest element in an array array, and its compiled code
obtained using gcc-4.1 -O2 -fPIC -fomit-frame-pointer.
This example has been designed to capture the features of
large C/C++ programs, including indirect calls, parame-
ter passing by reference, etc. For comparing array ele-
ments, this program uses the less_than function, which
in turn invokes another function subtract using a function
pointer comp. The assembly code in this example has been
pruned for conciseness, and certain instructions are grouped
together into single “psuedo-instructions” to improve read-
ability. This example illustrates the following challenges of
binary static analysis and instrumentation:

• Missing information on function boundaries and stack con-
ventions. Functions in binaries may have multiple entry
and/or exit points, and may exit as a result of a jump
rather than a return (usually due to tail-call optimiza-
tion). They may not follow typical conventions regard-
ing the stack, and may use the stack pointer and base
pointer registers (ESP and EBP respectively on the x86
architecture) in non-standard ways. To cope with these
difficulties posed by large code bases, compiler variations
and compile-time options, our approach strives to mini-
mize assumptions about the compiler or the binary be-
ing transformed. Specific assumptions made include: the
stack grows down, the stack pointer is preserved by any
function that may be called indirectly, and that a proce-
dure does not access the activation record of other func-
tions unless pointers to those records were passed into the
function. We don’t make assumptions regarding param-
eter passing (i.e., they may be passed on the stack, via
registers or through global memory), caller- and callee-
save registers, use of base pointers, multi-threading, etc.

• Position-independent code (PIC). Note that a function
get_pc_thunk_bx is called that returns (in the ebx regis-

ter) the location of the instruction that invoked it. The
base address for all static variables is computed by adding
an offset (STATIC_OFF_2) to this address. Since binary
rewriting involves relocating functions without relocating
static data, it is necessary to recognize and “fix up” PC-
relative data accesses, or avoid relocating the code frag-
ments that call get_pc_thunk_bx. The main difficulty
here is that different compilers (or compiler versions) use
different mechanisms for PC-relative addressing. Rather
than relying on compiler-specific idioms, we use our static
analysis to detect PC-relative data accesses.

• Scalability and modularity. In order to cope with large
programs, it is necessary to develop modular static anal-
ysis and rewriting techniques that scale to large programs,
while being fast and accurate enough.

• Missing information about local variables. Although most
local variable accesses use ESP as a base pointer, some
functions (e.g., main) use other registers such as ECX. Sim-
ilarly, EBP is typically used to access parameters, but in
optimized code such as the above example, EBP may be
used as a general-purpose register. Rather than using
unreliable heuristics, we perform a static analysis that
accurately identifies local variable accesses.

• Missing information about actual parameters. One may
expect that actual parameters would be explicitly pushed
on the stack, but as shown by the instructions X and Y in
main, they may be stored using stack-relative addresses.
Worse, in optimized code, the actual parameters may be
in temporaries that happen to be at the top of the stack.
Thus, a local examination of the call-site won’t reveal the
number of actual parameters. Hence we rely on a static
analysis of the callee to determine the parameters that are
passed on the stack, or via registers. Except for indirect
calls, we do not rely on compliance with an application-
binary interface (ABI) regarding the use of registers, as
it may not be observed for intra-module calls.



• Aliasing. In the presence of indirect memory accesses, the
soundness of many optimizations requires an analysis of
possible values held by a pointer. For instance, it is safe
to store the metadata associated with a memory location
l in a register R if you can statically identify all the in-
structions that will access l, and instrument them so that
they access the metadata from R. In the presence of alias-
ing, it is possible that multiple pointer expressions may
reference the same memory, making it difficult to identify
all such instructions.

Accurate pointer analysis is a challenging problem even
on source code, and is made even more difficult for bi-
nary code due to the absence of high-level information
such as variables, array sizes, types, etc. Our approach
for pointer analysis is guided by the empirical observation
that on register-starved, stack-oriented architectures such
as x86, accesses to local memory (i.e., locations on the
activation record for a function) significantly outnumber
accesses to global or heap memory [5]. Moreover, most of
these memory locations are accessed within just a single
procedure, making it easier to accurately reason about
these accesses. In contrast, accesses to global and heap-
allocated variables tends to be more distributed spatially
(across several procedures) and temporally (i.e., multiple
function calls may be made and/or many possible pro-
gram paths traversed between two accesses to the same
memory), which makes it difficult to reason about them
accurately. Our approach hence strives to reason accu-
rately about most local variable and parameter accesses,
while treating global and heap accesses conservatively.

• Functions with (unusual) side-effects. Note that get_min
deallocates the return structure pointer passed into it (at
instruction Y in main), rather than expecting its caller
to perform the deallocation. As a result ESP value is not
preserved across the call to get_min. Once again, we rely
on a static analysis to cope with these side-effects.

Contributions
We make the following contributions in this paper.

• We develop a flow-sensitive static analysis technique in
Section 4 that we call as stack analysis for recovering and
reasoning about the values stored in registers and vari-
ables in the activation record of each function. Although
it shares some of the same objectives as the value-set anal-
ysis (VSA) [2], it differs in several ways. First, our focus
is on a modular and fast analysis that ignores global and
heap memory, whereas VSA trades off speed for increased
accuracy in tracking global and heap memory. Second,
by using a different abstract domain, we are not only able
to derive that the contents of certain memory locations
(or registers) aren’t equal, which is useful for ruling out
aliases, but also that some values are equal or that they
differ by a constant. Reasoning about equalities is im-
portant for minimizing assumptions on the way ESP and
EBP are used, and to assert certain properties such as en-
suring that callee-saved registers are left unchanged across
function activations.

• Based on stack analysis, we develop an escape analysis on
binaries in Section 5 that detects instances when a ref-
erence to a local variable escapes a function. This can
happen because the address is passed to another func-
tion (via registers or through procedure parameters), or

is stored in non-local memory. In our experiments, we
found that most functions are “safe,” i.e., local addresses
of these functions do not escape them. Hence we are able
to realize most benefits of our optimization even though
they mainly target such safe functions.

• In Section 6, we present three sound optimizations that
improve the performance of metadata operations:

– Tag-sharing. We have developed a new static analy-
sis for optimizing taint-computation. It is based on the
observation that due to the introduction of temporaries
for expression evaluation, and the need imposed by a
register-starved architecture (such as x86) for saving
registers on the stack, it is common for multiple local
memory locations and registers to have the same taint
value. Our analysis identifies such locations, and uses
a single taint tag for all of them. As a result, tag up-
dates can be eliminated for data movement operations
involving variables that share the same taint tag. Note
that this optimization is applicable to binary as well as
source-code instrumentation approaches.

– Metadata-caching. First, we store metadata for regis-
ters (and a subset of local variables) in one or more
general purpose registers. Second, we use a shadow
stack for holding metadata for stack-memory. Although
this technique does not reduce memory accesses, it im-
proves performance since metadata accesses can use
EBP or ESP as the base register instead of having to
find another free register, which would in turn require
a save/restore to memory.

– Code specialization. We have explored the generation of
two versions of code for each function. The first version
is used when all local variables and registers are un-
tainted, and the other when some of them are tainted.
In the first version, tag updates can be avoided for all
register and local memory computations. Memory store
operations require writing a zero to the associated taint
storage. Memory loads require a check to determine if
the source location is tainted, and if so, jump to the sec-
ond code version. Although conceptually similar to the
fastpath optimization outlined in [26], our technique is
more effective due to its use of more powerful analysis.

• We have developed an implementation that is robust enough
to handle moderately large programs in C and C++ such
as Gaim (234 KLOC) and GIMP (742 KLOC) on Linux.
It can handle multi-threaded programs. It is capable
of defending itself from typical software exploits such as
memory corruption attacks, but our optimizations assume
benign code, i.e., code that does not actively evade our de-
fenses. Our performance evaluation, carried out on a sub-
set of SPEC95 INT programs, shows substantive speedups
over previous techniques.

Paper Organization
We begin with background on taint-tracking and static bi-
nary rewriting in Section 2. Following this, we present our
static analyses in Sections 3 through 5, and then describe
the optimizations based on these analyses in Section 6. Ex-
perimental evaluation is described in Section 7, followed by
a discussion of related work in Section 8 and concluding re-
marks in Section 9.



2. BACKGROUND

2.1 Dynamic Taint-Tracking
Dynamic taint-tracking associates one or more bits of taint

with each byte (or word) of program data. When working
with low-level languages such as C or binaries, a global array
tag, indexed by memory locations, is used to maintain these
taint tags. Specifically, tag[l] stores the taint associated with
the data stored in memory location l.

Taint originates at source functions, such as network or file
read operations. The idea is to mark data as tainted if it is
received from an untrustworthy source. In the simplest case,
one bit of taint is sufficient, but there are situations where
multiple bits are useful, e.g., to distinguish between multiple
input sources or to distinguish between trust levels. Attacks
are detected by checking the taint bits at sink points. For
instance, control-hijack attacks involve tainted data being
used as a code pointer. More generally, user-specified poli-
cies may be enforced regarding the use of tainted data at
these sinks, and a wide range of attacks detected as viola-
tions of these policies [33].

Taint-tracking requires a program transformation to prop-
agate taint from source operands to destination operands of
every instruction. Constants are considered as untainted,
while the result of any arithmetic, logical, or data movement
operation is deemed tainted if any of the input operands is
tainted. While much of the research on information flow
concerns itself with control dependences and implicit flows,
most works that employ dynamic taint-tracking for attack
detection [31, 24, 33, 26] are focused mainly on data depen-
dences in order to minimize false positives.

Some of the dynamic taint-tracking approaches have re-
lied on architectural modifications for taint instrumentation
[31]. Taintcheck [24] uses dynamic translation (using Val-
grind [23] or DynamoRIO [16]). For reasons mentioned ear-
lier, binary instrumentation without optimization leads to
heavy performance overheads, typically slowing programs
down by a factor of 10 or more. Several effective opti-
mizations have been suggested in [26, 9], such as minimizing
register save/restores, use of faster instructions, and so on.
These optimizations serve as our starting point. We com-
bine them with several powerful static analysis techniques
that can be applied within our static rewriting framework so
as to achieve further significant improvements. To conserve
space, we have not described the basic taint transformation
or the optimizations that we have borrowed from [26], refer-
ring the reader to that paper for details.

2.2 Static Binary Rewriting
Static binary rewriting operates offline on executables and

libraries [18, 34, 30], while dynamic binary rewriting tech-
niques operate on code stored within the memory of a run-
ning process [16, 20, 6, 28]. The two differ primarily in
that offline techniques need deeper knowledge of executable
formats such as ELF or PE, and can use more expensive
analysis or instrumentation techniques. We use an offline
approach that uses code derived from LEEL [34] for ELF
related editing, and a backend based on nasm assembler
for generating machine code for new instructions introduced
during rewriting.

Two important issues in static binary rewriting, as op-
posed to dynamic translation, are as follows. First, static
rewriting requires the entire program to be statically disas-

sembled. Several disassembly techniques have been devel-
oped [27], but the problem of accurate static disassembly of
all “stripped” binaries (i.e., binaries that contain no symbol
information) isn’t fully solved yet. Since our focus is not
on disassembly, we have simplified our implementation task
by assuming that information about function entry points
is included in the binary. With continued advances in dis-
assembly techniques, it should be possible to eliminate this
assumption from our implementation2. We point out that
unlike the Vulcan [30], we do not assume the availability of
any high level information regarding variables, types, etc.

Second issue in static binary rewriting is that in-place in-
strumentation is generally not possible since instrumented
code usually requires more space than the original code.
Simply moving functions to a new location that has the re-
quired space isn’t feasible either. Such moves requires all
the calls to these functions to be redirected to their original
location, but this is difficult in the presence of indirect calls
whose destinations cannot be statically determined. In gen-
eral, without additional compiler-provided information such
as relocation information, there is no safe way to relocate
functions. We employ the common technique of introducing
jumps from the original function entry points to the corre-
sponding entry points in the instrumented version [21]. The
rest of the original code is replaced with an invalid opcode so
that any jumps into that code results in a runtime exception.
This is done so that (a) implementation bugs that result in
such jumps would be identified and fixed, and (b) attempts
to evade security checks by executing uninstrumented code
version will be caught. To deal with instances where insuf-
ficient space is available at instrumentation points (to hold
5 byte x86 jump instructions), we use two-level jumps — a
first near-jump to an intermediate code block that performs
the final dispatch to the target code.

3. IDENTIFYING FUNCTIONS
As a first step in instrumentation, our technique computes

basic blocks that define the basic unit for rewriting. A basic
block is a sequence of instructions that has a single entry
point and a single exit point. Basic blocks are disjoint. Due
to rewriting, basic blocks may expand, and hence jumps
to basic blocks need to be fixed up. No adjustments are
necessary within a basic block as code executes sequentially.

Given our goal of performing static analysis at the pro-
cedural level, we need to recover a notion of functions in
binary code. We define an assembly function as a collection
of basic blocks that has a single entry point that is reached
using a call instruction located outside the function; and one
or more exit points that transfer control from the function
to some code outside. Note that the entry point may be
reached using jump instructions from outside the assembly
function, but there has to be at least one call to the entry
point. An exit point may be a return instruction, or a jump
to the entry point of another assembly function. Note that
this definition does not permit functions with multiple entry
points. When they do arise, we treat it as multiple disjoint
assembly functions by creating a unique copy of shared ba-
sic blocks (i.e., basic blocks that may be reached from more
than a single entry point) for each assembly function.

2For instance, our approach can work well with robust disassem-
bly techniques that rely on a hybrid approach, such as BIRD [21],
which perform static disassembly of most code, while relying on
runtime disassembly and instrumentation for the rest of the code.



⊥

⊤

X1 + [l1, h1] Xn + [ln, hn]. . .

const

[l, h]

Figure 2: The abstract domain for

stack analysis.

Instruction (I) Abstract store (A′)
R := c Upd(A, [R 7→ [c, c]])
R := R′ Upd(A, [R 7→ A[R′]])

R := ∗(R′) Upd(A, [R 7→
S

x∈A[R′] A[x]])

∗(R) := R′ Upd(A, [x 7→ A[R′]]), if A[R] = {x}
Upd(· · · (Upd(A, [x1 7→ A[x1] ∪ A[R′]]) · · ·

· · · ), [xn 7→ A[xn] ∪ A[R′]])
if A[R] = {x1, ..., xn}, n > 1

R := R1 + R2 Upd(A, [R 7→
S

r1∈A[R1],r2∈A[R2] r1 ⊕ r2])

call(f) Upd(· · · (Upd(A, [x1 7→ applysum(A[x1], f, x1)]) · · ·
), [xn 7→ applysum(A[xn], f, xn)])

where ModifiedNonLocals(f) = {x1, ..., xn}

Figure 3: Abstract interpretation for stack analysis.

Our assembly function abstraction incorporates a notion
of call stack that holds return addresses, and the notion
that the esp register points to the top of the stack, and
that the stack grows down. But it does not assume a stack-
based model for parameter passing. Except for indirect calls,
it does not make assumptions on caller-save or callee-save
registers. These features enable our technique to handle
compiler-generated as well as hand-written assembly code,
including some low-level code found in libraries such as glibc.

4. STACK ANALYSIS
Stack analysis is aimed at deriving static estimates of the

values of registers and local memory, i.e., memory locations
in the activation record of (assembly) functions. Note that
the notion of an activation record is closely related to the
value of the esp register at the function entry point: it refers
to the region of memory surrounding this esp value that are
accessed by the function.

We use an abstract interpretation over the domain shown
in Figure 2. Points in this domain take the form Base+
[l, h], where Base and h are optional. Base, if present, is a
symbolic value X that denotes the value of a specific register
or local memory at the entry point of a function. A unique
symbolic value is associated with each distinct register and
each local memory location. A missing base is treated as
equivalent to zero, and a missing h is treated as equal to
l. Both l and h are (possibly negative) integers. Note that
the symbolic value corresponding to the initial esp value,
denoted BaseSP , plays a special role since it defines the
notion of local memory.

If a register (or a local variable) has an abstract value X+
[l, h] at a program point, that means that its concrete value
will be in the range of X+l to X+h (inclusive). The abstract
value [l, h] denotes a concrete value between l and h. The
abstract value const denotes an unknown concrete value,
with one limitation: if this value is used as an address, then
it does not point to local memory addresses. This captures
the assumption that addresses of local variables are“created”
by an activation of a function, and pointers to those variables
cannot exist prior to this. (As described in the next section,
an escape analysis is used to determine instances when a
local variable address is stored in a global memory. In those
cases, global memory reads will return ⊤ rather than const.)

In order to simplify our description, we describe stack
analysis in Figure 3 using a simplified language that resem-
bles a RISC instruction set. The definition in Figure 3 spec-

ifies the abstract store A′ that results from the execution of
an instruction I with an abstract store A. In the figure, R

(possibly with subscripts) refers to a register. The abstract
store associates a set of up to k abstract values (where k is
a small constant) with each register and memory location.
The abstract store distinguishes between different locations
in local memory, but does not do so among global or heap
memory locations. The initial content of global and heap
memory locations is given by const. The notation A[l] de-
notes the contents of the abstract store at location l, while
the function Upd is used to update its contents. Note that
there are two cases for memory updates. If the location be-
ing updated is precisely known then its abstract value can be
replaced. If it is not known precisely, then we cannot update
the location; instead, we conservatively assume that the new
value of each of these locations should include the value of
the right-hand side of the assignment. Furthermore, recall
that A only distinguishes between different locations in the
local memory, i.e., it distinguishes between BaseSP +x and
BaseSP + y when x 6= y. All addresses that are not of this
form are treated as if they are a single abstract location.

For an arithmetic operation ‘+’, the corresponding ab-
stract operation is denoted by ‘⊕’. For two abstract values
a and b, if one of them is of the form X+[l1, h1] and the other
is of the form [l2, h2] then a⊕b is given by X+[l1+l2, h1+h2].
If they are of the form X + [l1, h1] and Y + [l2, h2] then the
result is const if neither X nor Y is BaseSP , and is ⊤ other-
wise. If an instruction causes the number of abstract values
associated a location to exceed k, an appropriate generaliza-
tion is used to reduce the number of values to k or less.

Conditional branches and merges are handled in the usual
way. In particular, the abstract store at a merge point is
set to be the union of abstract store values at the end of
each basic block that transfers control to the merge point.
Although we could restrict the abstract store to contents
that is consistent with the condition guarding a branch, we
have not done this currently for simplicity.

For handling call-returns, our analysis computes summaries
for each called function and applies these summaries at the
calling point. Note that there is a single summary, regardless
of the calling context. A summary for a function f captures
the following information:

• change in esp as a result of invoking f . This value will
typically be zero, although it can also be ⊤ or non-zero.

• maximum size of activation record of f , which captures
the range [BaseSP + l, BaseSP + h] of local addresses



ever accessed by f , where BaseSP denotes the value of
esp register at the entry of f , and l, h ∈ [−∞· · ·∞].

• input parameters to f , which are registers or local vari-
ables of f ’s caller that are possibly used before being clob-
bered in f .

• changes to registers and parameters of f as a result of f ’s
execution. Note that our abstract interpretation captures
the values of registers and local memory of f in terms of
their values at the entry point of f . Thus the abstract
value of registers and parameters at the exit point of f

provides the summary we seek.

Given these summaries, our abstract interpretation uses a
function applysum to update the abstract store to reflect
local memory and register changes specified in the summary.
If the summary for a function f indicates that it may leave
a location l unmodified or change it to one of the values
x1, ..., xn then applysum associates the set of abstract values
A[l] ∪ {x1, ..., xn} with the location l.

Note that the summary information we aim to compute
depends on the effect of the functions that are called by f .
For example, if a function changes the value of ESP by k, it
has an effect in its caller at the point of the call. Therefore,
the analysis uses multiple passes. It starts with the base
case that called functions leave the ESP value unchanged,
and access no parameters. In the first pass, each function
is analyzed separately and a summary set representing the
first approximation of its effect is generated. In subsequent
passes, this summary information refines the abstract com-
putation at function call points. As a result, better approxi-
mations of summary sets are produced after each pass, until
a fixed point is reached. The analysis is modular and works
well in practice.

Typically, there is a small subset of the x86 instructions
that our analysis needs to deal with, since address values
are not involved with most instructions. In case of loops,
we may encounter successive approximations that are ele-
ments of an infinitely ascending chain, such as when incre-
menting addresses or integers in a loop. In such cases, we
must perform widening [7] in order to ensure termination
of stack analysis. Our current implementation resorts to a
very simple form of widening that widens the integer in-
terval component of an abstract value to [−∞, 0], [0,∞] or
[−∞,∞] after inspecting the abstract value for the first two
iterations of a loop. This simplifies our implementation but
may lead to some imprecision when dealing with arrays. So
far, we have not implemented a more sophisticated widen-
ing strategy since it is typically difficult in binaries to reason
accurately about array accesses within a loop.

Our analysis assumes that programs follow a “standard”
compilation model, i.e., the stack grows downwards, and the
return address is pushed on the stack, and this is followed
by the callee’s function activation. For those calls where our
analysis is unable to accurately compute the effect on EBP

and ESP, e.g., indirect calls, it assumes that these registers
are left unchanged by the callee (as per the ABI).

5. ALIASING AND ESCAPE ANALYSIS
Any sound analysis that reasons about the values of

memory-resident objects has to deal with the possible effects
of aliasing. Although our stack analysis typically provides
enough information to rule out aliasing of most local vari-
ables within a procedure, a global analysis is needed to rule

out aliases across the entire program. Such global analy-
sis is typically expensive, and moreover, is complicated by
features common in real-world programs such as indirect
calls (where the target function is unknown), C++ excep-
tion handling, signals, and the need to accurately reason
about the contents of global memory. We have therefore
chosen an alternative technique that reasons about aliasing
among local variables, while conservatively assuming that
global references could be aliased.

Recall that during the stack analysis, we do not maintain
any information about the contents of global memory. As a
result, if a pointer value is read from global memory, we can-
not rule out the possibility that this pointer may reference
local memory. Similarly, a function may create aliases to its
local memory by passing a pointer to some of it local vari-
ables to another function. Our technique copes with these
possibilities using a simple analysis that reasons whether
pointers to local memory of a function may “escape” the
function, i.e., be potentially accessible in registers, global
memory, or the local memory of another function. Since a
function’s local memory is instantiated at the time of its in-
vocation, we assume that pointers to this memory cannot
initially be present anywhere except the stack pointer regis-
ter. Thus, in order for any register or memory location to
contain pointers to local memory, it must propagate from
the stack pointer. This can happen when the address of
a local variable is explicitly stored in global memory, or is
passed as a parameter to another function. Note that in
the case of direct function calls, our stack analysis can iden-
tify parameters passed through registers or on the stack, and
hence can accurately infer if a local variable escapes through
these parameters. In case of indirect calls, or in the case of
calls to variable argument functions, our stack analysis can-
not determine the number of parameters being passed in, so
it conservatively assumes that a local variable may escape if
any register or local variable contains a pointer to another
local variable at the point of this call.

For optimization purposes, we limit our goal to finding
the set of all unsafe functions, i.e., functions that possi-
bly have any of its local memory accessible through indirect
memory references whose targets aren’t accurately tracked
by stack analysis. Functions in which local addresses escape
are clearly unsafe. In addition, since we don’t accurately
reason about array bounds on the stack, any function that
contains arrays on the stack, or modifies its ESP by a non-
constant value (e.g., uses “alloca”) is deemed unsafe. All
other functions are considered safe.

6. OPTIMIZATIONS
Due to space limitations, we omit a description of some of

the standard optimizations used in our code such as regis-
ter liveness analysis and elimination of dead code. We also
omit a description of some of the low-level optimizations,
such as those involving instruction selection, which can be
found in [26]. Instead, our focus in this section is on new
optimizations aimed at speeding up metadata operations,
with particular emphasis on taint-tracking.

6.1 Metadata Caching
In this section, we describe two ways to speed up accesses

to metadata.



Use of dedicated metadata stack.

We split the metadata store into two regions: a metadata
stack that stores metadata for stack locations, and a global
store for storing all other metadata. Actually, there is one
metadata-stack for each thread stack. We use the technique
suggested in [36] for efficient access to metadata stack: by
allocating it at a fixed offset from the stack, we can access
metadata stack using a fixed offset from ebp or esp, thereby
avoiding the need for another register to hold the meta-
data location. Since local variable accesses far outnumber
global or heap memory accesses in most programs [33], this
optimization yields significant performance improvement in
practice.

Note that, for unsafe functions, it is possible that some ac-
cesses to local variables may not be statically identified, e.g.,
if the address of a local variable escapes to a global variable,
and is subsequently accessed indirectly using this global vari-
able. One possibility is to refrain from using metadata stack
for unsafe functions. We prefer an alternative solution: we
use a special metadata value in the global metadata area
region corresponding to stack memory. An indirect access
will first lookup the metadata value in this global metadata
store, and if it has this special value, then a second lookup
in the metadata stack is performed. Since such indirect ac-
cesses to stack memory are relatively infrequent, this two-
step process does not degrade performance significantly. At
the same time, significant benefits are gained by eliminat-
ing the need for runtime address computation for metadata
access for local variables.

We also note that for safe functions, statically unidentified
indirect accesses to local memory should not be possible.
Hence we mark the corresponding region of global metadata
store to indicate that any metadata access using this kind
of indirect reference is an error. This test results in the
identification memory errors such as those involved in stack-
smashing attacks.

Caching metadata in registers.

Metadata operations would be further speeded up if meta-
data can be stored in registers. This is feasible for metadata
that takes very few bits, such as taint. In our implementa-
tion, we have used two general-purpose registers that provide
64-bits of cache. Note that it is safe to store the metadata as-
sociated with a local memory reference to the register cache
only if this reference cannot be involved in aliasing.

We use a register assignment algorithm to determine which
local memory locations and registers should have their meta-
data saved in the register cache. Note that at the point of
function calls, any metadata corresponding to the actual pa-
rameters should be flushed to the metadata stack from the
register cache. For indirect calls (or calls to variable argu-
ment functions), the entire register cache must be flushed to
the metadata stack.

6.2 Tag Sharing
On a register-starved architecture such as x86, the same

data may reside in multiple locations at different times. It
may be moved into a register from local memory to improve
performance, or because the instruction set requires a reg-
ister operand. Subsequently, the register may need to be
pushed on the stack so that it may be used to store some
other value. All these moves may introduce corresponding
moves on the metadata, which can contribute to significant

overhead. Note that these metadata moves can be avoided if
we can statically infer that all these copies can share a sin-
gle copy of metadata. Below, we describe a single analysis
technique that can support both these optimizations in the
context of taint-tracking.

Based on our ability to statically analyze the whole
program flow graph for a function, we perform standard
analyses on the instrumented program. We first represent
the program in SSA form, giving a new tag variable when-
ever we cannot precisely identify which tag variable is
accessed using our static analysis and at φ nodes. Then,
treating taint for constants as “0”, we can perform an analy-
sis similar to constant propagation. Using this analysis, it is
possible to identify a set of variables that require no dynamic
taint tracking — such as the variable i in main of Figure 1 —
which is only involved in arithmetic with constants. Further,
we perform a similar flow-sensitive common subexpression
elimination to determine that many SSA operands share the
same tag variables. For example in Figure 1, just before in-
struction at L in function main, esi, edi and eax can share
the same tag variable.

As a final optimization, we perform liveness analysis for
taint variables which is followed by dead code elimination for
taint operations. This removes much of the taint processing
for the push and pop instructions in main of Figure 1. All of
this has an additional impact on register pressure and cache
performance.

It should be clear that the tag-sharing optimization is
sound for local variables of safe functions: since local mem-
ory references aren’t aliased, we are free to store their meta-
data anywhere. For non-local memory references and for
unsafe functions, we fall back to storing metadata at a loca-
tion determined by the address of the data. It is possible to
relax this limitation to safe functions so as to include a sub-
set of unsafe functions: specifically, for those functions that
are marked unsafe because they make indirect calls (or call
variable argument functions), tag sharing can be applied,
provided the tag values are copied into memory locations
before the call, and restored back after the call.

6.3 Code Specialization
This optimization is particularly effective in the context

of taint-tracking, where it has been observed [26] that most
metadata operations end up propagating a taint value of zero
(i.e., the data is untainted). To utilize this bias, we develop
two versions of the trusted code: a fastpath version that
operates when all the registers are untainted, and a slowpath
version that propagates taint as normal in the presence of
tainted registers.

The fastpath is considerably faster than the slowpath, as
it requires no taint computation or propagation for registers
(as their taint will be zero), and only a single write operation
for clearing the memory taint for store operations. Memory
load operations are the only possible way any register could
get tainted; hence such instructions require a jump to the
slowpath version if the loaded data is tainted.

Although conceptually similar to the fastpath optimiza-
tion developed in [26], the specifics are quite different due
to our use of deeper static analysis, and the differences in
the way we have defined our fastpath optimization. For in-
stance, their fastpath optimization requires runtime checks
at the beginning of each basic block, whereas in our design,
checks are needed only for memory loads. Moreover, since
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ftp 10 6.6
xmms 74 61
VLC player 167 143
httpd 80 66
gaim 151 160
gimp-2.2 545 269
pdftops 135 321
KPDF 277 511

Figure 4: Analysis time.
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Figure 5: Overhead for taint-tracking with different optimizations,

expressed as a ratio of execution time for uninstrumented code.

their fastpath does not perform any tag updates, it cannot
be applied in some instances where all input operands are
untainted. Specifically, if some output operand is tainted,
their fastpath technique cannot be used.

6.3.1 Fastpath for Local Variables
This optimization is an extension of the fastpath tech-

nique to the subset of local variables whose taint is stored
in the register cache. We generate two versions of code as
outlined earlier — the slowpath version remains unchanged,
but the fastpath version makes the additional assumption
that the entire register cache used for storing taint is zero.
The fastpath code can now free up the register cache for
use by the program. Moreover, loads and stores from a lo-
cal memory location do not need taint check as long as its
associated taint is stored in the register cache.

The control switches from fastpath to slowpath if tainted
data is loaded from non-local memory. Switching back from
slowpath to fastpath is also fast, as it only requires checking
of the two registers serving as the taint cache.

7. EVALUATION
We evaluate the scalability of our instrumentation tech-

niques on a collection of moderate-sized C and C++ appli-
cations, while using the SPEC benchmarks for performance
evaluation. All our experiments were conducted on Ubuntu
Linux 2.6.19. system with a 2.2 Ghz Intel Core 2 duo pro-
cessor and 2GB of main memory.

7.1 Functionality
We used small-scale unit tests as well as utility applica-

tions on Linux to verify functional correctness of our tech-
niques. In particular, we marked inputs to these utilities
as tainted and verified that the outputs were tainted in
the manner that we expect. We also checked that on the
SPEC95 INT benchmarks, the outputs were tainted as ex-
pected when the inputs were (partially) tainted.

In addition, we verified that our technique can detect
memory corruption attacks on two real-world HTTP servers,
namely ATPhttpd 0.4b and GazTek ghttpd. ATPHttpd 0.4b
and GazTek ghttpd 1.4 have expoitable buffer overflow vul-
nerabilities, referenced in CVE-2002-1816 and CVE-2002-
1904 respectively. The exploit allows remote attackers to
inject arbitrary code by providing excessively long HTTP
GET payloads. Our dynamic tainting successfully detected
that the network input taints the program counter value
when the attack input is given to the server.

Finally, we verified that the technique is scalable and ro-
bust enough to handle moderately large applications written
in C and C++, such as gimp-2.2 (an image editor), xmms
(a music player), and a core library of Kpdf (a document
viewer in KDE).

7.2 Analysis Time
Running times for the all analysis to complete are shown

in Figure 4. The sizes of binary code for these applications
varies between tens of KBs to a few MBs. This size includes
binary code as well as static data, and hence does not always
correlate well with the analysis time. For this reason, the
table includes the number of instructions rather than the
binary size.

In general, the analysis times were comparable to the build
times for the respective applications, and are hence quite
acceptable for a static instrumentation tool.

7.3 Runtime Performance
We used several CPU intensive programs from the SPEC95

INT benchmark suite for evaluating the effectiveness of our
optimizations. (We did not evaluate performance overheads
on the programs mentioned in the previous paragraph, as
most of them are interactive GUI-based applications.) All
these benchmarks were compiled with gcc-4.1 -O2.

Figure 5 shows the performance overheads for each of
these applications, expressed as a ratio of their uninstru-
mented runtimes. The base numbers corresponds to the
overheads before our optimizations are performed. Note
that the base numbers do reflect some of the standard op-
timizations such as register liveness and dead code elimina-
tion, as well as some of the low-level optimizations outlined
in [26]. As a result, the base figures reflect an average slow-
down by a factor of about 5.8.

We then measured the overheads with the optimizations.
First, the metadata caching optimization was applied. It
leads to about 170% reduction in overhead, reducing it from
a factor of about 4.8 to 3.1. This large decrease is explained
by the following factors:

• The number of registers needed for metadata computa-
tion is decreased by the use of taint-stack, since there is
no need to compute the address of tagmap locations cor-
responding to local variables. As a result, more registers
can be spared for use as metadata caches, leading to sig-
nificant reductions in load/stores of metadata.

• Since metadata-related address computations are avoided
in most cases, the associated clobbering of CPU flags is



also avoided. As a result, expensive flag save/restore op-
erations are significantly reduced. We found that less than
6% of the instructions retain the flag/save restore instru-
mentation after this optimization.

Tag-sharing optimization results in a further overhead re-
duction of about 120% on the average. As described before,
this decrease results because of (a) elimination of metadata
operations when the result can be statically computed, and
(b) elimination of metadata moves associated with many of
the data movement operations.

Finally, code specialization leads to significant additional
reductions in overhead. The fraction of time spent in the
two code versions is a function of the fraction of inputs that
are tainted, which is in turn dependent on the application
for which taint-tracking is being utilized. We therefore mea-
sured the performance of the fastpath and slowpath code
separately. On the average, the fast path incurs about 90%
overhead, while the slowpath incurs about twice this over-
head. Previous research results [26] suggest that an over-
whelming majority of execution uses fastpath, so the actual
performance can be close to the fastpath figures.

Our performance results represent a significant improve-
ment over that reported for LIFT [26]. In particular, our
slowpath performance is about 3 times faster than their
slowpath performance, while our fastpath performance is
about twice as fast as theirs. Moreover, whereas their ap-
proach relies on the availability of additional CPU registers
unused in original application code, our technique does not
require such registers.

8. RELATED WORK

Source-code based techniques for taint-tracking.

Some of the efforts in taint-tracking [33, 17] have been
based on a source-code transformation approach. These
techniques are able to take advantage of high-level infor-
mation available in source-code, and also “piggyback” on
the optimization techniques implemented in compilers. In
contrast, our techniques seek to achieve comparable perfor-
mance while operating on binaries.

Binary instrumentation for taint-tracking.

Binary instrumentation for taint-tracking was first
developed in [24]. While effective in attack detection, their
approach slowed down programs significantly (often, by more
than 20x), sparking interest in optimization techniques.
TaintTrace [9] achieved significantly faster taint-tracking by
using more efficient instrumentation based on DynamoRIO,
combined with simple static analyses for eliminating redun-
dant register saves and a shadow memory data structure
(which is similar to our tagmap) that speeded up meta-
data access. LIFT [26] achieved significant additional perfor-
mance benefits by using better static analysis and faster in-
strumentation techniques. As mentioned earlier, we adapted
many of their low-level optimizations such as those involv-
ing the use of lahf/sahf instead of pusha/popa, but unlike
them, we do not assume the availability of additional dedi-
cated registers for instrumentation.

The primary difference between LIFT and our approach
is that we develop sophisticated procedure-level static anal-
yses that were not considered by them. These analyses have
enabled us to improve over their performance by a factor of 2

to 3. Although our code specialization optimization is simi-
lar to theirs at the high level, there are significant differences
in terms of the specifics, as described earlier.

Static Analysis of Binaries.

Previous techniques have applied abstract interpretation
based analysis to recover some notion of higher level pro-
gram variables on x86 binaries. Our stack analysis shares
some of the goals of VSA [2], e.g., it reasons about inte-
ger values and pointer values simultaneously. But there are
several important differences. Since our interest is in op-
timization, we are willing to sacrifice accuracy for analysis
speed and scalability, as long as the analysis uncovers the
most of the significant optimization opportunities, such as
those involving stack-allocated memory. In contrast, VSA
is focussed on much more accurate analysis, especially of
global and heap memory; and to accurately identify variable-
like entities in binary code [3]. From a technical point of
view, our abstract domain uses symbolic values that allow
us to reason about equality of variables at different program
points, whereas their abstract domain is designed primarily
to discover inequalities. Equalities are essential for reasoning
about the side-effect of function calls on registers (such as
ESP) and stack-based memory. Our approach uses a poly-
morphic function summaries which allows it to scale well to
larger programs, whereas VSA analysis is context-sensitive.

Binary instrumentation frameworks.

Earliest static transformation tools such as EEL [18] were
developed for binary transformation, but they did not con-
sider the complexity of CISC architectures like x86. Recent
robust tools such as Vulcan [30] offer static instrumentation
capabilities, but assume the availability of much more high-
level information such as variable boundaries.

Emulation based techniques such as Bochs [19] and QEMU
[4] are good for whole system analysis, but for application
specific information they offer a much coarser granularity
(for instance, distinguishing OS and application data is chal-
lenging). Dynamic code transformation systems such as Pin
[20], DynamoRIO [16], Valgrind [23], and Strata [28] have
been widely used in security research, and offer good robust-
ness for application transformation at the expense of higher
overheads than ours, especially in applications that require
extensive, fine-grained instrumentation.

BIRD [21] uses a combination of static and dynamic tech-
niques to correctly disassemble large COTS binaries that are
stripped of symbol information. Due to the modular nature
of our analysis and optimization techniques, they can be eas-
ily combined with such hybrid disassembly techniques. As
long as most of the code is statically disassembled, our tech-
nique can provide performance gains that are close to those
reported here, while supporting stripped binaries.

Metadata access speedup techniques are proposed in [22].
Our techniques, which rely primarily on static analysis to
improve metadata operations, are largely orthogonal to meta-
data maintenance schemes described by them.

9. CONCLUSION
In this paper, we presented techniques for optimizing fine-

grained instrumentation of binaries. We developed a static
analysis technique that enables sound optimizations on in-
strumentation code. Based on the results of this analysis,
we presented several interesting optimization techniques for



improving the performance of metadata maintenance oper-
ations. Our evaluation results represent a substantial im-
provement in performance over that reported by previous
works on binary instrumentation for taint-tracking. We be-
lieve that many of the techniques developed in the paper
can be applied to other types of fine-grained instrumenta-
tions beyond taint-tracking.
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