
Checking Correctness of Code Generator
Architecture Specifications ∗

Niranjan Hasabnis Rui Qiao R. Sekar
Stony Brook University, NY

Abstract
Modern instruction sets are complex, and extensions are pro-
posed to them frequently. This makes the task of modelling
architecture specifications used by the code generators of
modern compilers complex and error-prone. Given the im-
portant role played by the compilers, it is necessary that they
are tested thoroughly, so that most of the bugs are detected
early on. Unfortunately, modern compilers such as GCC do
not target testing of individual components of a compiler, but
instead perform end-to-end testing.

In this paper, we target the problem of checking correct-
ness of the architecture specifications used by code gener-
ators of modern compilers. Our solution leverages the ar-
chitecture of modern compilers where a language-specific
front-end compiles source-code into an intermediate repre-
sentation (IR), which is then translated by the compiler’s
code generator into assembly code. Hence our approach is
to test code generators by testing the equivalence of IR snip-
pets and the corresponding assembly code generated. For
this purpose, we have developed an efficient, architecture-
neutral test case generation strategy. Using our prototype
implementation, we performed correctness checking of 140
assembly instructions (80 general-purpose and 60 SSE out
of around 600 x86 instructions) of GCC’s x86 code gener-
ator, and found semantic differences in 39 of them, at least
one of which has already been fixed by the GCC commu-
nity in response to our report. We believe that our approach
can be invaluable when developing support for a new archi-
tecture, as well as during frequent updates made to existing
architectures such as x86 for the purpose of supporting new
instructions.

1. Introduction
Modern instruction sets such as x86 and ARM are com-
plex. Moreover, new instructions are added frequently. To
get an idea of the complexity of modern instruction sets,
consider the fact that Intel’s instruction set reference man-
ual (version 052) consists of around 1400 pages split across
3 volumes [3]. This makes the task of developing archi-

∗ This work was supported in part by grants from NSF (CNS-0831298,
CNS-1319137) and AFOSR (FA9550-09-1-0539).

tecture specifications used by the code generators of mod-
ern compilers difficult. This situation is further complicated
by the fact that existing approaches to develop architecture
specifications mostly rely on manual modelling of instruc-
tion semantics. Given the complexity of modern instruction
sets, the task of writing these specifications manually be-
comes cumbersome and error-prone, which eventually leads
to bugs. Furthermore, the scale of the problem is vast, given
the number of architectures supported by modern compilers.
For instance, GCC-4.8.2 supports more than 40 target ar-
chitectures, and the specifications for all these architectures
constitute around 400K lines in total. GCC’s Machine De-
scription1(MD) for x86 architecture alone has around 30K
lines. We found that, over the period of 1 year from July,
2013 to July, 2014, around 25 bugs have been reported in
GCC’s bug tracking system, which have resulted in updates
to its x86 machine description.

Modern compilers rely primarily on end-to-end testing
to uncover potential bugs in code generators. In particu-
lar, a suite of programs are compiled and run, and their
outputs matched with expected outputs. Any deviation ob-
served from expected outputs points to a possible bug in the
compiler, which then needs to be manually tracked down
by the compiler writer. It is hard to perform comprehen-
sive testing of the code generator using such an end-to-
end approach. Modern compilers are complex, consisting of
numerous components. Just the code optimizer consists of
several phases and hundreds of optimizations. These com-
ponents tend to have complex interactions, and end-to-end
testing is not capable of exercising these components suffi-
ciently. As a result, research efforts such as CSmith [23] have
uncovered a significant number of bugs in today’s compilers.

One could gain significantly more confidence in the code
generator if there were means to directly test the code gen-
erator in a comprehensive manner. Unfortunately, today’s
compilers don’t have code generator unit-testing frameworks
that are up to the task2. We address this problem in this

1 GCC’s terminology for architecture specification
2 As per our discussion with GCC developers [6], GCC does not have a com-
prehensive unit-testing framework for machine descriptions (architecture-
specific component of its code generator), but instead relies on its main
end-to-end test suite. To the best of our knowledge, LLVM too relies on
similar end-to-end testing for uncovering code generator bugs.

2015 IEEE/ACM International Symposium on Code Generation and Optimization
978-1-4799-8161-8/15/$31.00 c©2015 IEEE

paper, and develop a systematic, architecture-neutral frame-
work for in-depth testing of code generators.

Our approach, called ArCheck (Architecture Specifica-
tion Checking), leverages the structure of a modern compiler
to achieve architecture independence. In particular, today’s
compilers consist of front-ends, typically one per source-
language, that translate source-code to a common interme-
diate representation (IR). This IR is then translated by dif-
ferent compiler back-ends (typically, one per target archi-
tecture) into assembly/machine code. Our approach is based
on observing this IR-to-assembly translation, and testing if
the two are semantically equivalent. In particular, for each
IR-to-assembly translation used by the compiler, ArCheck
tests if the IR and assembly instructions have the same be-
havior. An important contribution of our approach is that it
is very practical: given the challenging problem of verify-
ing modern compilers, we develop an approach which can
be easily applied by code generator developers at the time
of development to detect and diagnose bugs in code genera-
tors and/or architecture specifications. We believe that such
checking will in turn help developers in discovering many
compiler bugs ahead of time, which, otherwise, could lead
to compiler crashes, or worse, generation of incorrect code.

There are two main challenges that need to be addressed
in ArCheck. First concerns the generation of test cases that
will bring out the differences between IR and its assembly
translation provided by the compiler. A simple approach is
that of random test case generation, but such an approach is
wasteful, generating many test cases that are meaningless, or
otherwise don’t contribute to finding differences in behavior.
We overcome this challenge by developing a goal-oriented
testing strategy that leverages the semantics of IR. In partic-
ular, since the semantics of IR is fixed and well-documented,
our test case generator can rely on this semantics to generate
useful test cases. Note that such an approach is consistent
with our goal of architecture independence.

The second challenge is that of running the generated test
cases on the IR and machine code, and compare the behav-
iors. Running the test case on the IR is conceptually straight-
forward — as mentioned above, there is a single IR for the
compiler. “Running” a machine instruction, however, seems
to require an architecture-specific solution. We show that, in
fact, an architecture-neutral approach can be developed that
makes of a real processor as an “oracle” to determine the
behavior of a machine instruction.

We have so far applied ArCheck to 80 general-purpose
(out of around 200) and 60 SSE (out of around 70) x86
instructions. In total, these 140 instructions cover around
23% of around 600 total x86 instructions. This testing has
uncovered 39 instances where the semantics of the IR and
assembly instructions don’t match. Not all of these are bugs,
but most of them at least exposed assumptions made in
the implementation that were otherwise unclear. This kind
of programming practice can lead to latent bugs which are

IR instruction Assembly instruction
[(set (reg : SI eax)
(plus (reg : SI eax) add $2,%eax

(const int 2)))
(clobber (reg EFLAGS))]

Figure 1. x86 add assembly instruction and its IR

not easily caught. So far, we have reported one semantic
difference to the GCC community, which has been accepted
as a bug and has been fixed promptly.

1.1 Contributions.
• Advancing the state of the art in compiler testing. We

believe that our first and the most important contribution
is the advancement of the state of the art in compiler
testing. Furthermore, to the best of our knowledge, ours
is the first work in developing a systematic technique for
testing the correctness of code generators.

• Efficient and architecture-neutral approach to test gen-
eration. Given the challenging problem of designing test
cases to check the correctness of code generator mapping
rules, we develop an efficient and architecture-neutral ap-
proach by leveraging observations about modern compil-
ers. Furthermore, our approach is also very practical: it
can be easily applied at the time of development to detect
most of the code generator correctness issues. Moreover,
our approach is compiler-neutral, and hence applicable to
all modern compilers.

• Evaluation. Our prototype implementation for GCC has
uncovered semantic differences in 39 of around quarter
of total instructions from its x86 code generator. Out of
39 differences found, GCC community has accepted one
reported difference as a bug and has fixed it promptly.

2. Problem Definition
We model the problem of checking the correctness of code
generator as follows. Assuming that the code generator maps
an IR instruction I to an assembly instruction A for some
target architecture, is the semantics represented by I same
as that of A? In the formulation below, we represent code
generator architecture specification by M . M contains a
set of mapping pairs between IR and assembly instructions,
represented as M = {〈I, A〉}.

Figure 1 is one concrete example of such 〈I, A〉 pair in the
case of GCC and x86. The right hand side shows an x86 add

instruction, while on the left hand side, it is the correspond-
ing GCC IR, in the form of Register Transfer Language
(RTL). GCC’s RTL has a Lisp-like syntax, and RTL expres-
sions are defined recursively. In this example, set and plus

are RTL operators, reg and const int are operands. SI in-
dicates that the operands are in their single integer mode,
i.e., they are treated as 32-bit integers. This RTL instruction

explicitly specifies that register eax should be set as the sum
of eax and constant 2. The clobber expression at the end
simply says that EFLAGS are modified.

Now, in order to compare semantics of an assembly and
IR instruction, first we need to formalize their semantics.
Both IR and assembly instructions operate on processor
state. Hence their semantics can be formalized in terms
of the changes they make to the processor state. Note that
IR’s view of processor state can be more limited than the
assembly-level view. For instance, the processor state will
capture the exact state of every condition code flag after
every instruction. In contrast, the code generator may be
interested only in a subset of flags, and that too, after spe-
cific instructions such as those used for comparison. A nat-
ural approach, therefore, is to expose only a subset of the
assembly-level state at the IR-level. More specifically, we
consider user-space accessible CPU registers and memory
to model state for this problem. This discussion leads to the
following definition of the state and the semantics.

Definition 1 (Assembly State SA). SA is modelled in terms
of assignments to a set of variables VA representing the
processor’s general-purpose user-space accessible registers
and memory.

Each variable v ∈ VA takes values from an appropriate
domain, e.g., 8-bit or 32-bit integral values.

Definition 2 (IR State SI). SI is given by an assignment
of values to a set of variables VI ⊆ VA representing the
processor’s state as viewed by the compiler. The domain
of each variable in VI is expanded over the corresponding
variable in VA to include >, which denotes an unknown or
unspecified value.

The semantics of an instruction at the IR (or assembly)
level can be understood in terms of how it modifies the
processor state. We use the notation I : S′ −→ S′′ to denote
that the execution of I in state S′ leads to a new state S′′.
Note that S′ may assign > to some variables, and if any
such variable is read by I then there does not seem to be a
reasonable way to define the semantics of I . For this reason,
we require S′ to be valid for I .

Definition 3 (Processor state correspondance). States SA

and SI are said to correspond, denoted SA ∼ SI , if:

∀v ∈ VA (SI(v) = SA(v)) ∨ (SI(v) = >)

Alternatively, one can say that SI is a conservative ap-
proximation of SA: either they agree on the value of a
state variable, or SI leaves it unspecified. The latter choice
is made by the developers of machine descriptions, who
choose not to model the exact value of a state variable, but
simply state that an instruction “clobbers” it. This impreci-
sion is deliberate, as it makes it possible to develop machine
descriptions that work across variants of a processor. They
also provide a way out when the instruction set description

is ambiguous or unclear about the final value of a state vari-
able. Figure 1 serves as one such example: the IR specifies
that EFLAGS are clobbered, without further information
about which bits or how the bits are modified.

Definition 4 (Soundness of IR). I is said to be a sound
abstraction of the semantics of A, denoted I ∼ A, if the
following condition holds for every state SI that is valid for
I and all states SA ∼ SI:

((I : SI −→ S′
I) ∧ (A : SA −→ S′

A))⇒ S′
A ∼ S′

I

Mapping rule 〈I, A〉 is said to be sound, if I ∼ A.

From the definition of state correspondence, it is easy to
see that if I is not sound for A then there will be at least
one variable v that will have conflicting values in S′

A and
S′
I. This means that a subsequent instruction I ′ that relies on

v will likely diverge from the behavior of A′ even when I ′

and A′ are equivalent in every way. In other words, a code
generator that emits A for I will generate incorrect code
unless it ensures that none of the following instructions rely
on v’s value. Doing so complicates the code generator logic,
because the mappings from IR to assembly now become
context-specific. More important, such an approach seems
to defeat the purpose of architecture specifications used in
compilers such as GCC and LLVM: the purpose of these
specifications is so that the compiler does not have to reason
about the semantic equivalence of IR and assembly, yet this
step requires that very same task to be performed! For this
reason, we believe that code generators will translate I into
A when I is sound for A.

Definition 5 (Code generator testing). Let I be an IR snippet
and A be the assembly code generated by a compiler for
this snippet. The problem of code generator testing is to test
every such 〈I, A〉 pair to determine if I is sound for A.

3. Approach Overview
Ideally, we would obtain all possible IR snippets and their
assembly translations that can ever be generated by a com-
piler, and check them all. One possible way to obtain such a
complete set of mappings is to consult the architecture speci-
fications used in a compiler, such as GCC’s machine descrip-
tions (MDs). Unfortunately, this requires significant manual
effort for each architecture. Such effort is required for the
following main reasons:

• Some parts of the architecture specifications are not spec-
ifications at all, but are programs written in C or C++.
Clearly, it is not feasible to automatically extract the map-
pings that can result from all executions of such code
snippets.

• The specification language is complex. For instance,
GCC MDs consist of several architecture-specific con-
straints, conditions and predicates. The semantics of
these constraints are again expressed as C/C++ code,

IR to Asm

Mapping Rule

Compiler

Package 1 Package 2 Package n

IR Asm

State Generator

IR

Interpreter

Start States

S1 S2 Sn

CPU

Equal?

Code

Gen

Log

(1) Rule Extraction

(2) State Generation

(3) Test Execution

 and

 Result Comparison
IR

Semantics

Asm

Semantics

ASASAS

ASASasa

Figure 2. Design of ArCheck

making it difficult to automate the discovery of mappings
that can result from the MD.

Indeed, it is nontrivial even for expert programmers to infer
all the mappings that may be produced by an architecture
specification3.

Due to these difficulties, our approach does not attempt
to test all possible IR to assembly mappings that may ever
be produced. Instead, ArCheck only tests the actual map-
pings generated by a compiler while compiling large soft-
ware suites. By compiling large enough collections of pro-
grams (e.g., entire OS distributions) we believe that adequate
coverage can be achieved using this approach.

After collecting 〈I, A〉mappings using the above process,
ArCheck then proceeds to generate and execute test cases
that are aimed at discovering soundness violations. In partic-
ular, we develop a test case generation strategy that is aimed
at discovering states where I and A do not satisfy Defini-
tion 4.

Figure 2 illustrates the main steps used by ArCheck,
which consists of the following phases:

• Rule extraction: This step is concerned with the collec-
tion of pairs 〈I, A〉 that need to be tested. As discussed
above, this step is performed while treating the code gen-
erator as a black-box by compiling several software pack-

3 These observations about machine descriptions apply not only to GCC
but also to LLVM, whose Target Descriptions (TD) are partly in the form
of specifications, with many concrete details incorporated directly into the
architecture-specific components of LLVM code generator.

ages and observing and collecting the translations exer-
cised during this process.

• Start state generation. For each pair 〈I, A〉 we then pro-
ceed to generate starting states SI and SA used in Defini-
tion 4. Given that a test strategy based on analysis of as-
sembly instruction would become architecture-specific,
ArCheck avoids such strategy and instead relies on
white-box analysis of IR instructions to generate SI, and
Definition 3 to generate the corresponding SA. Fortu-
nately, the fact that IR instructions expose all details of
semantics of assembly instructions make such strategy
feasible.

• Test execution and result comparison: In this step, we
compute S′

I and S′
A of Definition 4 and check if S′

I ∼ S′
A

as given by Definition 3.

Each of these steps is described in more detail below.

3.1 Rule extraction
For rule extraction, our approach is to compile several soft-
ware packages and observe the translations of IR to assem-
bly used by the compiler. To ensure different types of in-
structions are covered, our strategy is to compile different
types of software packages (e.g., scientific packages that are
most likely to use x86’s SSE instructions) and to compile
packages using different compiler options (e.g., with and
without optimizations). With this strategy, we have been able
to cover 75% of x86’s general-purpose and SSE instructions.

When compiling large packages, the number of 〈I, A〉
mapping rules produced can range from millions to tens of
millions. It is not feasible to test each of the pairs individ-
ually. Indeed, it is not even useful to test them all, as there
is a substantial amount of overlap between different pairs,
with numerous pairs being identical. So, we need to develop
a strategy for selecting a subset of 〈I, A〉 mapping rules that
are most useful to test. Currently, ArCheck supports three
selection strategies:

• Mnemonic mode selects a mapping rule for testing if the
mnemonic of an assembly instruction from the mapping
rule has not been tested previously in the same test run.
This mode can be thought of as a quick way to test
all assembly instructions from a log file which have a
unique mnemonic. For instance, with mnemonic mode,
we will skip “add 4(%ebx),%eax” from testing if we
have previously tested “add $2,%eax.”

• Template mode selects a mapping rule for testing if the
“template” of an assembly instruction has not been seen
previously in the same test run. We define “template”
of an assembly instruction as the instruction with the
register names and constants replaced by placeholders.
Template mode of “add $2,%eax” is “add I, R.” Thus,
template mode will not test “add $2,%ebx” after test-
ing “add $2,%eax,” as they both have the same tem-

plate. However, “add 4(%ebx),%eax” has a different
template, and hence will be tested.

• Instruction mode selects a mapping rule for testing if the
exact same mapping rule has not been seen previously
in the same test run. For instance, ArCheck will test
“add $2,%ebx” in this mode even if it has previously
tested “add $2,%eax.”

Of the three modes, instruction mode is the most conserva-
tive, as it filters out only those instruction mappings whose
testing is provably redundant. On the downside, because it
does not filter out as many instructions as the other modes,
it can take significantly more time for testing.

3.2 Start state generation
This step is concerned with the generation of SI values to be
used in testing a mapping rule 〈I, A〉. One way to generate
SI values is exhaustive enumeration: simply generate every
possible SI that is valid for executing I . However, note that
even a single register can have 232 states, so the number
of distinct SI values is far too large to admit exhaustive
enumeration.

One way to control the state-space explosion of the ex-
haustive approach is to limit testing to a few randomly cho-
sen input values. However, such a random test generation
suffers from two significant problems. First, many opera-
tions may be defined only when certain conditions hold on
their input. For instance, a memory access operator works
correctly only if the address input corresponds to a valid
region of memory, together with appropriate permissions.
Random test generation may not respect such constraints and
relationships and hence may generate many useless input
combinations. Second, random generation approach is not
systematic, and hence may not provide sufficient confidence
in the test results. For instance, one may want to specifically
verify the behavior of a division operation when the second
operand is larger than the first, or is zero. To incorporate
these preferences into the testing process, we therefore seek
a start-state generation strategy that satisfies the following
objectives:

• provide high confidence in the soundness of the mapping
rule,

• utilize a small enough number of start states to ensure
adequate performance, and

• ensure architecture-neutrality of the technique.

Note that we are achieving the third objective by basing
the test generation strategy on I and SI that have only a
minimal dependence on the architecture, and generating the
corresponding SA from it. The first two objectives can be
realized by partitioning the space of SI values into a small
number of “equivalence classes,” and selecting one represen-
tative from each such class. (We sometimes use the term “in-
teresting inputs” to refer to these representatives.) “Equiva-

lence” in this regard means that I behaves the same way for
all start states in the same class.

Note that an IR snippet I typically consists of more
than a single operator. For instance, GCC’s RTL (IR) snip-
pet corresponding to the “add $2,%eax” instruction is
“(set (reg eax) (plus (reg eax)(const int 2))),” which
contains multiple operators, including set and plus. For
testing compositions of two IR-operators f and g, say,
f(g(...)), it is no longer enough to know the representative
inputs most suitable for testing f and g. Instead, we need to
answer a more general question: what input values should
be used to test g so that it yields outputs suitable for testing
f . Based on this observation, we have developed a strategy
that consists of the following steps:

• For each IR operator, we specify a set of equivalence
classes for the output of an operator.

• For each IR operator, we also specify constraints relating
its input and output, and propagate these constraints on
the output of an operator to its inputs. In other words, we
use these constraints to generate inputs that will yield the
desired output.

The first step enables us to leverage an expert in IR to answer
the difficult question of how to partition input (or output)
space into equivalence classes. The constraint propagation
step can also leverage this human expertise since this step
can also be manually programmed. We describe these two
steps in detail below.

Generating test cases using constraint propagation. Con-
sider the addition operation discussed above. In this exam-
ple, the plus operator in the IR performs a signed 32-bit
addition. We can divide the output value into three classes:

1. a positive value in the range of [1, INT32 MAX],

2. 0, and

3. a negative value in the range of [INT32 MIN,−1].
As discussed before, this partitioning is guided by the intu-
ition of an expert programmer well-versed with the IR. In
this example, their choice may be guided by knowledge of
the use of sign and zero flags in the IR, and the fact that they
can have different values for each of the three categories of
output values.

Given the range of values of outputs, one simple way to
pick concrete values from these ranges is to focus on the
boundary values, e.g., {INT32 MIN, 0, 1, INT32 MAX}.

An interesting and useful feature of our approach of parti-
tioning outputs is that the interesting categories do not seem
to depend very much on the operator. For instance, the above
categories would make sense for most arithmetic operations.
This factor reduces the manual effort needed to specify use-
ful ranges of outputs.

Given the discussion about possible constraints on the in-
puts and outputs, it is easy to see that the test case generation
problem that we are trying to solve can be formulated as a

constint 2

reg: eax

set

plus

reg: eax

O = {0}

C = {signed,

 32-bit value}
Result1 = {Accept}

S = {}

O = {1}

S1 = {eax = 1}
I = {1}

C = {2}

O = {-1}

S2 = {}
I = {}

Result2 =

 {Reject}

C = {2}

O = {2}

S2 = {}
I = {2}

Result2 = {Accept}

C = {Signed, 32-bit value}

O = {0}

S = S1 U S2

I = {(0, 0), (1,-1), (2, -2), ..,

 (-1, 1), (-2, 2)}

Result = R1 & R2

Constraint Propagation

Composition of set S

Figure 3. Constraint generation and propagation for
start state generation

constraint satisfaction problem, and “interesting” test inputs
for a mapping rule are simply solutions of such a problem.

A way to formulate constraint satisfaction problem from
the white-box analysis of RTL instruction for “add $2,%eax”
is shown in Figure 3. Note that the RTL instruction is repre-
sented as a tree. O represents the set of outputs of the RTL
instruction. In the figure, we have set it to {0}, i.e, we are
trying to solve the following constraint satisfaction problem:
“find out a 4-byte signed integer value for eax, which, when
added with 2, will yield the output of 0.” S represents a state
that satisfies these constraints. For the example in the figure,
S contains an assignment of eax. Once we decide set O for
a given mapping pair, the analysis starts by propagating the
output at the root level to the inputs of the operator at the
root. In this case, we have a set operator at the root level,
and we consider its input as also its output. Thus, the set O is
propagated to the node in Figure 3 labeled with the operator
plus. Additional constraints that may be propagated include
those based on operand types, e.g., signed 32-bit values.

Next, the constraint C on the output of plus operator is
propagated to its inputs. In principle, this can result in com-
binations of two inputs to plus that yield a zero output.
However, many of these combinations cannot be satisfied,
e.g., the right child of plus can only accept a single con-
straint, namely, that its input is 2. Our constraint propagation
algorithm implements this type of “pruning” automatically
during the constraint propagation step.

An algorithm to generate “interesting” inputs for IR to
assembly mapping rules is given in Figure 4. This algo-
rithm starts with a call to generate start states func-
tion with ir as the IR instruction of a mapping rule, and
it ends by returning set S, the set of start states to test a
given mapping pair. Using function get outputs and by
passing it the top-level IR operator op and its type, it obtains
a set of expected outputs for the given mapping pair. For in-
stance, for RTL 32-bit signed plus operator, it would obtain
{INT32 MIN, 0, 1, INT32 MAX} as the expected outputs.

Note that get outputs is manually specified, and its im-
plementation will typically be different for each IR operator.
For this reason, we have not shown it in the figure. Since the

generate start states (ir):

op = TopOp(ir)

O = get outputs(op, Type(op))

foreach oi in O do
// get start state which would produce output oi
// and add it to S, which is set of all start states

S.add(get inputs for output(ir, oi))

done
return S

get inputs for output (ir, o):

op = TopOp(ir)

I = get inputs(op, o, Type(op))

H = Children(ir)

s = {}
if H = ∅ then // leaf node

// does input match constraints

if check cons (o, ir) then
s.add(o)

return s

fi
fi
foreach (i1, . . . , in) in I do

foreach irj in H do
// propagate constraints to children

sj = get inputs for output (irj , ij)

done
if none of s1, . . . , sn are empty then

// all children have valid input assignments,

s = merge({s1, . . . , sn}) //now combine them.

return s

fi
done
return {} // if no satisfying assignments found

Figure 4. An algorithm for obtaining “interesting” in-
puts from an IR instruction of a mapping rule

number of operators in the IR is relatively small, the effort
involved in this step is relatively small. Despite being man-
ual, our approach does provide a systematic way to divide
outputs into equivalence classes, while enabling us to lever-
age human knowledge and insight to minimize the number
of such classes.

Once a set of expected outputs is obtained, function
get inputs for output is called to obtain a set of in-
puts for each of the expected outputs. In order to find inputs
which produce the specified output, get inputs for output

first calls get inputs by passing it the operator, the ex-
pected output value, and the type. For the “add” example,
one of the calls would be get inputs(plus, 0, Int32).
Note that the set C discussed in the Figure 3 can be seen as
a collection of {plus, Int32} here. Note that get inputs

returns a set I of all 32-bit integers, which, when added,
produce the expected output. I is a set of tuples whose arity
matches that of the IR operator. For instance, for plus, tu-
ples will have 2 elements, while for unary negation, tuples
will have only 1 element.

Note that function get inputs might return an empty set
in case it could not find an inputs which satisfy combination
of op, o, and Type(op). In such case, constraint propagation
cannot proceed, and we return immediately.

On the other hand, if I is non-empty, then constraint prop-
agation starts as an element of set I would now become
expected output of the children of ir. In order to propa-
gate constraints, it obtains set (H) of all children of given
IR instruction. H would be empty for leaf nodes of IR, in
which case, it simply checks if the constraints imposed by
that IR node are satisfied by the input to that node. For in-
stance, for (mem(reg eax)) RTL expression, it would check
if the input value is a valid memory address which points
to an accessible page. Note that an input of a leaf node
would be same as the o, that is why we simply check us-
ing value of o. Given the small number of IR expressions
which impose constraints at the leaf node, we have simply
enumerated these constraints manually. Note that if a con-
straint is matched even for one input value, the algorithm
updates state s and returns it. This is because we are only in-
terested in finding a single representative. If constraints are
not satisfied by the input value, then it continues to find the
next input value which matches those constraints. When H
is non-empty, input values from tuple (i1, . . . , in) are passed
to respective children of the input IR. If all children accept
the assignment, then the algorithm returns the obtained state
s as the output, otherwise it continues to next i. If no satis-
fying assignments are found for all children, then we return
empty set.

3.3 Test execution and result comparison
For IR execution system, ArCheck, relies on an interpreter
for that IR. Compiler such as LLVM already provides an
interpreter for its IR, but others such as GCC do not. Since
semantics of compiler IRs is defined precisely, it is straight-
forward to develop an interpreter if there does not exist one
already.

Our high-level approach to obtain semantics of an assem-
bly instruction is to execute the test instruction under a user-
level process monitoring framework. Such a framework sat-
isfies all the requirements needed from an assembly execu-
tion system for this problem. First, it can execute the test in-
struction in a separate isolated environment and monitor the
execution. Second, by relying on process tracing features of-
fered by most OSes, it can inspect and modify register/mem-
ory contents for test execution. Third, it can gracefully han-
dle exceptions or signals generated by the test instruction.
The framework first assembles a test program containing the
test instruction, creates an isolated environment for the exe-
cution of the assembled code, and initializes the environment
with the specified start state. Isolated environment ensures
that all effects of a test execution are confined. The differ-
ence between start and end states of the environment at the
end of the execution would be semantics of the test instruc-
tion.

For memory, semantics that we are interested in is being
able to tell older and newer contents of all the memory
locations whose contents have been modified as a result
of test execution. A simple approach to satisfy the desired
memory semantics would be to snapshot memory of the
isolated environment just before and after the execution of a
test instruction and to compare the snapshots. This approach
may seem too inefficient because, in the worst case, it could
require us to compare snapshots for whole virtual address
space (4GB on a 32-bit machine) of a process. But we
observed that the virtual memory layouts of our assembly
execution system and isolated environments are very sparse.
Given this, we decided to use this simple approach for our
purpose.

Nonetheless, we made an important observation which
helped us optimize simple approach considerably. Specifi-
cally, we observed that the difference between start and end
state of memory needs to be calculated only if memory is
updated by the test instruction. In other words, if memory is
only read by the test instruction, then we do not need to com-
pare memory snapshots at all. To put this observation to use,
ArCheck marks memory as read-only. With this setup, the
framework can receive memory access fault in 2 cases: when
test instruction accesses invalid memory location, and when
the test instruction performs write access. We distinguish be-
tween these 2 cases by making memory read-write and re-
executing the test instruction. If the framework receives one
more fault, then it is because of first case now, and it is dealt
as an exception case. If the framework does not receive any
fault, then it is the second case, and the framework makes a
note that memory snapshots must be compared in such sit-
uation. Note that as an additional optimization, the frame-
work also notes the pages that will be modified and only
considers those pages in comparing memory snapshots. Fur-
thermore, if the framework does not receive memory fault in
the first place, then it means that either the instruction does
not access memory at all, or it performs read access. In both
situations, we do not need to compare snapshots at all. Con-
sequently, in both these situations, our system does not even
snapshot memory at the end of the execution.

Once end states of assembly and IR executions are ob-
tained, we follow Definition 3 and compare them.

4. Implementation
Prototype implementation of our approach targets GCC’s
x86 code generator and runs on 32-bit Linux. The approach,
however, is more general, and can easily be applied to other
compilers and architectures.

4.1 Obtaining code generator mapping rules
We developed a standard GCC plugin to obtain the code gen-
erator mapping rules during compilation. Implementation of
the plugin took around 70 lines of C code. To collect RTL to
assembly mapping for foo.c, one would use the command

“gcc -dP -fplugin=rulcol.so -fplugin-arg-out=log.S

foo.c”, where -dP is a standard GCC option to dump an
RTL corresponding to each assembly instruction as a com-
ment in the output .S file. Thus, our tool easily integrates
with configure and make based standard compilation pro-
cess. Moreover, the plugin has very minimal dependencies
on a particular version of GCC, so porting it to other versions
of GCC is very trivial.

4.2 Obtaining start states for a mapping rule
The algorithm for start state generation is implemented in
1000 lines of C code and it uses a constraint solver writ-
ten in 500 lines of Prolog. Expressiveness of constraint lan-
guage essentially comes from the expressiveness of IR —
we simply map semantics of IR operators to a sequence of
constraints in Prolog.

Most of the components of state generation are architecture-
neutral, but we do need an architecture-specific component
to impose architecture-specific constraints such as those re-
lated to memory layouts.

4.3 Obtaining RTL semantics
Since there does not exist an interpreter for GCC’s RTL, as
a part of our prototype, we have developed an RTL inter-
preter by referring to GCC’s RTL specification. Implemen-
tation of the interpreter took around 3K lines, and is mostly
architecture-neutral. Only architecture-specificity is in ini-
tializing interpreter’s state from the input start state. This
initialization code for x86 is about 50 lines of C++ code.

Errors in the IR interpreter can result in false positives or
false negatives in ArCheck. To address this challenge, we
have tested our RTL interpreter by using it to interpret RTL
programs obtained from source code of coreutils pack-
age. Furthermore, whenever ArCheck reports a semantic
difference, we manually verify that the RTL semantics does
not match that of the assembly instruction. So far in our test-
ing, we have not encountered any false positives or nega-
tives.

4.4 Obtaining assembly semantics
Implementation of our user-level process monitoring frame-
work relies on parent-child relationship and ptrace() inter-
face of Linux. Test execution starts with the framework as-
sembling a test program containing the test instruction and
then creating a child process (using fork()) for executing
the test program. The test program consists of a test instruc-
tion wrapped with 2 trap instructions. Trap instructions al-
low the parent (i.e., the framework) to intercept child’s ex-
ecution (by writing a trap handler) just before and after the
execution of the test instruction, to set the start state, and to
capture the end state of the execution. After fork(), child
calls mmap() to map the binary encoding of the assembled
test program and jumps to its beginning, while parent calls
wait() and blocks itself. Once trap handler performs neces-
sary actions such as setting or capturing the state, parent con-

tinues child’s execution by sending PTRACE CONT request to
child. Along with trap, parent also handles other signals that
might be raised by child by registering signal handlers for
them. Although, cases leading to signals are not interesting
for our purpose, parent handles them to exit gracefully.

Our user-level process monitoring framework is imple-
mented in 2000 lines of C code and 50 lines of shell script
C code has some architecture-specific features, such as the
use of trap instruction, but is mostly architecture-neutral.
The shell script uses GNU assembler gas, objdump, and
objcopy to encode a test program containing a given as-
sembly instruction wrapped in 2 traps and obtain its binary
encoding.

4.5 Handling memory
Since taking snapshots of process’s memory using ptrace()
is too expensive, we rely on accessing /proc/<pid>/mem, a
file representing virtual memory of a process. Our snapshots
have formats very similar to that of core files. Start states
of memory also use the same format as that of snapshots.
According to the start state, desired values are written to
specified memory locations before executing a test program.

As compared to the assembly execution environment, our
RTL interpreter deals with memory differently. Specifically,
all load and store operations performed by the test RTL in-
struction are transformed into file I/O operations on the file
representing start state of the memory. This is done to isolate
memory of the RTL instruction from that of the interpreter,
which has its own memory layout that is different than that of
the RTL instruction. We could have also represented mem-
ory for an RTL instruction as a byte array, but such an ap-
proach would demand mapping between virtual memory ad-
dresses used by the RTL instruction to the corresponding ad-
dresses inside byte array. This would unnecessarily compli-
cate the implementation. On the other hand, since we already
had a file representing start state of the memory, transform-
ing RTL instruction’s memory accesses into file IO was an
easier approach. Lastly, details of all load and store oper-
ations (exact address of the access, the contents) performed
by IR are recorded and are eventually used to obtain memory
semantics of an IR instruction.

4.6 Test execution and result comparison
Based on the observation that there is no dependency be-
tween the logged mapping rules, we have built a test execu-
tion system which can run multiple test cases in parallel. The
degree of parallelism can be changed using a command line
parameter. Test execution and result comparison are both im-
plemented in C, and use about 700 lines of code.

5. Evaluation
We evaluated the effectiveness of our approach by testing
x86 code generator of GCC-4.5.1 for general-purpose and
SSE x86 instructions. (Supporting the rest of the instruc-

Description ArCheck Random Testing
Mnemonic Template Instruction Mnemonic Template Instruction

of Mapping Rules 140 1132 150K 140 1132 150K
of Test Cases 1056 5762 421,090 1056 5762 421,090
% of Useful Test Cases 92 85 79 64 59 52
Time To Run Test Cases 5 mins 7 sec 31 mins 1 day 6 hrs 4 mins 10 sec 24 mins 1 day 1 hrs

Figure 5. Analysis of mapping rules obtained from GCC’s x86 code generator logs and test cases generated for them

Description ArCheck Random Testing
Mnemonic Template Instruction Mnemonic Template Instruction

D1 25 26 28 3 10 11
Classification of D2 4 4 6 2 3 1
Semantic D3 1 1 1 0 0 1
Differences D4 1 3 4 0 1 1

Total 31 34 39 5 14 14
of New Bugs Found 1 1 1 0 0 1
of Existing Bugs Found 15 7

Figure 6. Statistics of evaluating mapping rules obtained from GCC’s x86 code generator

tion set requires further engineering work on the RTL in-
terpreter.) We conducted our experiments on 32-bit Linux
running on a quad-core Intel Core i7 processor.

5.1 Testing setup
For comparison purposes, we implemented a random start
state generation strategy. Note that a random strategy can be
used to generate any number of start states, but to simplify
comparisons, we generated the same number of start states
as ArCheck. Our testing was done in all three of mnemonic,
template and instruction modes.

We used GCC’s x86 code generator to compile openssl,
opencv and ffmpeg packages. We specifically chose these
packages because they have a good mix of general-purpose
and SSE x86 instructions. Summary of the collected map-
ping rules and start states generated for them is shown in
Figure 5. Combined logs had roughly 150K unique mapping
rules after eliminating exact duplicate rules. The 150K map-
ping rules had 140 unique mnemonics, and 1132 unique
templates. These 140 mnemonics cover roughly 23% of
total 32-bit x86 instructions. Breaking down these 140
mnemonics, we found that they covered 80 of around 200
general-purpose and 60 of around 70 SSE instructions. Of
the remaining 120 general-purpose instructions, around 78
were system-related and I/O instructions, 12 were control-
transfer4 instructions, and 30 were not covered in the com-
pilation logs.

Following observations can be made from these results:

• Average number of generated test cases in 3 modes dif-
fers. ArCheck generated an average of 8, 5, and 3 test

4 We do not handle control-transfer instructions because they present a
complication in restricting control-flow and regaining control back to the
test framework. Nonetheless, we are definitely considering them in our
future work.

cases per instruction in mnemonic, template and instruc-
tion modes respectively. The average number for instruc-
tion mode is smaller because (1) commonly occurring
instructions, such as “mov” for x86, dominate the to-
tal number of mapping pairs found in the logs, and (2)
ArCheck generates less number of test cases for “mov”
than most others.

• Numbers of useful test cases generated by ArCheck
are significantly higher than those generated by ran-
dom state generation approach. We call a test case
“useful” if ArCheck completes a test run for it with-
out raising exceptions. For instance, when eax is 0,
“mov 0(%eax),%esp” leads to a null-pointer derefer-
encing exception.
Using randomly generated start states, almost every
memory related instruction ended up leading to an invalid
memory access. ArCheck also produced a few useless
test cases for some of the SSE instructions because the
constraints involving floating point instructions are more
complex than those on integer operations.

5.2 Detecting new semantic differences and soundness
violations

Figure 6 compares ArCheck with random testing in terms
of different categories of instances in which semantics of IR
and assembly instructions don’t match. Note that for this
evaluation, we checked for both soundness and semantic
equivalence. Unlike soundness check, semantic equivalence
is a strict check: it demands that the semantics of an assem-
bly instruction is strictly modelled by an IR instruction. We
enforced both these checks because we wanted to understand
the type and the number of instances which belong to both
categories. Note that the numbers reported in the Figure 6

are for semantic equivalence check. We will discuss which
of these differences are soundness violations shortly.

Following observations can be made from these results:

• The semantic differences found by all three modes of
ArCheck are considerably more than those found by
random testing. Note that we have grouped semantic dif-
ferences by mnemonics, and have counted 1 difference
per group. We did this in order to eliminate duplicate
counting of semantic differences for instructions with
same mnemonic but different operand combinations. So
31 differences that we found using mnemonic mode of
ArCheck means that 31 different x86 mnemonics were
found having at least one semantic difference.

• Comparing results from mnemonic and template mode
with those from instruction mode, we can see that the
first 2 modes found fairly comparable number of seman-
tic differences in significantly less time. This suggests
that most of the semantic differences manifest for most
operand combinations. The results are quite different for
random testing, where detection is a lot less reliable.
Though mnemonic and template mode did well in terms
of finding semantic differences, instruction mode found
the most in all tests. This suggests that testing a mapping
pair with multiple operand combinations might help in
finding more differences. On the other hand, instruction
mode also took considerably longer to finish its run. We
speculate that one of the major reasons for the amount of
time taken can be explosion caused by the immediate val-
ues. To eliminate this source of explosion, but also to ex-
ploit the advantage of instruction mode over others, in the
future, we can think of a modified-template mode, where
only immediate values are replaced by placeholders. We
speculate that such a mode should be able to finish its test
run lot faster than that of the instruction mode, but at the
same time, perform equally better as instruction mode.

• Unlike ArCheck, which detected the new bug in all
three modes, only the instruction mode of random testing
detected this bug. We will discuss this point shortly.

Figure 6 shows that instruction mode of ArCheck found
the largest number (39) of semantic differences. We have
classified these differences into 4 different categories:

• D1: Imprecise modelling of EFLAGS. This kind of dif-
ference arises frequently in GCC’s x86 code generator
when an RTL instruction does not capture precise bits of
EFLAGS that are modified by the corresponding assembly
instruction. For instance, the example of “add $2,%eax”
discussed earlier falls into this category. This type of dif-
ference does not represent a soundness issue in the code
generator because “(clobber (reg EFLAGS))” is actu-
ally an over-approximation of the instruction semantics.

• D2: Incorrect value in the destination operand. This
kind of difference arises when an RTL instruction does

movzwl 8(%esp), %eax

(set (reg : HI ax)
(mem : HI (plus : SI (reg : SI 7) (const int 8))))

Figure 7. Example of movzwl instruction and its RTL

shrdl $16, %ebx, %eax

[(set (reg : SI ax)
(ior : SI
(ashiftrt : SI (reg : SI ax) (const int 16))
(ashift : SI (reg : SI bx)
(minus : QI (const int 32) (const int 16)))))

(clobber (reg EFLAGS))])

Figure 8. Example of shrdl instruction and its RTL

not perform some operation, such as zeroing or sign-
extending a value, that is performed by an assembly
instruction. For instance, for movzwl instruction in the
Figure 7, RTL simply moves lower 2 bytes of the source
into destination, but fails to zero out upper 2 bytes of
the destination. This kind of difference is a soundness
violation.

• D3: Incorrect operation in RTL. This kind of difference
arises when an RTL instruction performs different oper-
ation than the corresponding assembly instruction. This
kind of difference represents a soundness violation. For
instance, for shrdl instruction in the Figure 8, RTL uses
arithmetic shift operator (ashiftrt), whereas assembly
instruction performs a logical shift (lshiftrt).
More specifically, semantics of shrdl instruction as per
Intel manual is: “The instruction shifts the first operand
(eax) to the right the number of bits specified by the
third operand (count operand). The second operand (ebx)
provides bits to shift in from the left (starting with the
most significant bit of the destination operand).” The
way RTL models this is by inclusive-or of arithmetically
right-shifted destination and left-shifted source operand.
Soundness issue shows up when the destination contains
a negative value. Since arithmetically right-shifted desti-
nation will have top bits set to 1. Inclusive-or with such
a value will then generate result with its top bits set to 1
instead of moving contents of source into the top bits of
the destination. We detected this issue when we set, eax
= 0xb72f60d0, ebx = 0xbfcbd2c8. Above shrdl instruc-
tion in that case produced 0xd2c8b72f in eax. But the
corresponding RTL produced 0xffffb72f in eax.
We reported this difference to GCC’s bug reporting sys-
tem. GCC developers have acknowledged that this is a
bug, and have fixed it promptly. Details of our bug report
can be found at [4].

• D4: Update to a destination not specified. This kind
of difference arises when GCC uses some implicit as-
sumptions not mentioned in the RTL specification. For

mull %ebx

[(set (reg : SI dx)
(truncate : SI
(lshiftrt : DI
(mult : DI
(zero extend : DI (reg : SI ax))
(zero extend : DI (reg : SI bx)))

(const int 32))))
(clobber (reg : SI ax))(clobber (reg EFLAGS))]

Figure 9. Example of mull instruction and its RTL

instance, “mull %ebx” instruction shown in Figure 9
modifies register pair [edx:eax], where the top 4-bytes
of the product are stored in edx, and lower 4-bytes of the
product are stored in eax. But RTL for mull stores lower
4-bytes of the result in edx, and says eax is clobbered.
We found that GCC uses this instruction only when it
is computing a modulo of a number (in other words,
there is an implicit assumption that this instruction should
only be used when the product cannot be more than 4-
bytes long.) Since RTL for mull instruction captures
over-approximation of the semantics, it does not repre-
sent a soundness violation. Nonetheless, use of implicit
assumptions can possibly lead to soundness violations.
Moreover, We believe that programming practices that
rely on implicit assumptions lead to a number of latent
bugs which are not uncovered easily. To achieve the ob-
jective of minimizing the number of bugs in compilers,
one should strictly avoid such programming practices.

Given our focus on a mature subset of x86 instruction set,
and the use of perhaps the most-heavily used code genera-
tor, we did not expect to find many bugs. So, it should come
as no surprise that most of the deviations we found were not
soundness-related. But a significant minority — 7 deviations
— do impact soundness (D2 and D3 categories). So far, only
one of these have been acknowledged as a bug by GCC de-
velopers and fixed. We have not been able to exercise the rest
of these 7 because they may be guarded by implicit assump-
tions in GCC code. It goes without saying that confidence in
the correctness of the code generator would be significantly
improved by avoiding reliance on such implicit assumptions,
and instead updating the machine descriptions to eliminate
the problem.

5.3 Detecting known soundness issues
As further evidence of the ability of ArCheck to identify
code generator bugs, we used it on older version of GCC
with known bugs in machine descriptions. (These were the
bugs that have previously been reported to the GCC team
and fixed.) Overall, we obtained a list of 15 soundness is-
sues reported against x86 code generator in the last 4 years.
We consider an issue as a soundness related if semantics of
assembly and IR instruction in the issue do not match. (This

requires human knowledge about the target architecture, so
we had to manually analyze the bug reports.) We specifically
tested the mapping pairs involved in the issues, and verified
that ArCheck is able to detect all the issues. Some of these
issues are serious, e.g., missing update to EFLAGS, changing
order of source and destination, not following RTL specifi-
cation accurately, etc.

We will now discuss some of these bugs and the way we
detected5 them.

• The bug reported in [5] is about failing to model possi-
ble updates to EFLAGS by an execution of sbbl instruc-
tion. ArCheck detected this bug because the start state
generator initialized start states to unset bits of EFLAGS
(because as per RTL semantics EFLAGS neither affected
the end result, nor EFLAGS were clobbered by it), but the
result produced by the assembly execution system had
those bits of EFLAGS set. This bug belongs to category
D2. Out of 15 bugs we collected, 3 were of this type.

• One older bug [2] (older than 4 years) detected by
ArCheck was about an incorrect modelling of movsd

SSE2 instruction. This instruction operates on two XMM

registers and moves the lower 64-bits (double precision
floating point number) of the source register to the lower
64-bits of the destination, and preserves the upper 64-
bits of the destination. The issue was an incorrect use of
RTL’s vec merge operator because of which exactly op-
posite semantics (assign the upper 64-bits of the source
to the upper 64-bits of the destination, and preserve the
lower 64-bits of the destination) was modelled. We de-
tected this bug because ArCheck initialized the source
and the destination XMM register with different values (be-
cause instructions which move values from a source to a
destination have no “interesting outputs”, so the state
generator initializes the source and the destination with
different byte patterns such as all bits set to 0 in the source
and all bits set to 1 in the destination or vice versa6), and
the result produced by the RTL interpreter was different
than the one produced by the assembly execution system.
This bug is a representative of the category D3. The list
of 15 bugs had a couple of this type.

• An interesting type of bugs detected by ArCheck is syn-
tactic bugs and syntactic errors which lead to soundness
violations. For instance, the bug reported in [1] is about
an incorrect order of operands in bextr assembly in-
struction generated by GCC’s x86 code generator. Specif-
ically, bextr instruction takes 3 operands of which first
and third can only be registers, while the middle one can

5 Though our implementation does not support all of x86 instructions, to
detect these bugs, we added support for the assembly and RTL instructions
from the buggy mapping rules. Specifically, we had to add support to detect
6 of the 15 issues.
6 Rationale behind such assignment is being able to detect incorrect move
of a single bit.

be a register or memory operand. Modelling of this in-
struction in x86 machine description was incorrect — it
allowed first operand to be either a register or memory.
We detected this bug when we attempted to assemble the
assembly instruction using as. Although, this particular
bug is not a soundness violation, and ArCheck is not de-
signed to detect these type of bugs, some syntactic errors
can lead to soundness violations. For instance, the bug
reported in [7] is about missed square brackets around an
immediate constant which changed the semantics of an
instruction from moving a value from a memory location
to moving an immediate value. Although the particular
bug in [7] is a x86-64 bit bug, it is easy to see that it is
indeed a soundness violation. The list of 15 bugs had 1
bug of this type.

Finally, we believe that the presence of these bugs in the
bug reports indicates that the errors were not caught by the
end-to-end testing used in GCC, thus establishing the need
for dedicated frameworks such as ArCheck.

6. Related Work
Compiler testing, verification, and bug finding. Com-
piler testing has been an active area of research for sev-
eral decades. One of the earlier works, which described
use of machine descriptions for compiler testing, is [20].
It describes an interesting approach to compiler testing by
checking equivalence of source program and its object code
by translating both to a common intermediate language.
More recently, by randomly generating valid C programs,
the CSmith system [23] performed a systematic end-to-end
testing of modern compilers such as GCC and LLVM and
found a number of bugs in them. Along with CSmith, other
works such as [14, 17, 21, 24] have applied the technique of
automatically generating valid C/C++ programs to test com-
pilers. A fundamental difference between ArCheck and all
these works is the targeted testing of code generators per-
formed by ArCheck. In contrast, systems such as CSmith
are targeted at testing all components of the compiler. Thus,
tools such as ArCheck are complementary, and serve to pro-
vide much more in-depth testing of individual components
of the compiler.

Compiler verification has also been a prominent area for
compiler research with techniques such as certified com-
piler [12, 13] and translation validation [19, 22] being de-
veloped. CompCert [12, 13] has been a popular compiler
verification work with promising results. However, scaling
formal verification to production compilers such as GCC re-
mains a challenge. While recent work has made significant
progress in tackling components of production compilers,
e.g., mem2reg optimization in LLVM [25], scaling these to
components of the size of code generator represents a signif-
icant challenge. Testing-based approaches such as ArCheck
thus represent an important complementary approach that
can work on industry-strength compilers.

Whereas ArCheck is focused on the correctness of IR
to assembly translations, the work of Fernández and Ram-
sey [9] targets the correctness of assembly to machine-code
translations. They utilize a language called SLED (Speci-
fication Language for Encoding and Decoding) to specify
instruction encodings at a high-level, and to associate as-
sembly and machine code instructions. These specifications
can then be used to generate machine code from assembly,
or vice-versa. The main focus of their work is that of cor-
rectness checking of the mappings specified in SLED. This
is accomplished using a combination of static checks and
by comparing SLED-based translations with the translations
produced by another well-tested independent tool such as the
system assembler.

Approaches for test case generation. Generating better
test inputs by improving test case generation strategies has
been an area of active research. One can broadly classify ex-
isting testing strategies into black-box and white-box. Black-
box testing strategies such as fuzz testing (random testing)
[18] and grammar-based fuzz testing [15, 16], can also be
applied for testing code generators. A drawback, however, is
that it is difficult to ensure that all “relevant” and/or “inter-
esting” input values have been tested. In contrast, ArCheck
has been explicitly designed to leverage the semantics of IR,
and intuition and insight of human experts, to generate rele-
vant/interesting test cases.

White-box testing strategies, such as symbolic execution
[8, 10, 11], on the other hand, generate more “interesting”
inputs because they treat the system-under-test as a white-
box. Symbolic execution, in particular, seems best suited
for our problem since it is a coverage testing technique;
checking soundness of code generator mapping rules is a
coverage testing problem. Nonetheless, given the simplicity
of white-box static analysis of IR instructions, we preferred
it over symbolic execution for building robust tools that can
operate on production compilers.

7. Conclusion
In this paper, we developed a new, efficient and practical
approach for systematic testing of code generators in mod-
ern compilers. One of the key contributions of our work is
the development of an architecture-neutral testing technique.
Another important benefit of our approach is that it treats the
compiler/code-generator as a black-box, and hence can be
easily applied to any compiler. A third major benefit is that
it not only detects bugs, but also makes it easy to locate/di-
agnose them.

Our evaluation showed that ArCheck can identify a sig-
nificant number of bugs and inconsistencies in architecture
specifications used by GCC’s code generator. Specifically,
we used ArCheck on approximately 140 unique x86 in-
structions and identified potential inconsistencies in 39 of
them. Although a majority of these aren’t soundness related,
we believe that approximately 7 are, including one that has

already been fixed by GCC developers. Moreover, we ver-
ified that ArCheck is able to detect 15 other known bugs
(soundness issues) in the previous versions of GCC. Some
of these bugs are serious, and their presence in the bug re-
ports indicates that the errors were not caught by the end-to-
end testing used in GCC, thus establishing the need for ded-
icated frameworks such as ArCheck. These results demon-
strate the utility of tools such as ArCheck, and suggest that
similar tools should be integrated into the test cycle of to-
day’s compilers.

References
[1] BEXTR intrinsic has memory operands switched around.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=

57623.

[2] i386.md strangeness in sse2 movsd. https://gcc.gnu.

org/bugzilla/show_bug.cgi?id=14941.

[3] Intel 64 and IA-32 Instruction Set Reference, A-Z. http:

//www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html.

[4] RTL representation of i386 shrdl instruction is incor-
rect? https://gcc.gnu.org/bugzilla/show_bug.cgi?

id=61503.

[5] Spaceship operator miscompiled. https://gcc.gnu.org/

bugzilla/show_bug.cgi?id=53138.

[6] Testing machine descriptions. https://gcc.gnu.org/ml/

gcc/2014-03/msg00434.html.

[7] x86 64-linux-gnu-gcc generate wrong asm instruction MOV-
ABS for intel syntax. https://gcc.gnu.org/bugzilla/

show_bug.cgi?id=56114.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE:
Unassisted and Automatic Generation of High-coverage Tests
for Complex Systems Programs. In OSDI, 2008.

[9] Mary Fernández and Norman Ramsey. Automatic Checking
of Instruction Specifications. In ICSE, 1997.

[10] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART:
Directed Automated Random Testing. In PLDI, 2005.

[11] James C. King. Symbolic Execution and Program Testing.
Commun. ACM, 1976.

[12] Xavier Leroy. Formal Certification of a Compiler Back-end
or: Programming a Compiler with a Proof Assistant. POPL,
2006.

[13] Xavier Leroy. A Formally Verified Compiler Back-end. J.
Autom. Reason., 2009.

[14] Christian Lindig. Random Testing of C Calling Conventions.
In AADEBUG, 2005.

[15] Rupak Majumdar and Ru-Gang Xu. Directed Test Generation
Using Symbolic Grammars. In ASE, 2007.

[16] Peter M. Maurer. Generating Test Data with Enhanced
Context-Free Grammars. IEEE Softw., 1990.

[17] William M. McKeeman. Differential Testing for Software.
DIGITAL TECHNICAL JOURNAL, 1998.

[18] Barton P. Miller, Louis Fredriksen, and Bryan So. An Em-
pirical Study of the Reliability of UNIX Utilities. Commun.
ACM, 1990.

[19] George C. Necula. Translation Validation for an Optimizing
Compiler. In PLDI, 2000.

[20] H. Samet. A Machine Description Facility for Compiler
Testing. Software Engineering, IEEE Transactions on, 1977.

[21] Flash Sheridan. Practical Testing of a C99 Compiler Using
Output Comparison. Softw. Pract. Exper., 2007.

[22] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett.
Evaluating Value-graph Translation Validation for LLVM. In
PLDI, 2011.

[23] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Find-
ing and Understanding Bugs in C Compilers. In PLDI, 2011.

[24] Chen Zhao, Yunzhi Xue, Qiuming Tao, Liang Guo, and Zhao-
hui Wang. Automated Test Program Generation for an Indus-
trial Optimizing Compiler. In Automation of Software Test,
2009. AST ’09, 2009.

[25] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and
Steve Zdancewic. Formal Verification of SSA-based Opti-
mizations for LLVM. In PLDI, 2013.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57623
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57623
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14941
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14941
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61503
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61503
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=53138
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=53138
https://gcc.gnu.org/ml/gcc/2014-03/msg00434.html
https://gcc.gnu.org/ml/gcc/2014-03/msg00434.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56114
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56114

	1 Introduction
	1.1 Contributions.

	2 Problem Definition
	3 Approach Overview
	3.1 Rule extraction
	3.2 Start state generation
	3.3 Test execution and result comparison

	4 Implementation
	4.1 Obtaining code generator mapping rules
	4.2 Obtaining start states for a mapping rule
	4.3 Obtaining RTL semantics
	4.4 Obtaining assembly semantics
	4.5 Handling memory
	4.6 Test execution and result comparison

	5 Evaluation
	5.1 Testing setup
	5.2 Detecting new semantic differences and soundness violations
	5.3 Detecting known soundness issues

	6 Related Work
	7 Conclusion

