
Harbormaster: Policy Enforcement for Containers

Mingwei Zhang
Stony Brook University

mizhang@cs.stonybrook.edu

Daniel Marino Petros Efstathopoulos
Symantec ResearchLabs

Daniel Marino@symantec.com
Petros Efstathopoulos@symantec.com

Abstract—Lightweight virtualization, as implemented by ap-
plication container solutions such as Docker, have the potential
to revolutionize the way multi-tier applications are developed
and deployed, especially in the cloud. The success of application
containers can be partly attributed to their ability to share
resources with the underlying platform that hosts them. As such,
the isolation provided by such containers is not as strict as with
traditional VMs. These very characteristics that have contributed
to the success of application containers can also be seen as factors
that limit their widespread commercial adoption, since enterprise
IT administrators cannot implement the various–and often fine-
grained–security policies they are required to abide by. This
problem is of limited consequence when a host is running a single
user’s application containers. But sharing compute resources
among multiple users is an important benefit of containers and
cloud-based deployment. In this paper we present a preliminary
discussion of the challenges associated with enterprise security
policy management for application containers deployed in multi-
user environments. Furthermore, we present Harbormaster, a
system that addresses some of these challenges by enforcing policy
checks on Docker container management operations and allowing
administrators to implement the principle of least privilege.

I. INTRODUCTION

Application container technologies, such as Docker, are
revolutionizing the way that applications are deployed on
enterprise infrastructure in the cloud [1], [2]. Rather than
manually installing individual components, or packaging them
into a heavyweight VM, all of the required components for
an application can be encapsulated in a lightweight container
that can easily be deployed on any platform that supports the
container technology. This new style of deployment enables
flexible and efficient use of cloud compute resources.

To take full advantage of the infrastructure utilization
efficiency provided by container-based deployment, multiple
users will need to access a server that hosts containers, or a
container host. Unfortunately, Docker and other lightweight
virtualization solutions do not provide the same degree of
isolation that traditional virtual machine (VM) infrastructure
provides. In fact, the efficiency gains that Docker enjoys over
traditional VMs are largely attributable to allowing containers
to access and share the resources of the underlying operating
system. This complicates efforts to secure a container host,
since some container management commands can impact other
containers on the server or can grant application code within
the container privileged access to the underlying operating
system. Traditional OS-level user permissions can be easily
subverted on a container host since any user with the ability
to issue Docker container management commands can freely
launch a container that enjoys unrestricted, root access to the
underlying operating system.

In addition to the lack of multi-user privilege management,
the move to container-based application deployment creates
other concerns for a security administrator. The increasing
availability of ready-to-run application containers available on
public repositories amplifies the existing concern that users
may run unvetted code from untrusted sources and unwittingly
provide a vector for attack. This is of particular concern
when the container host may have access to sensitive data.
In order for enterprise IT administrators to confidently allow
container-based application deployment in the cloud, we must
provide them with a privilege management tool they can
use to implement security policies and maintain regulatory
compliance.

Our goal is to investigate mechanisms that will address
some of the security concerns related to the usage of appli-
cation containers by enterprises. To that end, in this paper
we tackle the security and management gap that currently
exists between lightweight containers and traditional VMs.
In addition, the application-centric nature of containers can
enable useful policies that would be difficult to enforce for
traditional VMs. We describe our prototype implementation of
Harbormaster, a tool that allows a container host administrator
to:

• securely empower multiple users to issue management
commands without allowing them to abuse the root
privileges required by the Docker daemon

• implement the principle of least privilege by granting
users fine-grained privileges to perform only those
tasks that they need to

• secure container hosts and the sensitive data they
have access to by controlling what images may be
installed on enterprise infrastructure and how they can
be operated.

The rest of this paper is organized as follows: Section II
provides some background on Docker and the challenges in
question, Section III discusses the principles behind the pro-
posed Harbormaster system, Section IV briefly describes our
prototype implementation, Section V presents a preliminary
evaluation, while Section VI concludes the paper.

II. BACKGROUND

Lightweight, or OS-level, virtualization refers to a variety
of techniques used to sandbox, constrain, or simply modify the
resource namespace of a process or a group of processes. It has
a long history stretching back at least to the introduction of the
chroot system call in Version 7 Unix. Notable implementa-
tions include BSD Jails, OpenVZ, and Linux Containers (LXC)

which provide varying degrees of isolation [3], [4], [5]. These
approaches avoid the overheads associated with traditional
virtual machines. The resulting runtime performance improve-
ment has been amply documented in recent research in a
variety of application areas from high performance computing
(HPC) to application security monitoring [6], [7], [8].

Docker [9] has reinvigorated interest in lightweight virtual-
ization by providing an easy-to-use interface for accessing the
virtualization primitives built in to the Linux kernel, adding
support for application image repositories, and leveraging an
efficient copy-on-write file system for packaging application
images with minimal space overhead. Due to its increasing
popularity, we introduce our approach in the context of Docker.

A. Docker Terminology

Docker applications are packaged as images. A Docker
image is essentially a read-only snapshot of a file system image
containing the resources required by the application along
with some metadata that, among other things, may indicate
what executable within the image should be used to run the
application. 1 Images are used to launch containers, which
are dynamic instances of the application. The same image
can be used to launch multiple containers. Once created from
an image using a run command, containers can be stopped
and started, and changes made to the container’s internal file
system persist within the container.

New images are created by downloading an existing image
(using a pull command) from a public or private Docker reg-
istry to use as a base, and then modifying it. The modification
can be done interactively by launching a container from the
image and manually issuing commands, or via a script known
as a Dockerfile. The new image is then pushed to a Docker
registry where it is stored.

B. Docker architecture

Docker employs a client/server program architecture. Each
container host runs an instance of the Docker daemon. Docker
clients issue container management commands to the daemon
using an HTTP-based protocol known as the Docker Remote
API. The daemon processes these commands and performs the
requested actions, such as downloading an application image
from a repository or launching a container from an image.

The parameters passed to the run command used to launch
a Docker container control the degree to which the container
is isolated from the underlying operating system. Oftentimes
it is desirable to give the container access to resources on
the container host. For instance, an application image for an
Apache HTTP Server can be launched and granted access to
a directory on the host file system that contains a particular
web application’s resources (HTML files, PHP scripts, etc.),
and be allowed to open network port 80.

Docker even provides a --privileged option which gives
the application running within the container nearly the same
access to the host as an uncontained process running with root

1The image actually consists of a series of file system layers each of which
contains a set of differences from the previous layer. A union file system is
used to combine these layers into a single file system that contains all of the
application’s resources.

privileges. While this may seem to defeat the primary purpose
of a container, this flexibility can be useful. Consider deploying
a security tool, with a complex set of library dependencies,
on a container host. By packaging such a tool as a Docker
image, we can exercise control over the dependencies and ease
deployment. But, by running the image as a container with the
--privileged option, we grant the security application low
level access to all storage devices on the host, allowing it to
perform system-wide scanning. Privileges can also be granted
to a container in a more fine-grained manner by specifying an
allowed set of Linux capabilities [10].

In order to access the kernel’s lightweight virtualization
primitives, the Docker daemon must run with root privileges.
Each container process, which is forked from the daemon,
initially runs as root and eventually relinquishes privileges
leaving itself with the level of access specified by the param-
eters used to launch it.

C. Third Party Tools

By using the Docker Remote API, third parties can build
orchestration tools to help manage complex container de-
ployments. For instance, Google’s Kubernetes and Amazon’s
Elastic Beanstalk are tools for scheduling, replicating, and load
balancing between Docker containers [11], [12]. In our work,
we also leverage the public availability of the Docker Remote
API to provide a policy enforcement layer for Docker container
hosts, but we do so in a way that maintains compatibility
with higher level orchestration tools built for Docker. In this
way, our privilege management tool can fit seamlessly into the
growing Docker ecosystem.

D. Docker Security and Related Work

The Docker community has recently put serious effort into
improving its security. This includes exploring how mandatory
access control for contained apps can be implemented through
SELinux and Apparmor policies, system call filters such as
seccomp [13], and by running containers with minimal Linux
capabilities [14]. These efforts help to protect an underlying
platform (and other containers running on it) if, for instance,
a containerized application is compromised by exploiting an
unknown vulnerability. In addition, a more constrained en-
vironment has been introduced for some operations such as
docker pull [15]. Most recently, Docker has introduced im-
age signing and verification which helps ensure that an image
comes from the expected publisher and has not been tampered
with [16]. Each of these efforts aims to protect against external
threats; they do nothing to restrict the actions of users who
have permission to issue commands to the Docker daemon.
This paper describes a way to enforce policies on legitimate
users of Docker, enabling administrators to implement the
principle of least privilege.

Docker aims to keep its core functionality lean, but to
allow external tools to build additional functionality through
its APIs. So, for instance, docker-swarm [17] and Google
Kubernetes [11], [18] have stepped in to simplify complex de-
ployments of interconnected Docker containers. In Kubernetes,
deployments are described by a so-called pod file. Kubernetes
reads this deployment description and automatically issues
appropriate commands to create the containers on available

Docker container hosts and to connect them to each other as
needed. But again, anyone who has access to Kubernetes, or
the Docker daemons to which it issues commands, essentially
has unconstrained access to the container host servers. Our
work, in contrast, provides a policy enforcement mechanism
that allows an administrator to provide various, fine-grained
levels of access to multiple users on a container host. In
keeping with Docker’s principle of maintaining a minimal core
set of functionality, we accomplish this without modifying
Docker itself.

E. Lack of multi-user support

If a single user is responsible for deploying applications on
a Docker container host, then one could argue that there is no
need for additional policy controls. However, we believe that
containers have the potential to replace traditional VMs for
many uses, allowing for more efficient use of cloud resources.
Although Docker does not yet provide the level of isolation
desired in many multi-tenant environments, it can serve as
an appropriate lightweight replacement for VMs on a server
(or a cloud VM) that is shared among multiple users within
an organization. But, while hypervisors such as VMWare
ESXi [19] offer robust support for controlling the privileges
that multiple users have for managing their VMs, we know
of no analogous solution for Docker or other lightweight
containers.

Good security practice dictates that administrators should
adhere to the principle of least privilege, granting users only
the privileges needed to accomplish their job. Unfortunately,
once a user is able to issue commands to a Docker daemon,
they are free to download and launch any container (potentially
from an untrusted source) with arbitrarily high privileges. We
believe that providing administrators with a tool to constrain
these commands and enforce all necessary enterprise-specific
policies is an essential prerequisite to the widespread adoption
of container technologies. In this spirit, we introduce Harbor-
master.

III. HARBORMASTER DESIGN

Harbormaster protects container hosts by enforcing fine-
grained policies on the container management commands
issued by users. It accomplishes this by proxying all commands
destined for the Docker daemon and evaluating them for policy
compliance before passing them along. In this section we
describe the design of Harbormaster’s architecture and the
types of policies it can enforce.

A. Harbormaster system architecture

The basic system architecture is shown in Figure 1. Con-
tainer users issue commands to the Harbormaster gateway
which, in turn, issues commands to the Docker daemon. The
Harbormaster gateway completely mediates all communication
with the Docker daemon; no other user or process is given a
communication channel to the daemon. 2

From the point of view of the user, the Harbormaster
gateway exposes exactly the same interface as the Docker

2Preventing users from directly accessing the daemon can be done in a
variety of ways. In our prototype, we bind the Docker daemon to a unix
domain socket and restrict access with file permissions.

daemon. We chose this proxy-based architecture in order to
ensure that Harbormaster would easily fit into the growing
Docker ecosystem. Whether Docker Remote API commands
are issued directly by a user, or by a third-party orchestration
tool such as Kubernetes, our gateway transparently proxies the
commands and ensures policy compliance.

In our prototype implementation, policies are stored locally
on the machine that hosts the Harbormaster gateway, but we
envision an architecture where policies for many container
hosts are stored on a central policy server. Individual gateway
instances would contact the policy server to request applicable
policies. In our prototype, an administrator is responsible for
defining all aspects of the policy for all images. But, we
envision that in a more complete implementation, non-admin
users could be granted the privilege to adjust certain aspects
of the policy for new images that they create.

B. Harbormaster Policies

We will now describe some policies that can be expressed
in Harbormaster. Our prototype implementation, which accepts
policies written in an ad-hoc XML format, can constrain a wide
variety of options to the Docker Remote API. In this section,
we highlight the most important operations that Harbormaster
can constrain. We use the simplified, declarative rule language
shown in Figure 2 for presentation purposes.

We divide the policy rules that Harbormaster enforces into
two categories.

• Image Operation Policy (IOP) These policies con-
strain Docker commands such as pull, build, and
push that fetch, create, and store images.

• Container Operation Policy (COP) These policies
constrain Docker commands that create new contain-
ers and operate on existing containers. Perhaps the
most important of these policies are those that limit
the Docker run command which is used to launch
a new container from an image and specifies which
process is to be run within the container, which host
resources will be made available to the container,
and any special privileges that processes within the
container will enjoy.

1) Image Operation Policy: Harbormaster allows an ad-
ministrator to specify which images can be downloaded from
registries, and by which users. For instance:

• ALLOW ALL PULL hub.docker.com/*
Grant all users the ability to pull any image from the
official public Docker registry.

• DISALLOW ALL PULL hub.docker.com/vulnerable-app

But, you may want to disallow anyone from
downloading certain apps (e.g., a web server) with
known vulnerabilities.

Normally, we imagine that an administrator would create
a global whitelist of images that all users are allowed to
download, but more fine-grained policies are possible. For
instance, a trusted developer may be given permission to pull
arbitrary images from the docker hub, but operations personnel

COP:
 ...

IOP:
 ...

Harbormaster

Docker daemon

Unix domain socket
(root privilege required)

Alice
(role: dev)

Cary
(role: user)

Bob
(role: test)

Unix domain
sockets (per user)

VM Host

Container Operation
Policies

Image Operation
Policies

+

+

COP:
 launch:entry: ALL
 inject: ubuntu
 restart: allow
 ...

IOP:
 all:pull: *, dhub/xyz
 ...

Alice:

Bob:

COP:
 ...

IOP:
 ...

Cary:

Fig. 1. Architecture of Harbormaster

Policy Rules

Image Operation Rule := [DIS]ALLOW 〈user spec〉 〈image action〉 〈image spec〉
Container Operation Rule := [DIS]ALLOW 〈user spec〉 〈container action〉 FOR 〈container spec〉

Policy Objects

user spec := Linux user name or group name or ALL
image spec := Docker repository name plus a regular expression for name matching

container spec := regular expression matching a container name, or an 〈image spec〉 :: 〈user spec〉 which
will match all containers launched from a matching image by a matching user

file spec := Linux pathname with regular expression support
port spec := list of port ranges or ALL

capability spec := list of Linux capabilities (e.g., CAP NET RAW) or ALL
resource constraint spec := a condition (<,>,==) on any of the resource weighting priorities supported

by Docker (e.g., CPU usage, memory usage, I/O bandwidth)
Image Policy Action (image action) Descriptions

PULL download and store an image
EXTEND FROM create a new image using the specified image as a base

REMOVE delete an image
Container Policy Action (container action) Descriptions

MAP HOST FILE takes a 〈file spec〉 as an argument and allows user to launch
the specified container with access to the given host file(s)

MAP HOST PORT takes a 〈port spec〉 as an argument and allows user to launch
the specified container with access to the given host port(s)

GRANT CAPABILITY takes a 〈cap spec〉 as an argument and allows user to launch
specified container with the given capabilities

SPECIFY ENTRYPOINT allows user to use a non-default entrypoint to
launch the specified container

INJECT PROCESS allows user to execute arbitrary file in an already running container
STOP/START/RESTART allows user to control container lifecycle

MODIFY RESOURCE USAGE takes a 〈resource constraint spec〉 as an argument and allows user to launch
specified container with an altered resource priority

Fig. 2. Syntax of our simplified presentation policy language. Our implementation uses a less succinct XML policy specification and supports all of these
constraints and more.

may only download and launch a few production images from
an internal registry.

An administrator may also want to constrain who is able
to modify images in order to create new images. For instance:

• ALLOW developers EXTEND FROM hub.docker.com/*
Grants users in the “developers” group the permission
to build new images based on containers launched
from official Docker registry images.

In our current implementation, we use operating system users
and groups for authentication and to establish identity. This
could easily be replaced by another authentication or access
control mechanism.

2) Container Operation Policy: Creating a container from
an image via the Docker run or create command is an oper-
ation that is essential to constrain. As mentioned in Section II,
container processes are forked from the Docker daemon which
runs with root privileges. The options included in the run or
create command line determine what privileges, if any, the
newly launched process relinquishes. Harbormaster’s container
launch policies constrain these sensitive commands, as well
as other commands affecting the operation of an existing
container.

Harbormaster allows users to run any image that the
administrator has permitted them to download. In addition,
once a user creates a new image, he is able to run it. In a
more complete implementation, we envision that users would
be able to specify other users or groups of users that are
allowed to run the images that they create, rather than relying
on an administrator to update the policy.

By default, Harbormaster ensures that a user is not able
to launch a container with more privileges than the user is
granted by the operating system. For instance, Harbormaster
enforces that a user can mount host data into a container only
if the user has file system permissions to that data. Similarly,
Harbormaster checks any attempt to launch a container with
a specific operating system privilege to ensure that the user
initiating the operation has the privilege. An administrator may,
however, grant additional privileges to specific users when
launching specific images. For instance:

• ALLOW qa MAP HOST FILE /private/website FOR

apache

Allow users in the “qa” group to launch a container
from the apache web server image and give it access
to directory /private/website.

• ALLOW qa GRANT CAPABILITY

CAP_NET_BIND_SERVICE FOR apache

Grants users in the “qa” group the permission to
launch a container from the apache image with a
specific operating system capability, in this case the
Linux CAP NET BIND SERVICE which allows binding
to a privileged port.

The administrator in the previous example has granted
the QA users the ability to launch Apache with access to a
privileged directory containing the website. But, following the
principle of least privilege, she may not want these users to
have access to some private PHP scripts within that directory.

Unfortunately, Docker allows launching a container from an
image with a non-default entry point. For instance, the com-
mand
$ docker run -v /private/website:/var/www \
> -v ˜:/myhome apache cp -r /var/www /myhome/

launches the apache image, gives it access to both the private
website directory and the user’s home directory. But then,
instead of executing the default httpd process, it copies the
private website directory into the user’s home directory. In
order to prevent circumventing the intended policy in this way,
Harbormaster disallows launching images with non-default
entrypoints unless it is explicitly allowed by a policy. A similar
issue arises with the Docker exec command, which allows
a user to run a new process within an existing container.
Privileges to use these Docker features can be granted to
specific users for specific images. For instance:

• ALLOW developer SPECIFY ENTRYPOINT FOR ALL

Grants users in the “developer” group the ability to
specify a non-standard entrypoint for all images which
they are permitted to run.

• ALLOW developer INJECT PROCESS FOR ubuntu

Grants users in the “developer” group the ability to
issue exec commands to inject processes into con-
tainers launched from the ubuntu image.

Finally, Harbormaster policies can grant privileges on the
ability to stop and start containers launched by others. For
instance:

• ALLOW ops RESTART FOR ALL::ALL

Grants users in the “ops” group the ability to stop and
start containers launched by all other users.

IV. IMPLEMENTATION

As mentioned in Section III, the Harbormaster prototype
uses an XML file for policy specification. The Harbormaster
gateway process reads this file, starts the Docker daemon and
binds it to a socket accessible only to Harbormaster (which,
like the Docker daemon, runs with root privileges), and awaits
container management commands.

We adopt a simple approach to authenticating and iden-
tifying multiple users in our prototype by leveraging Linux
users and file permissions. A dedicated named pipe is created
for each user to communicate with the Harbormaster gateway.
Each user’s environment is modified to set the DOCKER_HOST

variable to their personal IPC pipe to the Harbormaster gate-
way. File permissions are used to prevent any other user from
sending commands via another user’s IPC channel. In this way,
the Harbormaster gateway can easily identify the user who is
issuing a command, and apply the appropriate policy before
possibly forwarding the command to the Docker daemon.

Our simple prototype allowed us to experiment with the
feasibility of intercepting and modifying Docker commands,
and with a variety of policies for safely sharing a container
host among users. But, the design could be extended in many
ways to create a more practical, production-level system. Most
notably, policies could be hosted on a central server for use by
multiple hosts. A level of discretionary access control could
be added for users to grant certain privileges on containers

TABLE I. HARBORMASTER POLICY PARSING AND EVALUATION
PERFORMANCE.

Number of Rules Time to Evaluate
5 0.07 sec

50 0.1 sec
10,000 0.5 sec

100,000 6 sec

they own. In fact, a full XACML-based access control policy
mechanism could be put in place to allow policies to be based
on rich attributes flexibly assigned to users, resources, and the
current environment [20].

V. EVALUATION OF PRELIMINARY PROTOTYPE

In this section, we describe an initial evaluation of our
Harbormaster gateway which serves as a proxy for all com-
munication with the Docker daemon. In our effort to assess
our current prototype, we perform the following steps: 1) we
study the runtime overhead added to Docker operations by
the proxy, and confirm that Harbormaster transparently proxies
commands even when they are issued by third-party tools, such
as Kubernetes, 2) we verify the effectiveness of the prototype
in stopping attempts to break the enforced policy, and 3) we
attempt to quantify the impact of Harbormaster’s presence on
addressing a specific class of potential threats related to Docker
entry point misuse.

A. Runtime performance

The most crucial Harbormaster policies are checked and
enforced during Docker container launch operations. We used
a particularly popular Docker container image—the official
MySQL image available on the Docker registry—and a simple
policy in order to measure the overhead that Harbormaster
introduces by proxying communication with the Docker dae-
mon. Our testbed is a Linux x86-64 Ubuntu 14.04 System
running on an Intel Core-i5 4200 CPU, with 12 Gigabytes
of RAM and an 128GB SSD. We measured the impact on
launch time both when launching a single container and when
launching up to fifty containers from the image simultane-
ously. Figure 3 shows that the median overhead introduced by
Harbormaster is 11.2%, which we find acceptable. The policy
we are using for this experiment is very simple. It contains
only two rules, of which the first requires that the container
should not be started in privileged mode and the second
requires that the data mapped into the container can only be at
location /home/public. More complicated policies increase
the overhead somewhat, as shown in Table I, but keep in
mind that this overhead applies only to container management
operations and that these times reflect the performance of
our unoptimized prototype. Harbormaster does not introduce
any overhead to the runtime performance of the contained
application.

a) Integration with Kubernetes.: We have also tested
Harbormaster with a popular container management system,
Kubernetes, which we described in Section II. In particular,
we tested our system in the Google container cloud using
a small deployment consisting of two VMs: a master and
a slave node, both protected by Harbormaster. We exercised
the system through Kubernetes for the duration of a week,
successfully testing all Kubernetes’ sample applications (pods)

0"

20"

40"

60"

80"

100"

1" 5" 10" 20" 30" 50"

S
ta

rt
up

 T
im

e
(s

)

Number of MySQL Containers to Launch

Docker"w/o"Policy"Enforcement"

Docker"w/"Harbormaster"

Fig. 3. Harbormaster container launch time overhead.

in kubernetes/examples/guestbook, with no issues. This
simple experiment demonstrates that our prototype success-
fully parses the Docker Remote API commands whether they
are issued directly by the Docker client, or by a third-party tool
such as Kubernetes. This ability to expose the same interface as
the Docker daemon and to transparently proxy all commands
allows Harbormaster to seamlessly integrate with the Docker
ecosystem.

B. Harbormaster policy enforcement scenarios.

To evaluate the effectiveness of Harbormaster, we evaluated
a hypothetical scenario involving an organization with several
users sharing a single Docker container host which is admin-
istered by a developer Alice. Our organization has another
member Cary who is a developer in a different group, and
Bob who is a tester in the QA group. We simulated a scenario
where Alice builds a new containerized application and wants
to allow Bob to access her host to test the application and to
grant Cary access to her host in order to experiment with
Docker and build her own containerized applications. Alice
doesn’t want either of the others to have access to the private
data located on her container host.

We found that Harbormaster is able to effectively enforce
policy in this scenario. In Table II, we list several unauthorized
commands that Cary attempts on Alice’s host, but that
Harbormaster is able to reject based on the policy Alice has
put in place. For instance, Cary’s attempts to download an
unauthorized image is rejected, as is her attempt to copy the
file with Alice’s passwords. Note that even if we trust Cary
not to act maliciously, the principle of least privilege dictates
that she should be prevented from performing sensitive actions
that she doesn’t need to. That way, even if Cary’s account is
compromised by a malicious user, the damage is contained.
Harbormaster allows the implementation of such a policy on
a container host.

C. Automatic Docker image analysis

To better understand the potential impact of Harbormaster
and the opportunity to enforce policies that prevent undesirable
behaviors, we used the Docker registry API [21] in order to
analyze a large number of Docker images publicly available in
the Docker hub registry [22]. The goal of our analysis was to
assess the degree to which these images contain configuration

TABLE II. UNINTENDED BEHAVIOR PREVENTED BY HARBORMASTER

Unintended Behavior Action Policy Type
docker run pull unauthorized_img Reject IOP
docker rmi alice_image Reject IOP
docker rm alice_container Reject COP
docker run -v/data/alice:/data cary/ftp scp /data myweb Reject COP
docker run -v/etc/shadow:/tmp/pass ubuntu scp /tmp/pass cary_web Reject COP

oversights that may lead to unintended behaviors. In particular,
for the purposes of this paper, we will focus on our findings
related container entry point specification, or lack thereof.3

We crawled 84,897 Docker repositories (images) from
24,066 users by recursively calling the API query functions
(similar to docker search). This corresponds to the majority
of the all repositories in the public Docker registry, including
72 official repositories as well as 31,790 automatically built
repositories connected with github.

a) Entry point analysis.: Of the 84,897 images that we
analyzed, 12,845 (15.1%) of the images have an explicit entry
point specified in their metadata. These images were generated
from a Dockerfile containing an ENTRYPOINT statement. The
rest have a default entry point specified in their metadata which
will only be used if another command is not specified on the
docker run command line. These images were built from a
Dockerfile containing a CMD statement.

The existence of an ENTRYPOINT in the metadata is a
strong indication that the container is intended to run only
the specified command. Harbormaster can be used to ensure
that users do not use special Docker command line switches
to override this intended entry point. Tables III and IV demon-
strate the top-10 entry points as indicated by ENTRYPOINT
and CMD specifications respectively.

TABLE III. TOP-10 ENTRY POINTS (FOR CONTAINERS WITH NO
ENTRYPOINT STATEMENTS)

Entry point Number
/entrypoint.sh 780
/docker-entrypoint.sh 347
/start.sh 179
/run.sh 172
/usr/local/bin/jenkins.sh 165
/bin/bash 151
/bin/sh -c usr/bin/mongod 140
/usr/bin/redis-server 132
/app/init 107
/usr/sbin/apache2 75
total 12845

In Table III we observe that 151 images (0.9% of all
images) have entry point programs such as/bin/bash or
/bin/sh. The protection afforded by enforcing these shell
entry points is of limited value, since users can launch any
shell command in interactive mode. But, one could imagine
identifying these images and either forbidding them altogether,

3Note that we also made other potentially threatening observations, such
as 2280 application passwords in plain text hard-coded in the images, that
could be addressed by Harbormaster, but are beyond the scope of our current
prototype’s policy language.

TABLE IV. TOP-10 DEFAULT EXECUTABLES (FOR CONTAINERS WITH
NO ENTRYPOINT STATEMENT)

Default startup Number
/bin/bash 9723
/sbin/my init 2111
run.sh 1244
bash 1015
/usr/bin/supervisord 866
/bin/sh 735
nginx -g daemon off 536
start.sh 482
/usr/sbin/sshd -D 365
/sbin/init 350
total 71528

or simply enforcing a policy that sensitive data can never be
mounted to containers launched from these images.

Furthermore, when looking at images with no explicit
entry point specified, we identify more opportunities for useful
policy enforcement by Harbormaster. In particular, 73,386
(87%) of these images specify meaningful (non-shell) default
programs in their CMD statement. Again, Harbormaster could
be used to automatically enforce that only the specified default
program may be run inside the container.

VI. CONCLUSIONS

Lightweight application containers such as Docker hold
great promise for simplifying the development and deployment
of cloud-based applications and making efficient use of cloud
resources. But without a mechanism to constrain the sharing
of resources on the target platforms, their adoption may be
limited. Harbormaster takes the first steps toward defining
such a mechanism, by allowing the definition of fine-grained
policies that empower administrators to support multiple users
while adhering to the principle of least privileges. In addition,
policies that exercise fine-grained control over which images
can be launched and what data they have access to helps
administrators to secure their infrastructure and protect their
sensitive data. Our prototype implementation demonstrates that
Harbormaster’s proxy-based architecture enables transparent
integration with the Docker ecosystem and is able to enforce
useful policies in a multi-user environment.

REFERENCES

[1] Docker, “Build, Ship and Run Any App, Anywhere.” https://www.
docker.com.

[2] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
ser. EuroSys ’07. New York, NY, USA: ACM, 2007, pp. 275–287.
[Online]. Available: http://doi.acm.org/10.1145/1272996.1273025

[3] FreeBSD Handbook, “Jails.” http://bit.ly/1CSkzOq.
[4] OpenVZ, https://openvz.org.
[5] “LXC: Infrastructure for container projects,” https://linuxcontainers.org.
[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated

performance comparison of virtual machines and linux containers,”
IBM, Tech. Rep., 2014.

[7] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. De Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,” in
Proceedings of the 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, ser. PDP ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 233–240.
[Online]. Available: http://dx.doi.org/10.1109/PDP.2013.41

[8] Y. Huang, A. Stavrou, A. K. Ghosh, and S. Jajodia, “Efficiently tracking
application interactions using lightweight virtualization,” in Proceedings
of the 1st ACM Workshop on Virtual Machine Security, ser. VMSec ’08,
2008.

[9] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, 2014.

[10] S. E. Hallyn and A. G. Morgan, “Linux capabilities: Making them
work,” in Linux Symposium. Citeseer, 2008, p. 163.

[11] Google, “Kubernetes.” http://kubernetes.io/.
[12] Amazon, “AWS Elastic Beanstalk Documentation.” http://amzn.to/

1FOPk99.
[13] W. Drewry, “dynamic seccomp policies (using bpf filters),” https://lwn.

net/Articles/475019/.
[14] Docker, “Docker security: Linux kernel capabilities,” http://bit.ly/

1d3gWQV.
[15] ——, “Advancing docker security: Docker 1.4.0 and 1.3.3

releases,” November 2014, https://blog.docker.com/2014/12/
advancing-docker-security-docker-1-4-0-and-1-3-3-releases.

[16] ——, “Introducing docker content trust,” August 2015, https://blog.
docker.com/2015/08/content-trust-docker-1-8/.

[17] ——, “Docker swarm,” https://docs.docker.com/swarm/.
[18] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”

Cloud Computing, IEEE, vol. 1, no. 3, pp. 81–84, Sept 2014.
[19] VMWare, “ESXi.” http://vmw.re/1GPwzrQ.
[20] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First

experiences using XACML for access control in distributed systems,”
in Proceedings of the 2003 ACM Workshop on XML Security, ser.
XMLSEC ’03. New York, NY, USA: ACM, 2003, pp. 25–37.
[Online]. Available: http://doi.acm.org/10.1145/968559.968563

[21] Docker, “Docker registry API documentation,” https://docs.docker.com/
reference/api/registry api/.

[22] ——, “Docker hub public registry,” https://registry.hub.docker.com.

https://www.docker.com
https://www.docker.com
http://doi.acm.org/10.1145/1272996.1273025
http://bit.ly/1CSkzOq
https://openvz.org
https://linuxcontainers.org
http://dx.doi.org/10.1109/PDP.2013.41
http://kubernetes.io/
http://amzn.to/1FOPk99
http://amzn.to/1FOPk99
https://lwn.net/Articles/475019/
https://lwn.net/Articles/475019/
http://bit.ly/1d3gWQV
http://bit.ly/1d3gWQV
https://blog.docker.com/2014/12/advancing-docker-security-docker-1-4-0-and-1-3-3-releases
https://blog.docker.com/2014/12/advancing-docker-security-docker-1-4-0-and-1-3-3-releases
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://docs.docker.com/swarm/
http://vmw.re/1GPwzrQ
http://doi.acm.org/10.1145/968559.968563
https://docs.docker.com/reference/api/registry_api/
https://docs.docker.com/reference/api/registry_api/
https://registry.hub.docker.com

	Introduction
	Background
	Docker Terminology
	Docker architecture
	Third Party Tools
	Docker Security and Related Work
	Lack of multi-user support

	Harbormaster Design
	Harbormaster system architecture
	Harbormaster Policies
	Image Operation Policy
	Container Operation Policy

	Implementation
	Evaluation of preliminary prototype
	Runtime performance
	Harbormaster policy enforcement scenarios.
	Automatic Docker image analysis

	Conclusions
	References

