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Abstract. Software installation provides an attractive entry vector for malware: since
installations are performed with administrator privileges, malware can easily get the en-
hanced level of access needed to install backdoors, spyware, rootkits, or “bot” software,
and to hide these installations from users. Previous research has been focused mainly on
securing the execution phase of untrusted software, while largely ignoring the safety of
installations. Even security-enhanced operating systems such as SELinux and Vista don’t
usually impose restrictions during software installs, expecting the system administrator to
“know what she is doing.” This paper addresses this “gap in armor” by securing software
installations. Our technique can support a diversity of package managers and software
installers. It is based on a framework that simplifies the development and enforcement of
policies that govern safety of installations. We present a simple policy that can be used
to prevent untrusted software from modifying any of the files used by benign software
packages, thus blocking the most common mechanism used by malware to ensure that it
is run automatically after each system reboot. While the scope of our technique is limited
to the installation phase, it can be easily combined with approaches for secure execution,
e.g., by ensuring that all future runs of an untrusted package will take place within an
administrator-specified sandbox. Our experimental evaluation has considered over one
hundred benign and untrusted software packages. Our technique was able to block mali-
cious packages among these without breaking non-malicious ones.
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1 Introduction
Malware, including adware, spyware, rootkits, backdoors, trojans, and bot software, has
become a major security concern on desktop systems over the past few years. Although
it was common in the past for software to be executed automatically when users click
on attachments or hyperlinks, this practice is no longer that common: execution of un-
trusted software4 typically requires explicit user consent, or an exploit on web browser
or email handler5.

Software installation provides a more attractive entry vector for malware than com-
peting alternatives such as remote exploits since installations are usually carried out
with highest (administrative level) privileges, thereby providing malware the level of
access it needs to embed itself deeply and firmly into the system, and to hide its pres-
? This research is supported in part by an ONR grant N000140710928 and NSF grants CNS-0627687, CNS-

0716584 and CNS-0551660.
4 We use the term “untrusted software” to refer to software obtained from untrusted sources on the Internet.

Untrusted software may be malicious or non-malicious. On the other hand, benign software, which is
obtained from trusted sources, is assumed to be non-malicious.

5 This observation is supported by a white-paper from Symantec [11], which indicates that most adware and
spyware enter desktop systems via an explicit software installation step.



ence from system monitoring utilities. In contrast, programs targeted by exploits (in-
cluding those embedded in e-mail attachments or browser links) may run with user-
level privileges, making it harder for malware to embed itself into the system. Further-
more, security-conscious users can deploy defenses against remote exploits (by using
firewalls, buffer overflow defenses such as address-space randomization, etc.) and mali-
cious e-mail attachments and other implicitly downloaded programs (by automatically
sandboxing them). In contrast, few defenses are available to secure software installa-
tions. Even secure operating systems such as SELinux don’t usually impose restric-
tions during software installs, expecting the system administrator to “know what she
is doing.” Unfortunately, even the most sophisticated users typically do not understand
what goes on when complex software packages are installed. Often, these packages run
scripts or other programs with administrative privileges, with the user having no knowl-
edge of these activities. Software installations thus provide an ideal vehicle for malware
to surreptitiously inject itself into a host system.

In spite of the threats posed by the installation phase, previous research on untrusted
software security [17,4,27,31,22,37,33] has been focused primarily on their execution
phase. Relatively little work has been done on securing the installation phase. This
paper seeks to address this overlooked problem, and develops a solution that works well
with existing techniques for securing the execution phase. Specifically, our technique
achieves the following goals that we consider essential for secure software installation:
– Untrusted software should not interfere with the operation of benign packages. So-

phisticated spyware and rootkits can hide themselves in such a way that trusted com-
ponents in the system end up executing their malicious payload. Since trusted system
components aren’t typically sandboxed or carefully monitored, this makes it easier
for malware to execute without being noticed.

– Untrusted software should not be allowed to execute outside a user-specified sand-
box or virtualization environment. Some malware may cause damage during instal-
lation, but others may cause damage when they are run. To guard against the latter,
our approach can install untrusted code in a manner that it cannot be run outside a
sandbox (or a virtualization environment).

– Untrusted software should be (securely) uninstallable at any time. Malware may
install itself in such a way that uninstallation won’t work properly. For instance, they
may use scripts to copy files that are unspecified in the package; these files won’t be
removed during uninstallation.
Our technique does not make many assumptions about what constitutes a software

installation — it may involve running a software package manager such as RedHat’s
rpm, Debian’s dpkg, running a self-installing executable, installation from a tarball,
etc. It may also involve running higher-level GUI-based installers that in turn invoke
these lower level installation mechanisms. Our key observation is that once there is
an explicit user consent involved, at that point, we can “wrap” the command that is
executed for installation so that it runs within our Secure Software Installer (SSI).

The rest of this paper is organized as follows. Section 2 describes our threat model.
Section 3 presents an overview of our approach and describes the high level design
of Secure Software Installer (SSI). Section 4 describes the installation policies imple-
mented in SSI. Section 5 presents an experimental evaluation of SSI. Related work is
discussed in Section 6, followed by concluding remarks in Section 7.



2 Threat Model and Defense Overview

Our approach is based on the availability of mechanisms to distinguish between benign
and untrusted software. For instance, all software that is digitally signed by a trusted
vendor may be classified as benign, while the rest may be deemed untrusted.

We divide the threats posed by untrusted software into three phases: installation
phase, execution phase, and uninstallation phase. A variety of solutions are available
for securing the execution phase, including runtime policy enforcement (also known
as sandboxing) [27,23,17,31,6,4,25,12], isolated execution [22,32,37], and file-label-
based integrity protection [33,28]. Therefore, this paper is concerned only with the in-
stallation and uninstallation phases. Nevertheless, to demonstrate the end-to-end feasi-
bility of our approach, our implementation includes a defense for the execution phase.

Software installation (and uninstallation) requires a higher level of privilege and
access than the execution phase. This makes it difficult to define policies that ensure
security objectives without breaking installations. The central contribution of this paper
is that of developing policies and enforcement techniques to overcome this challenge.

2.1 Install-time Threats

We assume that the goal of malware is to execute some or all of its code while being
free of the above-mentioned confinement mechanisms that are to be employed during
the execution phase of untrusted software. Before enumerating possible ways in which
this goal can be achieved, it is helpful to have an understanding of the main features of
modern software package managers. The specific details given here pertain to RedHat
Package Manager (RPM), although the description is applicable (with minor changes)
to other package managers such as Debian’s dpkg.

An RPM package contains a dozen or more components, most of which are de-
scriptive in nature, e.g., name, version, vendor, copyright, URL, etc. There are five
components that are security-relevant:
– Files contained in the package, i.e., the files copied by RPM during installation.
– Scripts. A package may contain several shell scripts that are run at various stages

of installation such as before building a source package, before installation, after
installation, etc. RPM runs these scripts at the specified stage.

– Requires. This tag specifies dependencies that a package may have. A package may
depend on one or more packages. Rather than specifying these dependencies using
package names, RPM and Debian permit the use of arbitrary strings. A package that
has a dependency s will be installed only if there is already another package installed
on the system that “provides” s. The use of arbitrary strings for dependencies allows
for multiple implementations of the same functionality.

– Provides. The functionality provided by a package. It will be matched against the
“requires” field as described above.

– Conflicts. If a package conflicts with one or more packages, those are listed in this
section. A new package that conflicts with an existing package will not be installed.
Based on the above description, the following attack avenues are possible that may

let untrusted code to escape confinement:
1. Attacks that perform malicious actions at install time. RPM does not pose any re-

strictions on the scripts contained in a package. Thus, in the absence of additional



protection, arbitrary attacks on the host are possible. SSI performs the installation
within a virtual environment, so that these attacks would be isolated from the host.

The only way in which the host environment is affected in SSI is due to copying
of files modified during the installation — these files are copied out of the virtual
environment onto the host. Hence the rest of the discussion below is concerned with
how files may be used to achieve the goals of malicious code.

2. Attacks that modify files used by benign packages. By modifying these files, a ma-
licious package may be able to inject its code into the execution flow of a benign
application. Since benign applications are not constrained in any way, such an at-
tack would allow malicious packages to escape confinement. There are two cases to
consider here:
– Existing benign packages. A malicious package may claim to contain a library or

executable that is already used by an existing benign application. As a result, these
files may be overwritten when the package is installed, and hence future runs of
this benign application may end up executing code that belongs to an untrusted
package. It is also conceivable that an attack based on modifying a non-code file
(e.g., configuration file used by a benign application) may subvert the operation
of a benign application and cause it to execute the code of an untrusted package.
SSI prevents these attacks by restricting untrusted packages from modifying (or
deleting) any existing file other than those previously installed by an untrusted
package.

– Benign packages installed in the future. Instead of targeting an existing benign ap-
plication, a malicious package may target a package that is likely to be installed in
the future. Alternatively, it may claim to provide (in the sense of “provides” fea-
ture described above) a functionality needed by a future benign package. In these
cases, SSI would permit the initial installation of these files belonging to the un-
trusted application. However, at the time of installation of the benign package, SSI
will detect that a benign package depends on an untrusted package, or contains
files belonging to an untrusted package. In either case, SSI disallows installation
and notifies the user so that he/she can uninstall the untrusted package before at-
tempting to install the benign package (possibly after installing additional benign
packages that satisfy the dependencies of the current benign package).

The above discussion assumes that package dependency information is complete.
However, it is possible that some optional libraries or configuration files may be
omitted in the package specification. Worse, for software installed from tarballs, no
dependency information is available. SSI employs a second line of defense to prevent
untrusted libraries and executables from being directly used by benign applications.
It installs libraries in separate directories that are included in the search path used
by the dynamic loader for untrusted applications, but not for benign applications6.
Untrusted executables are installed in such a way that when they are invoked, they
are run within a confinement environment.
While our approach copes with missing dependencies on library or executable files,
it does not currently implement a complete defense against missing configuration
file dependencies. This is partly because we considered it a low-risk, and partly be-

6 On Linux, this is done by including these directories in the LD LIBRARY PATH environment variable
before running an untrusted application, and not including them for benign applications.



cause the threat could be eliminated in the isolation-based execution confinement
mechanism used in our implementation. However, as described in Section 5.1, our
experiments suggest that a more general solution would be based on restricting the
data files written by untrusted applications.

3. Attacks contained in the files belonging to an untrusted package. As described above,
SSI ensures that all executables belonging to the untrusted code are “wrapped” in
such a manner that when they are invoked, they would automatically be started up
within a sandbox or virtual environment.

4. Attacks on integrity of package database. Package managers typically use a few files
to maintain a database of packages installed on the system. Since many of the poli-
cies described above were based on the content of this database, these policies can
be undermined by attacks that compromise the integrity of the database. To preclude
these attacks, SSI verifies that the database changes resulting from the installation
of an untrusted package concern that package only, and do not modify (or insert)
information about other packages.

Our discussion in this paper is focused primarily on integrity threats, and does not
consider denial-of-service threats7.

2.2 Uninstall-time Threats

Software uninstallation is carried out with the same level of privileges as the installation
phase. Contemporary package managers run scripts provided by the package. Thus, the
threat model parallels that of the installation phase. Specifically, it consists of:
1. Attacks that perform malicious actions during uninstallation. These remain the same

as during installation, and are addressed in the same way.
2. Attacks that leave behind files after uninstallation. We do not distinguish in this case

between different types of files, or whether these files relate to benign packages in
any way. Instead, SSI ensures that all files that were installed by an untrusted package
are removed on uninstallation.

3. Attacks that remove files belonging to other packages. SSI enforces a policy that
ensures that only the files copied into the host at installation time can be removed at
uninstall-time.

4. Attacks on the integrity of package database. The attacks discussed in the installation
phase under this category continue to be possible at uninstallation time, and can be
prevented using the same high level policies (i.e., ensuring that the database updates
are consistent with the package removed.)

5. Attacks that cause errors during uninstall. Such attacks are possible if the scripts
related to the package perform actions that lead to an error, which in turn cause the
package manager to abort uninstallation. While errors would cause a rollback during
the installation phase, it is not an option here: we wish to remove the package. Our
approach is to use the “force” option provided by package managers to forcibly
remove the package from the database. (As mentioned above, SSI already ensures
that the files installed by the package are removed.)

7 This is why “conflicts” did not enter the discussion above — a malicious package may claim to conflict
with a large number of packages that are likely to be installed in the future. When a user attempts to install
them, she will get an error message. It is expected that in this case, and in other cases involving conflicts
or failures relating to untrusted packages, the user will uninstall the untrusted package before proceeding
further.



Fig. 1. Design and operation of SSI.

3 Approach Overview
Our approach consists of the following phases:
– Initial installation in a virtual environment, where the installation can proceed with-

out violating host integrity or install-time failures. The actions observed during the
installation are logged for further analysis in the policy-checking phase.

– Policy checking to detect if the actions observed during initial installation violated
the requirements captured by an installation policy.

– Commit/abort phase, which propagates the files modified during installation to the
host if no policy violations occurred. Otherwise, installation is aborted, leaving the
host state as if the installation never took place.

– Secure execution phase, during which untrusted software can be invoked within a
confinement mechanism that is specified at install time.

– Secure uninstallation phase that ensures that untrusted software can be uninstalled
safely at any time.

These phases (and their rationale) are described in more detail below. Figure 1 shows
the components of SSI involved in the installation as well as the uninstallation phase.

3.1 Initial Installation Phase

There are two basic options for protection against attacks during the installation phase.
First, the installation could be performed within a sandbox that prohibits the execution
of any action that has the potential to compromise host security. Unfortunately, such
an eager enforcement approach is likely to fail: software installation typically requires
writing to system directories, and updating databases that record the software installed
on the system. Denying these actions will lead most installations to fail, while permit-
ting them has the potential to damage system integrity. In particular, there is no easy
way to determine whether an individual database update is safe or not: it is the end re-
sult achieved by a series of updates that can be determined to be “safe” or “unsafe.” For
this reason, SSI determines safety by first performing the installation within a virtual
environment, and examining post-installation system state for verifying safety policies.
As we describe later, such state-based policies provide a novel capability that is crucial
for expressing and enforcing the safety requirements for securing software installations.

We rely on our Safe Execution Environment (SEE) [32] for initial installation. SEEs
offer several benefits over the alternative of using virtual machines for this purpose.



Chief among them is that of accurate environment reproduction: SEEs are based on
one-way isolation, which makes the host state visible inside the SEE. In other words,
they provide an initial environment that is exactly the same as the host environment.
As such, software installations, which have a number of host dependencies (including
those based on previously installed software, their releases and patch versions, and so
on) can be successfully installed within the SEE if they can be installed on the host OS.
In contrast, virtual machines require significant additional effort for exact duplication
of the host environment.

The second important reason for using SEE is that they offer the ability to commit
the results of installation onto the host environment. If we relied on virtual machines,
there is typically no easy way to migrate the changes made within the VM to the host
OS. The obvious approach of rerunning the installation on the host OS after policy
verification can turn out to be dangerous: a malicious software package may detect that
it is being run within a VM the first time, and may not exhibit malicious behavior.
For this reason, our installation policy may hold for the installation within the VM.
However, when the installation is rerun on the host, malicious software can detect that
it is no longer within a VM, and exhibit malicious behavior that violates our policy. In
contrast, with the SEE, the behavior verified against a safety policy is the same one that
gets committed to the host, thus ensuring that installation policies cannot be violated.

Our approach can support software installation using means other than package
managers, e.g., tarballs and and self-installing executables. This is because our approach
has no direct dependency on the tools used for installation — they are simply run inside
the SEE, and the resource accesses are observed, and policies enforced on their basis.

SSI uses the Alcatraz tool [22,5] for realizing an SEE. Alcatraz uses copy-on-write
to handle file operations, i.e., any host files modified within the SEE are copied into
the SEE and modified. The modifications are not visible to host processes unless they
are also running within the same SEE. Modifications involving other resources (e.g.,
mounting files, arbitrary communication with processes outside SEE) are controlled by
a policy that forbids most accesses that have the potential to harm host security. More
details on SEE implementation (including the containment policies used) can be found
in [22,32]. For SSI, we made a few modifications to Alcatraz: (a) replacement of manual
determination of safety with an automated policy enforcement mechanism, (b) support
for the Secure File Container feature described later, and (c) selective relaxation of
restrictions on non-file resource accesses within Alcatraz so that software installers can
download software from the Internet.

3.2 Policy Checking Phase

Previous work on SEE relied on a manual approach for determining the safety of the
actions performed by untrusted software. Unfortunately, such a manual approach is
cumbersome and error-prone. We have therefore developed an automated approach for
determining the safety of software installations. Safety is defined by a policy, which is
derived from the high-level description provided in Section 2. An important innovation
in our approach is the development and use of state-based policies that can refer to the
operations performed during installation, as well as the actual end result of installation.
Such state-based policies are strictly more powerful than the class of policies that are
enforceable using runtime monitoring [29], where decisions regarding permissibility



of an operation need to be made without knowing about future operations made by a
program. For instance, an installation program may need to add a new userid to the
password file, and may do this by creating a copy of the password file, editing it to add
a user, removing the original password file and then renaming the copy. A runtime mon-
itoring approach would have to prevent the removal step of the password file, whereas
a state-based policy can check that the end result of the program is acceptable: specifi-
cally, the difference between the initial and final password file is the addition of a line
that corresponds to the new user, respecting other criteria such as the use of previously
unused user and groupids, and a permitted shell.

A second innovation in our policies is that of action attribution: instead of requir-
ing policies to be specified entirely in terms of low-level operations (or state changes),
our policy framework allows these low-level operations to be mapped to higher-level
operations, and the specification of policies in terms of these operations. Taking the
userid addition example again, rather than stating a policy that relies on computing file
differences between the original and modified password files and verifying certain char-
acteristics of these differences, we can instead correlate the changes to the execution of
a program useradd: in this case, the policy can be simpler, stating that the execution of
useradd command with certain arguments is permitted.

Different policies can be associated with different installations — our policy frame-
work provides flexibility in this regard. However, in practice, we expect a small number
of policies to be sufficient. One policy would concern benign packages, while a small set
of policies may be specified for untrusted packages. (Our implementation uses a single
policy for all untrusted applications, although this will need to be changed if we wish
to support untrusted applications that require a higher level of access, e.g., servers that
get started automatically after reboot.) The specific policies used in our implementation
are described in Section 4.
Package Database. The policy checker makes policy decisions by querying a database,
which consists of two components:
– Package management database. It is used by an existing package manager such as

RPM or Debian to store information about the contents and dependency of all the
installed packages.

– SSI-database. It is used to maintain package names, trust labels, and information
about software installed outside of a package manager, such as tarballs and self-
installing executables.
SSI currently supports RPM database, but its dependence on the details of the

database is minimal. The implementation needs to be able to query RPM about the
packages installed on the system, and their dependencies. For this reason, SSI can be
easily ported to other package managers such as Debian. Moreover, SSI has no de-
pendency on the higher level tools used during installation, e.g., Gnorpm or Synaptic
package manager. These tools are simply run inside the SEE, and the safety policies
checked against the resulting system state and the actions observed within the SEE.

3.3 Commit/Abort phase

If the policy checker reports success, then the results of installation are committed. Oth-
erwise, the entire SEE is discarded, which ensures that the host OS state is unchanged
by the installation phase. The commit/abort phase is provided by SEE: we made one



change, as described below, to ensure that untrusted software would always execute
within a user-specified sandbox.

3.4 Secure Execution of Installed Software

An untrusted application may not violate any install-time policy, but may still exhibit
malicious behavior when it is run. For instance, a game program may also act as a
“bot,” polling an attacker-specified network address for malicious actions to carry out.
Or, it may communicate with benign processes and may attempt to compromise them.
For these reasons, it is important that the untrusted code be monitored at runtime, and
its actions confined to ensure that it cannot compromise system security. We consider
three options in this regard: sandboxing, isolated execution, and OS-based integrity
protection.
Sandboxing. A number of sandboxing and policy confinement techniques have been
developed [27,23,17,31,6,4,25,12], and may be used with SSI. SSI relies on a simple
technique to ensure sandboxing of untrusted executables: while copying an executable
from the SEE to the host OS, it is renamed, and the execution permission is removed. Li-
braries used by untrusted applications are stored in non-standard directories to minimize
the likelihood that they could be accidentally used by benign applications. A wrapper
script is created with the original name of the executable, which is then responsible for
properly setting up the search path used by the dynamic loader, and executing the orig-
inal executable within the sandbox. Note that this simple approach can be defeated by
the user, but this is not our concern since we assume that the user is cooperative, i.e.,
the user will not actively subvert SSI.

Development of suitable sandboxing policies is a research problem in itself, and
is not the focus of this paper. We simply observe that sandboxing policies are rela-
tively easy to develop for some classes of untrusted code that are most commonly used,
namely, document viewers and media players, as they require minimal access to OS
resources.
Isolation. Instead of using a sandbox, the execution phase may rely on an isolation-
based approach. This is the easiest option in our implementation since we are already
using an isolation based technique in SSI. To ensure isolated execution of untrusted
code, we modified Alcatraz so that it commits the results of untrusted installations to a
separate section of the filesystem called a Secure File Container (SFC). The use of SFC
ensures that none of the files (libraries, executables, or configuration files) contained
in the untrusted software package can be accidentally used by benign applications. We
use the same technique as with the sandboxing approach for invoking untrusted exe-
cutables: a wrapper script is created with the original name of such executables. This
wrapper script starts Alcatraz, initializes it with the environment within the SFC, and
starts execution of the original executable.

As in the case of sandboxing, there remain some usability issues with isolation-
based techniques — this is a topic of ongoing research in safe execution of untrusted
software. As advances are made in this area, they can be seamlessly integrated with our
approach focused on secure installations.
Information-Flow Based Integrity Protection. SSI will work seamlessly with inform-
ation-flow based integrity techniques for Linux [33,28,21]. Indeed, SSI has been devel-
oped so that, together with the PPI integrity technique described in [33], it can provide



a comprehensive defense against malware. In particular, SSI can simply label the files
belonging to untrusted application with low integrity, while files belonging to benign
packages are labelled with high integrity. Since PPI ensures that information cannot
flow from low-integrity sources to high-integrity sinks, it makes sure that benign pro-
cesses and the files used by them won’t be corrupted by untrusted applications.

3.5 Secure Uninstallation phase

Secure uninstallation is supported for untrusted packages. If a package A is to be unin-
stalled, we go ahead and uninstall all other packages that depend on A. Since our poli-
cies do not permit benign packages to depend on untrusted packages, uninstallation of
untrusted packages can always be performed without breaking benign packages.

The threats relating to uninstallation phase and the approach for mitigating them
were already discussed in Section 2, while the specifics of our policy are described in
Section 4.2.

Within SSI, uninstallation first runs the normal package uninstallation process (e.g.,
rpm -e). It then determines if the actions performed during the uninstallation are per-
mitted by the uninstallation policy specified in Section 4.2. Otherwise, SSI forces the
package manager to remove the package from its database (without actual uninstalla-
tion), and then deletes all the files installed by the untrusted package.

4 Installation Policies
4.1 Policy Framework

One of the main difficulties with policy-based approaches is the difficulty of policy
development. Sandboxing policies can routinely get quite large and complex since (a)
they are stated in terms of low-level primitives (which files can be accessed and which
ones can’t be), and (b) there are a large number of files on the system, and it is time-
consuming (and error-prone) to identify all files that an application should be permitted
to access. Moreover, a different policy is needed for each application, as the set of
allowable and/or required resource accesses differ for different applications.

We observed that the principal reason for policy complexity is the large gap between
high-level policy objectives such as those stated in the Introduction, and the low-level
policies that can actually be enforced, which deal with specific resources that can be
accessed, and the operations that are permissible. To combat this problem, we developed
an approach that enables automated generation of lower-level policies from higher level
policies. The specific techniques and mechanisms used to support higher level policies
are described below.

Deriving low-level, enforceable policies from software package dependencies. We
leverage the contents of software packages to ensure that untrusted packages cannot
modify or corrupt files used by benign packages. Specifically, the following pieces of
information can be obtained from a software package: (a) the files contained in the
package, and (b) the names of other packages that this package depends on. The second
type of information is readily available for RPM or Debian packages, but not for tarballs
or self-installing executables. This has not been a serious problem in practice since
we need (b) only for benign packages, which are typically from an OS distribution
vendor that uses a package manager such as RPM or Debian. However, if it becomes



necessary to install a benign package that arrives in the form of a tarball, the following
work-around could be used to obtain an approximation for dependency information.
In particular, the application can be executed within a virtual environment (e.g., our
SEE) and its file accesses observed. The application then has a dependency on all the
packages that contain one or more of the files accessed by the application. We note that
the list obtained in this way may not be complete, but is clearly an improvement over
the alternative of assuming no dependencies. Moreover, as described in Section 2, our
approach incorporates a second line of defense to guard against attacks that may be
possible due to incomplete dependence information.

To use the above procedure, benign packages need to be identified. We expect this
information to remain the same across a given OS version, although it is conceivable
that individual users8 may have some differences in terms of the sources they are willing
to trust. Such differences may be captured by appropriately modifying a configuration
file that specifies this information.

In our implementation, where RPM is the default package manager, we query the
installed packages on the system, and based on the signature of the RPM package, a
trust label is assigned and recorded in the SSI-database. We verify that installed benign
packages only depend on other benign packages. (If this is not true, there is an incon-
sistency, and user input is needed to resolve it.) For packages that are installed outside
of the package manager, their contents (and optionally, dependencies) are maintained
in the SSI-database.
State-based policies. Another important reason for the complexity of typical sandbox-
ing policies is due to the need to ensure that each permitted action leaves the system in
a safe state. This requires explicit consideration of all possible operations that can be
performed by an application, and their possible operands, and identification of those op-
eration/operand combinations that are safe. Since there can be many ways for an attack
to achieve the same objective, the size (and complexity) of policies can correspond-
ingly increase. Moreover, as illustrated using the user addition example earlier, some
sequence of operations may first take the system to an unsafe state before bringing it
back to a safe state.

For the reasons mentioned above, SSI uses state-based policies that can reference
(a) the final state of the system, (b) the initial state of the system, and (c) the sequence of
operations that took the system from the initial to the final state. This enables powerful
policies to be specified, e.g., we can capture any sequence of operations that allow “a
file f to be updated to an f ′ such that f and f ′ differ in at most k lines, and all these
lines match a regular expression R.”

The power offered by our post-execution analysis framework has steered us towards
an extensible approach for verifying state-based policies, where new policy primitives
could be defined by essentially writing scripts that operate on the state within the SEE,
and return true or false indicating whether the policy was satisfied. We have chosen
this alternative for expediency, as opposed to defining a special-purpose policy lan-
guage.
Providing safe exceptions using action attribution. Sometimes, the installation of a
package may require modifications to some files whose integrity is critical. For instance,

8 Our intent is that the “user” is a system administrator — e.g., an OS distribution vendor may provide the
list of benign and untrusted packages, or they may be maintained by user communities.



Fig. 2. Behavior of Apache Installation.

/etc/ld.so.cache file needs to be updated after installing new shared libraries. Sim-
ilarly, some packages may need to create new users. Arbitrary changes to files such as
/etc/ld.so.cache and /etc/passwd will harm the system, so SSI needs to provide
mechanisms to perform controlled updates to these files that ensure safety.

One approach for permitting safe changes was described in the previous paragraph:
by comparing modifications to the file, and defining safety criteria for these modifica-
tions. However, an alternative approach may be preferable in some cases. This approach
exploits the fact that often, the system already provides utilities for safely updating
certain critical pieces of information. Examples include the ldconfig program to up-
date the ld.so.cache file, useradd and groupadd programs to create new users or
groups, and chkconfig program to enable or disable automatic startup of a specified
service.

Based on the above observation, our approach allows specification of policies that
permit execution of such utility programs, with constraints on argument values. Such
an approach avoids the need for writing policies that need to “understand” the format
of configuration files. For instance, instead of describing the format of a “safe” entry
in /etc/passwd, we can state that it is safe to call the useradd program with certain
parameters, e.g., with a userid other than 0, and not belonging to any existing group.

Policies in terms of higher-level actions such as useradd are supported by the pol-
icy checker as follows. First, a raw log of operations performed within SEE is obtained.
The policy checker analyzes this log to derive parent-child relationships between pro-
cesses, the programs executed by each process, and the resource accesses made by
them. This information can be represented using a tree structure shown in Figure 2. In
this tree, the internal nodes represent processes, while the leaves represent modification
operations. The program corresponding to the root process of this tree is rpm, as we
used rpm from the command-line in this example.

If the policy states that useradd can be used with certain restrictions on parame-
ters, the policy checker first verifies if the invocation of this program in the SEE log
conforms to these restrictions. It also makes sure that the program did not interact with
any untrusted components, other than being invoked from an untrusted script with the
arguments as permitted by the policy. If these checks succeed, all operations in the log



that can be attributed to useradd or one of its children are deleted. Policies regarding
resource accesses are checked after this step.

The power of the attribution mechanism is easier to illustrate in the context of more
complex software packages. For this reason, Figure 2 shows the attribution tree for
Apache. The scripts of this packages are executed in child processes of the rpm process.
The pre-installation script is executed first, adding a user account though the useradd
command. Then rpm copies the contents of the package into their destination. Finally, a
post-installation script uses chkconfig to start up Apache automatically at boot time,
and then updates /etc/mime.types file.

4.2 Policy for Installing Untrusted Packages

Our installation policy consists of the following components. These components corre-
spond directly to the threat model described in Section 2. We also describe the enforce-
ment of these policies based on the mechanisms and techniques described above.

We remark that the policy described below is exactly the same as the one used in
our evaluation.
1. Attacks that perform malicious actions at install time. These are prevented by poli-

cies that are already enforced by SEE, which confine non-file accesses made within
SEE. We made two modifications to the default policy: the installer application is
permitted to access the network, so that it can download packages from the Internet
if needed. We also make an exception for communication with the X-server. (Al-
ternatively, untrusted applications may be directed to a nested X-server using the
Xnest [3]. This option ensures that the primary X-server is not compromised by un-
trusted code.)

2. Attacks that modify files used by benign packages.
– Files that an existing benign package depends on. SSI ensures that an untrusted

package does not modify or delete any existing file, except possibly those in-
stalled by an untrusted package.

– Files that a future benign package depends on. As mentioned earlier, this is pre-
vented by enforcing a policy that restricts benign packages from (a) having depen-
dencies on untrusted packages, and (b) containing files that belong to untrusted
packages. The contents of the package manager database and SSI database are
used to compute the complete list of files that are within a package, as well as the
complete list of files that it depends on.

– Files used by a benign package without specifying dependency. Since we do not
know that such a file would be used by an existing or future package, no install-
time policy can be specified to preclude this. Instead, this possibility is avoided
at the time of execution of benign software. The exact mechanisms differ, de-
pending upon the technique used during execution phase, and were described in
Section 3.4.

3. Attacks contained in files belonging to untrusted package. These attacks are con-
tained using a confinement mechanism during the execution of untrusted software.
The choices for doing this were described in Section 3.4.

4. Attacks on integrity of package database. We enforce a policy that ensures that the
changes to the package database are consistent with the files actually copied into the
system. In particular, (a) the package contents should include all and only the files



that were reported as having been created or modified within the SEE, and (b) any
files that were reported as having been deleted within the SEE must be part of the
package. Moreover, information regarding all other packages in the database should
remain unchanged.

5. Granting exceptions based on attribution. Updates to the file /etc/ld.so.cache
using ldconfig are always permitted. Addition of a new MIME type in the file
/etc/mime.types is permitted as long as it conforms to the state-based policy
described before. These exceptions are recorded in SSI database so that their inverse
operations can be permitted during uninstallation.

4.3 Policy for Uninstallation of Untrusted Packages

The uninstallation policy follows the outline specified in Section 2.
1. Attacks that perform malicious actions during uninstallation. These remain the same

as during installation.
2. Attacks that leave behind files after uninstallation. The contents of the package

database are queried to obtain the list of files installed by an untrusted package.
If all these files are not removed during uninstallation, they are forcibly removed.

3. Attacks that remove files belonging to other packages. Once again, the contents of
the package database are queried for the list of files installed by the untrusted appli-
cation. Only these files are permitted to be deleted at commit time.

4. Attacks on the integrity of package database. These are thwarted by checking that
the only change to the database is the removal of the untrusted package, and that
none of the information relating to other packages have been changed.

5. Attacks that cause errors during uninstall. These attacks are handled as described in
Section 3.5.

6. If SSI database indicates that exceptions were granted, operations that have the in-
verse effect are permitted.

Currently, there is no general way to identify how to “invert” an operation. Instead, we
manually specify how to invert an operation on a case-by-case basis. For instance, for
an operation that adds a MIME type, we specify that inverse operation has the effect of
deleting the added MIME type.

4.4 Installation Policy for Benign Packages

The only policy enforced is that benign packages should not depend on untrusted pack-
ages. No policies are enforced during uninstallation of benign packages.

5 Evaluation
We have implemented SSI on RedHat Linux (CentOS 4.1). Our implementation uses
a publicly available tool Alcatraz [5] as the SEE. The implementation of the policy
checker and the user interface consists of 7K lines of Java code. In this section, we
present an evaluation of the functionality and performance of this implementation.

5.1 Evaluation of Functionality

The goal of this section is to evaluate the utility of SSI in securing real-world soft-
ware packages. In this regard, we considered four cases: (a) installation of malicious
packages, (b) installation of nonmalicious untrusted packages, (c) installation of benign



packages, and (d) secure uninstallation. Of these, (a) and (b) use the policies described
in Sections 4.2, (c) uses policies from Section 4.4, while (d) uses policies from Sec-
tion 4.3.

Real-world packages don’t embody all aspects of malicious behavior considered in
Section 2. As a result, they do not stress our policies. In other words, confidence in the
security provided by our approach is more a function of the completeness of the threat
model and the soundness of the policies described earlier rather than the experimental
evaluation. However, our experiments on nonmalicious and benign software involved a
much larger number of packages, so they do demonstrate that our policies do not lead
to false positives for typical untrusted packages.

Installation of Malicious Packages.

Ideally, SSI would be evaluated by experimenting with a large collection of malware
samples. Unfortunately, such an evaluation is not feasible on our chosen platform (Linux)
since malware is relatively uncommon on Linux. What we have been able to do is to
evaluate SSI using rootkits that are available from [1] — these were the only malware
collection that we were able to obtain. In addition, since these rootkits are easily de-
tected by our technique, we developed two additional test cases that embody a more
sophisticated attack strategy.

More generally, we observe that most malware is designed so that it runs in the
background, and is started up automatically at boot time. This requires modification
of startup files, e.g., files within /etc/init.d/ on Linux. Since these files belong to
benign packages, SSI will likely detect such attempts and abort the installation of such
packages.
– Disguised rootkit. In this experiment, we downloaded all the rootkits that were avail-

able from [1]. There were a total of 10, of which 8 were applicable to Linux. Of these
8, four (mood-nt, adore-ng, suckitdid and cd00r) expect users to knowingly
run them each time, and hence are not persistent. Our tool is not designed to prevent
a knowledgeable user from knowingly running malware, but is rather aimed at mal-
ware that is installed surreptitiously. We were then left with four rootkits: bobkit,
tuxkit, lrk5 and portacelo. During installation, all these rootkits modified files
belonging to benign packages, such as ls, find, du, ps and init. The installation
analysis determined that these actions are in conflict with the security policy that
only untrusted files can be overwritten by untrusted packages. Hence the installation
was aborted cleanly.

– Fake patch from Redhat. We tried to install the patch for fileutils that was suggested
in the phish email from Redhat [24]. This fake patch was stopped by SSI, as the
installation policy identified that the patch tried to create a privileged user with no
password. On seeing this violation, the installation was aborted.

– “Malicious” rpm package. The Fedora package build system [16] suggests three
possible attack scenarios from the malicious package writer. Of these, a malicious
rpm-scriptlet is a serious threat. To test the effectiveness of SSI under this threat,
we crafted a “malicious” rpm package. This package is named glibsys in RPM
format. During the installation phase, the package tried to overwrite system files
/lib/libc.so and /bin/gcc. By running the installation inside SSI, the policy
checker captured these unsafe behaviors and aborted the installation.



Installation of Nonmalicious Packages from Untrusted Sources.

For this test, we installed untrusted (but nonmalicious) packages from sources that
might be considered untrustworthy, such as freshrpms and ATrpms. We report our ex-
periences in installing and using these packages with SSI. In particular, we downloaded
335 packages from Atrpms and 152 packages from freshrpms. Only 144 of these 487
packages could be installed on our system even in the absence of SSI — this was be-
cause of dependencies that were not satisifed. Of these 144, 11 were server applications
that required a higher level of trust, so we were left with 133 packages in all. Below are
some examples of these applications.
– Multimedia and Document Viewers: gthumb, graphviz, ggv, xmms and xpdf.
– Games, Web Agents, IM: gnapster, ltris, xifrac, ymessenger and gaim.
– Archive Creation and Related Utilities: jpeg2ps, f2c, flac, unrar and pdfmerge.
– File Organization and Album Creation: hardlink++ and mkpp.
– Editors: bluefish, glabels, screem and gedit.

All of these 133 packages could be installed successfully without any problems
within SSI. Thus, there were no false positives due to SSI in this experiment. Although
we currently do not restrict the data files (e.g., configuration or documentation files) be-
longing to untrusted applications, we observed that we could do so fairly easily. In par-
ticular, we noticed that all these files had the name of the untrusted package, and were
created within certain directories such as /usr/share/doc and /usr/share/info/-
nasm.info.gz. There were about half-a-dozen such locations. Based on this observa-
tion, we plan to constrain data files written.

Installation of Benign Packages.

For this evaluation, we chose a set of 38 rpm packages from the official repository,
and tried to install them within SSI. It turned out that 37 of them were installed suc-
cessfully, and one of them (ethereal) complained that it was dependent on package
libnetwhich was untrusted. On seeing this, we replaced the untrusted version of libnet
with a benign version obtained from the official repository and repeated the installation
process. During this second attempt, ethereal was installed without problems.

Secure Uninstallation.

We did not find any package that comes with malicious uninstallation scripts, so we
hand-crafted some test cases to evalute the ability to perform secure uninstallation. In
particular, we crafted a package which tried to delete /etc/passwd in its uninstallation
script. This action was captured by SSI and it was a violation of the policy specified in
Section 4.2. Therefore, this action was aborted, and SSI verified that the set of files
installed were actually removed from the file system.

We then tried to uninstall the nonmalicious packages installed before. We randomly
chose 10 of them and ran uninstallation operation within SSI, it turned out all of them
were successfully uninstalled without any violations to the uninstallation policy.

5.2 Performance Evaluation

The result of performance evaluation is summarized in Table 1. We evaluated SSI us-
ing three types of installation packages: binary installer, tar ball distribution, and rpm
distribution. Mozilla installer is a self-contained binary, and it performed 8716 file mod-



Original Installation SSI Installation
Time Time Overhead

Mozilla installer (binary) 3.285 4.127 26%
Gnuchess (tar ball) 15.868 18.98 20%

Yahoo! Messenger (rpm) 2.433 4.813 98%
Table 1. Performance overhead of SSI. All numbers are in seconds.

ifications using 6 child processes. It incurred an overhead of 26%. The installation of
gnuchess package (tgz format) had a 20% overhead, and its operation included three
steps: configure, make, and make install. The entire procedure involved creation
of 1935 new processes and 5325 modification operations on the file system. Finally,
the installation of Yahoo messenger (rpm package) forked 6 child process and involved
overall 42650 modification operations on the file system, and it incurred a 98% over-
head. The average overhead across these three packages is about 50%, which is mod-
erate but we believe to be acceptable in the context of SSI. Moreover, the primary per-
formance bottleneck is the Alcatraz tool that provides our SEE. It uses ptrace-based
system call interception, which frequently introduces 100% overheads on programs.

To estimate the performance benefits achievable using a more efficient system call
interposition mechanism, we made an enhancement to Alcatraz that uses in-kernel sys-
tem call interception mechanism for operations that don’t require processing by Alca-
traz, e.g., read and write operations. With this modification, overheads due to context
switches are decreased to about a third of the figures reported above. For instance, the
overhead for installing Yahoo messenger rpm becomes 38% as compared to 98% which
we observed using original Alcatraz.

6 Related Work

Software Installation. A number of recent research efforts have focused on the prob-
lem of software installation, but they are mainly concerned with handling dependencies
and conflicts among packages.

Checkinstall [15] is a tool to build installation packages such as RPM from an in-
stallation script. Nix [14] presents a comprehensive solution for deploying software, but
its focus is on functionality rather than security.

RPMShield [34] is a tool aimed at securing the process of software installation. It
uses policies based on the notion of ownership of files by packages. A file is said to
be owned by a package if it is part of that package. However, it does not address the
problem of dependencies between benign and untrusted packages, nor does it satisfy
any of the goals for secure software installation that we outlined in the Introduction.

SoftwarePot [20] incorporates a secure software circulation model for software de-
ployment. The software to be run is encapsulated with a file system that is transferred
from the code producer to consumer. The operations from the software are confined
within the “pot.” It can be thought of as a combination of sandbox and software distri-
bution model. But it constrains users into using one single way of software installation
and execution confinement method. As a result, it is not possible to utilize existing
package formats or sandboxing tools and policies with this approach. In contrast, SSI
is compatible with existing software installation methods, and it is flexible in allowing
users to choose different execution confinement tools. More importantly, SoftwarePot



requires policy development efforts to support new software, while SSI uses a single
installation policy for all untrusted applications. For securing untrusted applications
during execution, SSI can leverage confinement policies that may already be available
in widely used sandboxing tools such as systrace.
Virtualization and Isolation Approaches. Virtual Machines (VMs) [35,13,9] provide
a coarse-granularity approach for dealing with untrusted software: such software could
be run inside a virtual machine, while benign software runs on the host OS. FreeBSD
jails [19], Linux VServer [2] and Solaris Zones [26] provide light-weight virtualiza-
tion, where the same OS kernel is shared across the VMs, while still providing strong
isolation between applications running on different VMs.

The main problem with virtualization approaches is that typically, users want to use
untrusted software to operate on their files, and other resources that are part of the host
OS. To derive the same utility within the VM, the host environment has to be duplicated
inside the virtual machine. This is quite time-consuming — for instance, most standard
(and typically benign) packages would have to be installed on both the host OS and
the VM. Moreover, files needed by untrusted applications would need to be explicitly
copied into the VM. As a result of this inconvenience, users frequently end up installing
untrusted software directly on the host OS. Techniques such as Alcatraz [22] and FVM
[37] (and the closely related product called Software Virtualization Solution (SVS) [7])
mitigate the overhead of environment duplication by using one-way isolation, wherein
the host OS files are visible within the isolated environment, but the files written within
the isolated environments aren’t visible on the host OS. However, usability issues still
remain: if users want to make use of the outputs produced by untrusted software, they
have to explicitly copy them back into the host systems.
DTE and Sandboxing. Boebert and Kain proposed Domain and Type Enforcement
(DTE) [10,36]. Subjects (processes) are associated with domains, while objects (e.g.,
files) are associated with types. DTE policies specify which domains can access which
types. They also specify domain transitions (if any) that should take place when a certain
program is executed. Use of DTE to defeat rootkit attacks is described in [8]. SELinux
[23] security is primarily based on DTE policies that have been developed with the goal
of enforcing the principle of least privilege.

A number of so-called “sandboxing” approaches that have been developed to ad-
dress untrusted code security [17,12,4,25,30,27] are conceptually similar to DTE. Mo-
tivated by simplicity, many of these systems typically use policies that are based on
program names and file names, eliminating the intermediary notions of types and do-
mains. While this loses some generality, it seems acceptable in the context of untrusted
software.

All of the above approaches can potentially be used during the resident phase of
untrusted software. However, they do not provide the power or flexibility of SSI during
the installation phase. First, all these techniques are only capable of enforcing safety
properties [29], which require that every operation leaves the system in a “safe” state.
As described in Section 3, software installations typically involve intermediate states
that are not safe. This motivated the development of state-based policies in SSI. Second,
one of the biggest challenges in using DTE and sandboxing techniques is the difficulty
of policy development. In contrast, SSI uses a single high-level policy that is enforced
on all untrusted package installations.



Information-flow based Approaches. There has been a resurgence of interest in infor-
mation-flow based approaches for preserving host integrity. PPI [33] and SLIM [28]
enforce information flow policies that ensure that high integrity objects and subjects are
not compromised by interacting with low-integrity objects and subjects. While policy
development has been a challenge that has impeded deployment of mandatory access
control (MAC), recent efforts such as UMIP [21] and PPI [33] have begun to address
this problem by developing techniques to synthesize MAC policies.

SSI complements the above techniques: while the above techniques can protect host
integrity from the execution of untrusted software, they do not provide a good solution
for the installation phase. However, they do provide a strong foundation for SSI since
they can answer questions regarding the trustworthiness of every file on the system. As
a result, some of the potential gaps in SSI policies that arise due to missing information
in software packages can be avoided.

Back to the Future system [18] uses information flow techniques to detect the pres-
ence of malware. Their approach does not constrain malware during its installation;
instead, it is detected when its files are used by a benign application. Its main advantage
is that it can recognize any attempt by malware to inject itself into inputs consumed by
benign applications. Its drawback is that it allows host integrity to be compromised (as
a result of malware installation), and this change has to be undone when malware is de-
tected. This rollback may cause delays, and moreover, can introduce subtle file system
consistency issues.

7 Conclusion
Software installations provide an attractive avenue for spyware and rootkits to embed
themselves deeply into the operating system. In this paper, we proposed an approach
for securing this entry point by developing a framework that confines accesses made
by untrusted packages during their installation. Our technique can support a diversity
of software installation mechanisms. It can also work with different approaches for
confining untrusted software after the installation phase. A key novelty in our approach
is the development of a high-level policy framework that largely eliminates the need
for developing application specific installation policies. Instead, a single, intuitively
simple high level policy can be used for a wide range of untrusted applications. Our
experimental results demonstrate that our approach is effective, and achieves the goals
set out in the Introduction.
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