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Abstract
Accurate disassembly of stripped binaries is the first and foremost
step in binary analysis, instrumentation and reverse engineering.
Complex instruction sets such as the x86 pose major challenges in
this context because it is very difficult to distinguish between code
and embedded data. To make progress, many recent approaches
have either made optimistic assumptions (e.g., absence of embedded
data) or relied on additional compiler-generated metadata (e.g., re-
location info and/or exception handling metadata). Unfortunately,
many complex binaries do contain embedded data, while lacking
the additional metadata needed by these techniques. We therefore
present a new approach that can accurately disassemble such bina-
ries. Our approach combines a novel static analysis with another
new, data-driven probabilistic technique in order to detect embed-
ded data. These two techniques are combined using a prioritized
error correction algorithm to achieve superior false-positive and
false-negative rates on datasets used in previous work.
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1 Introduction
Binary analysis and instrumentation provide the foundation for a
wide range of applications such as binary debloating [20, 46, 48], opti-
mization [33, 38], code similarity detection [7, 11], reverse engineer-
ing [29, 31, 47], vulnerability discovery [13, 30, 42, 54, 63], malware
analysis [10, 24], and security hardening [3, 14, 25, 45, 55, 57, 62].Dis-
assembly is the first step in all of these applications, and is concerned
with lifting binary code (i.e., a sequence of bytes) to assembly in-
structions.Without additional symbolic information ormetadata (as
in stripped binaries), it has proven to be a very challenging problem
despite numerous research efforts [6, 19, 34, 37, 41, 56–58, 62, 63].
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There are two basic techniques for disassembly. Linear sweep [51]
begins at the start of a code section in a binary and proceeds to disas-
semble all subsequent bytes. It can achieve high coverage but suffers
from a high error rate on binaries containing embedded data. Recur-
sive disassembly [51] copes betterwith suchdata, but suffers from low
coverage because of the inability to decipher indirect control flow
targets. State-of-art systems [19, 49, 54] combine the two techniques,
using recursive disassembly in the first phase, and linear disassem-
bly in the second phase to uncover code missed in the first phase.
Whilemany of these techniques achieve accuracies between 99% and
99.99% [39] on binaries that don’t contain any data, their accuracy
falls rapidly on some of the more complex binaries such as openssl
that do contain such data. In contrast, we develop new statistical and
static analysis techniques and a conflict resolution algorithm that
combines them to achieve high accuracies (99+%) on data-containing
binaries, while approaching the ideal of 0% errors on data-free binaries.

Existing tools such as Dyninst [23], Ghidra [49], and Angr [54]
can take advantage of symbol and debugging information to improve
disassembly accuracy. Unfortunately, such information is absent in
most COTS binaries. C++ exception handlingmetadata is present in
most strippedbinaries onLinux, and researchershave shown that the
accuracy of disassembly and related tasks can be improved using this
information [40, 44]. However, this metadata is very large, causing
some projects such as Chrome to disable it. Moreover, this metadata
may be missing for C applications on platforms other than Linux.
Finally, even when it is present, it may not cover all of the code, e.g.,
we find that exception handling metadata is missing for 1% of Fire-
fox’s code. For these reasons, we focus on an approach that doesn’t
require any compiler-generated metadata. In addition to broadening
applicability, a metadata-free emphasis enables us to explore the limits
of what is achievable using static analysis and statistical techniques
for disassembly.

1.1 Approach overview and contributions
In this paper, we present a novel disassembly approach that com-
bines static analysis and statistical techniques using a prioritized
conflict resolution algorithm to achieve high accuracy on complex
binarieswithout relyingon compilermetadata.An interesting aspect
of our approach is that we use properties of data to flag code and
properties of code to flag data. Since data tends to bemore uniform
and random, it’s statistical properties are more readily quantified. In
contrast, code is highly variable in terms of opcode or operand values
used. For this reason,we do not attempt to characterize the statistical
properties of code, but instead,we flag a byte sequence as codewhen-
ever its statistical properties deviate drastically from that of data.

While the statistical properties of code are variable, its behavior
is more constrained. In particular, we focus on constraints that code
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must satisfy in order to run successfully and interoperate with other
code. Our research identifies some of these constraints and develops
new static analyses to determine conformance to them. Clearly, data
is not meant to be executed and hence won’t satisfy these properties.
Consequently, we can flag byte sequences as data when they violate
these properties.

Due to the high error rate of linear sweep disassembly on binaries
with data, the first phase in our approach uses recursive disassembly.
Unfortunately, as explained in Sec. 2, recursive disassembly misses a
significant fractionof code, e.g., code reachable only through indirect
branches, or code that is altogether unreachable.1 Worse, because of
the prevalence of non-returning functions, conventional implemen-
tations of recursive disassembly suffer from false positives as well.
Previouswork has tackled this challenge by constructing a catalog of
all non-returning functions and avoiding the disassembly of follow-
through code. Unfortunately, compiling such a catalog can be a lot of
manual effort, and moreover, these catalogs will need to be updated
constantly, as new versions of libraries are distributed.We, therefore,
rely on a conservative static analysis for constructing the catalog, but
the downside of such an approach is the significant overestimation
of non-returning calls. This overestimation further exacerbates the
false negatives of recursive disassembly. Consequently, less than
half the code is discovered in this phase of our approach.

The second phase of our disassembly uses speculative techniques
to identify all code. Specifically, (a) any constant value appearing
within code or data sections of the binary is interpreted as a code
pointer and the target is disassembled, and (b) all gaps remaining are
disassembled. Such speculative steps lead to significant disassembly
errors, sowe develop new techniques for scoring, validation, and pri-
oritizederrorcorrection toovercometheseerrors. First, disassembled
snippets are assigned a score based on statistical properties of data as
described in Sec. 3. Snippets are thenprocessed indecreasingorder of
scores by our prioritized error correction algorithm described in Sec. 5.

Although our statistical scoring is very effective in identifying
snippets that aremostly code, it is unable to pinpoint the start or end
of code within a disassembled snippet. We develop static analysis
techniques in Sec. 4 for this purpose. In particular, we identify code
properties whose violation will lead to crashes or other serious prob-
lems. Any snippet that violates these properties is then flagged as
data and discarded. In addition to validating snippets that are spec-
ulatively disassembled, these invalid code properties also serve as
the basis for our solution to two other challenges: (i) non-returning
functions, and (ii) accurate determination of jump table bounds. In
summary, we make the following contributions in this paper:

• This paper develops a set of code properties that can accu-
rately flag invalid code. We present a scalable static analysis
technique for computing these properties.

• We present a method for identifying code using statistical
properties of data and provide empirical validation for the
probability estimates derived by this method.

• Although both of the above techniques have accuracy, they
still have non-negligible error rates. In order to further reduce
these errors,wepresent aprioritized error correction algorithm

1While unreachable code may not be of interest in some applications such as binary
instrumentation, others such as reverse engineering, binary differencing, and malware
analysis require all code to be disassembled.

that combines these techniques to achieve an overall error
rate that is near zero.

• We perform a comprehensive evaluation of our disassem-
bly approach on two sets of benchmarks. One set was bor-
rowed from Pang et al.’s work [39] and comprising of real-
world binaries and SPEC benchmarks compiled with GCC
and LLVM [27]. Another set of benchmarks was borrowed
from Stochfuzz [63], which includes a significant amount
of embedded data within code.

• We compare our results with other state-of-the-art disassem-
blers, includingAngr [54],Ghidra [49],Dyninst[23] andDDis-
asm [19]. We achieve error rates that are 3× to 4× lower than
that of best among previous disassemblers.

Our system, along with the datasets and measurement procedures
used, is available at http://seclab.cs.sunysb.edu/soumyakant/safer.

2 Challenges in disassembling complex binaries
Linear disassembly such asObjdump [21] can discover all code but
suffers from a high false positive rate on binaries containing embed-
ded data. Recursive disassembly [23, 49, 54] follows the control flow
present in the code, and hence can skip regions that contain data.
But it suffers from high false negatives because it cannot discover
code that is reachable only via indirect branches. On average, recur-
sive disassembly can miss 20% of the code [39], but the miss can be
substantially larger in some programs.

Achieving high accuracy requires reducing both the false nega-
tives and false positives. For this reason, many contemporary works
[19, 23, 54, 56] combine recursive disassembly with other specu-
lative techniques such as linearly scanning binary regions missed
by recursive disassembly. Unfortunately, the increased coverage of
speculative techniques comes with a high rate of disassembly errors.
To reduce the scope for these errors, it is necessary to understand the
limitations of recursive disassembly, and narrowly tailor speculative
techniques to target these limitations. For this reason, we focus the
rest of this section on the challenges faced by recursive disassembly.

Indirectly reached code: This is a well-established reason for the
low coverage (i.e., high false negatives) of recursive disassembly.
High-level programming language constructs such as virtual func-
tions and switch-case statements get translated into indirect control
flow transfers in binary, with targets known only at runtime. Indi-
rectly reached code can be categorized into two types: (i) functions
whose addresses are taken and stored in registers ormemory, and (ii)
jump table targets. (Jump tables result typically from the translation
of switch statements.)

The use of relocation information to discover address-taken func-
tions has been explored in recent works [16, 60, 61]. However, relo-
cation information is not always available. Furthermore, it does not
help in differentiating code and data. Other techniques speculatively
scan for stored constants that fall within the range of code sections
[62]. This discovers all address-taken functions, but introduces false
positives due to possible confusion of integers and pointers.

Unlike address-taken functions, jump table targets are computed
at runtime and hence require a different approach for identification.
Recent techniques [16, 19, 23, 54, 56, 60, 62] use pattern matching to
detect any arithmetic computation that resembles jump table target
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computation. As shown by the evaluations in [39], Dyninst’s jump
table identification achieves 99% accuracy. We follow a similar ap-
proach of jump table detection. However, estimating the size/bounds
of jump tables can be hard. Recent techniques overestimate the size
of jump tables whenever they are unable to accurately predict the
size. Pang et al. [39] make an observation that overestimated jump
tables account for about 6% of Ghidra’s false positives and 24% of
Dyninst’s false positives.

In this paper, we avoid the dependence on compiler metadata or
heuristics for reducing these errors. Instead, we rely on our valid
behavior checks and statistical property based error correction to
remove spurious code pointers.

Non-returning calls: In traditional recursive disassembly, fall-
through targets of all calls are generally considered as valid code loca-
tions.However, there exist special calls that never return, e.g., calls to
standard library functions such as exit, abort, etc. The compiler may
place data or intra-function padding bytes after non-returning calls.
As a result, disassebly of fall-through can result in an error. Although
recentworks [9, 23, 49, 54] have tried tohandle non-returning calls in
anad-hocmanner bymanually listing standard library functions that
do not return, a systematic investigation of this problem is lacking.
According to Pang et al. [39], 40% of Dyninst’s false positives result
from the failure to identify non-returning calls. We present a sys-
tematic approach to this problem that relies on our code properties
to validate fall-through code.

Unreachable code: Programs tend to have unused functions that
are never called either directly or indirectly. Qiao et al. [47] esti-
mate that about 15% of functions in binaries fall into this category
of unreachable function. Since these functions are never referred
anywhere, there is no evidence regarding the entry point of such
functions, thereby forcing us to use speculative techniques such
as linear sweep of code gaps. In presence of embedded data, such
speculative approaches can result in a high error rate. However, our
valid behavior checks help us to have significantly lower error rates
while speculatively disassembling code gaps.

3 Identifying code using (statistical) data proper-
ties

Binary code is statistically different from data, and this fact has been
used inpreviousworks to improvedisassemblyaccuracy[59].Heuris-
tics built into many disassembly tools, such as the use of function
prologs to detect function starts (or “gaps” in disassembly), are based
on such differences. However, they are used in an ad-hoc fashion,
without a rigorous statistical underpinning. Machine-learning tech-
niques [5, 41, 53] do not suffer from this problem, but they require
large amounts of binary code for training. Moreover, machine learn-
ing techniques aregenerallyopaque,making it hard to judgewhether
the features selected by these systems aremeaningfully related to the
underlying properties of code. As a result, it is difficult to gain confi-
dence that accuracy results will carry over across different datasets.
For instance, the accuracyof amachine-learning based function iden-
tification technique [5] fell from over 90% reported in the paper to
just 60%ona seconddataset [2]. Thiswas becauseof anunrecognized
bias in the training data that boosted accuracy in the original dataset.

Probabilistic disassembly [34] sidesteps the challenges of both

training-based and heuristics-based techniques by focusing on prop-
erties of data rather than code. The central assumption is that data
bytes are uniformly randomly distributed.Based on this assump-
tion, they derive probabilities of observing certain byte sequences
in data that match common control flow and dataflow patterns in
code. If the probability is low, then the occurrence of that pattern
in a snippet suggests that the snippet is very likely code. Miller et
al [34] suggested two control flow properties — converging short
jumps (two jumps that target the same location) and crossing short
jumps (one short jump targeting the instruction that immediately
follows another short jump); and one dataflow property — register
define-use (i.e., a register assigned by one instruction is used in a
subsequent instruction). For each pattern, they derived the probabil-
ity that it would occur (by chance) in data. These data probabilities
are propagated along control flow paths.Whenmultiple patterns are
found along the same control flow, their probabilities are multiplied.
This compounding effect causes data probabilities to shrink rapidly,
leading to most of the code in the binary to be recognized as such.

Probabilistic disassembly incorporates an elegant design based
on solid foundations. In their original paper [34], they reported zero
false negatives and 6.8% false positives. In subsequent work by the
same group [63], 11.74% false negatives and 1.48% false positives
were reported on a more complex dataset. These numbers are not
competitive with the state-of-the-art. Based on the description in
their paper and our experience with our implementation, we believe
that their error rate stems from the following factors:

• Choice of patterns and associated probabilities: The probabil-
ity of random bytes exhibiting a dataflow relationship is 1/2,
which is much higher than the 1/16 they use in their calcula-
tions. (See Appendix A for details.) In addition, probabilities
yielded by their analysis of short jumps are much higher than
what can be derived for longer jumps. By focusing on long
jumps,we show that accuracies can be significantly improved.

• Uniformdistribution assumption:Although it seems tobe a rea-
sonable assumption, data bytes are not uniformly distributed.
In fact, we find that about 30% of the data bytes are zeroes. If
this is not taken into account, it leads to massive overestima-
tions of probabilities, degrading accuracy. (See the difference
between the second and third columns in Table 2, especially
rows 2 and 3.)

• Compounding propagation of probabilities: The multiplicative
rule for probabilities, although natural, causes larger snippets
to accumulate very low probabilities of being classified as
data, thereby leading to high false positives.

We describe a new approach below that overcomes these challenges.
Similar to probabilistic disassembly, it avoids reliance on statistical
properties of code because it can vary substantially across different
binaries. At the same time, we avoid the uniform data distribution
assumption and instead use simple statistical properties that are
computed empirically. Our results show that these simple statistical
properties of data tend to be stable across different binaries. In partic-
ular, Fig. 1 shows the distribution of byte values in data across three
applications. Note that “data” in this regard includes both embedded
data, as well as byte positions in code that do not correspond to an
instruction beginning (as per ground truth).
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Fig. 1: Byte distribution across binaries.

Instruction
pattern

Calculated probability Experimental
valueBased on

Uniform
distribution

Based on
Fig. 1

distribution
SJ 2−4 2−4 2−5

LU 2−17 2−10 2−11

LC 2−22 2−15 2−16

Table 2: Probability of observing control flow transfer (CFTs) instruction
patterns within data. SJ stands for short jump instructions with 1-byte jump
offset. LU and LC stand for control transfers with 4-byte offsets, with LU
standing for unconditional transfers and LC for conditional transfers. Uniform
distributionmeans every byte value occurs with a probability of 1/256. Actual
distribution refers to a simplified summary of Fig. 1, with 𝑃𝑟 (0) = 0.3 and
𝑃𝑟 (𝑥 ) =0.7/255 for non-zero byte values.

Table 2 shows that the probabilities estimated using the byte dis-
tribution of Fig. 1 differs greatly from that obtained using uniform
distribution. In particular, note that for the last two rows, uniform
distribution assumption leads to probability values that are smaller
bymore than 100×. The last column shows that the actual prevalence
of these patterns in the ground truth of our entire dataset matches
our calculation — it is within a factor of two of our calculation.

Note that we did not use the ground truth of the entire dataset
in Fig. 1 — it uses a very small subset. Moreover, we only used the
fact that zeroes occur with a probability of 0.3. All other values were
approximated to be equal, at 0.7/255.

We generated additional random subsets of our dataset to check
if the distribution shown in Fig. 1 holds across different subsets. We
found that it does— across 10 random subsets, the probability of zero
varied between 0.23 and 0.32, with a roughly uniform distribution
of other bytes. The 20 random subsets were such that their size was
0.1% of the total size of the dataset. The average probability of 0
across all subsets was 27% and the standard deviation was 7%.

3.1 Control Flow Transfers (CFTs)
We focus on control flow transfers for two key reasons: (a) the prob-
ability𝐷𝑇 of the target being data can be estimatedwithout knowing
if the source location is code or data; and (b) the likelihood of CFT
offsets can be estimated from Fig. 1.

Regarding (a), observe that if the target is data, then the source
“instruction” must itself correspond to data, or to an unaligned loca-
tion in code. The prevalence of various byte values at these locations
is shown in Fig. 1, compiled from three sample binaries that range
in size from about 200KB to 190 MB. Despite these size differences,
the probabilities are close across these binaries, indicating that we
are relying on statistics that are stable.

As shown by these charts, byte value distributions are close to
uniform,exceptat zero.Basedon theseprobabilities,wenowdescribe
the calculationof𝑃𝑟 [𝐷𝑇 |𝑆→𝑇 ]: theprobabilityof a target location𝑇
being data, conditional on observing a CFT “instruction” from some
source 𝑆 to𝑇 . This calculation is organized into three groups below.
Note that the probability𝐶𝑇 of the target being code is simply 1−𝐷𝑇 .

Unconditional Long CFTs (LUs). There are two instructions in
this group, call and jmp. Each has a 1-byte opcode plus a 4-byte
offset. Recall that the target𝑇 of this transfer can be data only if the
source is not a valid instruction. Thus, for the probability of these
CFT opcodes, we should use the distribution from Fig. 1 that cap-
tures byte values in (i) data and (ii) at code locations unalignedwith
instruction boundaries. Since the distribution in Fig. 1 is roughly
uniform at non-zero values, we take 2 · (0.7/256) = 0.0055 as the
combined probability of these two opcodes.

For the CFT target𝑇 to be within the binary, the offset following
theCFTmust be less than the binary size𝐵. The probability that such
an offset follows the (unintended) LU instruction will be given by
𝐵/232 if the offset bytes are uniformly random. However, since zero
bytes occur much more frequently in Fig. 1, we arrive at a higher
value than𝐵/232. To illustrate this calculation, let𝐵=222, i.e., 4MB.To
stay within this range, the most significant byte of the offset should
be zero, which occurs with a probability of about 0.3; the next byte
should be less than 26, which works out to 0.3+0.7· (26/28)=0.475.
The two least significant bytes can be arbitrary. Thus, the probability
of such an offset is 0.3·0.475=0.143.

Combining the probability of an LU opcodewith a valid offset, we
arrive at the combined probability of 0.0055·0.143=0.00079≈2−10.
If we follow the same calculation procedure but used uniform dis-
tribution assumption, then we will arrive at:

2
256

· 1
256

· 2
6

28
=2−17

Note that the calculation based on uniform distribution yields a
probability that is far lower than that based on the non-uniform
distribution. Also note that non-uniform distribution derived from
Fig. 1 yields a very close match to the probabilities observed in our
dataset. (The average binary size in our test set is also 4MB.)

Note that although we used an average size of 4MB in our calcula-
tions in this section, in the actual implementation, probabilities can
be computed from the actual binary size. This means that for smaller
binaries, the observation of an LJ provides much higher confidence
that the jump target is code. Even for a 4MB binary, a probability
of 1−2−10 is obtained, which represents a much higher degree of
confidence than the probability 1−2−4 derived for short jumps.

Long Conditional Jumps (LCs). This group consists of about 16
opcodes that are 2 bytes each, followed by a 4-byte offset. Following
a procedure similar to that of LUs, the probability of occurrence of
these opcodes is

0.7·16
256·256 ·0.143≈2

−15

Using uniform probabilities, we arrive at the following calculation:

16
256·256 ·

1
256

· 2
6

28
≈2−22

Thus,𝐷𝑇 for LCs will be 2−22 and 2−15 with the uniform and Fig. 1
distributions respectively. Note that the experimental results are a
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Instructions Calculated Experimental
probability probability

2-byte push or 2x1-byte push 2−14 2−10

Stack decrement 2−24.5 2−23

Table 3: Probability of function prolog patterns

close match for the predicted probability from Fig. 1 distribution.

Short Jumps (SJs). Because of their small range, short jumpoffsets
are almost always valid locations in code, even for the smallest
binaries. Hence,𝐷𝑇 depends only on the probability of occurrence of
the opcode bytes. There are about 16 short jumps, including several
conditional and unconditional jumps. Thus, 𝐷𝑇 for SJs is 16/28 =
2−4. Since offset values aren’t significant factors for SJs, probability
calculations under uniformand Fig. 1 distributionsmatch in this case.

3.2 Function Prologs
Using function prolog pattern to detect function entries has been
explored bymany disassemblers such as Dyninst [23] and Angr [54].
However, rigid pattern matching still results in low coverage. In
contrast, we treat function prologs as a statistical property. Instead
of using it as a definitive evidence of function entry, we use it to
prioritize code pointers and resolve conflicting disassembly.

The entry point of functions typically contains instructions to
save callee-saved registers, and to allocate local variables by decre-
menting the stack pointer. This leads to three types of instructions
in the prolog:

• 1-byte push: 0x53 and 0x55 represent push %rbx and push %rbp
respectively. The probability of finding these bytes in data is
0.7·2−7.

• 2-byte push: 0x41 followed by one of the bytes 0x54, 0x55, 0x56
or 0x57 used to push %r12, %r13, %r14 and %r15 respectively.
The probability of finding this sequence in data is 0.722−14=
2−15.

• stack decrement: Local variables are created at function entry
using sub %rsp, constant instructions. First 3 bytes of such
instructions are 0x48, 0x83/0x81 and 0xec, followed by an
offset. The probability of finding such consecutive byte values
in data is

(
0.7/28

)3∗2=2−24.5.
Since the probability associated with a single byte push instruc-

tion is low,we do not use it. Instead, we focus on prologs that contain
(a) at least two 1-byte pushes or a single 2-byte push, or, (b) a single
stack decrement. Table 3 summarizes the analytical probabilities
calculated above, and the experimental values that we found. For(a),
the calculated values is not a close match — it is off by 16×. But the
last rowmatches closely.

3.3 Combining Evidence
Since our evidence is in the form of probabilities, a natural way to
combine multiple pieces of evidence is to take the product of the
corresponding probabilities. Taking a product implies that the under-
lying events are independent. This is not a sound assumption since
patterns in data can often be repetitive. Moreover, the compounding
effect of the product operation causes any large byte sequence to be
assigned low probabilities of being data, thus contributing to higher
false positive rates.

To overcome the above problem, we use an additive approach for

accumulating evidence. Specifically, we define a (code) score 𝑆 (𝑥) as
follows:

𝑆 (𝑥)= 𝑃𝑟 [𝑥 is code]
𝑃𝑟 [𝑥 is data]

Here 𝑥 denotes any of the patterns discussed above. For a byte se-
quence𝑋 that contains patterns 𝑥1,...,𝑥𝑛 , we define:

𝑆 (𝑋 )=
∑︁
𝑥∈𝑋

𝑆 (𝑥)

4 Identifying data using (invalid) code behaviors
To achieve low false negative rates, it is necessary to rely on spec-
ulative techniques such as linear disassembly, or the disassembly
of targets pointed by constants found in the data or code regions
of the binary. Although such speculative techniques can yield good
results on binaries with no embedded data, they can lead to high
false positives on more complex code that contains data. To bring
the false positives down, it is necessary to develop techniques that
can recognize data bytes and avoid marking them as code.

Some previous research works have tried to recognize data using
pattern-matching techniques, e.g., null-terminated string data [19].
Unfortunately, it is difficult to develop a comprehensive approach
that is capable of detecting all kinds of data. We, therefore, develop
a novel alternative: identify data by detecting violation of code
properties— properties universal to all code. We first compile a list
of such properties, organized into invalid control flow and invalid
dataflow properties. While control flow violations have been used
in previous work, we propose new dataflow properties in this paper.
We also present new scalable static analysis techniques for checking
these dataflow properties.

4.1 Invalid control flow (InvCF)
Invalid byte sequences (which can’t be disassembled into any valid
instruction sequence) have been used by popular disassemblers to
flag (some of the) data. In addition to that, we also take advantage of
x86_64 system specifications. Specifically, we consider the presence
of privileged instructions and segment prefixes such asCS, SS,DS,
andES as invalid [22].

Control flow transfers to invalid instruction boundaries have been
used in previous works [19, 34, 62] to detect disassembly errors. The
term occlusion has been used [34] to refer to this inconsistency. A
challenge in using this criterion is that it is difficult to knowwhether
the sourceor targetdisassembly is incorrect.However, self-occluding
disassembly is always invalid, e.g., when recursive disassembly from
certain location results in code that jumps to the middle of one of
the instructions just disassembled. (Note that x86 assembly includes
prefix instructions, e.g., the lock prefix. CFTs that target the location
following the prefix are accepted by our method.)

CFT instructions that target outside of the current binary have
also been used to detect disassembly errors [62]. In this case, the
problem is clearly at the source, and hence this particular criterion
is easier to use than the first one.

4.2 Invalid dataflow
Many properties one may expect from good high-level programs
may not necessarily hold for all binary programs, e.g., absence of
uninitialized reads or type errors. One possible reason is that some of
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these programsmay have bugs. Clearly, we cannot insist on bug-free
programs for disassembly. An evenmore important factor is that due
to the inherent limitations of static analysis, an error may be flagged
evenwhen it does not exist. For instance, a certain programpathmay
be infeasible under the conditions inwhich some code is invoked, but
the static analysis may not be able to reason about this. Finally, even
when the error is exercised, it may not have a serious impact. For
these reasons, invalid dataflow should be flagged only in caseswhere
(a) the underlying problem isn’t due to programmer errors or the
limitations of static analysis, and (b) the error has a serious impact.

Identifyingprogramproperties that satisfy these constraints turns
out to be a challenging problem in itself. We have so far identified
two property classes in this regard, and both have proved to be quite
effective. The first set consists of properties that will cause a pro-
gram to crash. Currently, this set consists of a single property type:
the dereferencing of uninitialized pointers. The second set checks
adherence to binary platform specifications, specifically, the ABI.
Both property sets are highly conservative: buggy programs won’t
violate them, but buggy compilers may do so.

4.2.1 Invalid pointer dereferencing (InvPtr)
Use-before-definition is a commonprogrammingerror that isflagged
by compilers as well as runtime tools such as Valgrind [36]. It has
also been suggested as a criterion for deciding function starts [47].
However, for the reasons noted above, we need to strengthen this
condition further inorder toprevent if frombeing triggeredonpoten-
tially valid code. In particular, our analysis reports a violation only if:

• the violations are present on every program path,
• they aren’t the result of programming errors, and
• the bug will lead to a major failure.

To satisfy the second constraint, we focus on low-level problems that
can only be present in code generated by a buggy compiler. To sat-
isfy the third constraint, we focus on pointer dereferencing. This is
because an uninitialized pointer is likely to point to a random region
of memory, so its dereferencing will lead to a memory protection
fault. Specifically, we focus on the following errors:

• Memory dereferencing of an uninitialized data pointer;
• Control flow transfer using an uninitialized code pointer; and
• Overwriting critical pointers with uninitialized data, e.g., a
return address, the stack points or the saved base pointer.

To reason about initialization, we must start from a known initial
state. Hence we apply these checks on whole functions, relying on a
conservative interpretation of the ABI (application-binary interface)
specifications to determine what is initialized.

4.2.2 Invalid callee-saved register modification (InvReg)
The ABI [32] dictates that callee-saved registers (r12–15, rbx, rsp,
and rbp on x86-64)must be preserved across function calls. If a callee
intends tomodify any of these registers, it must save it first, and then
restore its value before returning to the caller. Callee-saved register
preservation has previously been used for function identification
[47]. Our main contribution here is to develop a more conserva-
tive and scalable analysis for detecting violations. In particular, our
analysis flags definite rather than possible violations, and develops a
linear-time analysis as opposed to previous techniques that analyzed
each program path separately. (Note that the number of paths can

be exponential in the size of a function, even for functions that don’t
contain any loops.)

4.3 Efficient static analysis for invalid dataflow
There are two key challenges in developing static analysis to support
our disassembly approach. First, since our conservative recursive
disassembly reaches less than 50% of the code, a majority of the
code needs to be disassembled speculatively. Moreover, numerous
overlapping candidates are considered as the starting points for such
disassembly. As such, the total amount of code that needs to be stat-
ically analyzed can be an order of magnitude more than the binary
size. For this reason, the efficiency of analysis becomes important.
Secondly,we seekananalysis that has effectively zero falsenegatives:
it should not report invalid dataflow for any legitimate function. We
describe two such analysis techniques for InvPtr and InvReg below.

4.3.1 Static analysis for InvPtr
Like most previous work on binary analysis (e.g., value-set analysis
(VSA) [4]) our analysis is based on the classic abstract interpretation
[12] technique. During normal (“concrete”) execution of a program,
its variables take values over the program’s input and output do-
mains, referred to as the concrete domain. In abstract interpretation,
variables range over a much smaller abstract domain. Each value in
this domain represents a subset of values in the concrete domain. For
instance, to reason about initialization, a 2-point abstract domain
can be used: {⊤, 𝑢𝑛𝑑𝑒 𝑓 }. When a variable has the abstract value
of⊤, it means we know nothing about its value. In other words,⊤
corresponds to the set of all possible concrete values. In contrast,
𝑢𝑛𝑑𝑒 𝑓 indicates that no value has been assigned.

Most of the speculatively disassembled code in our system cor-
responds to indirectly reached functions, so we use the ABI to deter-
mine which registers are undefined. Generally speaking, registers
other than the argument registers and the stack pointer are consid-
ered𝑢𝑛𝑑𝑒 𝑓 . For memory, the region above the stack top is marked
𝑢𝑛𝑑𝑒 𝑓 and everything else as⊤.

Like a normal interpreter, an abstract interpreter also executes
a program, but in this execution, variable values range over abstract
domains. Defining an abstract interpreter thus boils down to the
specification of primitive program operations in terms of abstract
values. Assignments (e.g.,mov’s) simply propagate abstract values.
Most arithmetic operations such as addition result in𝑢𝑛𝑑𝑒 𝑓 if either
of the arguments is𝑢𝑛𝑑𝑒 𝑓 .

To perform abstract interpretation, we lift assembly instructions
into a low-level intermediate representation (IR) typical in compiler
backends. After lifting, we identify basic blocks (BB) and construct a
control-flow graph (CFG). A reverse post-order traversal of the CFG
is used to determine the order of abstract execution of the BBs. At
control flowmerge points, the abstract state from the two branches
aremerged. Sinceour𝑢𝑛𝑑𝑒 𝑓 represents a value that isdefinitely unde-
fined, a variable is set to this value only if it is𝑢𝑛𝑑𝑒 𝑓 onboth branches.
Finally, a violation is triggered if an 𝑢𝑛𝑑𝑒 𝑓 value is used in one of
the critical contexts specified in Sec. 4.2.1.

Reverse post order traversal ensures that in non-recursive and
loop-free functions, each instruction is abstractly executed at most
once. This would enable a linear-time analysis of such programs.
Loops and recursion are handled using an iterative approach called
fixpoint iteration,which, unfortunately, has exponential worst-case
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complexity. Hence wemake an approximation to speed this up, as
described subsequently.

While its high-level design is a fairly direct application of ab-
stract interpretation, a number of additional challenges need to be
addressed in order to achieve the precision and scalability needed
for our task. We describe these below.

Achieving high accuracy. Through experimentation, we iden-
tified a number of key steps to achieve the accuracy needed for our
task, which is ∼ 0 false negatives (i.e., flagging valid code as data)
and sub-1% false positives. Some of these are:

• Tracking abstract state at the granularity of bytes, so that
we can accurately reason about instructions that move data
across registers of different sizes and/or memory.

• Handling pointer escapes conservatively, e.g., when a pointer
to stack-allocated array is passed to a callee thatmay initialize
this array.

• Handling binary operators conservatively.Arithmetic opera-
tions can produce defined results even if some arguments are
𝑢𝑛𝑑𝑒 𝑓 , e.g., multiplication by 0, subtracting a register from
itself, etc. Similarly, many logical operators can produce a
defined result even if (some of) the arguments are𝑢𝑛𝑑𝑒 𝑓 .

• Precisely capturing the ABI restrictions, e.g., the lowest 8-bits
of rax register may be defined at the function entry point, but
not the other bits; and xmm registers 8 through 15. Similarly,
registers rax, rdx, somexmm andfloatingpoint (st) registers
are defined after a call.

Scalability. We take several steps in this regard as well:

• Efficiently handling large abstract state.Due to the large num-
ber of registers (including extended registers such as xmm)
and the size of the stack, our analysis needs tomaintain a large
amount of abstract state. Eager propagation of the entire state
after every instruction and control-flowmerge point can be
very expensive, sowe developed a lazy loading approach. The
idea is to start by storing the abstract state of a register (or
memory location) within a BB only if that register (location)
is updated in that BB. If a successor BB needs the value of a
location not stored in the BB, then this BB will obtain it from
its predecessor and then cache the value for future accesses.

• Speeding up fixpoint iteration. Fixpoint iteration normally
begins with the initial approximation of⊥ and iterates until
a fixpoint is reached. In the worst case, this can take time
exponential in the number of variables. Moreover, stopping
before reaching the fixpoint leads to unsound results, so one
cannot improve performance by stopping in the middle. But
there is an alternative, which is to start fixpoint iteration at
⊤. It can be shown that one iteration is all that is needed for
reaching a fixpoint. This approach tends to overapproximate,
i.e., the analysis resultswill lose precision.Note, however, that
the primary goal of our analysis is to flag data. Incorrectly
disassembled “code” rarely contains structures such as loops
and hence it is not a serious concern if we lose precision in
the handling of loops.2

2But this loss of precision will be a concern if this analysis is applied for other problems
such as function identification. This is the main reason why we don’t target function
identification in this paper.

• Handling weak updates efficiently. There are times when the
stack is updated at an offset that cannot be statically com-
puted. This is called aweak update, and is normally handled
by marking all possible targets. But there are times when the
range is too large. We have developed efficient techniques for
handling many common cases where this happens.

4.3.2 Static analysis for InvReg
This analysis needs to answer the question of whether a register
value at the end of a function is equal to its value at the beginning. In
between, the registermayundergo several types of changes, e.g., rbp
maybedecrementedby someconstant𝑘 ,moved to rax,which is then
pushed on the stack, popped back into rcx, incremented by 𝑘 and
then moved back to rbp before return. Our analysis needs to be able
to answer whether rbp at exit equals rbp at entry, without knowing
the initial value of rbp. Value set analysis (VSA) [4] is often used
in binary analysis because it uses an abstract domain that has been
carefully designed for tracking memory addresses as well as integer
values. However, since it can only capture abstract values, it cannot
answer this question unless rbp’s value is a known constant at the
entry point. VSA incorporates a second component for reasoning
about relationships between registers called affine relation analysis.
In conjunction with a static single assignment transformation, this
analysis can indeed be used to answer questions such as the one we
seek to answer. Unfortunately, affine analysis is very expensive and
does not scale beyond small programs.

Analternativeapproach is touseadomain that is custom-designed
to express the content of abstract store in terms of the initial values
of registers at the beginning of the function. Saxena et al. [50] have
defined such adomain anda set of abstract operations on this domain.
Points in this domain are of the form 𝑅+ (𝑙,ℎ) where 𝑅 represents
the value of a register 𝑅 at the entry point of a function, and 𝑙 and
ℎ are integer constants. Such a point represents a range of values
[𝑅+𝑙,𝑅+ℎ]. This domain is powerful enough to handle the example
given above. We have developed an implementation of this domain
that runs in time linear in the size of a program. We rely on some
of the same optimization techniques described earlier for InvPtr to
achieve this complexity. Fixpoint iteration is speeded up in the same
way. Loss of precision is possible, but it is not a big concern because
the analysis is often applied to data or incorrectly disassembled code.
Even in legitimate code, register preservation relies on simple rea-
sons such as saving and restoring a register, and not because of some
complex changes that occur within a loop that is later undone in a
way that requires accurate handling of the loop computations.

5 Disassembly algorithm
We now present our disassembly algorithm that uses the statisti-
cal and behavioral techniques from the last two sections. Figure 4
describes our approach at a high level.

5.1 Phase I: Disassembling Definite Code
The initial phase discovers definite code. It uses recursive disassembly
in this phase, beginning withwell-known roots:

• program entry point,
• entries in the dynamic symbol table, and
• entries of default initialization and cleanup functions.
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//Entry point //Definite Code //Definite Code

4060d0: cmp $0x1,%edi 4060d0: cmp $0x1,%edi 4060d0: cmp $0x1,%edi

4060d3: push %r12 4060d3: push %r12 4060d3: push %r12

4060d5: push %rbp 4060d5: push %rbp 4060d5: push %rbp

4060d6: push %rbx 4060d6: push %rbx 4060d6: push %rbx

4060d7: jle 406161 4060d7: jle 406161 4060d7: jle 406161

4060dd: mov 0x8(%rsi),%rdi 4060dd: mov 0x8(%rsi),%rdi 4060dd: mov 0x8(%rsi),%rdi

4060e1: lea 0x196f1(%rip),%rsi 0x196f1(%rip),%rsi 4060e1: lea 0x196f1(%rip),%rsi

4060e8: … 4060e8: … 4060e8: …

40615a: pop %rbx 40615a: pop %rbx 40615a: pop %rbx

40615b: xor %eax,%eax 40615b: xor %eax,%eax 40615b: xor %eax,%eax

40615d: pop %rbp 40615d: pop %rbp 40615d: pop %rbp

40615e: pop %r12 40615e: pop %r12 40615e: pop %r12

406160: ret 406160: ret 406160: ret

//Data

41f7d9: \x49\x23\x04\x24\x69 //Possible Code 41f7f0: cmp $0x4,%edx

\x6e\x73\x74\x65\x61 41f7f3: jne 41f810

\x64\x21\x00\x66\x2e 41f7d9: and (%rax),%rax 41f7f5: …

\x0f\x1f\x84\x00\x00 41f7db: imul $0x64616574,0x73(%rsi),%ebp 41f807: ret

\x00\x00\x00 41f7e2: add %ah,%cs:0x2e(%rsi) 41f810: test %edx,%edx

//Function X 41f7e6: nopl 0x0(%rax,%rax,1) 41f812: push %r12

41f7f0: cmp $0x4,%edx 41f7f0: cmp $0x4,%edx 41f814: push %rbp

41f7f3: jne 41f810 41f7f3: jne 41f810 41f815: mov %rdi,%rbp

41f7f5: … 41f7f5: … 41f818: push %rbx

41f807: ret 41f807: ret 41f819: …

41f810: test %edx,%edx 41f810: test %edx,%edx 41f847: call error

41f812: push %r12 41f812: push %r12

41f814: push %rbp 41f814: push %rbp

41f815: mov %rdi,%rbp 41f815: mov %rdi,%rbp

41f818: push %rbx 41f818: push %rbx

41f819: … 41f819: … //Non Code

41f847: call error //Calling possibly non-returning function 41f847: call error 41f7d9: …

//Data 41f84c: cmp %esi,0x61(%rdx,%rsi,2)

41f84c: \x39\x74\x72\x61\x63 414850: movslq 0x61(%rbx),%ebp 41f7f6: …

414853: \x6b\x61\x62\x6c 414853: (bad)

414854: insb (%dx),%es:(%rdi) 41f847: …

//RODATA 

section 41f7f6: lea 0x2bf3b4(%rip),%eax

4c124c: 0x41f7f6 //Integer constant 41f7fc: …

4c1254: 0x41f7f0 //Pointer constant 41f807: ret

GROUND TRUTH AFTER PHASE 2 AFTER PHASE 3

//Accessing data at 0x41f7d9

Short jump

Function prolog

Phase 1: 
-----------------------------------
Code at entry point 
0x4060d0 disassembled as 
definiite code.
Phase 2:
-----------------------------------
Possible code pointers 
0x417fd9, 0x41f7f0 and 
0x41f7f6 disassembled 
and marked as possible 
code.

1. Assigning statistical scores:
--------------------------------------
0x41f7f0: Short jump pattern 
+ function prologue.
0x41f7d9: Falls through to 
0x41f7f0 and has same 
statistical properties.
0x41f7f6: NIL
2. Validating in decreasing 
order of statistical score:
--------------------------------------
0x41f7f0: 
    i. 0x41f847: Non-returning 
call.   Fall through (0x41f84c) 
has invalid byte sequence.
   ii. 0x41f7f0 passes invalid 
behavior check --> Marked as 
definite code.
0x41f7d9: Fails invalid 
behavior check --> Marked as 
Non code.
0x41f7f6: Occludes high 
scoring code snippet 
(0x41f7f0) -->Marked as Non 
code.

Fig. 4: High-level overview of our approach.

As these entries are needed for loading, linking, and operation of
binaries, they are present in stripped binaries as well.

In the conservative version of recursive disassembly used in this
phase, we don’t assume that calls always return. Instead, we identify
functions thatmay not return, and avoid disassembling bytes that
followcalls to such functions. Thesebytes are explored in subsequent
disassembly phases described below.

To identify non-returning calls, we begin with a small set of well-
known functions that don’t return, such as exit and abort. These
are called definitely non-returning functions.Any function that calls
a definitely non-returning function on all paths in its CFG is itself
classified as definitely non-returning. If a function calls definitely
non-returning functions on a proper subset of its code paths, it is
classified as possibly non-returning. Finally, any function that calls a
possiblynon-returning function (ononeormorepaths inCFG) is also
classified as possibly non-returning. These lists of non-returning
functions can be constructed using a simple CFG analysis of all
binaries on a system. However, for simplicity and expediency, we
compiled these lists offline for use in our implementation.

5.2 Phase II: Disassembling Possible Code
The goal of this phase is to recover all potential code in a binary. We
call the recovered code as possible code, in contrast with the definite
code discovered in the first phase. Note that regions of “code” dis-
covered in this phase may overlap and occlude each other. Any data
within code regions will also be disassembled in this phase. These
potential conflicts and errors will be resolved during a third phase

described subsequently.
This phase also uses recursive disassembly but starts from amuch

larger set of possible roots. This includes:
• Possible code pointers: Every byte boundary within code and
data sections of a binary is considered as the start of a pointer
constant. If this constant falls within the code section of the
binary, it is added to the set of possible roots.

• Jump table targets:We rely on an intra-function static analy-
sis to discover jump tables and a (super)set of code pointers
computed and used at runtime in this jump table. These code
pointers are added to possible roots.

• Locations after calls to possibly non-returning functions.
• Locations matching a function prolog: Byte sequences that
correspond to stack decrement or the saving of two or more
callee-saved registers on the stack, are considered here.

• Any 16-byte aligned location in the code section.
• Any “gap” location in the code section that has not been disas-
sembled in previous steps.

All the above speculative steps are applied only to the gaps left after
discovering definite code.

5.3 Phase III: Prioritized Error Correction
Possible code discovered above is a superset of all valid code. The
false positives in the possible code can be categorized as (i) Disas-
sembled data (e.g., 0x41f7d9 in Fig. 4) and (ii) Conflicting code (e.g.,
0x41f7f6 in Fig. 4). We now describe a conflict resolution algorithm
(Fig. 5) that uses the statistical and behavioral properties discussed
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Input: FunctionEntries, CFG
1 Function validateCode:
2 PriorityQueueQ
3 for entry in FunctionEntries do
4 Q.push(entry, statScore(entry))
5 end
6 while ¬Q.empty() do
7 entry =Q.top()
8 Q.pop()
9 if ¬ occlude(entry, CFG) then
10 resolveExitCalls(Q, entry)
11 if ¬ invReg(entry) ∧

(statScore(entry) ≥𝑆𝑎𝑐𝑐∨¬ invPtr(entry)) then
12 CFG.add(entry)
13 validateIndirectTargets(entry)
14 end
15 end
16 end
17 Function resolveExitCalls(Q, entry):
18 foreach call in CFG.possiblyNoRetCalls(entry) do
19 if ¬ invCF(call.fallThrough) then
20 if ¬ invReg(call.fallThrough) then
21 Q.push(call.fallThrough,

statScore(call.fallThrough))
22 end
23 else
24 CFG.markRetCall(call)
25 end
26 end
27 end
28 Function validateIndirectTargets(entry):
29 foreach target in CFG.indirectTargets(entry) do
30 extCFG = CFG.extendIndirectPath(entry, target)
31 if ¬occlude(target,CFG)∧¬ invReg(extCFG, entry) then
32 CFG.add(target)
33 end
34 end

Fig. 5: Prioritized error correction algorithm

in Sec. 4 and 3 to select the correct code from this superset.
The top-level function in our algorithm is validateCode (Fig. 5,

Line 1). This function first assigns statistical scores to each code re-
giondiscovered inPhase II (Lines2–5).This isdoneusing the function
statScore, which assigns scores as described in Sec. 3. For example,
code snippet from 0x41f7d9 and 0x41f7f0 have a short jump target
and function prologue consisting of one 2-byte push (push %r12).
Their net score will be 215+24 ≈ 215. Where as, code snippet from
0x41f7f6 does not have any statistical property andwill have 0 score.

Next, functions are considered in decreasing order of their scores
(Lines 6–16). If a function passes the validation checks below, it is
marked as definite code, and then wemove on to the function with
the next highest score, and so on. The first validation check (Line
9) is whether a function occludes itself or other definite code. 𝐴 is
said to occlude 𝐵 if𝐴 includes (or transfers control to) instruction
locations that are in the middle of valid instructions in 𝐵. For ex-
ample, 0x41f7f6 in Fig. 4 occludes with 0x41f7f5which is part of
definite code sequence starting from 0x41f7f0. Hence, 0x41f7f6
will be marked as non-code.

The next step in validation is to resolve potentially non-returning
calls using resolveExitCalls defined at Lines 17–27. This function
marks the call as non-returning if:

• disassembly of follow-on code leads to invalid instructions,
or occlusions of definite code or the current function, or

• the follow-on code passes the valid function checks of Sec. 4,
which means that it is likely an independent function.

Otherwise, the call is marked as returning, and the following code
is added to the CFG of the current function. The statistical score of
the function is updated to reflect this change. In the second case,
the follow-on code is marked as independent function and added
to the priority queue 𝑄 . In Fig. 4, potentially non-returning call
at 0x414847 is marked as definitely non-returning because, fall
through of this call contains invalid byte sequence at 0x414853 that
cannot be disassembled into a valid instruction. As the lines 10–12
suggest, non-returning call resolutionhas to be done before applying
any valid behavior checks on the current function. Apart from the
obvious reason of avoiding false positives, this is also necessary for
correct classification of the current function. We observed that in
some cases compiler does not follow any standard (e.g., restoring
callee-saved registers) while exiting a function via a non-returning
function call (e.g., in Fig. 4 the code does not restore %r12, %rbp and
%rbx before non-returning call at 0x41f847). Correctly identifying
non-returning calls helps us in avoiding such non-standard cases
and correctly classify true functions.

Afunctionmayhavemanycallsmarkedpotentiallynon-returning.
Validation proceeds in a backward direction with calls at the bottom
of control flow graph evaluated first.

After resolving non-exiting calls, the next validation step is based
on the statistical score of the function. If the score is above an accep-
tance threshold 𝑆𝑎𝑐𝑐 , it is only subject to a subset of valid behavior
checks, specifically InvReg. Otherwise, the full set of behavior checks
are applied. Applying the behavior checks to the examples in Fig. 4,
0x41f7d9 will fail since it uses an undefined register (%rax) in a
memorydereferencing operation. If the functionpasses these checks,
thenweproceed to the last step, namely, validating jump table targets
(if present).

The function validateIndirectTargets (Lines 18–34) validates
indirectly reached codewithin a functionbody.This validation is sim-
ilar to that used for validating follow-on code after potentially non-
returning calls. Disassembly and occlusion checks are first applied,
followed by valid behavior checks applied to the whole function
after adding the indirect target to the CFG of the current function.

A function that passes all the above checks is marked as definite
code by validateCode, which goes on to deque the next function in
possible code with the highest statistical score. This is repeated until
𝑄 become empty.

6 Evaluation
Our evaluation aims to answer the following questions:

(1) How effective are invalid behavior checks in identifying in-
valid code? (Sec 6.1.)

(2) How effective are statistical properties in prioritizing code
over data? (Sec 6.2.)
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Source Type Name

Pang et al.

Benchmark SPEC CPU 2006

Utilities
Unzip-6.0, Coreutils-8.30, 7-zip-19, Findutils-4.4,
Binutils-2.26, Tiff-4.0

Clients
Openssl-1.1.01, Putty-0.73 D8-6.4, Filezilla-3.44.2,
Busybox-1.31, Protobuf-c-1, ZSH-5.7.1, VIM-8.1,
XML2-2.9.8, Openssh-8.0, Git-2.23

Servers
Lighttpd-1.4.54, MySqld-5.7.27, Nginx-1.15.0,
SQLite-3.32.0

Libraries
Glibc-2.27, libpcap-1.9.0, libv8-6.4, libtiff-4.0.10,
libxml2-2.9.8, libsqlite-3.32.0, libprotobuf-c-1.3.2

Stochfuzz Google FTS

boringssl-2016-02-12, c-ares-CVE-2016-5180,
freetype2-2017, guetzli-2017-3-30, harfbuzz-1.3.2,
json-2017-02-12, lcms-2017-03-21,
libarchive-2017-01-04, libjpeg-turbo-07-2017,
libpng-1.2.56, libssh-2017-1272, libxml2-v2.9.2,
llvm-libcxxabi-2017-01-27, openssl-1.0.1f,
openssl-1.0.2d, openssl-1.1.0c,
openthread-2018-02-27, pcre2-10.00,
proj4-2017-08-14, re2-2014-12-09,
sqlite-2016-11-14, vorbis-2017-12-11,
woff2-2016-05-06, wpantund-2018-02-27

Table 6: Pang et al.’s[39] and Stochfuzz’s[63] Benchmark list

(3) How effective is the conflict resolution algorithm in combin-
ing our two techniques to achieve low error rates? (Sec 6.3.)

(4) How do our results compare with state-of-the-art disassem-
blers in the presence of data between code? (Sec 6.3.1.)

(5) How scalable is our static analysis? (Sec. 6.4.)
(6) How fast/scalable is the entire disassembly? (Sec. 6.5.)

Benchmarks Our disassembler was evaluated with x86_64 ELF
binaries.WeusedtwosetsofbenchmarksborrowedfromStochfuzz[63]
and Pang et al.[39]. The programs are listed in Table 6.

• Pang et al.’s benchmarks include programs and libraries writ-
ten in C/C++ and containing hand-written assembly code
and data in code. All the programs were compiled with GCC-
8.1.0 and LLVM-6.0.0 on 6 optimization levels (O0, O1, O2, O3,
Ofast and Os).
Ground truth: Pang et al. replicated CCR[26] in customizing
the compiler to record the needed information such as basic
block addresses, instruction boundaries and jump tables. We
reused their work to regenerate the ground truth.

• Stochfuzz’s benchmarks consists of binaries from Google
Fuzzer Test Suite (Google FTS). The binaries have been com-
piled with clang-6.0 at O2 optimization level, with the com-
piler/linker instructed to inline read-onlydatawithin the code
region.
Ground truth:We used the symbol and debugging informa-
tion available with the benchmark binaries and performed a
recursive disassembly to generate the ground truth.

6.1 Effectiveness of invalid code properties
In this section,we evaluate the effectiveness of invalid code properties
(Sec. 4) in isolation. Specifically, every snippet uncovered during
Phase II of our conflict resolution algorithmwas checked using these
properties, and the result scored using ground truth. Table 7 summa-
rizes the results of this evaluation. The first column shows the base
results with just InvCF being active, i.e., a snippet is rejected only

Benchmark Compiler InvCF InvReg InvPtr All
FP FN FP FN FP FN FP FN

Stochfuzz clang 4 0 3.2 0.01 1.5 0.01 1.3 0.01
Pang et al. gcc 1.84 0 0.62 0.02 0.64 0.013 0.3 0.03
Pang et al. clang 0.36 0 0.19 0.02 0.16 0.003 0.12 0.02

Table 7: Percentage of false positives/negatives from invalid code properties.

Benchmark Compiler No resolution Conflict Resolution
FP FN FP FN

Stochfuzz clang 4 0 2.4 0
Pang et al. gcc 1.84 0 0.16 0.02
Pang et al. clang 0.36 0 0.03 0

Table 8: Effectiveness of statistical scores in prioritizing code.

if it contains invalid instructions or a control transfer to an invalid
target location. Note that this technique is able to achieve zero false
negatives but comes with significant false positives.

The next column adds InvReg to InvCF. Recall that this amounts
to checking if a code snippet preserves callee-saved registers as per
the ABI. On Pang et al.’s benchmarks, this analysis removes 50% to
66% of FPs. However, InvReg alone is not effective on Stochfuzz
benchmarks where only 20% FP is reduced. This is because a large
fraction of FP from Stochfuzz benchmarks is due to disassembled
data. It turns out that most of the recovered “instructions” don’t
touch any callee-saved register, and hence InvReg is satisfied.

The third column detects invalid behaviors that almost always
cause program to crash. This property is 3×more effective compared
to InvReg on Stochfuzz benchmarks. For Pang et al.’s benchmarks
InvPtr yields comparable results to that of InvReg.

The last column represents the conjunction of all properties. This
is the most effective option and reduces roughly 70% FP across all
benchmarks.

Result summary:
• Theconservativenatureof invalid codepropertieshelps reduce
FPs at a low FN rate of ≤ 0.03% for our benchmarks.

• About 70% of the FPs can be reduced using this technique.

6.2 Effectiveness of statistical properties
In this section, we evaluate the effectiveness of statistical techniques
on their own, without help from invalid code properties.

Effectiveness of statistical scores in prioritizing code. Specif-
ically, we use our statistical techniques to assign a score to each
snippet enumerated during Phase II. Then, among all snippets that
have an overlap, we pick the one with the highest score, and discard
the rest. The resulting disassembly is then scored using our ground
truth. Note that in this experiment, we disable invalid code property
checks, except InvCF. The “Conflict resolution” columns of Table 8
show these results. As compared to the base casewhere only InvCF is
in play (“No resolution” columns), statistical scoring removes about
90% of the FPs on Pang et al.’s benchmarks, and 40% of the FPs on
Stochfuzz. Note that the conflict resolution introduces a minor
increase in FN of 0.02%. In few exceptional cases, a false pointer
quickly realigns with the subsequent function and inherits its score,
therebymaking its score higher than the true pointer. This forces our
algorithm to accept the false pointer and reject the true one. This case
is one of the underlying reasons why we chose to follow an additive
approach in Section 3.3. The compounding effect of multiplying the
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Fig. 9: Effectiveness of statistical score threshold in eliminating false positives. A threshold𝑇 is used, and snippets with score below𝑇 are discarded as data. X-axis
represents 𝑙𝑜𝑔2 (𝑇 ) , and the Y-axis is the FP/FN rate. Note that thresholds are very effective in bringing the FP rate to zero, but the FN rate also increases.

scores would have resulted in much higher error rate in such cases.

Using a score threshold to further reduce FPs. In addition to
conflict resolution, we wanted to evaluate the strength of statistical
properties in identifying good code. Specifically, we wanted to see if
we can achieve zero false positives using statistical properties alone.
Hence, on topof conflict resolution,weaddeda threshold𝑇 .Wereject
anydisassembled snippet that has a score less than the threshold. The
plot inFig. 9 shows thechange inFPandFNwith increasing𝑇 . Even in
the presence of high volumes of data in Stochfuzz benchmarks, we
obtain reasonable FP rate of below 0.5% even at a low statistical score
of 26. The FP rate converges to 0 at𝑇 =224. This shows that statistical
properties are able to detect good code on their own. However, these
thresholds also increase the false negative rate, demonstrating the
need for our conflict resolution algorithm (Fig. 5).

6.3 Combining statistical with valid behavior checks
Our approach is based on the fact that code snippets with high
enough statistical property score can be accepted as code pointer
with high degree of confidence. Hence, if a code snippet has score
>=𝑆𝑎𝑐𝑐 and preserves stack, we accept it as valid code. Everything
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Fig. 10: Net error (FP+FN) on gcc-compiled binaries from Pang et al.
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Fig. 11: Net error (FP+FN) on clang-compiled binaries from Pang et al.

else with lower score are subjected to all valid behavior checks (In-
vReg and InvPtr). Fig. 12 shows the plot of 𝑆𝑎𝑐𝑐 VS FP/FN rate. The
FP rate converges to 0 at 𝑆𝑎𝑐𝑐 = 224 across all benchmarks. At this
threshold we have the most balanced FP and FN rate. 𝑆𝑎𝑐𝑐 = 𝑖𝑛𝑓 ,
which represents the setting wherever code snippet is made to pass
through all of the invalid behavior checks has comparable results
to that of 𝑆𝑎𝑐𝑐 =224 with a slightly higher FN rate. This is because,
this settingwill inherit the corresponding false negatives introduced
by the valid behavior checks discussed in section 6.1. The threshold
𝑆𝑎𝑐𝑐 can be set to lower thresholds (from 24 to 210) to obtain a lower
FN rate at reasonable FP rate. Note that even in presence of high
volumes of embedded data for Stochfuzz benchmarks, we are able
to achieve nearly 0 FN rate with below 1% FP rate.

Error distribution across benchmarks. In this section and the
subsequent ones, we quantify error as FP% + FN% (net error). Tradi-
tionally F1 score has been preferred for representing effectiveness
of classifiers. However, present day disassemblers approach 99% F1
score. Hence, its not the best metric for us to project effectiveness.

Our benchmark suite consists of hundreds of programs that are
compiled using two different compilers, each at 6 different levels of
optimization. As a result, the total number of benchmarks is over a
thousand. For this reason, individual results are not shown in a table.
Instead, we have divided the benchmarks into groups based on the
net error, and show the fraction of benchmarks that fall into each
net error group. Fig. 10 shows this histogram for the gcc compiler,
while Fig. 11 shown it for the clang compiler. Both of them are for
Pang et al’s dataset. About 80% of clang-compiled binaries achieve
perfect disassembly, and the highest net error is just 0.1%. Most gcc
binaries have lower than 0.2% net error. Among the outliers at 1%
to 2% net error, we observed that a significant number of them are
small in size. Even error involving about 10 instructions results in
≈ 1% net error for such benchmarks.

6.3.1 Comparing with contemporary disassemblers
Table 13 compares net error (FP% + FN%) between state-of-the-art
disassemblers and our approach at different 𝑆𝑎𝑐𝑐 values. Our net
error is 3× to 4× lower than other tools. It is noteworthy that on
Stochfuzz benchmarks that contain significant embedded data, net
error of our approach is significantly lower than any other disassem-
bler at any 𝑆𝑎𝑐𝑐 . Dyninst’s sole reliance on function prologmatching
results in low code coverage and hence high false negatives. Angr
performs better than Dyninst, but net error of 10% are still quite
high. Using linear scan to disassemble gaps, Angr achieves a higher
coverage in comparison with Dyninst, but, at the same time, this
technique also causes significantly higher FP rate in the presence
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Fig. 12: 𝑙𝑜𝑔2 (𝑆𝑎𝑐𝑐 ) (acceptance threshold) VS FP/FN rate for prioritized code validation with combination of statistical and valid behavior checks.

Benchmark DDisasm Angr Dyninst Ghidra Ghidra NE Our Approach
4 10 20 24 inf

Stochfuzz 2.43 10.3 29.7 2.07 14.77 1.6 0.7 0.63 0.62 0.63
Pang et al-gcc 0.15 0.54 26.8 0.57 10.02 0.14 0.11 0.05 0.045 0.05
Pang et al-clang 0.02 0.71 25.2 1.52 6.91 0.028 0.027 0.008 0.006 0.02

Table 13: Comparison with contemporary disassemblers. The columns represent net error = FP% + FN%.
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Fig. 14: Increase in static analysis timewith function size.

of embedded data. This is highlighted in 10% net error of Angr on
Stochfuzz benchmarks. Ghidra is known to use exception meta-
data, which results in significantly low FP rate. However, it still has
a relatively high FN rate of around 2% and, thus, results in higher
net error than our approach. Furthermore, we also found that the
FN rate of Ghidra increases significantly to nearly 15% when excep-
tion metadata is not available (Ghidra-NE). DDisasm, on the other
hand, has comparable net error for Pang et al.’s benchmarks if we
artificially lower our statistical threshold 𝑆𝑎𝑐𝑐 to 24 . However, when
𝑆𝑎𝑐𝑐 ≥ 220, our approach has one-fourth of its net error.

6.4 Static analysis scalability
Because our static analysis operates at function level, its runtime
performance directly depends on function size. Since there are mil-
lions of functions in our benchmarks, histogram seems to be an
effective way to visualize the result. Fig 14 shows that our analysis
performance is linear with function size.

Note that Fig 14 represents the cost of both the analyses InvReg
and InvPtr described in Sec 4.2 combined. We choose to present
this way because the cost of InvReg is already included in the cost
of InvPtr. In more detail, our runtime performance depends on the
number of abstract interpretations included in the analysis. Because
the abstract domain used in InvReg is the foundation for memory
address tracking, we need to run it as part of InvPtr. For this reason,
we show the combined analysis time for both analysis. Onemay also
interpret it as the cost of just InvPtr.
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Fig. 15: Increase in disassembly timewith binary size.
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Fig. 16: Total disassembly time as a function of the total number of instructions
considered in Phase III of our conflict resolution algorithm.

The chart shows that the analysis time increases linearly with
function size. The largest functions are 100’s of kilobytes in size, and
they take hundreds of milliseconds to analyze. This shows that our
static analysis, at its core, is quite efficient.

6.5 Total Disassembly Time
Our research goals are focused on accurate disassembly. We have
not prioritized performance of disassembly because it is considered
“compile-time” rather than a runtime cost. Moreover, disassembly
is trivially parallelized, since we can disassemble different binaries
on different cores.

Our dataset consists of thousands of binaries compiled by gcc and
clang, so we again use histogram to visualize the relation between
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disassembly performance and code size. Fig 15 shows that a few bi-
naries of size 0.5MB take longer to complete than those 2x and 3x in
size.We therefore break down the disassembly process to investigate
the sources of overhead.

In Sec 5, Phase I and II share the same goal of discovering a super-
set of all code. Unlike Phase III, they don’t have to resolve conflicts.
Therefore, we inspect performance in two categories: (a) Phase I
and II, (b) Phase III. Note that the only nontrivial task in (a) is jump
table analysis. Since static analysis already achieves linear time com-
plexity, the only factor that could affect scalability is the number
of functions to be analyzed. This is the case because we consider
all possible function pointers in Phase II. In fact, more than a half
of these entries are misaligned pointers from the actual entries by
just a few bytes, and thus jump table analysis is repeated on similar
control flowgraphmany times. To reduce performance of (a),we do a
backward analysis from an indirect jump to identify a set of function
entries that can reach the indirect jump.We then only perform jump
table analysis on these function entries, and thus cut the amount of
workload. We conduct experiment on all compiler/optimization on
Pang et al’s benchmark: it only takes about 8 seconds on average
and 12 minutes on worst case to complete one binary.

Task (b) involves validation of non-returning calls, which com-
plicates the process of jump table target validation. This is because
non-returning calls affects the function boundary, which is critical
in the valid function properties used in jump table target valida-
tion. This complexity also explains why some outlier binaries of
size 0.7MB takes more than 15 minutes, as shown in Fig 15. Another
source of overhead is in how jump table bounds are determined.
Initially, we enforce that every jump table entry should not cause
function properties being violated. A naive approach is to sequen-
tially verify one entry at a time. Our approach is to verify a sequence
of entries so binary search can be performed. Overall, task (b) takes 3
minutes on average and can be up to 2 hours for the largest binaries
that are over 10MB in size. Since our static analysis is linear, the high
overhead comes from resolving non-returning calls. This is shown in
Fig 16, where effective code size represents the amount of code being
analyzed. Note that this number increases by an order of magnitude
over the sizes shown in Fig 15. As a result of this, Phase III ends up
taking more than 10× the time taken by Phases I and II.

Amongst the contemporary disassemblers,DDisasm is our closest
competitor in terms of accuracy. Ddisasm is also a static analysis
based approach like ours and is about 4× faster than ours. However,
it is unable to disassemble some large binaries such as clang com-
piledwrf, a SPEC 2006 binary. Primary reason behind our relatively
higher performance overhead is the repititive static analysis by our
conflict resolution algorithm (e.g., resolving non-returning calls and
validating jump table targets), which ends up analyzing about 3×
more instructions than the actual number instructions in a binary.

7 Related works
Binary disassembly can be categorized into two types: (i) dynamic
and (ii) static disassembly. Dynamic binary tools such as PIN [43],
Valgrind [36],DynamoRIO [8] and Strata [52] donot encounter error,
but cannot achieve high code coverage. Static disassembly, in con-
trast, leans on completeness, but it is prone to error. Recent works
[16, 60] assume that modern compilers such as gcc and clang do not

inline data within code. However, this does not always hold, e.g., the
precision of objdump drops to 85% for openssl [39].

Many reverse engineering tools such as ATOM [18], Diablo [15],
Vulcan [17], and Pebil [28] rely on symbols and debugging infor-
mation that are not available with stripped binaries. Recent works
have shown [1, 40, 44] that exception-handling metadata can be
used to accurately identify functions. Although this information is
available in stripped binaries, many prominent C++ projects (e.g.,
chrome) disable its inclusion. CCFIR [61] utilizes relocation infor-
mation present in Windows binaries to discover code pointers. It
assumes that computed code pointers such as jump tables are also
covered by relocation information. However, these assumptions are
not universally applicable. Non-PIE binaries do not contain reloca-
tion information and x86_64 PIE binaries in Linux systems do not
have relocation for jump tables.

Amongst the techniques that are metadata agnostic, BIRD [35]
is one of the early works that explored use of function prologue pat-
terns. Similarly, BAP [9] also relies on prologue matching. Ramblr
[56] relies on static analysis to identify code pointers. As shown in
evaluations of Ddisasm [19], Ramblr’s static analysis has very high
false positive and false negative rate. Another group of instrumen-
tation [6, 58, 62] borrow the concept of runtime classification from
dynamic binary instrumentation systems and combine it with static
disassembly. Doing so, they side-step the disassembly errors. But
they pay in form of performance penalty of up to 18% [64].Multi-
verse [6] relies on similar concept and speculatively disassembles
from every byte, thereby producing output binary of huge size. Prob-
abilistic disassembly [34] attempts to reduce the size overhead of
Multiversewith probabilistic properties, but it suffers from high
FP rate, roughly 6%. Binary stirring [57] patches original code loca-
tions with jumps to reduce the performance cost. However, doing
so makes it vulnerable to disassembly errors.

Lastly, some previous works [5, 53] employ machine learning
technique to identify function entry, but their accuracy lacks behind
state-of-the-art disassemblers. Not only that, the bias in training
dataset may lead to a false sense of accuracy achieved by these
works. Inmore specific, Nucleus [2] found that many functions were
duplicated across training and test datasets, and ByteWeight ac-
curacy drops to 60% when evaluated with another training dataset.
A more recent work, XDA [41], leverages the contextual depen-
dencies among byte sequences and achieve superior accuracy than
ByteWeight and Shin et al. Despite that, its error rate is still roughly
10x compared to our approach on SPEC 2006 benchmarks.

8 Conclusion
In this paper, we present a prioritized error correction based disassem-
bly technique that does not rely on any compiler generatedmetadata
to achieve high accuracy. We have implemented and evaluated the
effectiveness and performance of our system. Our system will be
open-sourced before the publication of this paper. The prioritized
error correction centers around a set of invalid code behaviors and
statistical data properties. While the invalid behaviors are highly
effective in identifying data, statistical properties help in resolving
conflicting disassembly. Combining both the properties results in a
superior accuracy (at least 10x better) in comparison with the other
state-of-the-art disassemblers.
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A Dataflow probability calculations
A.1 Valid def-use between registers
We say that there is a valid def-use between instruction 𝐼 and 𝐽 if (a)
𝐼 writes to a register 𝑅, (b) 𝐽 uses the same register 𝑅, and (c) there
is no instruction between 𝐼 and 𝐽 that write 𝑅.

Given an instruction 𝐼 , what is the probability that it is involved in

a valid def-use relation? To answer this question, consider successive
instructions that follow 𝐼 until you find one at some 𝐼 ′ that reads
or writes 𝑅. If it reads 𝑅, then it is a valid def-use. If it only writes 𝑅,
then it is an invalid def-use.

If the “instruction” at 𝐼 ′ is random data, its probability of reading
vs writing will follow the same overall probability that a random
instruction readsorwrites𝑅.Note that, due to the fact thatmostmem-
ory operations also read a register to obtain thememory location, the
probability of register reads is significantlymore than that of register
writes. This means that the probability that 𝐼 ′ will read 𝑅 is signif-
icantly higher than the probability that it will write 𝑅. Thus, there is
more than a 50% probability that every “instruction” within random
data that writes to a register will be part of a valid def-use pair.

Most “instructions” in random data will contribute to valid
def-use relations between registers. Consequently, this
criteria is unlikely to be useful for discriminating valid code
from random data.
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