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Abstract—Function recognition is one of the key tasks in
binary analysis, instrumentation and reverse engineering. Pre-
vious approaches for this problem have relied on matching
code patterns commonly observed at the beginning and end
of functions. While early efforts relied on compiler idioms and
expert-identified patterns, more recent works have systematized
the process using machine-learning techniques. In contrast, we
develop a novel static analysis based method in this paper. In
particular, we combine a low-level technique for enumerating
candidate functions with a novel static analysis for determining if
these candidates exhibit the properties associated with a function
interface. Both control-flow properties (e.g., returning to the
location at the stack top at the function entry point) and data-
flow properties (e.g., parameter passing via registers and the
stack, and the degree of adherence to application-binary interface
conventions) are checked. Our approach achieves an F1-score
above 99% across a broad range of programs across multiple
languages and compilers. More importantly, it achieves a 4x or
higher reduction in error rate over best previous results.

I. INTRODUCTION

Functions are among the most common constructs in pro-
gramming languages. While their definitions and declara-
tions are explicit in source code, at the binary level, much
information has been lost during the compilation process.
Nevertheless, numerous binary analysis and transformation
techniques require function information. For reverse engineer-
ing tasks such as decompiling [21, 18, 33], function boundary
extraction provides the basis for recovering other high level
constructs such as function parameters or local variables. In
addition, many binary analysis and instrumentation tools are
designed to operate on functions. These include binary code
search [19, 16, 15, 9], binary code reuse [41], security policy
enforcement [12, 32, 10, 2, 42, 46, 43, 39, 40], type inference
[26], in-depth binary analysis such as vulnerability detection
[38], and more. In fact, a recent survey performed literature
study by collecting all binary-based papers published last 3
years at top security conferences, and found that 14 out of
30 works rely on function boundary information [4]. As a
result, developers of most existing binary analysis platforms
[1, 8, 22, 36] need to design and implement techniques to
recognize functions.

Function recognition is a challenging task for stripped
COTS binaries since they lack debug, relocation, or symbol
information. Unlike source code, functions in binaries can have
multiple entry points, potentially causing multiple functions to
be recognized in the place of one. Moreover, while directly
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called functions can be easily identified after disassembly,
there exist a significant fraction of functions that are reach-
able only indirectly, i.e., their entry points are known only
at runtime. Existing techniques (e.g., [45]) for determining
indirectly reached functions tend to highly over-estimate their
number, thus leading to poor precision.

Compiler optimizations further exacerbate function recog-
nition in COTS binaries. For instance, tail call optimization
results in functions being entered via a jump instruction
instead of a call instruction. In addtion, function inlining may
eliminate all calls to a function, thereby resulting in unreach-
able functions. While the recovery of reachable functions is
critical for all binary analysis and instrumentation applications,
some applications such as binary comparison and forensics
require the recovery of unreachable functions as well. Our
evaluation shows that the percentage of unreachable functions
is significant: over 15% on average for SPEC 2006 programs.

Due to the above difficulties, one cannot rely on the obvious
approach of identifying functions by following direct calls.
Many previous systems [1, 8, 22, 36] relied instead on pattern-
matching function prologues (e.g., the instruction sequence
push ebp; mov esp, ebp) and epilogues. Unfortunately, this
approach is far from robust, since these patterns may differ
across compilers. Moreover, optimizations may split and/or
reorder these code sequences. Other optimizations (e.g., reuse
of ebp as a general purpose register) may also remove such
identifiable prologues/epilogues. As a result, the best existing
tools are still unsatisfactory for function recognition [7].

To overcome the limitations of manually identified patterns,
machine-learning based approaches have been proposed for
function recognition [31, 7, 35]. The idea is to use a set of
binaries to train a model for recognizing function starts and
ends. Machine learning can build more complete models that
work across multiple compilers, while reducing manual effort.
As a result, ByteWeight [7] achieved an average F1-score of
92.7% on a benchmark consisting of x86 binaries. Shin et al
[35] further improved the accuracy to achieve an F1-score of
94.4% on the same dataset. Unfortunately, error rates of over
5% are still too high for most applications. More importantly,
the accuracy of these techniques can be skewed by the choice
of the training data. In fact, an independent evaluation of this
dataset [5] found many functions to be duplicated across the
training and testing sets, thus artificially increasing their F1-
score. When evaluated with a different data set, ByteWeight’s
accuracy degraded to around 60% [5].

In light of these drawbacks of machine-learning based
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approaches, we propose a more conventional approach for
function discovery, one that is founded on static analysis.
However, unlike previous techniques that relied on simple
control-flow analyses, and were confounded by the above-
mentioned complications posed by stripped COTS binaries,
our technique incorporates two key advances:

• We develop a fine-grained analysis that is based on de-
tailed semantics of every instruction1, including their effect
on the contents of the registers and memory. As a result,
our analysis can reason about the content of the stack, as
well as the flow of data between a function and its caller.

• We identify a rich set of data-flow properties that char-
acterize function interfaces, such as the use of registers
and the stack to pass parameters and/or return values. We
present a static analysis to discover these flows, and verify
whether a candidate function satisifies these properties.

As a result of these advances we have achieved a 4-fold
reduction in error rate as compared to the results reported
by Shin et al [35]. As compared to Nucleus [5], which relies
on a static analysis of control-flows, we achieve an even more
impressive error rate decrease of more than 7x.

I-A. Contributions

We develop a novel, static analysis based approach for
function recognition in COTS binaries. Specifically, we make
the following contributions:

• Function identification by checking function interface
properties. We show that function interface properties,
as compared to function prologue patterns, can provide
valuable evidence for function recognition. We identify a
collection of such properties and present static analysis
techniques to check them. Each of these techniques is
shown to be independently effective in our evaluation.

• In-depth evaluation. Our evaluation consists of about 2400
binaries resulting from 312 distinct C, C++ and Fortran
programs. These binaries have been compiled using 3
different compilers (GCC, LLVM and Intel) for two ar-
chitectures (x86 and x86-64) at four distinct optimization
levels. In contrast with previous work, our evaluation set
includes low-level code with hand-written assembly code,
in particular, GNU libc.

• Highly accuracy. Our approach achieved an average F1-
score of 99% across these data sets, much better than the
90% to 95% achieved by previous works [7, 35, 5]. This
represents a reduction in error rate by more than 4x.

• Deeper insight. Our approach automatically categorizes
recognized functions by their reachability such as “tail-
called” or “unreachable.” As discussed in Section VIII,
such information can be the basis for further tuning and
refinement of the analysis in order to support demanding
applications such as binary instrumentation that cannot
tolerate errors.

1We have previously shown how to extract such semantics using existing
compilers for a wide range of instruction sets [25, 24, 23].

II. BACKGROUND

II-A. Organization of Binaries

Program binaries are organized into sections. Each section
may contain code, data, metadata, or other auxiliary informa-
tion. A code section consists of a sequence of bytes which
is interpreted by the CPU as instructions and gets executed
at runtime. There may be metadata about the code sections
(and data sections), most notably the symbol table, which
denotes the symbol type (e.g., function), start offset, and size
of each symbol. However, symbol tables are normally stripped
off before COTS binaries are distributed.

II-B. Disassembly

Disassembly is usually the first step for any binary analysis.
There are two major techniques for disassembly: linear sweep
and recursive traversal [34]. Each of these techniques has some
limitations: linear sweep may erroneously treat embedded data
as code, while recursive traversal suffers from completeness
problems due to difficulties in statically determining indirect
control flow targets.

Recent advances have shown that robust disassembly can
be achieved with linear disassembly [4] and error correction
mechanisms [45]. More specifically, the disassembly algorithm
works by first linearly disassembling the binary, and then
checking for errors such as (1) invalid opcode; and (2) direct
control transfer outside the current module or to the middle of
an instruction. These errors arise due to embedded data and
are thus corrected by identifying data start and end locations
so that disassembling can skip over them. Robust disassembly
has been achieved by these techniques for a wide range of
complicated and low-level binaries [45, 4], so we rely on the
same techniques in this paper.

II-C. Discovering Possible Code Pointers

Although it is undecidable whether a constant value in a
binary represents a code pointer, conservative analysis tech-
niques have been developed that identify a superset of possible
code pointers. One recent approach [45] is to scan all constants
in the binary, and select the subset that (a) fall within the
range of code sections within the binary, and (b) target a valid
instruction boundary. We start from this conservative set, and
develop techniques that prune away almost all non-functions.
As shown in our experiments, our analysis reduces the number
of valid function pointers by a factor of 3.

II-D. Jump Table Analysis

A jump table is an array of addresses that are possible
targets for an indirect jump (which we refer to as a table
jump). Jump tables are generally used to implement intra-
procedural switch-case statements in high-level languages.
Existing work has developed analysis techniques to identify
jump tables as well as their targets [13, 28]. The basic idea
is to perform a backwards program slicing from each indirect
jump instruction, and then compute an expression for the jump
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Fig. 1. Overview of our analysis. Direct function starts are identified from call instructions in the disassembly, and require no further confirmation.
The remaining function start candidates (Indirect, Jump and Unreachable function) need to pass our function interface checks that eliminate spurious
functions. Function body traversal is used to determine function ends, and takes advantage of already identified functions. Function body traversal and boundary
information feeds back into the determination of unreachable functions, as well as jump-reached (i.e., tail-called) functions.

target. If the expression matches commonly used table jump
patterns, the indirect jump is recognized as a table jump.
The address of jump table can be extracted from the same
expression, and its bound is obtained based on constraints
imposed on the index variable. Finally, jump targets can be
collected from the identified jump table.

III. OVERVIEW OF APPROACH

III-A. Problem Definition

We define a binary function as a contiguous byte sequence
in code section that has one or more entry points reached
from outside the function; and one or more exit points that
transfer control from the function to some code outside. Note
that the entry point is typically reached using call instructions,
but other instructions are possible as well, e.g., a jump. An
exit occurs typically via a return instruction, but there are
exceptions such as jump instructions or calls to non-returning
functions such as exit.

Our task is to recover bytes belonging to each function.
Similar to prior work [7, 35], correctness is determined by
matching the start and end address for each function with sym-
bol table information2. Note that the start and end addresses
correspond to the smallest and largest addresses among the
bytes in the function.

Scope. Our analysis focuses on stripped COTS binaries: no
debug or symbol information is available. Our evaluation fo-
cuses on Executable and Linkable Format (ELF) binaries from
x86-32 and x86-64 Linux platform, although our technique
itself is applicable to other platforms and binary formats, such
as Windows and the Portable Executable (PE) format. We
make no assumptions on the source language, compiler used,
compiler switches or optimization levels. However, similar to
prior work [7, 35, 5], obfuscated binaries are out of scope.

2While our experiments are performed on stripped binaries, we rely on
symbol tables in unstripped binaries for the ground truth.

III-B. Approach Overview

As illustrated in Fig. 1, our approach involves enumerating
possible function starts, and then using a static analysis to
confirm them. Possible function start addresses are enumerated
in different ways. Directly called function starts are readily
obtained from disassembled code. For indirectly reachable
functions, code addresses buried in all binary sections serve
as function start candidates, while for unreachable functions,
the beginning of unclaimed code regions are considered.

As shown in Fig. 1, any function that isn’t directly reached
needs to be confirmed through interfaces, our approach iden-
tifies spurious functions by checking for properties associated
with function interfaces, such as the stack discipline, and the
expected control-flow properties and data-flow properties.

To determine function ends, function body traversal is
performed. Tail calls are also identified during this traversal.

In a nutshell, our approach iteratively uncovers functions
based on how they are reached. Directly reached functions are
first identified, and then indirect functions are enumerated and
checked. Finally, unreachable functions are handled. Note that
Jump function enumeration and checking happens alongside
the body traversal for all other functions. The whole procedure
ends when all code regions have been covered.

Note that multiple-entry functions are supported by our
approach: a function with n entry points is treated as if there
are n independent single-entry functions. Each is analyzed
independently by our method. Multi-entry functions can be
easily derived if needed by the applications.

In the following sections, we describe our techniques for
determining function starts (Section IV), function boundaries
(Section V), and interface checking (Section VI).

IV. FUNCTION STARTS

IV-A. Directly Reachable Functions

According to our definition in Section III-A, functions
are code sequences that are called (or alternatively, reached
using jumps). Therefore, with the disassembly obtained (Sec-
tion II-B), the targets for direct call instructions are definite
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function starts. They are first collected. Note that we exclude
call instructions used for “non-call” purposes [30], such as
retrieving current instruction pointer in the case of position
independent code.

Although we can obtain direct jump targets in the same
manner, it is non-trivial to distinguish whether they are func-
tion starts (as in the case of a tail call), or, more likely, intra-
procedural targets. We enumerate jump targets as possible
function starts if the target is physically non-contiguous with
current function body (Section V). An analysis of the jump
context is later performed to confirm the function start.

IV-B. Indirectly Reachable Functions

Some functions are only reachable indirectly. These include
functions that are reached using either indirect calls, or indirect
jumps (i.e., indirect tail calls). To enumerate their starts,
constant scanning described in Section II-C is used. Since
spurious function starts may also be included, the constants
need to be confirmed using interface checking.

IV-C. Unreachable Functions

Unreachable functions are identified by analyzing “gap”
areas that do not belong to any of the functions identified
by the techniques described so far. Since functions typically
have padding bytes after their end, we consider the first non-
NOP instruction3 in each gap as a potential function start.
The corresponding function end is then determined using
techniques described in Section V. If this potential function
does not take all the space of the current gap, the remaining
region is considered as a new gap, and the process continues
until all gaps have been analyzed.

Although our gap exploration seems similar to prior work
[1, 22, 8], the primary difference is that the identified functions
have to pass interface property checking.

V. IDENTIFYING FUNCTION BOUNDARIES

To identify function boundaries, we traverse a function
body, starting at its entry point. All possible paths are followed
until control flow exits the function. The largest address of
any instruction discovered using this process is considered the
end of the function. Note that exits may sometimes take place
via jumps (tail calls), or calls to non-returning functions. As
described below, we discover and handle those cases as well.

Function body traversal works by following all intra-
procedural branches until function exits. Specially, for condi-
tional jumps, both branches are taken, while for table jumps,
all recovered targets are followed.

For function body traversal, some special control flow trans-
fers need to be taken into account, most notably C++ exception
handling. When an exception occurs, either at the current
function or some of its callees, control is first directed to C++

3We consider an instruction as “NOP” based on its semantics: i.e., the
machine state (other than program counter) is not changed. For example,
other than nop itself, xchg ax, ax is also a NOP instruction.

0x1000:      ret

0x2200:      ret

func start 0x0200

func start 0x0400

func start 0x3000

(A)

(C)

(D)

(B)

Fig. 2. Tail call detection

runtime, which is responsible for locating the proper handler
code (also called a “landing pad”), and during this process,
stack unwinding may be performed. If current function is
identified to have a landing pad designated for the raised
exception, control flow is transferred to this landing pad.
Since a landing pad is essentially indirectly reached from
C++ runtime, the control flow transfer is not captured in the
disassembly of the analyzed binary. We therefore parse the
“call frame information” available in .eh frame sections of
ELF binaries, the same metadata used by the C++ runtime
to guide exception handling. Note that exception handling
information must be present even in stripped binaries.

Function body traversal stops at function exits. While most
functions exit via return instructions, there are special cases
that involve calls and jumps as described further below.

Function exits via calls to non-returning functions. Al-
though most functions do return to the caller, some don’t. For
example, libc exit function terminates the program, and the
control flow never returns back to the caller. Such calls should
be recognized as function exits.

To determine non-returning functions, we perform a simple
analysis. First, we collect a list of library functions that are
documented to never return. We then analyze each potential
function of the binary. If it calls a known non-returning
function on each of its control flow paths, it is also recognized
as a non-returning function and added to the list, and so on.

Function exits using jump instructions. Tail call is another
special type of function exit that uses jump instructions. If not
recognized, tail calls will be treated as normal intra-procedural
jumps, leading to errors in function end identification.

We utilize previously identified functions to detect tail calls.
In particular, a jump is classified as a tail call if:

• the jump target is a known function start or a PLT4 entry;
• or, if the edge crosses known function boundaries.

We illustrate this process with an example. In Fig. 2, function
body traversal begins from an identified function start address

4PLT (procedure linkage table) entries are code stubs in ELF binaries used
to route calls to functions in another binary module (e.g., a shared library).
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0x0400. Let A, B, C, and D be four direct jumps encountered
during this traversal. Since jump A targets a previously identi-
fied function and B crosses a function start, they are identified
as tail calls. For jumps C and D we use the following two-
step process to determine if they are tail calls. First, our
function body traversal speculatively follows all jumps and
only terminates at definite function exits (e.g., returns). Any
jump such as C whose target isn’t physically contiguous with
other traversal-covered instructions is identified as a potential
tail call. In Fig. 2, the colored area starting at 0x400 represents
the instructions covered by such a traversal. Since D targets an
instruction in this region, it is classified as intraprocedural.

A candidate such as C is confirmed as a tail call if both the
jump and the target pass function interface checks. Function
entry checks are described in the next section. For function
exits, our checks relate to the stack discipline. Specifically,
the stack pointer value at the jump shouldn’t be lower than
its initial value on function entry. Otherwise, local storage
allocated in the function wouldn’t have been freed, suggesting
an intra-procedural jump.

In addition to determining function ends, tail call identifica-
tion serves a second important purpose: enumerating function
starts that are reached only through jumps.

VI. INTERFACE PROPERTY CHECKING

For potential functions reached only via jumps or indirect
calls, we identify a set of checks to determine if the targets
are indeed functions. These checks can relate to control-flow
or data-flow properties, as described further below.

VI-A. Control Flow Properties

These properties are designed to identify control transfers
into (or out of) a function body that do not conform to a
function interface. A function candidate is flagged as spurious
when such non-conformant control transfers are discovered.

Function entries. We rule out known intra-procedural control
transfer targets from being function starts. In particular, table
jumps are intra-procedural control flow transfers as they result
from switch-case statements. Hence, table jump targets are
ruled out as possible function starts. Since our jump table
analysis is designed to identify definite table jump targets, it is
safe to remove them from the list of possible function starts.

Function exits. Our second control flow check examines each
return instruction to determine if it will transfer control to the
address stored on top of the stack at the function entry point.

In most cases, our static analysis can accurately reason
about stack pointer value at function exits. Even functions
that change their stack pointer by an unbounded amount (e.g.,
due to alloca) typically pass the check: they contain an
instruction to move esp to ebp near their start, and another
to move ebp back to esp near their end. Our static analysis
can hence conclude that the return address will be read from
the same location where it would have been stored by the

805ce70 <get_date>:
805ce70: push %ebp ; real func start
805ce71: push %edi
805ce72: push %esi
805ce73: push %ebx
... ...
805d900: pop %ebx ; +4 ; spurious func start
805d901: pop %esi ; +8
805d902: pop %edi ; +12
805d903: pop %ebp ; +16
805d904: ret

Fig. 3. Incorrect return address is used for a spurious function

8081130 <find_connection_moves>:
... ...
8081136: sub $0x533c,%esp
... ...
8081a10: mov %edi,0x4(%esp) ; spurious func start
8081a14: mov $0x80e6718,(%esp)
8081a1b: call 807c8d0
... ...

Fig. 4. “Return address” is overwritten for a spurious function

call instruction used to enter the function. Coupled with an
analysis of stores on stack, it is possible to determine if this
location was preserved during function execution.

The main purpose of function exit check is to flag spurious
functions, i.e., our focus is on detecting violations of this
property. To illustrate its use, consider the code snippet in
Fig. 3. In this snippet, 0x805ce70 is a real function start,
while 0x805d900 isn’t. They are both enumerated as potential
function starts. However, function [0x805d900, 0x805d904]
is detected as spurious by our analysis, as its return address
comes from a location 16 bytes above the correct stack slot.

Fig. 4 shows our second example. In this code, address
0x8081a10 is enumerated as a potential function start. How-
ever, since its “return address” is overwritten at 0x801a14,
the “function” can never return to the intended return address.
Hence 0x8081a10 is flagged as spurious function start. Note
that in the context of the real function starting at 0x8081130,
the instruction at 0x801a14 does not modify the return slot,
so 0x8081130 isn’t flagged spurious.

Internal Instructions. A function’s internal instructions
should not be targeted by control flows from outside. An
exception arises in the case of multi-entry functions, but
even then, these alternate entry points must be targeted by
inter-procedural control transfers. In contrast, if an internal
instruction of a function f is targeted by an intra-procedural
transfer from another function g, that provides strong evidence
that f is likely spurious.

Recall that when we perform interface verification for a
function beginning at location f, we start with a traversal of
its body at f . The instructions uncovered by this traversal
constitute the body of f , and any control transfers using intra-
procedural control flow constructs (e.g., table jumps) from
outside this body indicate that f is spurious.
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Registers x86-32 x86-32 x86-64 x86-64
Windows UNIX-like Windows UNIX-like

Allowed (See (See rcx, rdx, rdi, rsi, rdx,
argument Fig. 6 Fig. 6) r8, r9 rcx, r8, r9
Callee- ebx, esi, ebx, esi, rbx, rsi, rdi, rbx, rbp
save edi, ebp edi, ebp rbp, r12-r15 r12-r15

Fig. 5. Register usage summary for calling conventions on different platforms

x86-32 calling convention Argument passing
cdecl, stdcall, pascal stack
fastcall (Microsoft, GNU) ecx, edx then stack
fastcall (Borland) eax, edx, ecx then stack
thiscall (Microsoft) ecx then stack

Fig. 6. Arguments passing for x86-32 calling conventions

VI-B. Data Flow Properties

Function calling conventions [20] govern the flow of data
between callers and callees of legitimate functions; in contrast,
spurious functions are likely to violate these conventions.
While calling convention checks could be applied to dataflows
that take place via registers as well as the stack, our imple-
mentation only targets register-based flows.

Calling conventions on the most common platforms are
summarized in Fig. 5. In this figure, allowed argument reg-
isters are registers that can be used for passing arguments to
a function, therefore used for inwards data flow. On the other
hand, callee-save registers are those registers whose values
need to be saved before being used in a function, and restored
before the function returns.

Note that on x86-32 allowed argument registers are calling
convention specific, and the details are presented in Fig. 6.
To compute a reference set, we take the union of all calling
conventions. Therefore, the resultant allowed argument regis-
ters are eax, edx, and ecx. Any dataflow from a caller to a
callee via other registers would be in violation of all calling
conventions, thus indicating a spurious function.

Static Analysis for Argument Registers.
If a register is live at a “function” start, it is potentially

an argument register. This is because a live register indicates
its use is before its definition in the “function” body. Conse-
quently, it must have been defined before the function being
called and information is passed through it. However, there
is an exception: callee-save instructions at function beginning
“use” callee-save registers with the purpose of preserving them
to stack. Since this does not represent information passing,
they should not be considered as real uses. Our analysis adopts
a simple strategy by not considering register saves on the stack
as a use of the register. Specifically, if a register is saved to
an address less than the value of the stack pointer at function
entry, then it is not treated as a use of that register.

Note that a special case for argument register checking is
that EFLAGS are not used for passing information. Therefore,
a live flag also suggests a spurious function.

A concrete example for argument register checking is shown
in Fig. 4. For the entry point 0x8081a10, a non-permitted

805ce70 <get_date>:
805ce70: push %ebp ; real func start
805ce71: push %edi
805ce72: push %esi
805ce73: push %ebx
... ...
805d900: pop %ebx ; +4 ; spurious func start
805d901: pop %esi ; +8
805d902: pop %edi ; +12
805d903: pop %ebp ; +16
805d904: ret

Initial End state (for “function” End state (for “function”
state [0x805d900, 0x805d904] [0x805ce70, 0x805d904]
ebx = EBX ebx = *(ESP) ebx = EBX
esi = ESI esi = *(ESP + 4) esi = ESI
edi = EDI edi = *(ESP + 8) edi = EDI
ebp = EBP ebp = *(ESP + 12) ebp = EBP
... ... ...

ret addr = *(ESP + 16) ret addr = *(ESP)

Fig. 7. The analysis states of example code

argument register (edi) is live, thus flagging it as spurious.

Static Analysis for Callee-saves. To check value preservation
for callee-save registers, we keep track of register and memory
values by performing an abstract interpretation [14]. Our
abstract domain is similar to the one described by Saxena et
al [32]. In short, each domain element is a sum of a symbolic
base which denotes the original register value on function
entry, and a constant. The analysis produces at the function
end the abstract value of each register and memory location,
and how it has changed against the initial value.

Fig. 7 shows the initial and end states from our analysis of
an example snippet. In this figure, the capitalized REG is the
symbolic value denoting the initial value of reg upon function
entry. The right two columns show the end states for “func-
tion” [0x805d900, 0x805d904] and [0x805ce70, 0x805d904],
respectively. For “function” [0x805d900, 0x805d904], since
registers ebx, esi, edi, ebp do not preserve their values but
instead get new values from “return address” (location [ESP
+ 0]) and “stack argument” region (location [ESP + 4] to
[ESP + 12]) , it is recognized as spurious. On the other hand,
“function” [0x805ce70, 0x805d904] passes callee-save register
usage checking. Note that in case register values end up with
TOP, our analysis conservatively concludes no violations.

Note that in above two examples (Fig. 3 and Fig. 4),
spurious functions violate both control flow and data flow
properties. This is not always the case — sometimes only
a single interface checking technique is effective. Thus, by
combining these checks, we significantly decrease the odds of
spurious functions passing all checks.

VII. EVALUATION

VII-A. Data Set

We used three data sets for evaluating our system.

Data Set 1. The first data set is the same as that used by
machine learning based approaches, namely, ByteWeight [7]
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Function start Function boundary
x86-32 x86-64 overall x86-32 x86-64 overall

Tool P R F1 P R F1 F1 P R F1 P R F1 F1
ByteWeight 0.9841 0.9794 0.9817 0.9914 0.9847 0.9880 0.9849 0.9278 0.9229 0.9253 0.9322 0.9252 0.9287 0.9270
Neural 0.9956 0.9906 0.9931 0.9880 0.9780 0.9830 0.9881 0.9775 0.9534 0.9653 0.9485 0.8991 0.9232 0.9443
Ours 0.9978 0.9920 0.9948 0.9960 0.9948 0.9954 0.9951 0.9865 0.9809 0.9837 0.9912 0.9900 0.9906 0.9871
Error ratio 2.0000 1.1750 1.3269 2.1500 2.9423 2.6086 2.4286 1.6667 2.4398 2.1288 5.8523 7.4800 7.5851 4.3178

Fig. 8. Function start and boundary identification results from different tools

and the work of Shin et al [35]. Since our current imple-
mentation is limited to Linux ELF binaries, the comparison
focuses on the subset of the results for this platform. Note
that the vast majority (2064 of 2200) of the binaries in
this data set were on Linux, so our results do cover over
90% of the data used in these works. These 2064 binaries
correspond to binutils, coreutils and findutils. They
are compiled with GNU (gcc) or Intel (icc) compilers, from
no optimization to the highest optimization level for both x86-
32 and x86-64 architectures. These binaries include around
600,000 functions in total, with a total size over 280MB.

Despite its size, this data set is found to be skewed by a
recent work [5]. Specifically, since many binaries are from the
same package, they share a significant number of functions.
This gives machine learning techniques advantages because
functions used for learning and testing significantly overlap.
Nevertheless, we use this data set in order to provide a direct
comparison with machine learning approaches.

Data Set 2. Our second data set is the set of SPEC 2006
programs. As compared to the first data set, which are mostly
operating system utilities written in C, SPEC programs are
more diverse in terms of their applications, as well as the
programming languages used (C, C++, Fortran). Moreover,
unlike the first data set, SPEC programs rarely share functions
with each other. To compile these programs, we used the GCC
compiler suite (gcc, g++, and gfortran) and LLVM (clang,
clang++), and compiled with all optimization levels (O0-O3).

Data Set 3. Our third data set is the GNU C library,
which is a suite of functionally related shared libraries (24
in total), including libc.so, libm.so, libpthread.so, etc.
This is a more challenging data set for two reasons. First, the
code is low-level and contains many instances of hand-written
assembly. Second, the binaries are in the form of position
independent code (PIC). We used GCC -O2 to compile for
both x86-32 and x86-64 architectures.

VII-B. Metrics

We use the same metrics, precision, recall, and F1-score
as in previous work [7, 35]. Their definitions are as follows.
In these equations, TP denotes the number of true positives
for identified functions, FP denotes false positive, while FN
denotes false negatives.

Recall =
TP

TP + FN
(1)

Note that recall captures the fraction of functions in the
binary that are correctly identified by an approach.

Precision =
TP

TP + FP
(2)

Note that precision represents the conditional probability
that a true function has been identified whenever our approach
reports a function.

Typically, these two metrics are combined using a harmonic
mean into a quantity called F1-score:

F1 =
2 · Precision ·Recall

Precision+Recall
(3)

VII-C. Implementation

Our main analysis framework is implemented in Python, and
consists of about 4100 lines of code. For the disassembler, we
used objdump and reimplemented the error correction algo-
rithm from BinCFI [45]. The main framework also includes all
major components described, including function start identifi-
cation, function body traversal, and part of interface checking.
Our current analysis engine is based on angr [36].

We used angr mainly because it is a comprehensive binary
analysis platform, and supports both x86-32 and x86-64. We
built our customized analysis on top of angr, but not using
any of its built-in function recovery algorithms. In fact, their
accuracy is well under the best published results from machine
learning systems [7, 35] and Nucleus [5] (which we compare
in the following sections), probably because the primary goal
of angr is for offensive binary analysis [36], rather than robust
recovery of program constructs in benign binaries.

VII-D. Summary of Results

Fig. 8 summarizes function start and boundary identification
results for the first data set. Since for this data set the two
machine learning works [7, 35] have best published results
and outperformed previous tools (such as IDA and Dyninst

Dataset & Tool x86-32 binaries x86-64 binaries
compiler P R F1 P R F1
SPEC Nucleus 0.97 0.89 0.92 0.97 0.90 0.93
(GCC) Ours 0.9988 0.9869 0.9927 0.9952 0.9861 0.9905
SPEC Nucleus 0.95 0.88 0.91 0.94 0.86 0.90
(LLVM) Ours 0.9978 0.9933 0.9955 0.9934 0.9902 0.9918
GLIBC Nucleus - - - - - -
(GCC) Ours 0.9846 0.9914 0.9879 0.9804 0.9840 0.9817

Fig. 9. Function boundary identification results for SPEC 2006 and GLIBC.
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GCC LLVM
Program Lang- Suite x86-32 x86-64 x86-32 x86-64

uage P R F1 P R F1 P R F1 P R F1
400.perlben. C int 0.9971 0.9983 0.9977 0.9743 0.9954 0.9847 0.9952 0.9940 0.9945 0.9898 0.9886 0.9892
401.bzip2 C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 0.9867 0.9736 0.9801
403.gcc C int 0.9959 0.9893 0.9926 0.9935 0.9946 0.9941 0.9977 0.9982 0.9979 0.9947 0.9942 0.9944
429.mcf C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9143 0.9697 0.9411
445.gobmk C int 0.9996 0.9996 0.9996 0.9980 0.9996 0.9988 0.9996 1.0000 0.9998 0.9996 0.9992 0.9994
456.hmmer C int 1.0000 0.9980 0.9990 0.9941 1.0000 0.9970 1.0000 1.0000 1.0000 0.9958 0.9916 0.9937
458.sjeng C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
462.libquan. C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
464.h264ref C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9991 1.0000 0.9981 0.9990
433.milc C fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
470.lbm C fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
482.sphinx3 C fp 1.0000 1.0000 1.0000 0.9824 0.9911 0.9867 1.0000 1.0000 1.0000 0.9819 0.9939 0.9879
471.omnet. C++ int 0.9990 0.9946 0.9968 0.9975 0.9853 0.9914 0.9974 0.9604 0.9786 0.9963 0.9564 0.9759
473.astar C++ int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
483.xalan. C++ int 0.9911 0.9923 0.9916 0.9883 0.9911 0.9897 0.9958 0.9888 0.9922 0.9920 0.9886 0.9903
444.namd C++ fp 1.0000 1.0000 1.0000 1.0000 0.9904 0.9951 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
447.dealII C++ fp 0.9601 0.9577 0.9592 0.9698 0.9494 0.9595 0.9942 0.9707 0.9823 0.9889 0.9731 0.9810
450.soplex C++ fp 1.0000 0.9764 0.9881 1.0000 0.9443 0.9713 1.0000 0.9847 0.9923 1.0000 0.9858 0.9929
453.povray C++ fp 0.9974 0.9707 0.9839 0.9913 0.9696 0.9802 1.0000 0.9566 0.9778 1.0000 0.9573 0.9782
C overall C both 0.9977 0.9950 0.9963 0.9918 0.9966 0.9942 0.9982 0.9982 0.9982 0.9949 0.9946 0.9948
C++ overall C++ both 0.9839 0.9808 0.9823 0.9845 0.9757 0.9801 0.9959 0.9792 0.9875 0.9922 0.9796 0.9859
F overall F fp 0.9902 0.9846 0.9874 0.9866 0.9826 0.9846 - - - - - -
Overall all both 0.9886 0.9849 0.9868 0.9852 0.9781 0.9817 0.9965 0.9847 0.9906 0.9930 0.9840 0.9885

Fig. 10. SPEC 2006 results: C/C++ programs and overall

Lang- GCC
Program uage Suite x86-32 x86-64

P R F1 P R F1
410.bwaves F fp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
416.gamess F fp 0.9931 0.9951 0.9941 0.9931 0.9979 0.9955
434.zeusmp F fp 1.0000 0.9884 0.9941 0.9767 0.9882 0.9824
435.gromacs F fp 0.9991 0.9981 0.9986 0.9982 0.9982 0.9982
436.cactus. F fp 1.0000 1.0000 1.0000 1.0000 0.9977 0.9988
437.leslie3d F fp 1.0000 1.0000 1.0000 0.9667 0.9355 0.9509
454.calculix F fp 0.9940 0.9836 0.9887 0.9953 0.9514 0.9728
459.Gems. F fp 0.9737 0.9487 0.9610 0.9733 0.9481 0.9605
465.tonto F fp 0.9760 0.9598 0.9678 0.9634 0.9634 0.9634
481.wrf F fp 0.9961 0.9958 0.9960 0.9972 0.9955 0.9963
F overall F fp 0.9902 0.9846 0.9874 0.9866 0.9826 0.9846

Fig. 11. SPEC 2006 results: Fortran programs

[22]), we only compare our results with them. Because we
tested with the same data set, we directly use the numbers
reported by them. In this figure (and following ones), “P”
denotes precision, while “R” denotes recall. Note that for each
architecture, every number (for P/R/F1) is a mean over the
corresponding 1032 binaries. To enable direct comparison with
machine learning systems, we followed their practice by using
an arithmetic mean5. The “error ratio” in the figure is defined
as (1−MAX(ByteWeight,Neural))/(1−Ours) for each
column. Our technique reduces the error rate for boundary
identification by a factor of 4.32, thus representing a major
improvement in accuracy.

The results for our second and third data sets are presented
in Fig. 9. We compare with the most recent work in this
field, Nucleus [5], which is also based on static analysis. We
followed their way of summarizing results: using an average of

5When using geometric or harmonic mean to summarize our results, the
difference is less than 0.0006.

geometric means for all optimization levels. Our F1 scores for
this data set are consistently above 0.99, significantly higher
than those of Nucleus (around 0.92). We omitted zooming into
each optimization level since our results are not sensitive to
them: the F1 score differences are within 0.01.

As shown in the last two lines of the figure, ours is the
first work that evaluates with GLIBC. Despite the challenges
posed by PIC-code, hand-written assembly and other low-level
features, our techniques achieve an F1-score above 0.98.

VII-E. Detailed Evaluation

In this section, we present detailed evaluation for our second
data set: SPEC 2006 programs. For space reasons, we focus
on the most widely used optimization level: -O2. As shown in
Fig. 10 and Fig. 11, for a wide range of applications written in
three different languages (C, C++ and Fortran) and compiled
with two compilers (GCC and LLVM6), our overall F1-scores
are no lower than 0.9817 for function boundaries. Note that
overall metrics are computed by using the aggregated true
positives, false positives and false negatives over the selected
fraction of binaries. For many individual binaries, we have
achieved perfect (1.0000) precision and recall.

Distribution of Different Call Types. To understand how each
step of analyses contributes to the finally identified functions,
we list the corresponding results for SPEC 2006 programs
in Fig. 12. To conserve space, only GCC (-O2) compiled
programs for x86-32 architecture are shown. Note that x86-64
binaries have similar results to their x86-32 counterparts.

6LLVM does not have an official frontend for Fortran.
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Binary Total Direct Direct Indi- Unreach-
funcs. call (%) jump (%) rect (%) able (%)

400.perlben. 1742 48.22 0.46 40.18 11.14
401.bzip2 81 61.73 1.23 9.88 27.16
403.gcc 4653 68.56 2.82 20.89 7.57
429.mcf 34 73.53 0.00 17.65 8.82
445.gobmk 2543 26.27 0.55 70.31 2.87
456.hmmer 504 54.96 2.98 5.56 36.31
458.sjeng 146 72.60 4.11 8.90 14.38
462.libquan. 109 68.81 3.67 6.42 21.10
464.h264ref 535 79.63 2.80 7.29 10.28
433.milc 246 79.67 0.81 3.25 16.26
470.lbm 28 75.00 0.00 21.43 3.57
482.sphinx 338 70.71 1.18 3.85 24.26
471.omnet. 2036 27.36 1.82 56.93 13.36
473.astar 98 75.51 0.00 8.16 16.33
483.Xalan 13525 33.62 2.60 53.84 9.18
444.namd 105 45.71 0.00 51.43 2.86
447.dealII 7242 26.90 1.20 30.46 37.21
450.soplex 935 43.42 3.32 38.93 11.98
453.povray 1639 58.88 1.59 30.14 6.47
410.bwaves 17 58.82 0.00 35.29 5.88
416.gamess 2898 94.79 1.04 0.59 3.49
434.zeusmp 86 66.28 0.00 6.98 25.58
435.gromacs 1100 70.36 1.09 4.09 24.36
436.cactus. 1311 44.47 0.76 14.80 39.97
437.leslie3d 32 71.88 0.00 18.75 9.38
454.calculix 1338 69.43 2.24 0.45 26.83
459.Gems. 78 78.21 2.56 6.41 10.26
465.tonto 3851 68.87 4.05 0.73 24.51
481.wrf 2888 55.40 3.84 0.66 39.89
Overall 50138 48.06 2.16 30.83 17.70

Fig. 12. Functions identified in each step

As shown in the figure, the percentage of each function
category is largely language and program dependent. For most
C and Fortran programs, direct calls contribute to the largest
number of identified functions. (Note that this includes direct
calls made within functions that are only indirectly reached.)
Some C programs (such as 445.gobmk), however, contain a
large number of indirect functions. For many C++ programs,
because virtual functions7 are abundant, there are generally
more indirectly reached functions. The fourth column presents
the percentage of functions that are reached only by direct
jumps (i.e., tail called). These functions are not rare in
optimized binaries.

Note that for some benchmarks, the percentage of unreach-
able functions is quite high (average 17.7% and up to 40%).
To verify these results, we selected a subset of these programs,
and used Pintools [27] to record the locations reached via calls
or jumps. We found that none of these addresses corresponded
to functions determined unreachable by our technique.

After checking source code, we found that the unreachable
functions are mostly global (i.e., non-static) functions which
are neither called directly nor have their addresses taken.
Although they are not used, compilers don’t generally remove
them unless specific actions are taken during the build process
to eliminate them. Note that this is different from static
functions whose visibility is within the same compilation
unit — it is more common for unused static functions to be

7Virtual functions can only be indirectly called through a V-table.

Binary Total Control flow checking (%) Data flow checking (%)
pruned entry exit internal argument callee-save

400.perlben. 1630 91.60 79.57 39.26 57.67 53.31
401.bzip2 48 100.00 33.33 89.58 85.42 87.50
403.gcc 5845 94.06 86.35 38.25 71.87 46.14
429.mcf 0 0.00 0.00 0.00 0.00 0.00
445.gobmk 379 61.48 89.18 37.73 46.70 40.37
456.hmmer 245 89.80 81.63 40.41 76.33 60.82
458.sjeng 130 99.23 44.62 45.38 72.31 80.00
462.libquan. 1 0.00 0.00 0.00 100.00 0.00
464.h264ref 89 89.89 73.03 37.08 84.27 66.29
433.milc 43 88.37 97.67 6.98 69.77 65.12
470.lbm 0 0.00 0.00 0.00 0.00 0.00
482.sphinx 16 31.25 31.25 18.75 68.75 12.50
471.omnet. 130 72.31 76.92 22.31 70.77 43.08
473.astar 0 0.00 0.00 0.00 0.00 0.00
483.Xalan 1916 46.03 65.55 21.14 80.64 54.96
444.namd 2 0.00 50.00 50.00 0.00 100.00
447.dealII 1851 18.10 65.80 17.77 64.94 57.16
450.soplex 228 84.65 75.44 26.32 62.72 56.58
453.povray 1602 91.39 38.76 19.48 75.28 16.10
410.bwaves 0 0.00 0.00 0.00 0.00 0.00
416.gamess 3088 79.18 56.99 35.65 73.74 52.91
434.zeusmp 14 0.00 50.00 57.14 71.43 50.00
435.gromacs 360 84.44 87.50 34.44 73.61 35.56
436.cactus. 376 95.48 80.59 56.65 84.31 58.24
437.leslie3d 2 0.00 100.00 100.00 50.00 50.00
454.calculix 269 75.09 87.36 53.53 40.15 37.17
459.Gems. 72 80.56 76.39 50.00 43.06 62.50
465.tonto 1631 90.74 88.90 17.78 41.02 40.34
481.wrf 572 77.45 93.71 27.97 29.55 36.71
Overall 21360 77.44 73.32 31.75 67.02 47.17

Fig. 13. Effects of each checking mechanism

removed by default.

Effectiveness of Interface Checking Techniques.
As discussed, function interface checking is critical in

pruning spurious functions from the identified candidate set.
In this section, we evaluate the effectiveness of each checking
mechanism independently. The results are presented in Fig. 13.
Again, only GCC -O2 compiled binaries for x86-32 are shown.

As shown in the figure, each checking mechanism is in-
dependently effective in identifying a significant fraction of
all spurious (“total pruned” in the figure) functions. How-
ever, in general, no single mechanism is able to detect all
spurious functions. It is through their combination that we
can effectively reduce the number of spurious functions to
a very low number. Note that for four of the binaries, no
spurious functions are pruned. This is because all the functions
enumerated happen to be real functions.

VII-F. Analysis Runtime Performance

Our focus so far has been on accuracy, and hence we have
not made any efforts to optimize runtime performance. Nev-
ertheless, for completeness, we summarize the performance
results we currently obtain.

As compared to machine learning based approaches [7, 35],
one of the advantages of our approach is that it does not require
training, which is expensive. The results of our analysis,
together with those from ByteWeight [7] and neural network
based system [35], are summarized in Fig. 14. The numbers
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Tool Experiment setup x86-32 binaries x86-64 binaries
machine CPU RAM training testing training testing

ByteWeight desktop 4-core 3.5GHz 16G 293 hc 457,997 s 293 hc 593,170 s
i7-3770K (estimate) (estimate)

Neural Amazon EC2 8-core 2.9GHz 15G 20 h 1,062 s 20 h 1,018 s
c4.2xlarge Intel Xeon

Ours laptop 4-core 1.7GHz 8G 0 47,880 s 0 36,300 s
i5-4210U

Fig. 14. Experiment setup and performance comparison (hc = compute hours, h = hours, s = seconds)

are based on our first data set, and 10-fold cross validation for
machine learning systems.

The neural network based system uses much less time
for the testing because it only identifies the bytes where
functions start and end, without recovering the function body.
As a comparison, ByteWeight and our system follow the CFG
to identify function ends, therefore can recognize the exact
instructions belonging to the function, and identify physically
non-contiguous parts of the function.

Currently, it takes about 40 seconds on average to analyze
a binary of our test suite. Although this is already satisfactory
for many cases, there are many opportunities for improvement.
For example, spurious functions can be immediately spotted
if the entry basic block has violating behavior and therefore
analysis of the whole function can be avoided. This is in
contrast to our current naive implementation that performs
complete analysis and checks.

VIII. CASE STUDIES

Since function recognition serves as an essential step for
many techniques working on binaries, to understand how well
our approach can be used, we analyze several representative
applications. Our focus in this section is on binary instrumen-
tation tasks that impose stringent requirements.

Many binary instrumentation techniques operate on indi-
vidual functions as a unit [12, 32, 10]. These applications are
sensitive to precision because a misidentified function could
cause misbehavior or failure of the instrumented program.
In this section, we analyze the applicability of our function
identification system for these function-based instrumentation
applications.

Since directly called functions are free of errors and un-
reachable functions are not relevant for correct functionality
(as they will never be executed), imprecision could possibly
originate from two sources: indirectly reachable functions and
direct jump reached (tail called) functions. We analyze these
two cases respectively.

For the first case, an address could be incorrectly identified
as an (indirectly reachable) function start if our interface
checking mechanism is insufficient. Although our comprehen-
sive checking schemes are generally effective and can remove
vast majority of the spurious function starts, such misses do
happen. Fig. 15 shows one example. In this case, since all
instructions access global memory and there are no stack
or general-purpose register operations, our interface checking
can’t identify [818c784, 818c8e4] as a spurious function.

0818ba30 <func>:
818ba30: fld 0x86ed1d0 ;real function start
818ba36: fstp 0x8ca5af0
... (similar instructions)
818c784: fld 0x87202c0 ;spurious function start
818c78a: fstp 0x8ca5908
818c790: fld 0x87202c8
818c796: fstp 0x8ca5910
... (similar instructions)
818c8d0: mov $0xf2,0x8ca5a4c
818c8da: mov $0xf6,0x8ca5aec
818c8e4: ret

Fig. 15. A falsely identified (indirectly reachable) function [818c784,
818c8e4]

Despite these imprecisions, one distinguishing feature of our
system is that the real function which encloses the spurious
one is always identified. In Fig. 15 for example, [818ba30,
818c8e4] is also recovered. And with this property, different
measures could be taken for different instrumentations to cope
with the imprecisions.

For RAD [12], no work is required at all because the
instrumentation is resistant to such imprecisions8. For more
complicated instrumentations [32, 10], the overlapping func-
tions could have their own instrumented version (which
are disjoint), and an address translation scheme for indirect
branches (commonly adopted by binary transformation sys-
tems [27, 45, 44, 37]) could be used. With this technique,
an indirect call target is translated at runtime to point to
its instrumented version before control transfer. Since the
falsely identified function is never called at runtime, incorrect
instrumentation will not be executed.

Our system may also falsely recognize intra-procedural
jumps as direct tail calls (the second type of error). Essentially,
this is equivalent to splitting the original function into two.
However, we note that this will not introduce any correctness
problems, as all executed instructions and exercised control
flows have been well captured.

Above analysis indicates that our function recognition is
effective and only leaves limited error possibility. The in-
accuracies tend to either have no effect for function-based
instrumentation correctness, or can be easily coped with. As
a comparison, since machine learning based approaches rely
on code or byte patterns, false positives of function starts and

8This is because, at the spurious function start, an extra (i.e., unneeded)
“return address” will be pushed on the shadow stack. While this slightly
increases attacker’s options, it does not break program functionality since at
the function epilogue, return addresses is popped repeatedly from the shadow
stack until there is a match. Note that the true return address is present in the
shadow stack, because the larger, real function is also recovered.
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ends are much more random and difficult to deal with. Finally,
as can be seen in these case studies, our system automatically
classifies identified functions based on their reachability prop-
erty, which can enable more flexible instrumentations.

IX. DISCUSSION

Special calling conventions. Currently our data flow checking
technique is based on well-respected system ABIs and calling
conventions, and it can be adapted to other architectures
such as ARM [11]. We note although non-standard calling
conventions have not appeared in our tests, they could be used
in some cases, e.g., function calls within a single translation
unit. To deal with this issue, a “self-checking” mechanism can
be adopted.

Specifically, note that ABI violations can occur only in the
context of direct calls and jumps. (Since a compiler cannot
be sure about the target of an indirect control flow transfer,
it cannot assume that such a transfer is intra-module.) Since
we don’t apply interface checks for direct calls, ABI violations
won’t pose a problem in their context. That leaves direct jumps
(i.e., direct tail calls) as the only problem case. We develop a
self-checking mechanism in this case. Specifically, we can per-
form interface checks on a subset of directly called functions
to determine whether ABI is respected. If not, we identify a
relaxed set of conventions that are respected in direct calls,
and apply these relaxed checks to tail call verification. (Note
that verification of indirectly called functions can continue to
rely on ABI.)

X. RELATED WORK

Function recognition. Many tools recognize functions using
call graph traversal and function prologue matching. Examples
include CMU BAP [8], angr binary analysis platform [36], and
the Dyninst instrumentation tool [22]. IDA [1] uses proprietary
heuristics and a signature database for function boundary
identification to assist disassembling. Its problems include that
it underperforms for different compilers and platforms, and the
overhead of maintaining an up-to-date signature database.

Rosenblum et al. first proposed using machine learning for
function start identification [31]. The precision and perfor-
mance have been greatly improved by recent work from Bao
et al. [7] and Shin et al. [35], due to adoption of different
machine learning techniques such as weighed prefix trees
and neural networks. However, as discussed, machine learning
requires a good training set, and potentially subtle parameter
tuning. Moreover, existing machine learning techniques have
been focused on surrounding code, and may have difficulties
grasping valuable global evidences or deeper semantics — the
factors greatly benefit our analysis.

Nucleus [5] is a concurrent work that is also based on
static analysis. Nucleus relies on control-flow analysis to infer
inter-procedural edges and function starts. In contrast, our
approach leverages both control-flow and data-flow properties

for comprehensive function interface checking. We demon-
strate that fine-grained static analysis [29] can recognize
functions with much greater accuracy, and has the potential
to support demanding applications such as automated analysis
and instrumentation.

Static binary analysis to recover high-level constructs. Other
than function boundaries, previous works also focus on recov-
ering other high-level constructs, such as variables and types
[6, 26, 3] or function signatures [17]. The more ambitious goal
is to recover source code through decompilation [21, 18, 33].
However, many of these tools are either best-effort analyses
designed for helping human audits, or only tested with a much
smaller corpus. We expect the precision of these downstream
analyses to be improved with more accurately recognized
functions.

XI. CONCLUSIONS

In this work, we present a static analysis based approach
for function boundary identification in stripped binary code.
Compared with previous efforts that rely on matching of
code patterns, our approach is more principled by leveraging
the function interface abstraction and implementation. By
adopting a comprehensive checking mechanism that combines
stack discipline, control flow and data flow properties, our
approach can substantially improve accuracy over the best
previous systems that are either machine learning or static
analysis based. The deeper insights of identified functions
provide further opportunities to reduce error rates and enable
more flexible applications.
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