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Abstract—Today’s advanced cyber attack campaigns can often
bypass all existing protections. The primary defense against
them is after-the-fact detection, followed by a forensic analysis
to understand their impact. Such an analysis requires audit logs
(also called provenance logs) that faithfully capture all activities
and data flows on each host. While the Linux auditing daemon
(auditd) and sysdig are the most popular tools for audit data
collection, a number of other systems, authored by researchers
and practitioners, are also available. Through a motivating
experimental study, we show that these systems impose high
overheads, slowing workloads by 2× to 8×; lose a majority of
events under sustained workloads; and are vulnerable to log
tampering that erases log entries before they are committed to
persistent storage. We present a new approach that overcomes
these challenges. By relying on the extended Berkeley Packet
Filter (eBPF) framework built into recent Linux versions, we
avoid changes to the kernel code, and hence our data collector
works out of the box on most Linux distributions. We present
new design, tuning and optimization techniques that enables
our system to sustain workloads that are an order of magnitude
more intense than those causing major data loss with existing
systems. Moreover, our system incurs only a fraction of the
overhead of previous systems, while considerably reducing data
volumes, and shrinking the log tampering window by ∼ 100×.

1. Introduction
We are in an era of long-running cyber attack campaigns
involving “Advanced and Persistent Threats” (APTs) [65],
[9]. Carried out by sophisticated actors that prioritize stealth
over other goals, these campaigns often remain undetected
for many months [75], [22], [76], [7], [71]. During this
period, attackers remain hidden in a victim’s network, while
moving across hosts, installing malware, and gathering data.

Because of the stealthy nature of APTs, the primary
recourse against them is after-the-fact detection, followed
by forensic analysis to understand their full impact. Such
an analysis requires logs that faithfully capture all important
system activity across the hosts in an enterprise. While
application logs (e.g., web server logs) are useful, they
are incomplete because they don’t cover the activities of
all applications on the system. For instance, there are no
application logs that cover malware activity, or the activities
carried out in a remote login session by an attacker. Hence
it is necessary to collect system-wide logs that cover all
applications. Most recent research works on APT investi-
gation [40], [38], [31], [70], [41], [91], [100], [98], [23],
[101], [36], [8], [60], [13], [79] rely on system audit logs
that operate roughly at the level of system calls. Coarse-
grained provenance tracking enabled by these logs ensures
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the completeness of forensic analysis, i.e., the analysis won’t
miss any of the effects of an attack.

For server systems that tend to be based on Linux,
the Linux auditing daemon auditd is an obvious choice
for audit data collection [32], [55], [44]. Unfortunately,
auditd incurs very high overheads for system-call granularity
data collection, slowing down programs by 5× or more.
This prompted research on higher performance audit data
collection systems [80], [64], [78], [62], [59]. However,
these systems require OS kernel modifications, making them
a challenge from a deployment perspective. Operators of
production systems are reluctant to make changes to kernel
code because it can impact system stability and/or introduce
compatibility problems. Moreover, implementations of these
log collection systems are typically tied to specific kernel
versions, adding concerns about update and upgrade options.

In addition to these portability and deployability con-
cerns, we show that existing audit data collection systems
suffer from serious data loss and performance problems:
• Data loss: Under moderate to heavy loads, most ex-

isting systems drop a significant fraction of the events.
This happens even on single-core workloads. Data loss
increases proportionately with multi-core loads, leading
to a situation where most of the data is dropped. This
defeats the primary purpose of audit data collection,
namely, ensuring that every link between attack activity
and subsequent effects is captured.

• High overhead: Even when operating at loads they can
cope with, today’s log collection systems incur high
overheads, slowing down workloads by 2× to 8×.

• Vulnerability to log data tampering [77]: In APT attacks,
attackers can gain sufficient privilege to tamper with the
auditing system. The typical defense is to log the data
to a remote host beyond the attacker’s reach. If data is
immediately sent to the remote host, evidence of attack
will be preserved in the log even if the attacker is able
to control all records logged after attack completion.
Unfortunately, we show that existing systems can buffer
hundreds of thousands of log records in memory before
the data is output. A successful attack can wipe these
buffers, thus removing all attack evidence from the logs.

• Large data volume: Existing systems produce logs rang-
ing from several GBs to hundreds of GBs per host
per day. The costs of storing this much data can be
prohibitive since many APT campaigns are uncovered
months later [75], [22], [76].

In this paper, we present a new audit log collection approach



that overcomes these challenges. It has been implemented
into a light-weight and easily deployable system called eAu-
dit. Below, we summarize our approach and contributions.

1.1. Approach Overview, Results and Contributions

eAudit is based on the Extended Berkeley Packet Filter
(eBPF) framework built into recent Linux versions. This
framework enables the deployment of safe probes at various
hooks defined in the Linux kernel, such as the Linux tra-
cepoints and LSM (Linux Security Module) hooks. Probes
use a restricted interface and are statically verified for
safety properties such as termination and memory safety.
Consequently, they cannot crash the operating system, or
use excessive amounts of CPU or other resources. eBPF
probes can be dynamically loaded into stock Linux kernels
such as those packaged with most Linux distributions. Con-
sequently, eAudit can be readily deployed on these kernels
without loading kernel modules, or changing the kernel
code. Consequently, eAudit works “as is” on most recent
Linux distributions. Our main contributions are:

• Performance study of existing tools: Our motivating study
in Sec. 2 includes two widely available software tools
auditd [35] and sysdig [50]; two research systems for
which working software is available, namely, CamFlow
[78] and PROVBPF [59]; and two more eBPF-based tools
Tracee [83], [84] and Tetragon [18] studied in Sec. 4. We
show that all these systems:
– incur high performance overheads, slowing down sys-

tems by 2x to 8x,
– can drop a large fraction of events, and
– store events in memory for substantial periods, making

it easier for attackers to wipe out suspicious activities
before they are logged permanently.

• Design of an efficient and resilient audit collection sys-
tem: In Sec. 3, we describe eAudit design, focusing
specifically on features for avoiding data loss, reducing
runtime overhead, and minimizing opportunities for log
tampering. Specifically, we present:
– a compact data encoding scheme that results in log files

that are 10× smaller than those of other systems;
– a two-level buffer design that reduces contention and

avoids data loss;
– a simple analytical model that underpins an optimal

balancing of system throughput and latency; and
– a granular and tunable event prioritization scheme that

further reduces log tampering opportunities.
Our techniques can be applied to other eBPF-based sys-
tems as well, and improve their performance.

• Experimental evaluation: This evaluation establishes sev-
eral key benefits of our design:
– eAudit avoids data loss even on peak loads that cause

the best previous systems to lose over 90% of the data.
– Our two-level buffer design and parameter tuning op-

timizations are very effective, reducing overheads by
an average of 18.4× across our benchmarks (Fig. 17).

– With the benchmarks and metrics used in our motiva-
tional study, eAudit’s overhead is just 4.5% (Fig. 20).

– Our design and optimizations reduce the log tamper
window by about 100× over previous systems. Our
event prioritization scheme shrinks this window by
another 100× for the most important system calls.

The source code for eAudit can be found at https://eprov.
org and our lab website http://seclab.cs.stonybrook.edu/
download.

2. Motivating Experimental Study
We motivate our research with an experimental study
that shows the drawbacks of existing systems: lost events
(Sec. 2.1), high overhead (Sec. 2.2), large tamper window
(Sec. 2.3) and high data volume (Sec. 2.4).

Our study includes (a) two major software systems that
are in wide use, namely, the Linux audit daemon (auditd)
and sysdig [50]; and (b) two research prototypes for which
we could obtain working systems, namely, PROVBPF and
CamFlow. We omitted older research systems such as PASS
[72], HiFi [80] and LPM [11] because they are based on
Linux kernels from 10+ years ago, making it nontrivial
to get them to work with today’s Linux distributions, or
to draw meaningful performance comparisons with other
systems that run on today’s Linux kernels. PROTRACER
[64] and KCAL [62] were also omitted because of the
unavailability of their code. Finally, we did not consider
fine-grained provenance collection systems such as RAIN
[45] since they prioritize precision even if it decreases
performance. However, note that many coarse- and fine-
grained provenance collection systems, including TRACE
[44], Spade [32], Winnower [91], MCI [54], MPI [63],
BEEP [55] and ALchemist [99], rely on auditd, and hence
inherit all of auditd’s performance challenges shown below.

To the extent feasible, we configured all four systems
to collect roughly the same provenance information. We
followed the documentation that came with the respective
systems, and followed the best practices suggested in online
resources. Every available performance-relevant configura-
tion parameter was tried out, and we used the settings that
produced the best performance. The only thing we insisted
on is full provenance collection for all processes.

PROVBPF and CamFlow are both intended to capture
whole system provenance, so they don’t need further con-
figuration beyond turning them on. In contrast, auditd and
sysdig both need to be configured to log specific system
calls of interest to us. We configured them to log all system
calls relevant for coarse-grained provenance, including all
operations for reading/writing (or sending/receiving) data.
Since these system calls use file descriptors, it is also
necessary to log operations that create or modify file de-
scriptors. Operations for creating, modifying or changing the
privileges of processes, and those for modifying file names
and permissions are also recorded. The full list of logged
calls is shown in Table 1.

Some of these systems (e.g., sysdig) can produce outputs
in a binary format while others support only a printable for-
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accept accept4 bind chdir chmod clone clone3 close connect creat dup
dup2 dup3 execve execveat exit exit group fchdir fchmod fchmodat
finit module fork ftruncate getpeername init module kill link linkat
mkdir mkdirat mknod mknodat mmap mprotect open openat pipe
pipe2 pread pread64 preadv ptrace pwrite pwrite64 pwritev read
readv recvfrom recvmmsg recvmsg rename renameat renameat2 rmdir
sendmmsg sendmsg sendto setfsgid setfsuid setgid setregid setresgid
setresuid setreuid setuid socket socketpair splice symlink symlinkat tee
tgkill tkill truncate unlink unlinkat vfork vmsplice write writev

Table 1: List of system calls logged. This list of 80 calls is a superset
of that of TRACE [44] (66 calls), the most mature and comprehensive
provenance-collection system for Linux. All syscall arguments are logged,
except for the data buffer argument to read, write, etc.

mat. For consistency, we configured them all to use a print-
able output format, logging to a normal file in /var/log.
Experimental platform was matched as closely as possible.

Our experimental platform is a Ubuntu 22.04 system
with i7-6500U processor (2 cores/4 threads), 8GB memory
and 1TB SSD. Auditd and sysdig were run natively on this
hardware in order to avoid virtualization overheads and to
minimize factors that lead to variability in time measure-
ments. However, PROVBPF and CamFlow require Fedora
and are tied to specific kernel versions; so we run them
within a VirtualBox VM running on the same hardware.

We used two benchmarks: postmark [47], a widely used
file system benchmark that simulates the behavior of a mail
server; and shbm, a script that repeatedly forks another
binary (/bin/echo). The latter is designed to model the most
common behavior of shell scripts and exercise common
process-related syscalls. We chose these relatively simple
benchmarks because we need to know in advance the num-
bers and types of system calls made by them. This is neces-
sary to determine the fraction of calls captured by a prove-
nance system. All benchmarks are single threaded to avoid
overloading these logging systems. For the same reason, we
used a 2-core (4 threads) platform for this evaluation.

2.1. Lost Events
CamFlow and PROVBPF. These systems capture prove-
nance in terms of LSM events, which are somewhat lower
level than system calls. As a result, not all system calls can
be directly matched with their log records. So we focused on
two categories of system calls most frequently used in these
benchmarks that have identifiable records in the logs pro-
duced by CamFlow and PROVBPF. Specifically, we counted
the fraction of execve system calls captured for the shbm
benchmark, and file creation/deletion calls for postmark.

The left-most point in Fig. 2 shows the fraction of data
lost by these systems on unmodified postmark. Both Cam-
Flow and PROVBPF drop most events (about 66% and 98%
respectively) at this point. To determine if the loss occurs
due to the inability of these systems to keep up with the
benchmark, we inserted delays (nanosleep’s) in postmark’s
main loop. The X-axis shows the factor of slowdown in the
benchmark’s speed due to these delays. Slowdown factor is
the ratio of the runtime (wall-clock time) of the slowed down
benchmark to that of the unmodified benchmark. Data loss
decreases gradually when the benchmark is slowed down,
confirming that the main factor is the rate of system calls.
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Fig. 2: Data Loss: Fraction of events dropped by existing provenance coll-
ection systems. The base for calculating the slowdown factor is the bench-
mark runtime in the absence of provenance collection. The left-most point
on each line shows the data loss on unmodified benchmarks. In the legend,
“pm” stands for postmark, “prov” for PROVBPF, and “cflow” for CamFlow.

CamFlow requires an order of magnitude slowdown be-
fore it captures all the events. A tell-tale indicator in this
context is the CPU usage of camflowd, the user-level pro-
cess used for data logging in CamFlow. When it hits 100%,
records begin to get dropped. This mark was hit until we
slowed down benchmarks by 8× (shbm) to 16× (postmark).

PROVBPF needs a larger slowdown (by about two orders
of magnitude) before it captures a significant fraction of
data. At that point, it becomes difficult to separate the
overhead due to the benchmark from that of background
system activity. For this reason, we omitted PROVBPF from
the remaining experiments in this section.

Sysdig and auditd. These systems track system calls
directly, so it is easy to check the number of events against
the expected number. For sysdig, we inserted delays in the
benchmark as described before, and plotted data loss against
slowdown in Fig. 2. It requires a slow down by about 3×
before it can capture all data. Auditd does not require delays,
as it seems capable of slowing down benchmarks until it can
keep up with them. Thus, its performance is represented by
a single point on the X-axis that indicates zero data loss
with about 5× slowdown for shbm and 8× for postmark.

2.2. CPU utilization and overhead
Existing provenance collection techniques also suffer from
high overheads and CPU usage. Note that performance
measurements are meaningless when the system under study
isn’t operating correctly, i.e., a significant fraction of events
are being dropped. So, we once again slow down bench-
marks by inserting delays as before. These delays were
increased until data loss fell below 10%. We also ensured
that at least 95% of these events were due to the benchmark,
with background activities accounting for less than 5%.

We measure overhead as the ratio of the CPU time used
by the provenance collection system to that of the bench-
mark. We use CPU time (user plus system time reported by
the operating system) instead of wall-clock time because it
is unaffected by the delays introduced in the benchmark, or
the times when processes are idle.
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Fig. 3: Runtime overhead and CPU utilization: Benchmarks were first
slowed down by inserting sleeps to ensure a data loss rate below 10%.
Overhead is defined as ta/tb, where ta is CPU time of the provenance
collection system (“agent time”) — specifically, the CPU time of camflowd
in the case of CamFlow, sysdig in the case of sysdig, and auditd and
kauditd for Linux auditd; and tb is the CPU time of the benchmarks
(with embedded sleep’s) in the absence of provenance collection.

Our results are shown in Fig. 3. Note that the overheads
are high, slowing down programs by 4× to 16× even on
single-threaded benchmarks studied in this section.1

2.3. Log tampering window
Log contents in persistent storage can be protected from an
attacker by logging the data to a (protected) remote server.
However, log records that are still in memory buffers at the
time of a successful exploit are subject to tampering by an
attacker. In the simplest case, the attacker can immediately
kill the logger, causing all those entries to be lost. Exploits
that achieve the privilege needed for tampering may con-
stitute a minority in general, but they are commonplace in
APT campaigns. Moreover, post-attack detection is aimed
precisely at this class of adversaries — those powerful
enough to break through every deployed defense and hence
can only be detected after the fact.

To measure the log tampering window, the benchmark
was killed at a randomly chosen time. The length of the log
was immediately recorded. These systems continued to write
records into the log file — these must be the records buffered
in memory, since the benchmark had already terminated.
The end of this phase was determined by a sharp drop in the
CPU usage of the data collection system, further confirmed
by a sudden drop in the growth of the log. The length of
the log file was recorded again. We count the number of
records that fall between the two length measurements, and
average this number across 10 repetitions.

As shown in Fig. 4, the log tampering windows for
these systems are of the order of several tens to hundreds of

1If we ran postmark without delays and measured the overhead in terms
of benchmark wall-clock time, then CamFlow’s overhead roughly matched
that reported in [78]. However, this number does not truly reflect Cam-
Flow’s overhead as it is dropping the vast majority of events at this point.
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Fig. 4: Log tampering windows of CamFlow, sysdig and auditd.

thousands of records. In terms of time, this approaches the
range of a second or so, making it possible for automated
exploits to erase critical activity surrounding the break-in.

2.4. Data Volume
Another major drawback of existing provenance collection
frameworks is data volume. A 3-minute run of the postmark
benchmark produces 9GB for sysdig, 26 GB for Linux
auditd, and 41 GB for CamFlow. If we take the smallest
of these numbers, and further assume that average event
rates will only be a tenth of this rate, the number still adds
up to over 400GB per day per host.

3. eAudit System Design
The main goals of our design are:
• Reduce data volume so as to speed up every component

involved in the data pipeline;
• Eliminate data loss even at peak system loads;
• Reduce overhead so as to minimize degradation of peak

workloads that can be sustained; and
• Reduce latency of data capture so that records are logged

to safe storage quickly, minimizing the opportunities for
an adversary to tamper with these records.

We begin by introducing our threat model and how it guides
our choice of benchmarks in Sec. 3.1. Following this in
Sec. 3.2 is a short overview of eBPF that is necessary for
understanding eAudit design. Next, we describe eAudit ar-
chitecture in Sec. 3.3, followed by techniques for achieving
the above goals. Specifically, Sec. 3.4 describes a compact
data encoding scheme to achieve the first goal. We then
address the next three goals, which are conflicting in nature:
techniques for reducing data loss, such as the use of large
buffers, tend to increase the tamper window size. Similarly,
throughput increase techniques tend to increase latencies
as well. We develop a two-level buffer design in Sec. 3.5
to mitigate these conflicts. We formulate an optimization
problem to achieve an ideal combination of throughput and
latency in Sec. 3.6. Finally, we describe event prioritization
to further reduce latencies in Sec. 3.7.

3.1. Goals, Threat Model and Benchmark Selection
The primary goal of this paper is to develop techniques for
efficient provenance collection — techniques that do not
degrade the workloads that can be sustained on a target
system. As we showed in the previous section, existing
approaches increase CPU workload by more than 100%
for provenance collection. If logging imposes significant
overheads, operators may respond by turning it off during
sustained or peak system activity. This, in turn, may be
exploited by attackers to hide their activities. First, attackers
may time their attacks to coincide with periods of high loads
on their victim systems. Secondly, attackers may themselves
generate large workloads that resemble benign activity. By
removing performance overhead as a significant concern, we
can take away this avenue for attacks.

The second goal is to thwart attacks that exploit the
tendency of existing provenance collection systems to lose



Name Description
postmark file system benchmark [47] simulating a mail server
shbm a shell script that repeatedly executes /bin/echo

find uses find command to print all file names in /usr.
tar uses tar to archive /usr/lib.
rdwr a C-program that calls read, write in a tight loop.
httperf a benchmark for web servers.
kernel compile the Linux kernel.

Table 5: Benchmarks used in this paper.

records during intense loads. As a result, even if provenance
collection is permanently on, attackers may still be able to
hide their activities during peak loads: since a significant
fraction of records are being dropped, much of the attacker
activity may not be present in the logs. This provides a
second avenue for evasion attacks that rely on high loads.

To address these avenues of evasion, we aim to build a
provenance collection system that can operate without lost
records or significant performance overheads even at the
peak system loads that can be sustained by the underly-
ing OS and hardware. Our choice of benchmarks (Fig. 5)
reflects this goal. For instance, multiple instances of shbm
can easily max out the rate at which the OS is able to execute
programs. Similarly, rdwr can achieve the peak rate of reads
and writes, while find, tar and postmark can stress file-
system throughput of the OS. Finally, we added httperf
and kernel, two well known benchmarks for network and
CPU-related loads.

Our last goal is to degrade the ability of attackers to
hide their activities through log tampering. Adversaries may
attempt to maximize their chances by actively creating a
huge backlog in the queues holding provenance records that
haven’t yet been written to (secure) storage. Alternatively,
they may time their attacks to take place during periods
when the backlog is expected to be large. A large backlog
gives the attacker sufficient time to break into the victim,
escalate their privilege, and then delete the records in the
queue before attack related activity is written out. Our goal
is to shrink this backlog to the point where successful log
tampering becomes extremely difficult.

Except for the kernel benchmark that can already use all
available cores, the rest of the benchmarks are parallelized
by adding a top-level loop that creates a specified number of
processes that each run a copy of the benchmark. This allows
us to create configurable multi-core loads. We ran these
benchmarks on the hardware platform used for experiments
in Sec. 2: an i7-6500U processor with 2 cores (4 threads),
8GB memory and 1TB SSD. We also added a second
platform with more recent hardware: an i7-12700 processor
with 12 cores (hyperthreading disabled), 16GB memory and
a 512GB SSD. Henceforth, we use both these platforms as
a way to verify that our results are generalizable.

3.2. Background: Overview of eBPF
This section provides a short overview of the eBPF frame-
work, focusing on the features core to our system design.
The eBPF framework enables small code snippets, called
ebpf probes, to be safely deployed at well-defined hooks
within the Linux kernel. Currently supported hooks include

the Linux tracepoints, kprobes, LSM hooks, and so on.
When the kernel control flow reaches a hook, the callback
function registered by a probe for that hook is invoked.
While some of these hooking points (e.g., tracepoints) are
enabled out-of-the-box on most Linux distributions, others
(e.g., LSM hooks on Ubuntu) require rebuilding the kernel
with non-default options. In operational settings, such non-
default kernels may not be an option, so eAudit uses only
the tracepoint hooks for system call entry and exit.

The eBPF runtime defines a virtual machine supporting
a virtual instruction set for writing probes. Programmers
typically write their probe code in a C-subset, which is
then compiled into eBPF instructions. Before the probes are
loaded, the Linux kernel verifies several properties such as
memory safety and absence of loops.2 These checks ensure
that probes cannot crash the kernel or unduly slow it down.
Finally, the virtual instructions are JIT-compiled into native
code and loaded into the kernel.

Probes can use a (very) small set of helper functions
that have been carefully designed to minimize risk. One set
of helper functions is for safely reading memory (user or
kernel). A function for writing memory is also provided,
but its use is discouraged by printing a warning message on
the console on each use. As a result, most probes (including
all tracepoint probes) have a “read only” behavior.3

A second set of helper functions provide a key-value
store called eBPF maps. Since static variables are not per-
mitted by the verifier, eBPF maps provide the sole mecha-
nism for maintaining any state across callbacks into probes.
Maps can be per-cpu or shared across all CPUs. There is one
instance of each per-cpu map on each core, which means
that the same probe sees distinct instances of these maps
on different cores. Operations on shared maps incorporate
concurrency control, so they are not as efficient as the per-
cpu maps that can be safely accessed without such control.

A third set of helper functions support communica-
tion with user-level applications. Indeed, the purpose of an
eBPF probe is to intercept selected operations and send
the observed data to a user-level “consumer.” Perf buffers
are the older mechanism for communication with the user-
level, while the more recently introduced ring buffer is
recommended for better performance [73]. We discuss them
in more detail in Sec. 3.5.

While the Linux kernel implements all of the core
features of eBPF, the interface provided by it is rather low
level, requiring applications to work with eBPF byte code.
To ease development, an LLVM-based compiler is available
for translating probes written in a higher level language (a
restricted subset of C) into eBPF bytecode. Then there are
many toolkits and libraries such as bcc [12], bpftrace [2]
and libbpf [58] that simplify other low-level aspects such
as the parsing of ELF binaries, invoking the eBPF loader,

2Loops with a statically known bound can be unrolled manually, or
using compiler pragmas. However, this “syntactic sugar” doesn’t increase
the expressive power of eBPF code, as the kernel loads only loop-free code.

3LSM probes do have the ability to deny operations, so errors in LSM
probes have a much greater capacity to break the system — a likely reason
why LSM eBPF hooks are disabled on Linux distributions such as Ubuntu.



Fig. 6: eAudit Architecture.

setting up and accessing eBPF maps from the user level,
and so on. BCC [12] is (arguably) the most mature among
these, so eAudit implementation currently uses this toolkit.
For more details on eBPF, see [21], [81], [34], [15], [29].

3.3. eAudit Architecture
Fig. 6 depicts the architecture of eAudit. It consists of
a component eCap that operates in the kernel, and two
user-level components eLog and eParse for logging and
parsing/printing respectively. Each of these components is
described in more detail below.

eCap is concerned with data capture in the kernel.
It attaches probes at the Linux Kernel Tracepoints inter-
face [48], specifically those associated provenance-related
system calls listed in Table 1. Each probe is a function
with the signature specified in the sysfs pseudo file sys-
tem at /sys/kernel/debug/tracing/events/syscalls/⟨scevent⟩
/format, where ⟨scevent⟩ stands for the entry or exit of a
specific system call, e.g., sys enter execve. System call
arguments can be accessed in the enter events, while return
values can be accessed at the exit events. System call
information, including argument and return values, is first
serialized and stored in per-CPU buffers that we call as
message caches. When one of these caches is filled, it is
written to the (shared) ring buffer.

eCap uses eBPF maps to maintain state as a set of key-
value pairs. Resource leaks, in the form of allocated state
that is no longer used, pose a serious problem for long-
running software such as eAudit. Unfortunately, leak de-
tection algorithms generally require loops, which are not
permitted in eBPF. Least Recently Used (LRU) maps pro-
vide an elegant mechanism in this context — when space
is needed for new items, oldest entries are automatically
purged.

eLog is the user-level component that reads the data sent
by eCap and immediately logs it to provenance store. The
provenance store can be located on a remote machine that
is locked down, but for simplicity and consistency with the
other tools we have compared, our current implementation
uses a local file. Because our implementation relies on BCC
[12], eLog uses a Python program for loading eBPF probes

into the kernel, and to access a subset of the maps that are
used for querying the status of the probes or configuring
them. However, in order to maximize performance, the ring
buffer handler and the rest of eLog are written in C. This
means that the critical path in the user-level code avoids
possible performance bottlenecks in Python code.

eParse is a user-level component for parsing and printing
the (binary) data from eCap in a readable format, or in
an architecture-neutral format that is suitable for intrusion
detection and forensic analysis. eParse can be chained on
top of eLog to parse the data in real-time, or operate offline
using data from the provenance store.

3.4. Compact Data Encoding
An obvious strategy for reducing data volumes is to de-
velop compact data representations. Previous research tends
to downplay the importance of this step by emphasizing
that compaction can be performed later on, after initial
data collection. Yet, as our results show, the volume of
provenance data overwhelms the system, causing data to
be lost even before it reaches post-processing. This point
was driven home by our performance studies on recent
Fedora distributions: since these distributions turn on file
compression by default, file system performance is reduced,
which translates to a much higher data loss rate for existing
provenance collection systems. For this reason, eCap starts
with a compact encoding.

Some of the basic elements of our compact encoding
scheme are: (a) encoding each event using a single byte,
(b) suppressing thread id information for single-threaded
processes, and (c) including only the least significant 3-
bytes of the timestamp (in nanoseconds) with every event.
A separate timestamp record is emitted when the leading 5
bytes of the timestamp change, i.e., every 16 milliseconds.
Argument number and type information is not included in
event records since it can be inferred from the event name.

Many integer arguments have small values, e.g., file
descriptors and system call return values (which are often
zeroes). We use a variable length encoding for integer
arguments, using 1, 2, 4 or 8 bytes, depending on the actual
value of the argument. This length information is encoded
into a single byte, which is sufficient to represent up to
3 arguments plus a return value. System calls with more
arguments use 8 bytes for the remaining arguments.

File name and socket addresses use a variable-size rep-
resentation, with a prefix byte encoding their length. For
execve, which is unusual in taking a variable number of
arguments, the argument number is encoded in the record.
Our implementation currently limits the number of argu-
ments and environment variables to a maximum of 32 —
attempts to record more arguments leads to a permission
denial by the eBPF verifier. We can use eBPF tails calls to
overcome this limit, but this is left for future work. (Note
that this limit is never reached in our benchmarks, so our
performance numbers and comparisons are unaffected.)

A side benefit of compact encoding is that we can record
the entry and exit events separately, without being overly
concerned about log size. Producing a single combined

/sys/kernel/debug/tracing/events/syscalls/<scevent>/format
/sys/kernel/debug/tracing/events/syscalls/<scevent>/format
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Fig. 7: Impact of compact encoding on eAudit overhead.

record can seem more efficient, but by recording them sepa-
rately, we can reduce latency, i.e., the time before the infor-
mation is stored securely. This can be particularly important
for system calls that have significant security implications
such as setuid, kill and execve. For system calls that occur
frequently and/or have less security implications, we capture
a combined record at system call exits.

Due to this encoding, our system call records are 17
bytes on average (postmark benchmark), as compared with
175 bytes for sysdig and 850 bytes for auditd. Note that
eAudit as well as sysdig and auditd provide the same infor-
mation about syscalls — all argument values are available,
except for the data buffer argument to syscalls that read or
write data.

Effectiveness. To evaluate the impact of our compact en-
coding, we measured the performance overhead of eAudit as
a function of the syscall record size. We used the postmark
benchmark. Record size was increased by adding a specified
number of padding bytes. The number of padding bytes was
varied from 0 to 160. This causes the total record size to vary
from the average size produced by eAudit to the average size
produced by sysdig. Note that the overhead is also affected
by the the parameters p and w discussed in the next section.
We set them to the same (optimal) values used in Sec. 4.

Fig. 7 shows that the wall clock overhead, defined as the
percentage increase in the completion time of a benchmark,
goes up roughly linearly with syscall record size. This
increase is less than 50% for 1- and 2-core loads, but
increases rapidly to 4× and 11× for 8-core and 12-core
loads. At padding sizes of 128 and 160 bytes, the 12-core
load overwhelms the system, leading to an abrupt jump in
the overhead, as well as some dropped data.

3.5. Two-level buffer design to avoid data loss
As noted earlier, eBPF provides two mechanisms for com-
munication between the in-kernel data probes and the user-
level consumer process: perf and ring buffers. Ring buffer
is the more recent mechanism, introduced to address some
of the drawbacks of perf buffers [73]. In particular, the
ring buffer uses a single large buffer across all CPU cores,
whereas perf uses N buffers for N cores. A single large
buffer tolerates data volume spikes much better than N
buffers that are each 1/N th of this size. Moreover, because
of its focus on performance, the ring buffer API includes

features to reduce unnecessary data copying, and explicit
control over how often the user-level consumer is signaled
(using the poll/epoll mechanisms) about data availability.

Despite its performance focused design, we found that
a straight-forward use of the ring buffer API is insufficient
for lossless provenance collection. We therefore developed a
two level buffering scheme to reduce the number of accesses
to the ring buffer. In this scheme, system call records are
first assembled in a per-CPU “message cache.” When the
cache becomes full, its content (“message”) is queued on
the ring buffer.45 Although this approach introduces an extra
data copy (from the message cache to the ring buffer),
this is unavoidable: the reserve/commit API, which is used
to construct ring buffer messages in place, requires mes-
sage sizes to be compile-time constants [73]. Events that
produce nontrivial data are all associated with file names
or other variable size data. Hence we must rely on the
ringbuf output that requires the data to be assembled in
a temporary buffer and then copied over into the ring buffer.

The following table outlines the key parameters that
affect the performance of this two-level buffer design:

p
the size of the per-CPU message cache, measured in
terms of number of system call records.

r the size of the ring buffer.

w
wake-up interval — one in every w operations on the
ring buffer will signal data availability to the user-level.

N the number of CPU cores.

Among these four parameters, we found that p has a much
larger impact on data loss than w. Increasing r reduces data
loss for short-running benchmarks but not longer-running
ones. In particular, entries in the ring buffer begin to shoot
up when the system is unable to process events at the rate
at which they are produced. This imbalance causes even a
large ring buffer to fill up eventually, at which point data is
dropped.

This leaves us with two main parameters that affect data
loss, namely, p and N (the number of cores used by the
benchmark). Fig. 8 focuses on a single benchmark find and
shows the effect of p and N on data loss. When the workload
uses one or two CPU cores, data loss can be avoided for all
values of p. For this reason, data points for 1-core and 2-
core workloads line up along the X-axis. But as the number
of cores used by the workload is increased, larger message
cache sizes are needed. For the maximum configuration
studied, 12 native cores on an i7-12700 processor, p = 10
was needed to eliminate data loss.

4Note that message caches are small — a few KBs — as compared
to the ring buffer that is several MBs in size. Thus, almost all the kernel
memory used by eAudit is in the ring buffer.

5Although their per-CPU nature may suggest a similarity between mes-
sage caches and perf buffers, that is not the case. Per-CPU caches require
no synchronization whatsoever. In contrast, perf-buffers are a mechanism
for communication with the user level, and have the same signaling and
wake-up overhead associated with the ring buffer. Worse, perf API does
not have an option to avoid signaling the user level on each message, and
hence it incurs high overhead (specifically, ts from Table 11) on every
syscall if it were used in place of the message cache. In contrast, as we
show later, our design incurs ts once per few hundred syscalls.
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Fig. 9: Data loss Vs Message cache size (p). Curves correspond to different
benchmarks, each parallelized to use all cores on a 12-core system.

Fig. 9 examines data loss from a different perspective:
the benchmarks are varied, while keeping N fixed at 12.
Note that values of p ≥ 18 avoids data loss in all cases.
eAudit uses a default value of p = 100, which gives a
comfortable margin above this minimum value. (For these
two charts, we used w = 8 and r = 16MB, values that are
large enough that further increases don’t affect data loss.)

Effectiveness of per-CPU message cache. In our im-
plementation, setting p = 1 bypasses the per-CPU cache.
Figs. 8 and 9 show that eAudit experiences substantial data
loss (up to 60%) in the absence of CPU-message cache.
As the message cache size is increased, data loss decreases
gradually, falling to 0% at p = 18 for all benchmarks and
all values of N used in our experiments.

Although data loss is avoided at p = 18, larger values
of p provide additional benefits in terms of performance.
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Fig. 10: eAudit’s Agent Overhead Vs Message Cache Size (p). For p < 18,
overhead numbers are an underestimate in cases where there is data loss.

Fig. 10 shows that the agent overhead continues to drop as p
goes from 16 to 100. On average, a 2× reduction in overhead
is observed across the benchmarks in Fig. 10. Together,
these results show that per-CPU caches are very effective
in improving the performance of provenance collection. As
a result, eAudit is able to avoid data loss on benchmarks that
are more than 10× as intense (in terms of syscall rate) as
those sustained by existing provenance collection systems.

3.6. Optimizing Overhead Vs Latency Trade-off
In the last section, we showed that data loss can be avoided
by increasing p, but larger values of p have a negative effect
as well: they increase latency, i.e., the period during which
events are buffered in memory and are hence susceptible
to tampering (Sec. 2.3). A similar comment applies to the
w-parameter as well: larger w values decrease overheads at
the cost of increasing latency. However, the two parameters
affect latency and overhead in different ways, enabling us to
formulate an interesting optimization problem for deciding
the right trade-off. Table 11 summarizes our formulation
and the analytical solution derived from it. We describe this
formulation below and present an experimental validation.
On a per-event basis, the agent’s execution time comes from:

(a) the time tb to gather and store event information in the
per-CPU message cache, and to copy it around until
the data is finally recorded into provenance store;

(b) the time tq to enqueue/dequeue a message on the ring
buffer, incurred once every p events; and

(c) the time ts to wake up the user-level consumer, in-
curred once every w messages, i.e., every wp events.

Of this, (a) is unaffected by the buffering scheme, and rep-
resents the “base” cost for event logging. So we focus in Ta-
ble 11 on the buffering overhead O that includes (b) and (c).
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s N number of CPUs

p message cache size (number of events)
w wake-up interval
tq time to queue messages on the ring buffer
ts time to context-switch (to wake up user-level agent)

M
et
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cs

T Agent CPU time per event: tb + tq/p+ ts/w·p

O
Buffering overhead per event:
tq/p+ ts/w·p = (tq + ts/w)/p

L
Maximum length of buffered data:
N ·p+ p·w = (N + w)·p

G
oa

l

Minimize O·L = (tq + ts/w)(N + w).
Solution: w =

√︁
N ·ts/tq

(︂
by setting d(O·L)

dw = 0
)︂

.
Note: Objective emphasizes O and L equally. At the opti-
mal w value, d(O ·L)/dw = 0, which is equivalent to:

1

L

dL

dw
= − 1

O

dO

dw

In other words, the relative change in L with w will be
equal and opposite of the corresponding change in O. At
all other w-values, it can be shown that any change to
w will improve one metric more than it degrades the other.

Table 11: A simple performance model for tuning w to find an optimal
trade-off between overhead and latency.



We measure latency L in terms of the maximum number
of events that are stored in memory at any time. After
reading a message from the ring buffer, eLog immediately
writes it out to provenance store using a write system call.6
For this reason, no messages are queued by eLog, so we
need only consider the messages buffered in the kernel. This
includes (i) N message caches, each of which contain at
most p events, and (ii) up to w messages that may be on
the ring buffer but eLog has not been woken up to process
them. Thus L = N ·p+ w·p = (N + w)·p.

A key benefit of our analytical performance model is that
it can yield optimal solutions for a variety of conditions,
e.g., if latency reduction is considered twice as important
as overhead reduction. For the rest of this section, we
make another natural choice, which is to weigh latency
and overhead reductions equally. As shown in Table 11,
this corresponds to minimizing the product of O and L.
Differentiating the expression for O ·L with respect to w,
equating it to zero and solving, we get the optimal value of
w to be

√︁
N ·ts/tq. Next, we proceeded to experimentally

measure tq, ts and tb.
To measure tb, we first used very large values for p

and w to make the impact of tq and ts negligible, so
that the entire runtime of the agent can be attributed to
tb. Specifically, we set p = 1000 and w = 256 for this
measurement. For smaller p and w values that introduce
nontrivial buffering overhead, we can obtain O from the
observed agent time T using the relationship O = T − tb.
By measuring O in this manner for different p and w values,
and performing a regression analysis to fit the equation for
O shown in Table 11, we obtain ts and tq.

Fig. 12 illustrates how well our model matches the actual
measurements on our experimental platforms. For each data
point, we plot the experimentally measured overhead on the
X-axis and the calculated overhead on the Y-axis. Calculated

6More precisely, eLog performs a single write each time it is woken
up. On each wake-up, it processes the messages already on the ring buffer
(w messages on average). This happens without the possibility of blocking
or waiting, and is followed by a write operation.
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Fig. 12: Experimental Vs Predicted overhead for eAudit. Predicted values
come from the formula for O in Table 11 and the values of tq and ts
obtained by regression analysis. These values are tq = 2.26 · 10−6 and
ts = 2.06 · 10−5 on the 2-core platform, and tq = 7.72 · 10−7 and
ts = 2.85 · 10−6 on the 12-core platform.

overhead for a data point is obtained from the p and w values
for that point, and the values of ts and tq from the regression
analysis. The diagonal represents the ideal case, where there
is a perfect match between predicted and actual overheads.
Actual data points all fall around this line. Note that the
fit is more accurate on the 2/4 core platform (N = 4) as
compared to the 12-core platform (N = 12). This is because
the 12-core platform experiences much more contention and
saturation effects, making the measurements more noisy.
These measurements pertain to the find benchmark. (Other
benchmarks produce similar results.)

Fig. 13 is an alternate visualization of how well the
performance model matches the measurements. Specifically,
the smooth curves depict the equation from the model:

O·L = (tq + ts/w)(N + w)

As in the previous figure, tq and ts are obtained from
regression analysis, and the red and blue curves correspond
to the 2-core and 12-core platforms respectively. The dots
correspond to experimentally measured points. Note that
once again, the analytical model closely matches the mea-
surements for the 2-core platform but the 12-core platform
is more noisy. Nevertheless, the points follow the general
shape of the smooth curves.
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Fig. 13: Experimental Vs Predicted overhead–latency product.

Another key point illustrated by Fig. 13 is that O·L has
a minima between w = 5 and w = 10. Fig. 14 is a more
direct illustration of such an optimal value. Note how, for a
given latency (on the X-axis), the use of larger w leads to a
lower benchmark overhead, as w is increased from 1 to 7.
This chart also shows that for small values of w, overhead
reduction is much more significant as compared to larger
w values. This is explained by our analytical model: when
w goes from 1 to 2, it cuts down context-switching over-
head by 2×. Since the context switching overhead is much
larger than queuing overhead — across our experimental
platform, ts ranges between 6tq and 12tq — dividing ts by
w effectively halves the total overhead as w goes from 1 to
2. However, for larger w values, contribution of tq to the
total overhead becomes comparable to that ts/w, so w is no
longer very effective in reducing the total overhead. This is



120 200 400 800 1,600 3,200

20

30

Latency

B
en

ch
m

ar
k

ov
er

he
ad

(%
) w=1

w=2
w=4
w=7
w=9

Fig. 14: Latency Vs. Benchmark overhead for different w values. Latencies
below 200 are difficult to achieve for w ≥ 7, so those curves stop at 200.

apparent in Fig. 14 as well: w = 7 offers little benefit over
w = 4. In fact, the w = 9 line is higher than the w = 7
line, showing that 9 is larger than the optimal w-value.

Tuning w. Since the experimental results closely match
the analytical model, we can use the formula for optimal w
from Table 11. This requires obtaining ts and tq through tim-
ing measurements. However, it would be preferable if pa-
rameters can be tuned without requiring such measurements
before each deployment. Below, we discuss how to do this.

The optimal value of w depends on N and the ratio of
ts and tq. We found that processors with a larger number of
cores (N ) tend to have a larger tq (queuing overhead), but
ts does not seem to be affected much by N . As a result,
the increase in N and tq tend to cancel each other out. This
factor, combined with the square root operator in the formula
for optimal w, causes the optimal value of w to be fairly
stable across platforms and benchmarks. Specifically, our
calculated optimal values for three experimental platforms
were between 5 and 8. More importantly, the O ·L curve
becomes very flat between w = 5 and w = 10 across all
these platforms. So, choosing any w value between 5 and 10
yields highly similar performance and latency results. This
factor stands out in Fig. 14, where the lines for w = 7 and
w = 9 are very close to each other. Hence, we chose w = 8
as the default value in eAudit.

Explaining the performance of 2-level buffer design.
Based on our performance model (Table 11) and the mea-
surements shown in Fig. 13 and Fig. 12, there are two main
sources of overhead, namely tq for queuing the message on
the ring buffer and ts to signal/wakeup the user-level agent
waiting for the data. Focusing on the 12-core platform used
for the bulk of our experimental evaluation, tq ≈ 0.8µs and
ts ≈ 2.9µs (blue circular marks in Fig.12). Without the
optimizations described in this and the previous sections,
every system call will incur the overhead of tq to queue the
syscall record on the ring buffer, and ts to wake up the user-
level agent, for a total overhead of 3.7µs per syscall. This
limits the maximum number of syscalls that can be handled
per second to hundreds of thousands. However, multicore
loads (such as those presented by our benchmarks) can issue
millions of system calls per second, with the result that most
of them would be dropped.

Our optimized two-level buffer design incurs tq once
every p system calls, and ts every p · w system calls. With
parameters tuned as described above, we can expect the
overhead per system calls to drop to 0.8/100 + 2.9/800 ≈
0.01µs, which means eAudit can potentially keep up with
syscall rates of tens of millions per second. In contrast,
systems that do not incorporate such optimizations can be
expected to face data loss on moderate to high intensity
loads, an expectation that is confirmed by our experimental
evaluation of existing provenance collection systems.

3.7. System call prioritization
The techniques described in the previous two sections helps
to reduce the log tampering window significantly from
several tens of thousands of records for previous systems
(Fig. 4) to the range of hundreds. Previous work [77] has
shown that hundreds of system calls may be sufficient to
carry out a log-tampering attack, so we present techniques
in this section to further reduce this window.

Our approach is based on the observation that not all
system calls contribute towards privilege escalation and/or
log tampering. Indeed, not all system calls are equally
important for attack investigation, e.g., execve’s are far
more significant than read’s. Hence we develop an event
prioritization scheme that further mitigates log tampering.
Our classification into critical and non-critical system calls
is similar to that of HARDLOG [6], and is driven by the
same observation about the key system calls used in real-
world exploits [67], [85], [82], APT attacks [19], as well as
an analysis of privileges needed to carry out a log tampering
attack. Our prioritization is also based on our research
experience in detecting APT campaigns from system-call
level audit data [40], [70], [41]. At the same time, it is
important to note that we are not presenting a single pre-
defined prioritization scheme, but instead, a framework that
enables the users of our system to define these priorities in
a manner that suits their needs.

Although our prioritization is driven by the same reason-
ing as HARDLOG, our design improves over theirs in two
important ways. First, eAudit supports a user-configurable
and granular prioritization scheme where users can assign
one of 256 possible weights to each system call based on
their specific needs and requirements. In contrast, HARD-
LOG has only two pre-defined priority levels. This means
that there is no way to prioritize system calls with an
intermediate level of importance, such as those for removing
files, over less important ones such as reading files.

Secondly, HARDLOG requires a dedicated hardware de-
vice, and moreover, makes significant changes to the kernel
code in order to avoid sending events to the user level. In
contrast, eAudit is a software-only solution that requires
no kernel changes. While it does not achieve the zero
tamper window of HARDLOG on critical system calls, our
evaluation shows that it comes close, achieving a window
of just a few system calls even on very intensive workloads.
The specifics of our design are as follows.

We classify system calls into several categories, and
associate a weight with each category. When the added



weights of the events in the per-CPU message cache reaches
a specified threshold Wth, the buffer is immediately written
to the ring buffer, and the consumer eLog is awakened
immediately. In other words, we ignore p and w when the
weight criteria is met. Our system call categorization is as
follows, listed in decreasing weight order:
• Privilege escalation and tampering: This group consists

of system calls typically involved in privilege escalation,
tampering with other processes in the system, initiating
malware execution, etc. Key examples in this category
include execve, setuid, kill, ptrace, and variants.

• Process provenance: This group consists of a small num-
ber of system calls that affect process provenance and
code loading, including fork, clone, exit and mmap.

• File name and attribute change: This group includes
system calls that alter persistent attributes of files such
as their names, permissions, etc. It includes system calls
such as rename, link, unlink, and chmod.

• Data endpoint creation: At the next level of importance
are system calls such as open, connect and accept that
create new endpoints for reading or writing data.

• Datagram network operations: This group includes sys-
tem calls such as sendto and recvfrom.

• File descriptor operations: System calls in this group
include dup, dup2, pipe, sockpair, fcntl, etc.

• Reads and writes: This group includes syscalls such as
read, write, send, readv, pwrite, and recvmsg.

• Others: This includes less important calls such as close.
Weight assignments for each category, as well as the global
weight threshold Wth, are all configurable. Nevertheless,
it is helpful to describe the defaults, as they help one
understand how the priorities work. In the default setting,
Wth equals the weight assigned to the privilege escalation
and tampering category. This means that every critical event
will be immediately propagated to the user level and logged,
thus minimizing the tampering window. Weights for the next
two categories are set at one-eighth of Wth, meaning that up
to 8 of them can accumulate in the per-CPU buffer before
they are logged. For each successive category, the weight is
halved. This effectively means that the parameters p and w
discussed earlier will primarily control the latency involving
events in the lowest categories, such as reads and writes.

Finally, we incorporate a maximum time for which any
event can be buffered in the per-CPU cache. Past this time
limit, the cache contents are pushed to the ring buffer even
if the cache contains just a single event. By default, this
time limit is set to be 224 nanoseconds ≈ 16 milliseconds.

4. Experimental Evaluation
eAudit is compatible with recent versions of Linux on 64-
bit x86 processors. It has been tested with several recent
versions of Ubuntu (20.04, 21.04 and 22.04) and Fedora. It
uses the bcc toolchain [12]. We find that installing bcc from
source [3] is preferable because it works across different
Linux distributions and kernel versions. All of eAudit’s

dependencies are satisfied once bcc is installed this way.
The goal of our experiments is to evaluate eAudit for its:
• ability to capture data without dropping events,
• performance improvements achieved by our design,
• runtime overhead,
• log tampering window, and
• data volume.

On many of these criteria, we compare our results with that
of sysdig, the most performant among existing systems for
full provenance collection. In Sec. 2, sysdig was configured
to use a printable log file format for consistency with other
logging tools. However, for the comparison results in this
section, we configured it to use its binary (“capture file”)
format since it is faster and more compact.

We use the benchmarks described in Sec. 3.1. Unless
otherwise stated, all results in this section were obtained on
an i7-12700 system with 16GB of memory and a 500GB
solid-state drive with Ubuntu 22.04 and Linux kernel 5.19 or
6.2. This processor has 8 performance cores and 4 efficiency
cores for a total of 12 cores, and was configured to disable
hyperthreading. All benchmarks use a configurable number
of N cores, where N ranges between 1 and 12. For single-
threaded benchmarks such as postmark, this meant running
N copies of the benchmark, each with its own copy of data
files and working directories. We used the default values of
p = 100 and w = 8 mentioned earlier. Ring buffer was set
to 16 MB, and all the syscalls from Table 1 were recorded.

4.1. Data Loss Comparison
We ran all of the benchmarks, while varying the number
of cores used by the benchmark from 1 to 12. None of the
benchmarks resulted in any data loss in the case of eAudit.
Even rdwr, a benchmark designed to maximize the rate of
provenance-related system calls, does not lead to data loss.
(It generated ∼17M syscalls per second across 12 cores.)

Sysdig data loss. As shown in Fig. 15, sysdig is able to
keep up with the kernel benchmark for the most part because
the benchmark is CPU-intensive, and makes relatively few
system calls. The remaining benchmarks are more I/O-
intensive, and sysdig is unable to cope with them. Especially
on multi-core workloads, it ends up dropping most events,
with the worst case corresponding to over 95% data loss.
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Fig. 15: Data loss experienced by Sysdig. eAudit does not lose any data
on any of these benchmarks.



Cilium Tetragon and Tracee. Tetragon [18] and Tracee
[83], [84] are two eBPF-based tools that can log system
calls. It is unclear if the designers of these tools envisioned
use cases involving whole system provenance logging. Nev-
ertheless, we have include them here for completeness.

Tetragon provides a language for users to specify system
calls to be logged. The specification is somewhat low level,
requiring the identification of specific Linux trace points
and low level type information for the arguments of interest.
Support is provided for logging the most common argument
types such as integers and file names, but we did not find
a way to log more complex arguments such as the arrays
of strings passed into execve. We used this specification
language to develop a logger for most system calls used
in our benchmarks. In addition, Tetragon comes with an
example specification that logs raw system calls, recording
the system call number and arguments as they appear in
processor registers.

Tracee provides a full-featured system call logger that is
simpler to use, as it only requires a specification of system
calls that need to be logged. Similar to sysdig and other
tools considered so far, Tracee does not require system call
argument specification.

As shown in Fig. 16, both Tetragon and Tracee expe-
rience much more data loss than sysdig. For this reason,
we evaluated the four lower intensity benchmarks used on
sysdig. Whereas sysdig experiences almost no loss on the
kernel benchmark, these two systems experience significant
loss. On postmark, these systems drop about 90% of the
records, in comparison with sysdig’s 60%.

1 2 4 6 8 10 12
0

20

40

60

80

100

Number of cores used (N )

D
at

a
lo

ss
(%

)

pm-tetra pm-tracee
httperf-tetra httperf-tracee
kernel-tetra kernel-tracee
shbm-tetra shbm-tracee

Fig. 16: Data loss experienced by Tracee and Tetragon.

For the postmark benchmark, we performed a second
data loss measurement to confirm the results shown in
Fig. 16. For this measurement, we used the raw system
call logger that comes with the Tetragon system. Although
this logger will log all system calls as opposed to the
subset related to provenance, this is not a factor in the case
of postmark since 98% of the system calls it makes are
provenance related. This second measurement resulted in
essentially the same curve as the one shown in Fig. 16.

4.2. Effectiveness of 2-level buffer and parameter tuning
Our optimized design achieves major reductions in data
loss and runtime overhead. The data loss chart in Fig. 17
shows that unoptimized eAudit will experience data loss
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Fig. 17: Performance gains of 2-level buffer design and parameter tuning.

exceeding 50% on many multicore workloads. This data loss
is completely eliminated in our optimized design.

The bottom half of Fig. 17 evaluates the overhead reduc-
tion achieved by our optimized design. It plots the ratio of
agent CPU times between the unoptimized (p = 1, w = 1)
and optimized (p = 100, w = 8, prioritized buffering)
designs. When data is being lost, agent CPU time underesti-
mates the overhead, so this chart only considers data points
where there is no data loss. Across these benchmarks, our
optimized design decreases the agent overhead by 18.4×.

4.3. Agent Overhead
Agent overhead, defined as the ratio of the agent and the
benchmark CPU times, is the primary performance measure
we have used so far. Fig. 18 plots this overhead for different
benchmarks as a function of the number of cores used. The
average overhead across all these data points is 3.1%.
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Fig. 18: eAudit Agent Overhead, defined as the ratio of the CPU time of
the agent to the base CPU time of the benchmark.

Fig. 18 shows that agent overheads decrease slightly as
the number of cores is increased. This does not mean that the
agent takes less time for processing a multicore workload
as compared to a single core. Instead, the reduction occurs



because the scalability of the workloads is generally worse
than that of the agent. To show this effect, we have plotted
the average per-system call overhead in Fig. 19. The median
among these averages is 48 nanoseconds.
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Fig. 19: eAudit’s per-system-call Agent Overhead.

The flatness of these curves shows that the agent doesn’t
face much contention and scales well to multicore loads.
Since shbm and kernel use many syscalls with large argu-
ment values, they have a higher per-system call overhead.
Moreover, the CPU-intensive kernel build scales exception-
ally well, surpassing the scalability of eAudit. This leads to
an upward trend in the kernel benchmark overhead. (Since
eAudit’s overhead on CPU-intensive loads is very small, this
increase isn’t a source of concern.)

4.3.1. Comparison With Existing Systems
Since existing systems lose data on most benchmarks, we
limit our comparison to the same two benchmarks post-
mark and shbm used in Sec. 2. To simplify our measure-
ment and make it easier to reproduce our results, we did not
slow down the benchmarks as in Sec. 2.2 to avoid data loss.
As a result, Fig. 20 underestimates the overhead for systems
such as CamFlow that experience significant data loss.
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Fig. 20: Runtime Overhead of eAudit Vs Existing Systems.

Note that eAudit incurs between 4% and 5% overhead on
these benchmarks, while all other systems have overheads
that are much higher. Tetragon’s particularly high overhead
suggests that its authors may not have intended it to be
used for continuous system call logging. Perhaps because
of this, Tetragon tends to produce large syscall records that
include much repeating information, e.g., parent process
info, command line and arguments, all of the userids, etc.

4.4. Benchmark Overhead
Benchmark overhead refers to the increase in the wall clock
time of the benchmarks due to eAudit. Fig. 21 shows that
this overhead stays under 30% for all but rdwr.
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Fig. 21: eAudit’s Benchmark Overhead: Percentage increase in benchmark
wall clock time as a result of provenance data collection.

Similar to agent overhead curves, many wall clock over-
head curves are also flat. Benchmarks that start off with very
low overheads, e.g., shbm and httperf, show an upward
trend. Other benchmarks such as rdwr and postmark show
a downward trend because they have limited scalability.
The average overhead across all the points in Fig. 21 is
about 18%. If we leave out find, tar and rdwr that were
purpose designed to max out the system call rate that can
be sustained by the hardware and the OS, the overhead on
the remaining benchmarks is just 5.8%.

4.5. Log Tampering Window
In this section, we analyze eAudit’s tamper window and
compare it with that of sysdig. For sysdig, we reused the
measurement method from Sec. 2.3. In that method, there is
a period of time between the benchmark termination and the
measurement of log file length. Records written to the log
file during this period are not included in the tamper window,
thus leading to an under-approximation. The relative error
introduced by this delay is insignificant when the window is
large, as was the case for the tools discussed in Sec. 2, but
we found that it significantly underestimates eAudit’s log
tamper window. So, we developed a second method based
on directly instrumenting eAudit.

Specifically, instead of sending a kill signal to the bench-
mark, we send a SIGUSR1 signal to eLog. On receiving
this signal, eLog queries the current time t. As it continues
to process events, eLog counts the number of events that
have a timestamp ≤ t. These are the events that took place
before t but have not yet been written into disk at t, and
hence represent the log tampering window. In addition to
measuring the total number of records that are vulnerable
to tampering, this method can count the number of important
and critical events in the tamper window. Recall from
Sec. 3.7 that critical ones include execve and other events
related to privilege escalation and tampering. We define the
important category to include the next two event groups,
which include process provenance related events and those
relating to file name and attribute changes.

As shown in Table 22, eAudit’s tamper window is several
hundreds, as opposed to 10K to 100K records for sysdig.

Implications for a successful log tampering attack.
While a small reduction in tamper window size may not have



Benchmark eAudit Sysdig RatioCrit. Imp. All
postmark 2 5 355 185904 555
httperf 2 1 355 26243 74
kernel 5 6 412 4473 11
shbm 2 5 355 3479 10
find 11 6 940 21144 23
rdwr 5 6 412 702277 1704
tar 2 5 355 56275 168

Geo. mean (N=1) 3.6 5 426 35,000 82
Geo. mean (N=12) 2.5 3.5 1007 188,000 187

Table 22: Log tampering windows for eAudit and Sysdig. Detailed data is
shown for single-core workloads and then averages are included for both
single-core (N=1) and multi-core (N=12) workloads.

a sufficient impact, eAudit achieves a 100-fold reduction,
which significantly raises the bar for log tampering attacks.
Moreover, due to our syscall prioritization, the window for
critical and important events is in the single digits. Our study
of privilege escalation attacks in the DARPA TC data [19]
indicates that the combined number of important and critical
syscalls — between 6–9 in Table 22 — is insufficient to
carry out those attacks. This is not to say that such an attack
is impossible, but it is certainly difficult.

Another way to assess the window is to measure it
in terms of time. This is a challenge because we need to
measure the time that a particular record was actually written
into a file. While one can easily monitor file timestamps,
it is difficult to accurately measure the time a particular
record was written. But it is possible to obtain a lower
bound on this time based on the rate at which these logging
systems are processing the records from the memory buffers.
Our measurements indicate that sysdig is processing in the
range of 1M records per second, which means that it will
take between 35ms and 188ms to clear the backlog. This is
considerably longer than the 15ms suggested by the authors
of HardLog [6]. The corresponding bound for eAudit will
be just 1ms, based on its backlog of 426–1007 records.

4.6. Data Volume
Since whole system provenance data tends to be volumi-
nous, it is important to minimize the storage requirements.
In this regard, we compare eAudit with sysdig. We omitted
auditd and CamFlow from our comparison — as noted in
Sec. 2.4, their data volume is far larger than that of sysdig.

Both eAudit and sysdig support a binary format that is
more compact than the printed version of provenance data,
so we use this format for measuring uncompressed data size.
We limited our comparison to a subset of benchmarks on
which sysdig does not experience data loss. The results are
shown in Table 23. Data volumes generated by sysdig are
about 11× more than that of eAudit on the average.

Benchmark Syscalls eAudit Sysdig Ratio
postmark 32M 430MB 5.72GB 13.3
httperf 0.8M 25.3MB 290MB 11.5
kernel 27M 605MB 5.03GB 8.3
Geo. mean 9M 187MB 2.03GB 10.8

Table 23: Uncompressed Log Size Comparison.

Benchmark eAudit Sysdig Ratio
postmark 141MB 653MB 4.6
httperf 9.6MB 116MB 12
kernel 178MB 619MB 3.5
Geo. mean 62.3MB 361MB 5.78

Table 24: Log sizes after gzip compression.

Table 24 shows log sizes after compression using gzip.
Sysdig logs are more compressible, so the difference in log
sizes shrinks. But a substantial gap remains, with eAudit
logs having about one-sixth the size of sysdig logs.

4.7. Discussion
Applicability to APT Detection. We have used eAudit
data to construct provenance graphs. We have taken simple
scenarios, such as those observed during a run of our bench-
marks, constructed the corresponding graph, run queries
on it, and navigated it. Although we have not presented
an experimental evaluation of its effectiveness in detecting
attacks, this is because there is already a rich body of
research that has shown that system call data, together with
arguments, is sufficient for detecting these attacks [40], [38],
[31], [70], [41], [91], [100], [98], [23], [101], [4], [36],
[8], [60], [13], [79]. As discussed in Table 1, the list of
syscalls and arguments we collect is a superset of that
collected by TRACE [44], which has been used extensively
by researchers for APT data collection and analysis. Both
eAudit and TRACE provide all syscall arguments, except
for the data buffer argument to read, write, etc. Other im-
portant information such as timestamps, process and thread
identifiers, and sequence numbers are also included.

Limitations and Future Work. We have shown that
eAudit scales to processors with a dozen cores, and can
sustain peak workloads on such machines. It is possible
that scaling to processors with a larger number of cores
will require additional design measures, e.g., parallelizing
the user level logging process, using multiple ring buffers,
and/or increasing the size of message caches.

Some previous provenance collection systems (e.g.,
LPM [11], HiFi [80], CamFlow[78]) go beyond the system
call interface and can collect some kernel events unrelated
to syscalls. The practical significance of this ability for APT
detection has not been established. To the extent it is useful,
we note that there is scope for extending eAudit in this
direction because eBPF can hook into many interfaces in
the Linux kernel.

5. Related Work
System-call data has underpinned most research on intrusion
detection, prevention and recovery in the past 25+ years
[28], [93], [86], [25], [30], [51], [33], [88], [89], [52], [57].
Prompted in part by this, coarse-grained provenance collec-
tion approaches have often been based on audit logs, e.g.,
Spade [32] and Trace [44]. Others rely on directly instru-
menting the OS kernel, e.g., LPM [11], HiFi [80], CamFlow
[78], and KCAL [62]. An advantage of OS instrumentation is
that coverage is extended to include some kernel events that



don’t relate to system calls, but the practical significance of
these events for APT analysis is unknown. On the downside,
approaches involving kernel changes are hard to maintain:
just one of these systems (CamFlow) is available for OS
kernels released in the past 10 years [94].

PROVBPF [59] is an implementation of CamFlow-style
provenance capture for container environments using the
Linux eBPF framework. However, their approach is based
on extension of eBPF called SABPF. As such, they still
need kernel modifications, leading to the same mainte-
nance/deployability concerns.

Provenance collection. W3C [92] defines provenance as
“information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to
form assessments about its quality, reliability or trustworthi-
ness.” Early provenance research was motivated by concerns
of scientific reproducibility, which requires recording the full
details of every process execution on an OS, including the
contents of all code and data files used. Provenance-aware
storage [72] was proposed as a natural place to record such
information. Reproducibility essentially requires historical
file contents to be preserved, leading to high storage costs.

Security applications such as attack detection and foren-
sics don’t require full reproducibility, but they benefit from
recording a broader set of security-relevant events, a factor
that led to many recent provenance efforts to be based on
system calls, e.g., Spade [32], Trace [44] and CamFlow[78].

OS Auditing and Logging Tools. Linux auditing system
auditd was originally developed by Red Hat for Common
Criteria [27] certification. It supports a range of security
events, including system calls. This feature made auditd the
go-to source for numerous provenance collection systems
[32], [44], [91], [54], [63], [55], [99] as well as APT analysis
[40], [38], [31], [70], [41], [91], [100], [98], [23], [101],
[79]. However, the authors of auditd likely didn’t intend
their system for continuous system call logging. As a result,
it has faced performance challenges when used for coarse-
grained provenance collection. The go-audit project [87] is
aimed at faster user-level processing than auditd, but since
it continues to rely on kauditd and netlink sockets that
account for 50% of the Linux auditing system’s overhead
(Fig. 5 in [62]), it cannot achieve our performance goals.

Tracee [83], [84] is an “eBPF-based threat detection
engine,” specializing in rules for detecting suspicious and/or
evasive behaviors. There is also a stand-alone tool for event
collection (Tracee-eBPF) that was already discussed in our
evaluation. Sysdig is a “simple tool for deep system visi-
bility” that captures system calls and other OS events, and
provides the features of “strace + tcpdump + htop + iftop +
lsof ...” For system call monitoring, Sysdig improves signif-
icantly over the performance of auditd, prompting recent
research efforts [98], [23] to switch to Sysdig. Sysdig’s de-
fault distribution uses a kernel module, but an eBPF version
is also available [14]. As acknowledged by the authors of the
eBPF version [14], we found its performance to be worse
than sysdig’s native version, and hence our experiments use
the (more performant) native version.

Sysmon for Linux [26] is an eBPF-based implementation
of the main functionality of Windows Sysmon [66]. It
focuses on a small subset of system calls, including process
creation/termination and network connections. The events
tracked are insufficient for tracking data provenance, e.g.,
determining the dependencies of files on the system. More-
over, previous work shows that data provenance related calls
(e.g., read, write, open and close) account for an overwhelm-
ing majority of system calls [40], [42], which means that
data provenance tracking is inherently more demanding. So
it is not very meaningful to compare Sysmon’s performance
with that of the other tools discussed in this paper.

Datadog [5] provides a log management framework and
rule-based threat detection using eBPF, but does not have a
general capability for syscall logging. In earlier work [1], we
studied the feasibility of building an audit collection based
on eBPF, but the performance concerns central to this paper
were not examined there.

Fine-grained provenance. Coarse-grained provenance
can lead to a dependence explosion that can degrade attack
forensics. Some recent works have developed techniques
to mitigate dependence explosion at the time of analysis
[70], [41], [37]. A more common alternative is to rely
on fine-grained information flow (aka taint) tracking [74],
[96], [10], [49], [53], [45], [46], but unfortunately, it slows
down systems by 2x to 10x, while greatly increasing log
sizes. To address performance challenges, BEEP [55], PRO-
TRACER [64] and MPI [63] developed a new fine-grained
tracking technique called execution-partitioning. MCI [54]
and PROPATROL [69] perform fine-grained tracking using
model-based inference. ALchemist [99] combines applica-
tion logs with system audit logs to derive finer-granularity
provenance. Note that all of these techniques still require
system call audit data, and hence they can directly benefit
from the performance and scalability gains of our approach.

Log Tampering. Paccagnella et al [77] show that auditd
is vulnerable to tampering attacks on in-memory records.
We show that other data collection systems are vulnerable
as well, and that their windows can be very large. Hoang et
al [39] present an algorithm that improves in terms of perfor-
mance and security over Paccagnella et al. Neither of these
works prevent the compromise of audit records but ensure
that the tampering effort will be detected. In contrast, our
work is aimed at minimizing the tamper window and hence
maximizing attack evidence that is preserved. In this aspect,
the goals of HARDLOG [6] are similar to ours. They ensure
that critical syscalls (e.g., execve) are logged synchronously,
while others are logged with a bounded delay. However, in
order to achieve this, they require specialized hardware, and
moreover, make significant kernel changes that allow them
to avoid sending the log data to the user level. In contrast,
our work prioritizes deployability on today’s hardware and
out-of-box compatibility with existing Linux distributions.
Despite these restrictions, we show that we can achieve
very small log tampering windows, especially for critical
and important system calls.



Data reduction techniques. Many researchers have fo-
cused on reducing the massive size of audit logs. One line of
investigation is (lossless) compression [16], [95], [17], [24],
[20]. Since compressed data is not amenable to general-
purpose search or analysis algorithms, these techniques are
primarily useful for reducing storage costs rather than analy-
sis costs. In contrast, (lossy) data reduction that prunes away
“unimportant” events can reduce analysis costs as well.

One class of data reduction techniques deem benign
events unimportant, and store only the events likely to be
part of attacks. Winnower [91] uses a DFA learning tech-
nique to prune away benign events. They report impressive
reductions if the same application is replicated on numerous
hosts. However, the technique does not seem very effective
when applied to individual processes [43]. Rapsheet [37]
suggests pruning away benign events unless they have a
causal relationship to a suspicious event.

A key drawback of these approaches is that malicious
events may be misclassified as benign, causing attack steps
or their effects to be missed during a forensic analysis.
LogApprox [68] avoids such misses, but allows generaliza-
tions that can introduce spurious dependencies. In contrast,
a number of research efforts avoid both false positives and
false negatives in the dependency relationships. LogGC [56],
[61] is a garbage-collection-inspired approach to discard
operations on temporary files used exclusively by a single
process. Clearly, removal of these operations cannot sever
any causal chains. While this technique is effective when
used together with their fine-grained unit instrumentation
[55], it has only a modest effect in coarse-grained settings
[42], [43]. NodeMerge [90] identifies templates for repeated
activities such as library loading and replaces them with a
single node. On some workloads, it can achieve significant
reductions, but on others, its effect can be modest [43].

While LogGC and NodeMerge identify two important
instances of event redundancy, Xu et al [97] develop a
more general characterization called full-trackability equiv-
alence that achieves ∼ 2× reduction in data size [42], [43].
By provably preserving reachability relationships between
nodes at all times, their technique ensures accuracy of
forensic traceback or trace-forward results. In subsequent
work [42], we showed that for faithful forensic analysis
results, it is sufficient to preserve forward reachability from
a node at times when that node’s state can possibly change.
This relaxation, combined with global optimizations enabled
by our versioned graph formulation of the problem, enabled
our full dependence preservation (FD) technique to achieve
a further ∼ 4× data reduction [42], [43] over Xu et al. Zhu et
al [102] explore dependency preserving as well as the more
aggressive benign event pruning techniques, but their main
focus is on simpler algorithms that yield faster runtimes.

The above efforts view data reduction as a post-
processing phase operating on initial data generated by the
tools studied in this paper. In contrast, eAudit’s goal is
to reduce the size of this initial data. A reduction here
has the potential to translate into corresponding reduction
in the output size of data reduction algorithms. We have
already shown this for data compression techniques (Ta-

ble 24). Moreover, these data size reductions can lead to
a proportionate improvement in the runtimes performance
of the entire data reduction pipeline.

6. Conclusion
The research presented in this paper identifies and analyzes
critical bottlenecks in existing audit collection systems,
including high performance overheads, the dropping of a
large fraction of events under sustained workloads, and
large windows for log tampering. We presented several new
techniques to overcome these challenges, including a com-
pact data encoding technique that significantly cuts down
data volumes; a two-level buffering scheme that minimizes
contention and avoids data loss even on intense multi-core
workloads; an analytical model for optimally tuning latency
and throughput; and an event prioritization scheme that
reduces opportunities for log tampering. Through targeted
experiments, we showed that our techniques achieve their
objectives. The techniques developed in the paper can be
directly applied to improve the performance of other eBPF-
based systems that gather nontrivial amounts of data. They
also have applicability to kernel extensions that involve
gathering and sending significant amounts of data to the
user level.
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Appendix A.
Meta-Review
A.1. Summary
The study presents eAudit, an innovative audit data col-
lection system that addresses limitations existing systems,
including high overheads, data loss, log tampering vulnera-
bility, and large data volumes. The extended Berkeley Packet
Filter (eBPF) framework allows eAudit to offer a scalable,
easy-to-deploy solution compatible with most Linux distri-
butions.

A.2. Scientific Contributions
• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established Field

A.3. Reasons for Acceptance
1) The paper targets a long-known issue and has a clear

presentation. The authors take a data-driven approach
to uncover limitations with prior solutions, and intro-
duces new techniques that lay a compelling foundation
for future research in the domain of intrusion detection.

2) The paper provides a valuable step forward by intro-
ducing novel techniques that allow eAudit to simulta-
neously and efficiently deal with high overhead, log
loss, log tampering, and large data volumes.

3) The paper creates a new tool eAudit (to be open-
sourced upon publication) that is based on eBPF and
can be easily deployed to most Linux systems. This
capability also draws a bridge to the large body of
recent research with eBPF (e.g., for other system ob-
servability tasks) that opens many questions for future
work in intrusion detection.

A.4. Noteworthy Concerns
1) Sysmon for Linux and Cilium Tetragon are closely

related systems aimed at efficient audit log collection.
The paper provides a performance comparison against
Cilium Tetragon, demonstrating improvements w.r.t.
data loss. The authors could enhance the depth of the
paper with a comprehensive discussion on architectural
differences between eAudit and Tetragon/SysMon that
make eAudit better. This comparison could illuminate,
for instance, the utilization of ring buffers and per-CPU
caches, which could have substantial implications for
system performance.

2) Several reviewers have expressed concerns regarding
the validity and generality of the system call priori-
tization technique in real-world scenarios. The paper
could be improved with a more comprehensive discus-
sion/analysis of system call prioritization in practice.
Moreover, such an examination could enable a more
nuanced understanding of this method and its broader
implications for threat detection and forensic analysis.

3) Regarding the reduction of log tampering window, the
paper could be improved with a more comprehensive

analysis on how real attacks are prevented or made
more difficult to carry out.

Appendix B.
Response to the Meta-Review
Regarding the concerns:

1) As noted in our related work, Sysmon does not track
data provenance. Since data provenance tracking is
inherently much more performance intensive, includ-
ing Sysmon in our performance comparisons does not
seem appropriate. With regard to the suggestion that
we more deeply examine performance bottlenecks in
related tools, this is indeed what we have devoted most
of the paper to. Specifically:
• We established and explained three main con-

tributors of performance overheads: (a) ver-
bosity/redundancy in the data recorded for each
system call, (b) frequent access to the message
queue used to transmit this data to the user-level
agent, and (c) task-switching to wake up the agent.

• We presented and comprehensively evaluated eAu-
dit’s design features that tame these overheads.

• We also discussed (and in most cases, quantified)
the performance bottlenecks in ebpf-based designs,
including the use of perf buffers, direct access to
the ring buffer on each syscall instead of using a
message cache, and waking up the user-level agent
on each message.

The role of a scientific paper is to establish the preva-
lence of a problem, and to present and evaluate a
solution to this problem. We do not think it is helpful to
cross over into dissecting specific software tools from
the internet or reviewing the features/bugs that led
to their slowdown — especially when we are unable
to access detailed design documents or papers that
help us understand their goals, objectives and design
rationale.

2) While we agree that system-call prioritization can be
strengthened by evaluating against real-world attacks,
there is only so much space in this paper. Between
the number of systems we have compared with, and
the many experiments designed to establish the effec-
tiveness of our design choices, there is no more room
left.

3) We do not dispute that more in-depth evaluation can
further strengthen the paper’s contribution but space
constraints prevent us from getting into more depth.
More importantly, while we would understand skep-
ticism on small improvements to the tamper window,
we believe that a 100× reduction is persuasive. Note
that this reduction occurs even before prioritization
is applied. With prioritization, the number of criti-
cal/important syscalls in the tamper window is another
100× smaller.
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