
Extracting Instruction Semantics via
Symbolic Execution of Code Generators

∗

Niranjan Hasabnis
†

Intel
CA, USA

niranjan.hasabnis@intel.com

R. Sekar
Stony Brook University

NY, USA
sekar@cs.stonybrook.edu

ABSTRACT

Binary analysis and instrumentation form the basis of many
tools and frameworks for software debugging, security hard-
ening, and monitoring. Accurate modeling of instruction
semantics is paramount in this regard, as errors can lead
to program crashes, or worse, bypassing of security checks.
Semantic modeling is a daunting task for modern proces-
sors such as x86 and ARM that support over a thousand
instructions, many of them with complex semantics. This
paper describes a new approach to automate this semantic
modeling task. Our approach leverages instruction semantics
knowledge that is already encoded into today’s production
compilers such as GCC and LLVM. Such an approach can
greatly reduce manual effort, and more importantly, avoid
errors introduced by manual modeling. Furthermore, it is
applicable to any of the numerous architectures already sup-
ported by the compiler. In this paper, we develop a new
symbolic execution technique to extract instruction semantics
from a compiler’s source code. Unlike previous applications
of symbolic execution that were focused on identifying a
single program path that violates a property, our approach
addresses the all paths problem, extracting the entire in-
put/output behavior of the code generator. We have applied
it successfully to the 120K lines of C-code used in GCC’s
code generator to extract x86 instruction semantics. To
demonstrate architecture-neutrality, we have also applied it
to AVR, a processor used in the popular Arduino platform.

CCS Concepts

•Theory of computation → Program analysis; Pre-
and post-conditions; Abstraction; •Software and its engi-

neering → Source code generation; Automatic pro-

gramming; Retargetable compilers; Software reverse engi-
neering;

∗This work was supported in part by grants from NSF (CNS-
1319137) and ONR (N00014-15-1-2378).
†
This work was completed while the first author was a PhD student
at Stony Brook University.

Keywords

Instruction-set semantics extraction; Code generators; Sym-
bolic execution

1. INTRODUCTION

Binary analysis and instrumentation play a central role
in software monitoring and debugging, as well as hardening
of commercial off-the-shelf (COTS) software. Many popular
tools and techniques, including those for software emulation
and virtualization (e.g., QEMU [7], Valgrind [38], DynamoRio
[8] and Pin [36]), malware analysis [47, 9, 19, 54], exploit de-
fense (e.g., taint-tracking [39, 41, 42], control-flow integrity [2,
57, 55]), and sandboxing [34, 20, 53] rely on these techniques.

One of the major challenges in binary instrumentation is
the complexity of modern instruction sets. The Intel manual
describing the x86 instruction set runs to over 1500 pages
describing over 1100 instructions. Modern ARM instruction
sets are even larger. Moreover, this semantic modeling task
is not a one-time effort, since there are many processors to be
considered, e.g., processors used in embedded systems. Even
for mature processors, the instruction sets are frequently ex-
panded. As a result, even mature platforms such as Valgrind
support only a small number of processors, and omit subsets
of instructions such as AVX, FMA4, and SSE4.1 on x86.

Binary analysis and instrumentation present an unforgiving
environment for modeling errors: not only are such errors
hard to debug, they also cause the instrumented application
to fail; or worse, they allow security checks to be bypassed.

In this paper, we present a new approach, called EISSEC
(Extracting Instruction Semantics by Symbolic Execution of
Code generators), that overcomes these challenges by auto-
matically synthesizing instruction semantics from information
already contained in existing compilers. Specifically, mod-
ern compilers such as GCC and LLVM incorporate a code
generator that translates code from a low-level intermediate
representation (e.g., RTL in the case of gcc) to assembly.
We develop a novel symbolic-execution-based technique to
extract the semantics encoded in the source of such a code
generator. The extracted semantics maps assembly instruc-
tions into the compiler’s architecture-independent internal
representation (IR). Not only does this approach avoid man-
ual labor, but it also benefits from years of testing and
debugging already performed on the code generator. More
importantly, the approach is architecture-neutral, i.e., it can
support any of the numerous architectures already supported
by a compiler such as GCC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2950335

Artifact evaluated by FSE✓

301

Below, we summarize the structure of code generators in
modern compilers, and provide the rationale for the approach
developed in this paper. We then identify the key challenges
faced in this approach, and summarize our contributions.

1.1 Approach Motivation

Architecture-independent code generation has long been
a focus in compiler research. These code generators trans-
late code from an (architecture-independent) intermediate
representation (IR) to assembly. Target independence is
achieved by driving a generic code generator with machine
descriptions (MDs) that model the specifics of the target
instruction set. The bulk of the MD consists of rules that
specify how to translate a snippet of IR into an assembly
instruction. These rules are matched up against the IR pro-
duced by the compiler front-end, and the matching snippets
are then replaced by the corresponding assembly instruction.

A purely rule-based approach can generate inefficient code
since it fails to take into account the context in which trans-
lation takes place, e.g., it may generate many redundant
loads and stores. Davidson and Fraser [17] showed that these
inefficiencies can be mitigated by performing several opti-
mizing transformations on the generated code. Moreover,
they showed that the MDs can be used to make these opti-
mizations target independent. This approach thus moves the
complexity of code generation to IR optimization passes that
are shared across different architectures, while simplifying
architecture-specific MDs. Code generators in contemporary
compilers such as GCC and LLVM follow this general outline.
We based our implementation on GCC’s code generator due
to its maturity, and support for many instruction sets.

To provide a better understanding of the rules used in
MDs, consider the following rule:

[(set (match_operand:0 “register operand”“=a”)

(div (match_operand:1 “register operand”“0”)

(match_operand:2 “nonimmediate operand”“qm”)))

(clobber (reg: FLAGS_REG))]

−→ "div %2"

The first part of the rule specifies the semantics of the
div instruction in RTL, the IR used by GCC. It indicates
that operand 0 contains the result of dividing operand 1 by
operand 2. At the assembly level, the first two operands
are implicitly the A-register, a fact captured by match con-
straints “0” and “=a” in the RTL. The applicability of the
pattern is constrained by several other (architecture-specific)
constraints, including “register operand” and “qm.” Often,
compilers don’t need the exact flag values after every arith-
metic or logical instruction. Hence this rule indicates that
flags are modified without specifying exactly how1.

It might seem that we can simply use these rules in the
reverse direction to translate assembly to IR. However, sev-
eral major difficulties arise in doing so. We found that key
details, such as the meanings of the constraints and the print-
ing of assembly-level operands (i.e., how %2 is substituted in
the above example) are hard-coded into architecture-specific
C-functions. Even the output assembly may not be specified
for some rules: instead, the right-hand side of the rule may
consist of C-code that, when compiled and executed, will
return a string representing the output assembly instruction!

1The impact of this abstraction is discussed at the end of Section 4.

One possible avenue is to rely on human experts to specify
the behavior of all this C-code in a declarative form that
is amenable to automated analysis and use in the reverse
direction. This was the approach used by DisIRer [33]. Un-
fortunately, the amount of code that needs to be manually
analyzed is substantial. For instance, the x86 MD in GCC
consists of 1500 rules, but the amount of x86-specific C-code
is about 17K lines! In addition to the scale of effort in-
volved, manual approaches negate two of the key benefits of
a compiler-based approach:

• The manual effort will need to be repeated for each ar-
chitecture. Thus, the approach is unable to benefit much
from a compiler’s support for many different architectures.

• Manual efforts will invariably introduce errors, there by ne-
cessitating extensive testing, thus negating another major
benefit of relying on a well-tested code generator.

The above drawbacks of manually reversing a code genera-
tor are avoided by the learning-based approach called LISC
[30, 29] we developed earlier. In this approach, a variety
of binaries were compiled to produce training data (in the
form of 〈assembly, IR〉 pairs) for an algorithm that learns
generalized assembly-to-IR mapping rules. An important
drawback of LISC is that its design does not ensure either
soundness or completeness. Instead, these properties have
to be evaluated experimentally.

We therefore present an alternative approach called EIS-
SEC that is based on symbolic execution of the code gener-
ator. Instead of blindly generalizing from observed results,
EISSEC extracts the actual mappings contained in the code
generator. Thus, the IR to assembly mappings extracted are
sound by design. Moreover, by developing an all-paths explo-
ration technique, we ensure the extraction of the complete
behavior of the code generator.

1.2 Key Challenges and Contributions

While we want to translate assembly to IR, code generators
perform the inverse task: they map IR to assembly. Hence
we need to develop techniques for inverting the translation
function of a code generator. If the code generator was driven
by a declarative specification of the mapping, the inversion
problem may not be so hard. Indeed, many modern code
generators are driven by so-called machine descriptions (MDs)
that aim to specify such mappings. However, in practice, the
size of target-architecture-specific C (or C++) code used in
these code generators is rather large. For instance, GCC’s
x86 machine description consists of 1500 pattern-matching
based rules, together with 17K lines of C-code2. Thus, to
realize EISSEC, we must solve the following problems:

• Extracting functions specified in code. We develop a novel
symbolic-execution based approach for extracting IR-to-
assembly mapping from a code generator. Symbolic execu-
tion has been used successfully in the context of software
testing [23, 12, 11, 24, 22, 35, 46], vulnerability analysis
[10], malware analysis [43] and exploit generation [5]. How-
ever, these applications are generally concerned with the
discovery of one program path, or, equivalently, the prob-
lem of identifying one 〈input, output〉 pair. SAT and SMT
solvers excel in discovering such (counter-)examples. In
contrast, ours is an all-paths problem, one that requires all

2This excludes all architecture-independent code, e.g., RTL opti-
mization passes and the generic rule-based translation framework.

302

possible 〈input, output〉 pairs. While code generators are
large, they are constrained in some ways — for instance,
loops are rare, and pointer uses are relatively simple. By
exploiting these features, and by carefully engineering a
symbolic execution engine over a constraint-logic program-
ming system3, we have overcome the challenges of all-paths
symbolic execution in this domain.

• Soundness. MDs are meant to translate a compiler’s IR
to assembly, so a natural question is whether they can be
used backwards to lift assembly to IR. Section 4 provides
justification for this inversion.

• Completeness. The mapping derived by our approach may
be incomplete for two reasons. First, a code generator may
not use all of the instructions in the target architecture.
Our evaluation shows that this isn’t a significant source of
incompleteness in practice. Secondly, the semantics may
abstract out some details, e.g., the exact value of CPU flags
after an instruction. Our evaluation measures the scope of
such incompleteness. We also discuss how binary analysis
and instrumentation techniques can generally work with
this imprecision. (See Section 5.)

• Efficient implementation. Our symbolic execution system
is efficient and and is able to achieve all-paths execution
for the 120K lines of C-code used by GCC in its x86 code
generator. In contrast with previous techniques that often
limited their focus to a subset of instructions, we handle
the entire x86 instruction set, including extensions such
as SSE4.1, AVX, and FMA4.

• Architecture-neutrality. It took us just about 8 person-
hours to extract instruction semantics for AVR, an em-
bedded systems processor used in the popular Arduino
platform, as well as many automotive applications.

Paper organization. In Section 2, we describe EISSEC,
our symbolic execution system for extracting IR to assembly
mapping. Section 3 and section 4 discuss the inversion of
these rules, and the soundness of doing so. Experimental
evaluation of the completeness, soundness and performance
of our approach is described in Section 5. Related work is
discussed in Section 6, followed by concluding remarks in
Section 7, and artifact description in Section 8.

2. EXTRACTING IR TO ASSEMBLY MAP

A conceptually simple approach for extracting IR to as-
sembly mapping is to generate every possible IR snippet
that can be given as input, and observing the output. How-
ever, the number of possible snippets is far too large: even
a simple instruction set consisting of one opcode and one
32-bit operand will require considering 4 billion possibilities.
Instead of eagerly instantiating all possible IR snippets, we
develop a concolic execution4 technique that relies on lazy
instantiation of IR (specifically, RTL patterns). We outline
this technique below, and illustrate it with a small example.

3Logic programming systems are generally designed to produce
most-general solutions to constraints, and to generate all solutions
when needed — the reasons we have relied on a CLP(fd) constraint
solver (rather than a more conventional SAT/SMT solver) in our
implementation.
4Concolic execution stands for mixed concrete and symbolic eval-
uation, where some of the variables assume symbolic values, while
the remaining ones assume concrete values.

More details about the approach can be found in the first
author’s dissertation [26].

2.1 Approach Overview

Symbolic/concolic execution systems such as KLEE [10],
DART [23], EXE [12], and CUTE [46] have proven effective in
the context of automatic input generation for software testing
and bug-finding. The nature of these applications, however,
is qualitatively different from that targeted by EISSEC. In
particular, although these systems try to exercise many paths
in the code, they don’t ensure the exploration of all paths in
nontrivial programs. More importantly, they don’t attempt
to generate every possible input that can drive a program
down a specific path. For this reason, they are underpinned
by SAT/SMT solvers that are optimized to find a single
solution to a formula. In contrast, EISSEC needs to extract
the complete input/output mapping, i.e., it needs to consider
every possible input, and compute the corresponding output.
Thus, EISSEC needs to:

• traverse all possible paths in the code generator, and

• compute all solutions to formulas, i.e., solve the all-SAT
problem.

For these reasons, we have developed a concolic execution
system that is targeted at the function extraction problem.

Extracting the complete input/output behavior of arbi-
trary programs is infeasible in general. However, code gen-
erators are constrained in many ways. For instance, loops
are relatively rare, and even when they occur, they can be
easily unrolled. Moreover, pointer uses are relatively simple.
By exploiting these features, we have developed an effective
all-paths/all-solutions concolic execution system that scales
to relatively large programs, such as the 120KLoC x86 code
generator used by GCC. For simplicity, we describe our ap-
proach using a hypothetical code generator for the following
(toy) instruction set.

Instruction ::= mov S, D | add S, D

S ::= rN | (Int) | $Int

D ::= rN | (Int)

N ::= 1..10

Assume that the processor imposes the following restric-
tions on the operands of these instructions:

1. stores (moves to memory) must be from registers

2. loads can only target registers 1 through 3.

3. add instruction accepts only registers arguments; moreover,
the source register number should be the square root of
the destination register. This odd restriction is introduced
as an example of a constraint that won’t be supported
by a constraint solver. It will need to be handled by
enumerating possible values of a symbolic variable.

Figure 1 shows a code generator for this instruction set,
implemented by a function recog. It takes a single argument
I which is an RTL snippet, represented using a datatype
rtx. It prints an assembly instruction and returns 0 when
there is a valid translation for I, and returns −1 otherwise.
It is written in C, except that we have (a) used indentation
rather than braces to capture block nesting, and (b) omitted
the local variable declarations. Each of the above three cases
is handled by the blocks of code beginning respectively on
lines 4, 11 and 20 in this figure.

303

1. int recog(rtx i)
2. if(GETCODE(i)==SET)
3. s=XEXP(i, 2); d=XEXP(i, 1);
4. if(GETCODE(s)==REG &&
5. (GETCODE(d)==MEM||GETCODE(d)==REG))
6. print(“mov ”);
7. printop(s);
8. print(“, ”);
9. printop(d);
10. return 0;
11. else if(GETCODE(d)==REG)
12. n=GETREG(d);
13. if(GETCODE(s)==REG||GETCODE(s)==IMM)
14. || (GETCODE(s)==MEM && n<4))
15. print(“mov ”);
16. printop(s);
17. print(“, ”);
18. printop(d);
19. return 0;
20. else if(GETCODE(s)==ADD)
21. r1=XEXP(s, 1);
22. r2=XEXP(s, 2);
23. if(GETCODE(r1)==GETCODE(r2)==REG)
24. n1=GETREG(r1); n2=GETREG(r2);
25. if(n2==n && n1==sqrt(n2))
26. print(“add ”);
27. printop(r1);
28. print(“ ”);
29. printop(d);
30. return 0;
31. return -1;

int recog tr(rtx i, rtx meta i meta, rtx meta ret meta)
if try(GETCODE_CONS(i, SET)) // constraint: I = set(X,Y)

XEXP_CONS(i, 2, s); // effective constraint: S = X

XEXP_CONS(i, 1, d); // D = Y

GETCODE_CONS(s, c1); GETCODE_CONS(d, c2);
if try(c1==REG && (c2==MEM || c2==REG))
print tr(o, “mov”); printop tr(s);
print tr(o, “, ”); printop tr(d);
record mapping(i, o);
add return cons(ret meta, 1); backtrack();

else if try(c2==REG) // D = reg()

GETREG_CONS(d, n); // D = reg(N)

if try(c1==REG||c1==IMM||(c1==MEM && n<4))
print tr(o, “mov ”);
printop tr(s);
print tr(o, “, ”);
printop tr(d);
record mapping(i, o);
add return cons(ret meta, 1); backtrack();

else if try(c1==ADD) // S = add(,)

XEXP_CONS(s, 1, r1); XEXP_CONS(s, 2, r2);//S = add(R1, R2)

GETCODE_CONS(r1, c5); GETCODE_CONS(r2, c6);
if try(c5==REG && c6==REG) //R1 = reg(), R2 = reg()

GETREG_CONS(r1, n1); GETREG_CONS(r2, n2);
if try(n2==n && n1==sqrt(n2)) // N2 = N

while (getNext(n2, &n3))
n1=sqrt(n3);
print tr(o, “add ”);printop tr(r1);print tr(o, “, ”);
printop tr(d); record mapping(i, o);
add return cons(ret meta, 1); backtrack();

add return cons(ret meta, -1), backtrack();

Figure 1: A code generator for the toy instruction set (left), and its tranformation for concolic execution (right).

2.1.1 Code Transformation for Concolic Execution

Our concolic execution engine is implemented as a source-
to-source transformation on C-code, implemented using CIL-
1.4.0 [37]. GCC’s code generator5 also contains the recog

function shown in the toy example. Concolic execution will
begin with a call to recog with a symbolic argument. Other
than this argument, all remaining objects in memory will be
concrete at this point. As recog executes, it will begin to
assign symbolic values to more variables. We use a simple
static analysis to identify functions that could be called by
recog with symbolic arguments, and the transformation is
recursively applied to those functions.

For performance and scalability, the number of symbolic
variables should be kept as small as possible. To accomplish
this, the transformed code incorporates runtime checks on
whether variables flagged by our static analysis to be symbolic
are indeed symbolic at runtime, and if not, switch to using
concrete computations on them.

To ensure consistency between symbolic and concrete state,
we limit pointers from being flagged as symbolic, except in
cases where the pointer can be treated as a opaque handle
to an abstract data type. In addition, global variables are
treated as concrete unless otherwise indicated using anno-
tation. In our case, we had to annotate 3 of GCC’s global
data structures that store rtx pointers. Array elements and
structure fields accessed using constant offsets are permitted
to hold symbolic values.

After marking variables as symbolic or concrete, code trans-
formation, as illustrated in Figure 1, is carried out. First, we
model rtx objects as first-order terms, and transform calls

5We used GCC-4.6.4, which was the most recent version of GCC
at the time we began our project.

to its accessor functions into term constraints. For the toy
example, the structure of this term is given by:

rtx = set(X,Y)|add(X,Y)|reg(n)|mem(n)|imm(n)|int(n)

Our constraint solver is a logic programming system, so we
use the Prolog convention that variables start with upper-
case, while constants begin with lower-case letters. The
code generator, written in C, uses the opposite convention:
variables are lower-case, while constants are upper-case.

Calls to accessor functions such as GETCODE get replaced by
a call to a symbolic version GETCODE_CONS. These symbolic ver-
sions are developed manually, but their number is small, and
moreover, they are very simple and architecture-independent.

If the value returned by an accessor function is used in a
comparison, for instance, GETCODE(I)==SET, the transformed
version generates a corresponding constraint, namely I =
set(X,Y). (Here X and Y are new symbolic variables.)
This constraint C is handed to a runtime function try that
forwards it to the constraint solver. If the solver indicates that
C can either be true or false, then try causes the symbolic
execution engine to fork6, and explore both branches. This
is done in concert with the constraint solver’s backtracking
mechanism. However, if the solver indicates the only of the
branches is feasible, try won’t fork.

In the case of assignments, we ensure that the variable
being assigned is a fresh variable, so there is no possibility
of the constraint failing. So, the constraint is simply added
on the current path, without forking. Thus, the statement
s=XEXP(i,1), which is transformed to XEXP_CONS(i,1,s), ends
up generating the constraint I = set(S,), where we use the
Prolog convention of “ ” to denote a “dont-care” variable.

6We use a light-weight version of fork, as described later.

304

Arithmetic, logic, and comparison operations on symbolic
variables will result in the generation of a constraint that
is handed over to a constraint solver. In addition, output
generation is also handled using constraints. The output
is treated as a term — specifically, a list whose elements
get defined as the print operations are executed, but the
tail remains a symbolic variable until recog returns. At
this point, if the return code is negative, we generate the
false constraint that causes the currently explored path to
fail. Otherwise, we terminate the output list, and record the
mapping between input and output. The constraint solver is
queried to extract the contents of input and output at this
point, based on all the constraints processed by it so far.

2.1.2 Constraint Solver

Even though SMT solvers [21, 18] are commonly used by
symbolic execution systems [10, 46], they are typically engi-
neered to produce single solutions very quickly, but not so
much for the all-solutions problem [32, 51]. Logic program-
ming systems, on the other hand, have been optimized for
systematic and efficient enumeration of all solutions. Specifi-
cally, we use a logic-programming system with a finite-domain
constraint solver (CLP(fd)) in EISSEC.

Unlike term/structure constraints supported in plain logic
programming, CLP(fd) systems support a wide range of con-
straints. Unfortunately, as a result, it is not possible to keep
the constraints in the most simplified form, i.e., the equiva-
lent of most general unifiers either don’t exist, or cannot be
efficiently computed incrementally, as constraints are added.
Nevertheless, these systems incorporate a primitive to sys-
tematically instantiate variables over a finite-domain, and to
return those values that are consistent with the current set
of constraints. We rely on this primitive, especially to handle
complex constraints such as the square-root constraint in the
toy instruction set.

2.1.3 Mapping Extracted for Figure 1

The first case in the code generator (lines 2 to 10) corre-
sponds to two execution paths, one where the destination
operand of memory, and the other with a destination register.
These two paths yield the following rules:

set(mem(X), reg(Y)) −→ mov rY, (X)

set(reg(X), reg(Y)) −→ mov rY, rX

The next block (lines 11 to 19) contains three disjuncts, thus
yielding the following three rules.

set(reg(X), reg(Y)) −→ mov rY, rX

set(reg(X),mem(Y)) −→ mov (Y), rX, X < 4

set(reg(X), imm(Y)) −→ mov $Y, rX

Finally, the last block (lines 20 to 30) contains no disjunctions,
but the constraint solver needs to enumerate the possible
register numbers to generate suitable values. Since there are
10 possible register values, three combinations are possible,
thus yielding 3 rules.

set(reg(1), add(reg(1), reg(1))) −→ add r1, r1

set(reg(4), add(reg(2), reg(4))) −→ add r2, r4

set(reg(9), add(reg(3), reg(9))) −→ add r3, r9

It is important to note that our approach generates param-
eterized rules. This is achieved by permitting the output
to be a list, where some elements could be variables. By
associating these variables names between the input and
output, we are generating parameterized rules.

2.2 Implementation

2.2.1 Source-to-source Transformation

Source-to-source transformation is implemented as a plug-
in to CIL [37], a popular open-source transformation system.
The implementation of the plug-in consists of around 2600
lines of OCaml code. The plugin utilizes some of the CIL
features such as a simplification pass to generate 3-address
code from C code to simplify the transformation. It also
handles other challenges such as avoiding the transformations
of system code included from header files. This is done
by getting a list of directories which are included in the
compiler’s include search path. We treat files included from
any of those directories as a header files and avoid their
transformation.

2.2.2 Concolic Execution Engine

The transformer needs support code (written in C) to
implement various functions such as addOpCons etc. This
support code is approximately 7200 lines. It also includes ap-
proximately 3000 lines of C code for RTL accessor functions.
Note that this code does not have architecture dependencies.

Although we limit the propagation of symbolic values for
various pragmatic reasons, these limitations do not pose hard
constraints in terms of code constructs that can be handled.
For instance, consider the case of a symbolic value X passed
to an external function that hasn’t been transformed (and
hence can accept only concrete input values). At this point,
our concolic execution engine invokes the constraint solver
to enumerate all possible (concrete) values of X that are
consistent with the current set of constraints accumulated
on X. Then it forks itself once for each such value, and then
calls the external function with that value.

Our undo record approach is implemented in around 500
lines of C++ code. The space complexity of our approach is
proportional to the length of the program path (in terms of
branch points). Thus, EISSEC can scale to millions of paths.

2.2.3 Constraint Solver

The implementation of our constraint solver uses SWI-
Prolog [52], a popular Prolog engine, with its support for
CLPFD [48]. GCC’s code generator only generates finite-
domain constraints, so CLPFD is enough for our purpose.
The solver is implemented in around 700 lines of Prolog and
is supported by 1000 lines of C code. It uses the well-known
Prolog concept of backtracking (using fail.) and other
supported features of SWI-Prolog such as association lists,
enumerating all solutions to a query using labeling.

We execute the constraint solver as a stand-alone pro-
cess separate from the process executing the transformed C
code. The support library provides functions used by the
transformed code to interact with the solver.

Although, we could map most of our requirements from
the constraint solver into the predicates of CLPFD or SWI-
Prolog, one problem demanded special treatment. Specifi-
cally, we found that neither CLPFD nor SWI-Prolog provides
predicate(s) to access the set of constraints imposed on the
variables. To solve this problem, we access the constraints
using clpfd_attr and access its propagators via fd_props7

7These are predicates internal to SWI-Prolog.

305

as SWI-Prolog stores the constraints using attributed vari-
ables [49]. In order to capture a complete set of constraints
on all the input and output variables of a mapping rule, we
traverse the dependence graph of the variables starting from
the output variables and reaching all the input variables. The
dependence graph is a graph where the nodes are variables
and the edges are constraints between the variables. The
goal of the traversal is to print constraints appearing on all
the paths between the output and the input variables.

2.2.4 Optimizations

Symbolic to concrete conversion (“enumeration” as we
described earlier) leads to a large number of program paths,
so we have implemented several optimizations to limit it:

• Using range and set constraints. This optimization relies
on set and range constraints supported by SWI-Prolog
engine. Instead of generating a concrete process for every
concrete enumerated value, it uses set or range constraint
to generate only one concrete process. In symbolic execu-
tion context, this optimization achieves the same effect as
that of merging paths. We implement this optimization
in array accessor functions, and in case of GCC, some of
the arrays contain hundreds of elements. By using range
constraints, such elements could be represented using a
few ranges.

• Exploiting hardware-level parallelism. As mentioned ear-
lier, parallel exploration of paths could be pursued with
significant benefits at the higher levels of the search tree,
while at the lower levels, benefits are less significant. We
have implemented a simple parallelization strategy that
reverts to the use of efficient (but serial) undo mechanism
at lower levels, while relying on forks at the higher levels.

3. LIFTING BINARIES TO IR

As described earlier, our concolic execution generates pa-
rameterized rules of the form IR −→ Asm. The example
rules for the toy instruction set was shown in Section 2.1.3.
The key idea is to use these rules in reverse in order to
lift binaries to IR. While conceptually simple, several addi-
tional problems need to be addressed in order to apply this
approach to whole binaries:

• Disassembly: For stripped binaries, disassembly can be a
nontrivial task. However, recent works (e.g., [57, 56, 55])
have developed solutions that are robust enough to scale
to large binaries, and we simply build over these solutions.

• Efficient lookup: For large instruction sets, the technique
described in the last section can generate millions of rules.
To use this rule set efficiently, we construct a matching
automaton from these rules. Specifically, we parse as-
sembly instructions to construct ASTs, and the matching
automaton operates on this AST. Efficient tree automata
construction techniques have been well-studied [44, 45],
and their use in assembly-to-IR lifting is also known [30].

• Handling one-to-many mapping: Multiple IRs may be
translated into the same assembly instruction. As a result,
when the mapping is inverted, a single assembly instruction
may map to multiple IRs. As we discuss later, these
mappings are all sound, but some may be more precise
than others, e.g., contain fewer “clobber” declarations.
EISSEC chooses more precise translations when available.

• Handling many-to-one mapping: There are instances when
the code generator maps an IR snippet into a sequence
of assembly instructions. As a result, a simple approach
that lifts a single assembly instruction at a time won’t
always work. A naive approach for handling such many-
to-one translations can lead to exponential complexity. In
previous work [30], we developed a linear-time dynamic
programming technique to handle many-to-one mappings.

• Soundness of reversing IR to assembly mapping. This is
perhaps the most important consideration, and is the topic
of the next section.

4. SOUNDNESS

As described earlier, MDs are used to translate RTL to
assembly, so a natural question is whether it is sound to use
them backwards. There is an important practical reason to
believe this: from a developer’s perspective, an MD is devel-
oped by enumerating instructions in the target architecture,
and specifying the equivalent RTL.

The second, and more important reason for soundness
stems from how these rules are used in code generators. As
discussed before, these MD pattern-matching rules are ap-
plied against IR generated from the compiler front-end. Any
time there is a match, a rule can be used. This essentially
means that in every system state, the behavior of IR and
assembly code components of any rule must have close corre-
spondence. Otherwise the assembly instruction will either
fail to achieve a required effect (e.g., fail to set a result regis-
ter to a specified value), or have spurious additional effects
(e.g., modify a register that was indicated as being preserved
in the IR). Intuitively, this means that the semantics of IR
and assembly should be in close correspondence. We begin
with a definition of this correspondence, taken from [27].

The state Sasm at the assembly level is given by an assign-
ment of values to a set of variables Vasm representing the
processor’s internal registers, memory, etc.

The state SRTL at the RTL-level is given by an assignment
of values to a set of variables VRTL representing the proces-
sor’s state as viewed by the code generator. We assume that
VRTL ⊆ Vasm. The set of permitted values for a variable v at
the RTL level will include all of the values permissible at the
assembly level, plus a special value called ⊤ that captures
the idea that the value is unknown or undefined.

SRTL is said to be valid for an RTL snippet R if for every
variable v read by R (excluding those variables that are first
updated and then read by R), SRTL(v) 6= ⊤.

Definition 1 (Processor state correspondence [27]).

States Sasm and SRTL are said to correspond if:

∀v ∈ Vasm (SRTL(v) = Sasm(v)) ∨ (SRTL(v) = ⊤)

This definition says that SRTL is a conservative approxi-
mation of Sasm: either they agree on the value of a state
variable, or SRTL leaves it unspecified. The latter choice is
made when a developer specifies that an instruction“clobbers”
something, without specifying an exact value. This is mostly
done for CPU flags.

While the state correspondence notion seems very reason-
able, note that it does imply that IR state should be mapped
to concrete processor state. For instance, virtual registers
need to be mapped to concrete registers. This holds in the
case of GCC, the compiler used in our implementation.

306

Based on the correspondence between the states at the IR
and assembly levels, we can define a notion of correspondence
between instruction behaviors at the assembly and IR levels.
We use the notation R : S −→ S′ to denote that the execution
of R in state S leads to a new state S′.

Definition 2 (recog soundness). Let R be such that recog(R)
yields the assembly instruction A. Let SRTL be any state
that is valid for R, and Sasm be any corresponding state.
Let R : SRTL −→ S′

RTL and A : Sasm −→ S′

asm. The
rule R −→ A produced by recog is sound if S′

RTL and S′

asm

correspond to each other.

Note that this definition captures the intuition that an
assembly instruction A must do every thing that is done
by the corresponding RTL instruction R, but it may also
do “more.” In particular, from the definition of state corre-
spondence, S′

asm may differ from S′

RTL in terms of (a) state
variables that are not captured at the RTL-level, and (b)
state variables that have been assigned ⊤ in S′

RTL.

Theorem 3 (Code generator soundness). Any violation
of recog soundness will cause the code generator to produce
incorrect code.

Proof: If recog soundness is violated, then there must exist
an RTL R and corresponding states SRTL and Sasm such that
recog(R) = A, R : SRTL −→ S′

RTL and A : Sasm −→ S′

asm,
but S′

RTL and S′

asm don’t correspond. From the definition of
state correspondence, this means that there is a state variable
v ∈ VRTL such that S′

RTL[v] 6= S′

asm[v], where S′

RTL[v] 6= ⊤.
Now, consider an RTL snippet R′ that depends on v. Let
recog(R′) = A′. Thus, the code generator will generate A;A′

from RTL snippet R;R′. Note that the behavior of R;R′ and
A;A′ cannot be identical because R′ starts with a different
value of the variable v as compared to A′.

Note that there are two implicit assumptions in the proof:
that an R′ that depends on v can be found, and that there
will be some source program whose translation can result in
the sequence R;R′. It is conceivable that the code generator
is based on some deep knowledge that such a combination is
impossible, but it does not seem likely; moreover, building
in such unspecified assumptions is not a reasonable practice.

Theorem 4 (Soundness of Asm-to-RTL Mapping).
Let R be an RTL snippet such that recog(R) = A. If recog
is sound, then R is a sound (i.e., conservative) approxima-
tion of the behavior of A. Formally, let A : Sasm −→ S′

asm,
and SRTL be obtained by restricting Sasm to VRTL, and
R : SRTL −→ S′

RTL. Then S′

RTL is a conservative approxi-
mation of S′

asm.

Proof: Follows directly from the definition of recog sound-
ness. Note that Sasm,S′

asm,SRTL and S′

RTL satisfy Defini-
tion 2 and hence states S′

asm and S′

RTL are in correspondence.
Thus S′

RTL is a conservative approximation of S′

asm.

If multiple RTL snippets R1, ..., Rn are mapped to the
same instruction A, then this theorem implies that each Ri

must be a conservative approximation of the semantics of A.

Discussion. Note that a sound translation can be impre-
cise. In particular, there may be cases where some details of
instruction semantics are not captured in the RTL transla-
tion. In practice, this mainly occurs in the case of CPU flags.
Many arithmetic instructions modify these flags, but the RTL
specification of these instructions may only carry the informa-

tion that flags are clobbered by these instructions. This does
not normally pose a problem since compiler-generated code
uses CPU flags only after certain specific instructions, such
as comparison. Flags resulting from arithmetic operations
are not used. As long as the binary code being translated
satisfies this condition, use of approximate semantics will
pose no problem. Even otherwise, static analysis techniques
are generally based on lossy approximations, so should be
able to cope with this kind of precision loss. In an instrumen-
tation context, there can be a problem since the lifted RTL
may include snippets that access ⊤-valued variables. This
problem can also be handled: we keep track of the assembly
instructions A that lose precision during the lift-up to their
IR R, and moreover, are followed by other instructions that
depend on variables Vu left unspecified by R. When the
binary is regenerated after instrumentation, we ensure that
R is replaced by A, thus ensuring that the values of variables
in Vu will remain the same as in the original program.

Thus, any precision loss introduced by EISSEC does not
pose a problem for binary instrumentation, as well as most
binary analysis techniques. But for other applications, e.g.,
binary retargeting, this precision loss may not be acceptable.
To support such applications, the semantics derived by EIS-
SEC needs to be manually augmented. Even so, EISSEC
can greatly reduce manual effort, as it leaves only a small
fraction of state variable values unspecified.

5. EVALUATION

In this section, we evaluate EISSEC in terms of its per-
formance on the x86 instruction set (Section 5.1), the com-
pleteness of this model (Section 5.2), and EISSEC’s ability
to support other architectures (Section 5.3). Where appro-
priate, we compare the performance of EISSEC with the
learning-based LISC approach [30]. All evaluations were
performed on a 1.90GHz Intel Core i7-3517U processor with
4GB of RAM running Linux 3.13.0-53.

5.1 Performance on x86 Code Generator

When GCC is compiled for an architecture, it uses the
machine description for that architecture, together with
architecture-specific C-code, to generate a decision tree. The
decision tree is the analog of the recog function in Fig. 1, i.e.,
it translates RTL snippets to assembly. Our implementation
is based on GCC-4.6.4, the same version used in LISC [30].

In the case of x86, the machine description contained 2244
templates (rules), each for translating a snippet of RTL to
assembly. These templates cover all of the advanced x86
extensions such as SSE and AVX. The templates themselves
may contain C-code. In addition, there is about 17KLoC of
architecture-specific C-code in the x86-code generator. From
all this code, GCC generated a decision tree consisting of
approximately 120K lines of C-code. EISSEC transforms
and performs concolic execution on this 120KLoC.

Unoptimized performance. Fig. 2 shows the progress of
concolic execution over time. The first column shows the time,
while the second and third columns refer to the number of
successful and failure paths explored by the concolic execution
engine. The fourth column shows the coverage obtained,
expressed in terms of the fraction of the leaves in the decision
tree that have been visited. The fifth column shows the
virtual memory use.

307

Total Success Failure Coverage Virtual
Time Paths Paths Memory

(Days) (M) (M) (%) Use (MB)

0.00 0 0 0 17
0.51 4.5 18.1 13 20
0.89 5.8 28.4 15 20
1.27 7.1 38.6 17 20
1.65 7.3 49.9 17 21
2.04 7.6 61.2 19 20
3.17 8.5 94.9 21 18
4.88 9.0 127.6 37 19
6.09 11.2 156.3 49 19
7.31 17.4 223.3 66 18
8.53 17.6 248.0 69 19
9.75 18.1 268.5 70 19

10.42 19.2 287.5 79 19
11.55 23.5 316.9 87 18
12.22 24.3 336.0 91 18
13.11 25.6 360.2 100 17

Figure 2: Unoptimized performance on x86.

Although 13 days may seem like a significant length of
time, what is more remarkable is that, ultimately, 100%
coverage is obtained. In particular:

• all possible paths in the 120KLoC of decision tree code
have been traversed, and,

• all possible 〈RTL, assembly〉 pairs corresponding to each
of these paths have been generated.

Note that each positive path represents a successful transla-
tion of some RTL snippet to assembly. Although the machine
description itself contains only thousands of translation tem-
plates, the number of success paths traversed by the concolic
execution engine numbers in tens of millions. This is because
the engine needs to consider all possible input/output map-
pings that might result from each such template. At one
extreme, a naive enumeration of all possible operand values
can easily lead to the generation of 1010 to 1030 input/out-
put combinations for a single template, depending on the
number of operands involved. Clearly, our constraint solver
is performing much better, which indicates that it is able to
avoid enumeration in most cases. Some case where it can’t
avoid enumeration are as follows. An instruction template
may work with many different operand combinations, but
in the assembly representation, these combinations differ
significantly in their syntax, causing distinct mappings to be
computed. Secondly, registers are identified using numbers
in RTL, while they have names such as eax. Moreover, these
names differ, depending on the width of data involved. Each
of these factors has a multiplicative effect, thus contributing
very quickly to thousands of mappings for each template.

Note that the number of failure paths is far larger than
success paths. This is because each successful path performs
a series of checks on RTL. Under normal operation, almost all
these checks would succeed, but the concolic execution engine
does not know this, and hence needs to generate inputs that
fail each of those checks. Thus, the number of failure paths
would be of the order of

∑
|Pi| where |Pi| denotes the length

of the ith successful path.

Note that memory use is small, which means that the
exploration can be parallelized easily.

Performance with optimizations. Early on in the

Base + Range + Naive
constraints parallelization

CPU time (days) 13.11 9.20 6.64
Success Paths (M) 25.60 10.90 6.32
Failure Paths (M) 360.20 259.10 257.56
Total Paths (M) 386.00 270.00 263.88

Figure 3: Effect of optimizations for x86.

project, a lot of effort went into building a highly efficient
concolic execution engine. This included the development of
very light-weight engine-level fork operations that avoided an
OS-level fork, but instead relied on application-level mainte-
nance of undo-records. Before these efforts, the engine could
handle instruction sets that were orders of magnitude smaller
than x86. Only a limited effort has been put into other as-
pects of optimization, such as range constraint optimization
and parallelization discussed in Section 2.2.4.

Figure 3 shows performance improvements obtained using
the optimizations from Section 2.2.4. Range constraint op-
timization is quite effective, yielding over 40% performance
improvement.

The nature of concolic execution provides almost unbounded
opportunities for parallelization. However, to fully exploit
it, significant engineering effort needs to be expended on the
concolic execution engine. In particular, we need a seamless
way to switch between our application-level forks and OS-
level forks. Since we have not spent this effort, we opted for
a simpler approach that simply divides the decision tree at
the top level into several pieces, with each subtree explored
serially. Although there were 6 subtrees at the top level, they
were not balanced in size, and hence we were able to gain
only a 36% improvement. With additional effort, it should
be possible to reduce the execution time linearly with the
number of available processors.

Performance comparison with LISC. LISC [30] was
trained with just over 3M 〈RTL, assembly〉 pairs from about
a dozen carefully chosen software packages. Since the number
of pairs considered is about two orders of magnitude smaller
than the total paths considered by EISSEC, it is no surprise
that LISC is much faster than EISSEC. However, note that
semantics extraction is a one-time effort, so performance is
not critical. Factors such as soundness and completeness are
far more important, and we discuss these in the next section.

5.2 Code Generator Completeness

Symbolic execution, by design, should extract the com-
plete behavior of the code generator, as long as the coverage
achieved is complete — specifically, if we ensure that all
possible inputs have been considered. As indicated by our
experiments, EISSEC does achieve complete coverage for the
x86 code generator. Thus, what is left to evaluate is the com-
pleteness of the code generator. No additional incompleteness
is introduced by our approach.

To evaluate the completeness of GCC’s code generator, we
used the semantic model extracted by EISSEC to lift the
instructions in all of the binaries that ship by default with
Ubuntu 14.04 (desktop version). We were able to translate
99.66% of the assembly instructions without any manual
effort. The remaining 0.34% corresponded to 47 of the 1187

308

instructions supported by x868. Many of these missing in-
structions are either inserted by the assembler, e.g., enter
and various versions of nop, or are low-level instructions (e.g.,
cpuid, invpcid and rdtsc) that may be found in hand-coded
assembly. Also missing are some rarely used arithmetic in-
structions such as those operating on binary-coded decimals,
and those for directly setting/clearing CPU flags.

We did not undertake a formal comparison with Valgrind
[38], but do point out that EISSEC supports all of the ad-
vanced x86 instructions such as FMA4 that are missing in
Valgrind and similar systems.

In comparison with EISSEC, LISC [30] achieved 99.49%
coverage on the Ubuntu test. It should be noted that LISC
achieved this coverage using a carefully selected training set
that was optimized for this specific dataset. Despite this, the
number of instructions LISC can’t translate is 50% higher
than EISSEC. These misses covered two instructions rcl and
rcr, as well as operand modes and combinations for other
instructions that weren’t present in the training set.

More importantly, soundness of the extracted semantics
has been established for EISSEC, but in the case of LISC,
soundness is not ensured. While testing techniques have been
developed to compensate for this shortcoming, only a small
subset of x86 instructions have been tested in [30].

5.3 Architecture Independence

We then followed the same evaluation steps to extract
instruction semantics for the AVR processor used in the
popular Arduino embedded system platform. AVR is also
widely used in automotive applications. We used avr-gcc-

v4.8.2 code generator in our evaluation.

The AVR architecture has 76 mnemonics, and the code
generator used for the symbolic execution contained 98 RTL-
to-assembly mapping pairs. The decision tree used by the
code generator takes approximately 12K lines of C code.

Our source-to-source transformer places some restrictions
on the code. Some manual effort is required to modify the
code generator to ensure conformance with these restrictions.
This manual effort required approximately 7 hours. In com-
parison, LISC took roughly half this time (3.5 hours). Being
a black-box approach, LISC requires less manual effort than
EISSEC.

Runtime performance of EISSEC on the AVR decision
tree is shown in Fig. 4. All of the optimizations discussed in
Section 2.2.4 were used, including 2-way parallelization at the
top-level of the decision tree. Note that the number of paths
explored is about three orders of magnitude smaller than
that of x86. Consequently, model extraction is much faster
as well. Four of the 76 AVR instructions (break, nop, wdr,
and sleep) were not supported by GCC. EISSEC was able
to extract the semantics for the remaining 72 instructions.

6. RELATED WORK

6.1 Binary Analysis and Instrumentation

Most previous binary analysis/instrumentation systems,
including DynamoRio [8], Pin [36], QEMU [7], Valgrind
[38], SecondWrite [4], CodeSurfer [6], UQBT [16] and many

8This count excludes privileged instructions that cannot be used
at the user-level. More details about this dataset, and how we
counted the instructions, can be found in [30].

Total Success Failure Coverage Virtual
Time Paths Paths memory

(Mins) (K) (K) (%) (MB)

0 0 0 0 3.2
20 2.1 9.1 13 6.0
40 7.0 29.2 49 8.3
60 7.8 48.5 71 7.3
87 9.7 63.4 100 5.8

Figure 4: Performance on AVR.

other systems [15] require a hand-written target instruction
specification to drive the translator.

Approaches have been developed [13] for assembly-to-IR
translation by relying on QEMU’s support for multiple ar-
chitectures. Specifically, they have written a backend for
QEMU to translate QEMU’s IR to LLVM’s IR. BAP [9], on
the other hand, directly uses Valgrind’s assembly to IR trans-
lator. These methods thus inherit any completeness issues
from QEMU and Valgrind, which manifest as (a) support
for only the most commonly used platforms, and (b) missing
support for new and advanced instruction sets.

DisIRer [33] and Dagger [1] are two efforts that use compiler
infrastructures to lift binaries to an IR. Dagger relies on
the LLVM infrastructure, but their approach is a manual
one: it requires a good understanding of LLVM internals
and considerable amount of additional code development.
DisIRer’s goals are similar to ours: using MDs in reverse to
lift binaries. However, as discussed earlier, there are many
parts of MDs that are not specifications, and the only way
to invert them is if we understand the C-code involved, and
manually write functions to invert them.

LISC [30, 29] relies on generating abstract mapping rules
by learning the assembly-to-IR translations from concrete
mapping rules obtained from code generator logs. To gener-
ate the logs, we compile a number of source code packages,
and record the 〈IR, assembly〉 pairs produced. Being a black-
box approach, it requires less effort than EISSEC to support
each addition architecture. LISC is also faster. However,
LISC does not guarantee the completeness of the extracted
map. EISSEC, on the other hand, explores all of the code
generator paths and guarantees the completeness of the ex-
tracted map. More importantly, we prove the soundness
of EISSEC, but the soundness of LISC mappings need to
be evaluated experimentally (specifically, using test cases).
Both LISC and EISSEC were the results of the first author’s
PhD research, and a fuller discussion and comparison of the
two approaches can be found in his dissertation [26].

6.2 Constraint Solvers

SMT solvers, such as STP [21] and Z3 [18], are used in many
popular symbolic execution systems [46, 23, 10, 12, 11, 24,
40, 14]. SMT solvers, with support for various theories such
as arrays, match closely with the semantics of C language.
So, it is no surprise that they form the decision procedure
backend for symbolic execution systems.

SAT/SMT solvers are engineered to efficiently find one
solution to a given formula. Fortunately, in the context of
bug finding or software testing, the domains where these
solvers are mostly used, producing one solution is typically
enough. In other words, existing solvers are not targeting

309

all-SAT problem, i.e., finding all solutions to a SAT problem.
EISSEC, however, requires the extractions of the complete
input/output behavior of a code generator. This requires
the identification of every 〈input, output〉 pair that can be
produced by the code generator. In other words, EISSEC
needs to solve an all-SAT problem. Unlike SAT-solvers that
are optimized for finding one solution, logic programing
systems are designed so that they can produce all solutions
if needed. This is why we based EISSEC on an CLP(fd)
system.

6.3 Function Extraction

Symbolic execution has been used in the context of program
verification. For instance, work presented in [3] uses sym-
bolic execution in order to extract and verify cryptographic
protocol models from their C implementations. Although
the high-level idea of using symbolic execution to extract a
function from C code is similar to EISSEC, there are number
of differences. Specifically, the complexity of cryptographic
code handled in this work is several orders of magnitude
less (100X) than GCC’s code generator. Moreover, their
system confines symbolic execution to main path in the code
and can only handle the protocol implementations with no
significant branching. In order to reduce the complexity of
symbolic execution, they manually build semantic models for
commonly used cryptographic function. EISSEC, on other
hand, would use concrete execution in such cases. Approach
described in [50] uses model extraction of GUI programs
from hand-held devices and compares extracted models with
the expected models (obtained from specifications). Their
work is mainly concerned with extracting models to capture
how system responds to user inputs. Consequently, their
model is a state machine which captures system transitions
on various event inputs. Definition of model for EISSEC, on
the other hand, is simply a mapping between input (RTL)
and output (assembly instructions).

Synthesizing functions using input/output samples could
be considered as an alternative to function extraction us-
ing symbolic execution. Given the complexity of symbolic
execution engines, encoding the instruction semantics in sym-
bolic formulas is an interesting challenge. There are existing
approaches [25, 31] that use program synthesis or template-
based approach to generate bit-vector formulas representing
instruction semantics. Rather than searching the functions
representing instruction semantics in a large search space,
they confine the search space by manually specifying seman-
tics of basic instructions (called “base set” in [31]). Semantics
of remaining instructions is then searched, starting from
the semantics of basic instructions. For instance, using 6
manually provided templates, approach described in [25] is
able to synthesize formulas for 534 32-bit x86 arithmetic in-
structions. Similarly, using 62 instructions in “base set”, the
approach proposed in [31] is able to synthesize SMT formulas
for around 1795 of x86 64 instructions. Both the approaches
have the advantages of not relying on the correctness of a
code generator and that they can address the precision is-
sue (semantics of EFLAGS) faced by EISSEC. We address
the correctness problem by developing a systematic proof of
soundness. Although both the approaches are effective in
synthesizing the semantics of parts of 32-bit and 64-bit x86
instruction sets, they suffer from several limitations. First of
all, the task of specifying the semantics of basic instructions
demands reasonable understanding of the target architec-

ture. Consequently, it is unclear the level of effort required
in supporting new architectures. As compared to these ap-
proaches, EISSEC requires minimal (if not none) architecture
knowledge (not the understanding of instruction semantics).
Second, both the approaches could not extract some of the
user-level instructions (especially, floating points and vector
instructions in [25]) because of the difficulty or complexity
modeling those instructions. In our experiments, EISSEC
was able to extract semantics of advanced x86 instructions
also. Moreover, the approach used in EISSEC is not limited
by the size of instruction’s input space (32-bit or 64-bit) and
can easily scale to complex instruction sets.

7. CONCLUSION

In this paper, we described an automated approach using
symbolic execution for extracting the instruction semantics
model encoded in the code generators of modern compilers.
We formulate the model extraction problem as the all paths
problem, and employ carefully engineered symbolic execution
system for extracting the complete input/output behavior
of the code generators. Unlike existing symbolic execution
systems that are mostly applied in the context of testing or
bug finding, the model extraction problem demands different
considerations in the design of a symbolic execution system.

Our experimental evaluation validates our hypothesis that
the knowledge encoded in the code generators of modern
compilers can be used for semantic extraction with relative
ease. We apply EISSEC to GCC’s x86 code generator (of
size 120 KLoC) and extract semantics of all the instructions
supported by the code generator. Importantly, we demon-
strate that by exploiting the strength of symbolic execution
in reaching all of the rarely visited corners of the program
code, our approach is able to extract the semantics of all the
instructions supported by the code generator. Furthermore,
it reduces manual modeling efforts even further than existing
learning based approaches. We also address a common con-
cern of the soundness of the extracted model by developing
a systematic proof. Lastly, we demonstrate architecture-
neutrality of our approach by extracting semantic model of
AVR architecture.

In the spirit of open-source community and to share our
research prototype with other researchers working on similar
problems, we provide artifact description of our approach in
this paper. Additionally, the artifact is also available from
our laboratory web site [28].

8. ARTIFACT DESCRIPTION

EISSEC artifact is packaged as a Docker image that can
be installed on Linux, Windows, MacOS and many other
OSes. Instructions for using the artifact are as follows:

• Docker installation. Please refer to steps at https://
docs.docker.com/engine/installation/ to install Docker on
your machine. EISSEC docker image has been tested on
Ubuntu-14.04 x86 64.

• Using EISSEC Docker image. Execute commands
below to pull EISSEC Docker image, create a container
from the image and get a shell access to the container.

$ docker pull seclab/eissec
$ docker create -it --name eissec seclab/eissec
$ docker start eissec
$ docker exec -it eissec bash

310

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

_G2101 in 21..28 ,
_G653 in 36..138 ,
_G653 #>= _G588 ,
_G184 #>= _G653 ,
_G462 in -1..32,
_G462 + 10 #= _G494 ,
_G494 in 9..42 ,
_G494 + _G543 #= _G588 ,
_G462 + 10 #= _G494 ,
_G494 * 3 #= _G543 ,
_G543 in 27..126 ,
_G494 + _G543 #= _G588 ,
_G494 * 3 #= _G543 ,
_G588 in 36..137 ,
_G653 #>= _G588 ,
_G588 #=< _G184 + -1,
_G494 + _G543 #= _G588 ,
_G184 in 37..138 ,
_G184 #>= _G653 , _G588 #=< _G184 + -1,

map: cmpb %_G2101 -> insn(_G9 ,
rtl(15,_G27 ,union_u(

[rtl(_G184 ,_G191 ,_G198 ,_G205),
rtl(_G462 ,_G469 ,_G470 ,_G471),
rtl(_G653 ,_G660 ,_G667 ,_G668)| _G393],
_G39 ,_G46 ,_G53 ,_G54),_G73))

Figure 5: Mapping rule for cmpb %reg instruction

After executing these commands, we get shell access to
the EISSEC container. Inside the container, in eissec

directory, the layout of EISSEC source package can be
seen. A README file under eissec directory explains the
layout. Now execute commands below inside the container
to build the EISSEC executable and extract the model
from x86 code generator.

$ cd eissec
$ source env_setup.sh
$ make
$ cd test/x86
$./testmodel dummy.c
$./fullmodel dummy.c

• Output of testmodel.

$./testmodel dummy.c

This command will dump assembly to RTL mapping for a
sample code generator. One of the dumped rules is shown
in Fig. 5.

In the Figure, _G are Prolog variables. The figure shows
the mapping rule for cmpb x86 instruction. The operand
of cmpb is represented by a variable _G2101. It is a reg-
ister operand, as signified by the %-prefix before _G2101.
RTL corresponding to the assembly specifies how it maps
_G2101 into RTL variables. For variables in assembly
instruction, RTL variables are obtained by solving con-
straints involving RTL variables.

Mapping rules are of the form asm(x, y, z) = rtl, where
x, y, and z are variables in assembly and rtl is an RTL
snippet. The RTL snippet contains many variables that
are derived from the operands of the assembly instruction.
Relations between x, y, z and rtl are captured by the set
of constraints for every rule. There can be more than one
possible instantiation that satisfies the constraints for a
single rule. These instantiations correspond to different
operands that a rule will support.

Steps involved in extracting instruction semantics are:

– Transform GCC’s code generator code for symbolic exe-
cution.

EISSEC uses CIL-based source-to-source transforma-
tion. Transformed code, when executed, performs
symbolic execution of the code generator. Our source-
to-source transformer is named pkgs/cil-1.4.0/bin

/cilly. It transforms insn-recog.c (from test/x86)
while compiling (test/x86). Transformed version of
insn-recog.c can be found in /tmp/insn-recog.cil.c.

– Constraints sent to constraint solver.

When testmodel or fullmodel is executed, constraints
sent to cons_solve are dumped into /tmp/logcs file.
If you would like to change the location, please modify
driver.c in test/x86 and recompile.

• Maturity. Artifact describes EISSEC symbolic execution
system used to extract Assembly-to-IR model from com-
piler’s code generator. Extracting assembly-to-IR semantic
model is the one of the complex tasks in the process of
assembly-to-IR translation. Typical approach to this prob-
lem is to manually extract assembly-to-IR semantic model.
EISSEC automates this task, and the artifact demonstrates
how EISSEC automatically extracts the model.

Note that this artifact does not describe how to apply
extracted semantic model for assembly-to-IR translation
process.

• Source code. EISSEC’s source code is fully contained in-
side eissec directory inside the Docker container. The src
directory inside eissec contains the source code of source-
to-source transformer (transformer) (for symbolic execu-
tion), helper functions for symbolic execution (symhelper)
and the interface to the constraint solver (csolve). Ad-
ditionally, EISSEC source code can also be downloaded
from http://seclab.cs.sunysb.edu/seclab/download.html.

9. REFERENCES
[1] Dagger. http://dagger.repzret.org.

[2] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Transactions
on Information and System Security (TISSEC), 2009.

[3] Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens.
Extracting and verifying cryptographic models from c
protocol code by symbolic execution. In Proceedings of
the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 331–340,
2011.

[4] Kapil Anand, Matthew Smithson, Aparna Kotha,
Khaled Elwazeer, and Rajeev Barua. Decompilation to
compiler high ir in a binary rewriter. Technical report,
Tech. rep., University of Maryland (November 2010),
http://www. ece. umd.
edu/barua/high-IR-technical-report10. pdf.

[5] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze
Hao, and David Brumley. AEG: Automatic Exploit
Generation. In Network and Distributed System
Security Symposium, Feburary 2011.

[6] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and
Tim Teitelbaum. Codesurfer/x86—a platform for
analyzing x86 executables. In Compiler Construction.
Springer, 2005.

311

http://seclab.cs.sunysb.edu/seclab/download.html
http://dagger.repzret.org

[7] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In Proceedings of the USENIX Conference
on Annual Technical Conference, 2005.

[8] Derek L. Bruening. Efficient, transparent, and
comprehensive runtime code manipulation. PhD thesis,
Cambridge, MA, USA, 2004.

[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and
Edward J. Schwartz. Bap: a binary analysis platform.
In Proceedings of the 23rd international conference on
Computer aided verification, CAV’11, 2011.

[10] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX conference on Operating
systems design and implementation, OSDI’08, pages
209–224, Berkeley, CA, USA, 2008.

[11] Cristian Cadar and Dawson Engler. Execution
generated test cases: How to make systems code crash
itself. In Proceedings of the 12th International
Conference on Model Checking Software, SPIN’05,
pages 2–23, 2005.

[12] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski,
David L. Dill, and Dawson R. Engler. EXE:
automatically generating inputs of death. In Proceedings
of the 13th ACM conference on Computer and
communications security, CCS ’06, pages 322–335, 2006.

[13] Vitaly Chipounov and George Candea. Dynamically
Translating x86 to LLVM using QEMU. Technical
report, 2010.

[14] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir,
and George Candea. Selective symbolic execution. In
Workshop on Hot Topics in Dependable Systems, 2009.

[15] Cristina Cifuentes, Brian Lewis, and David Ung.
Walkabout - a retargetable dynamic binary translation
framework. In In Proceedings of the 2002 Workshop on
Binary Translation, 2002.

[16] Cristina Cifuentes, Mike Van Emmerik, and Norman
Ramsey. The design of a resourceable and retargetable
binary translator. In Reverse Engineering, 1999.
Proceedings. Sixth Working Conference on, pages
280–291. IEEE, 1999.

[17] Jack W. Davidson and Christopher W. Fraser. Code
Selection Through Object Code Optimization. ACM
Trans. Program. Lang. Syst., 1984.

[18] Leonardo De Moura and Nikolaj Bjørner. Z3: An
Efficient SMT Solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340,
2008.

[19] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng
Yin, and Dawn Song. Dynamic spyware analysis. In
Proceedings of the USENIX Conference on Annual
Technical Conference, 2007.

[20] Ulfar Erlingsson, Silicon Valley, Martin Abadi, Michael
Vrable, Mihai Budiu, and George C. Necula. Xfi:
software guards for system address spaces. In OSDI,
2006.

[21] Vijay Ganesh and David L. Dill. A Decision Procedure
for Bit-vectors and Arrays. In Proceedings of the 19th
International Conference on Computer Aided
Verification, CAV’07, pages 519–531, 2007.

[22] Patrice Godefroid. Compositional dynamic test
generation. In Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’07, pages 47–54, 2007.

[23] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing. In
Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation,
PLDI ’05, pages 213–223, 2005.

[24] Patrice Godefroid, Michael Y Levin, and David A
Molnar. Automated Whitebox Fuzz Testing. In
Network Distributed Security Symposium (NDSS),
volume 8, pages 151–166, 2008.

[25] Patrice Godefroid and Ankur Taly. Automated
Synthesis of Symbolic Instruction Encodings from I/O
Samples. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’12, 2012.

[26] Niranjan Hasabnis. Automatic Synthesis of Instruction
Set Semantics and its Applications. PhD thesis, Stony
Brook, NY, USA, August, 2015.

[27] Niranjan Hasabnis, Rui Qiao, and R. Sekar. Checking
Correctness of Code Generator Architecture
Specifications. In International Symposium on Code
Generation and Optimization, CGO, 2015.

[28] Niranjan Hasabnis and R Sekar. EISSEC - Extracting
Instruction Semantics by Symbolic Execution of Code
Generators - software release.
http://seclab.cs.sunysb.edu/seclab/eissec/.

[29] Niranjan Hasabnis and R. Sekar. Automatic Generation
of Assembly to IR Translators Using Compilers (short
paper). In Workshop on Architectural and
Microarchitectural Support for Binary Translation (in
conjuction with CGO), AMAS-BT, 2015.

[30] Niranjan Hasabnis and R. Sekar. Lifting Assembly to
Intermediate Representation: A Novel Approach
Leveraging Compilers. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’16, 2016.

[31] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex
Aiken. Stratified Synthesis: Automatically Learning the
x86-64 Instruction Set. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, 2016.

[32] J.N. Hooker. Solving the incremental satisfiability
problem. The Journal of Logic Programming,
15(1–2):177 – 186, 1993.

[33] Yuan-Shin Hwang, Tzong-Yen Lin, and Rong-Guey
Chang. Disirer: Converting a retargetable compiler into
a multiplatform binary translator. ACM Trans. Archit.
Code Optim., 7(4):18:1–18:36, December 2010.

[34] Vladimir Kiriansky, Derek Bruening, and Saman P.
Amarasinghe. Secure Execution via Program
Shepherding. In USENIX Security Symposium, 2002.

[35] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan.
KLOVER: a symbolic execution and automatic test
generation tool for C++ programs. In Proceedings of
the 23rd international conference on Computer aided
verification, CAV’11, pages 609–615, 2011.

[36] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,

312

http://seclab.cs.sunysb.edu/seclab/eissec/

Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design
and implementation, PLDI ’05, 2005.

[37] George C. Necula, Scott McPeak, Shree Prakash Rahul,
and Westley Weimer. CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs.
In Proceedings of the 11th International Conference on
Compiler Construction, CC ’02, pages 213–228, 2002.

[38] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary
instrumentation. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design
and implementation, PLDI ’07. ACM, 2007.

[39] James Newsome and Dawn Song. Dynamic Taint
Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity
Software. In Network Distributed Security Symposium
(NDSS), 2005.

[40] Corina S. Păsăreanu and Neha Rungta. Symbolic
PathFinder: Symbolic Execution of Java Bytecode. In
Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, pages 179–180, 2010.

[41] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim,
Yuanyuan Zhou, and Youfeng Wu. LIFT: A
Low-Overhead Practical Information Flow Tracking
System for Detecting Security Attacks. In The Annual
IEEE/ACM International Symposium on
Microarchitecture, 2006.

[42] Prateek Saxena, R Sekar, and Varun Puranik. Efficient
fine-grained binary instrumentationwith applications to
taint-tracking. In Proceedings of the 6th annual
IEEE/ACM international symposium on Code
generation and optimization, CGO ’08, 2008.

[43] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In
Proceedings of the 2010 IEEE Symposium on Security
and Privacy, SP ’10, pages 317–331, Washington, DC,
USA, 2010.

[44] R Sekar, IV Ramakrishnan, and Andrei Voronkov. Term
indexing, handbook of automated reasoning, 2001.

[45] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan.
Adaptive Pattern Matching. In Proceedings of the 19th
International Colloquium on Automata, Languages and
Programming, ICALP ’92, 1992.

[46] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a
concolic unit testing engine for C. In Proceedings of the
10th European software engineering conference held

jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering,
ESEC/FSE-13, pages 263–272, 2005.

[47] Dawn Song, David Brumley, Heng Yin, Juan Caballero,
Ivan Jager, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, and Prateek Saxena.
BitBlaze: A New Approach to Computer Security via
Binary Analysis. In Proceedings of the 4th International
Conference on Information Systems Security. Keynote
invited paper., December 2008.

[48] Markus Triska. The finite domain constraint solver of
SWI-Prolog. In FLOPS, volume 7294 of LNCS, pages
307–316, 2012.

[49] Markus Triska. Correctness Considerations in
CLP(FD) Systems. PhD thesis, Vienna University of
Technology, 2014.

[50] Shaohui Wang, Srinivasan Dwarakanathan, Oleg
Sokolsky, and Insup Lee. High-level model extraction
via symbolic execution. Technical Report MS-CIS-12-04,
Department of Computer and Information Science,
University of Pennsylvania, 2012.

[51] J. Whittemore, Joonyoung Kim, and K. Sakallah.
SATIRE: A new incremental satisfiability engine. In
Design Automation Conference, 2001. Proceedings,
pages 542–545, 2001.

[52] Jan Wielemaker, Tom Schrijvers, Markus Triska, and
Torbjörn Lager. SWI-Prolog. Theory and Practice of
Logic Programming, 12(1-2):67–96, 2012.

[53] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2009.

[54] Heng Yin, Dawn Song, Manuel Egele, Christopher
Kruegel, and Engin Kirda. Panorama: capturing
system-wide information flow for malware detection
and analysis. In Proceedings of the ACM Conference on
Computer and Communications Security, 2007.

[55] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan,
Stephen McCamant, Laszlo Szekeres, Dawn Song, and
Wei Zou. Practical control flow integrity &
randomization for binary executables. In Proceedings of
the IEEE Symposium on Security and Privacy, 2013.

[56] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and
R. Sekar. A platform for secure static binary
instrumentation. In ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments (VEE), 2014.

[57] Mingwei Zhang and R. Sekar. Control flow integrity for
COTS binaries. In USENIX Security Symposium, 2013.

313

	1 Introduction
	1.1 Approach Motivation
	1.2 Key Challenges and Contributions

	2 Extracting IR to Assembly Map
	2.1 Approach Overview
	2.1.1 Code Transformation for Concolic Execution
	2.1.2 Constraint Solver
	2.1.3 Mapping Extracted for Figure 1

	2.2 Implementation
	2.2.1 Source-to-source Transformation
	2.2.2 Concolic Execution Engine
	2.2.3 Constraint Solver
	2.2.4 Optimizations

	3 Lifting Binaries to IR
	4 Soundness
	5 Evaluation
	5.1 Performance on x86 Code Generator
	5.2 Code Generator Completeness
	5.3 Architecture Independence

	6 Related Work
	6.1 Binary Analysis and Instrumentation
	6.2 Constraint Solvers
	6.3 Function Extraction

	7 Conclusion
	8 Artifact Description
	9 References

