
A Fast Automaton-Based Method for Detecting Anomalous Program Behaviors

R. Sekar M. Bendre D. Dhurjati P. Bollineni
State University of New York Iowa State Univeristy

Stony Brook, NY 11794 Ames, IA 50014�
sekar,mbendre,dinakar � @cs.sunysby.edu pradeep@cs.iastate.edu

Abstract

Forrest et al introduced a new intrusion detection ap-
proach that identifies anomalous sequences of system calls
executed by programs. Since their work, anomaly detection
on system call sequences has become perhaps the most suc-
cessful approach for detecting novel intrusions. A natural
way for learning sequences is to use a finite-state automa-
ton (FSA). However, previous research seemed to indicate
that FSA-learning is computationally expensive, that it can-
not be completely automated, or that the space usage of
the FSA may be excessive. We present a new approach in
this paper that overcomes these difficulties. Our approach
builds a compact FSA in a fully automatic and efficient man-
ner, without requiring access to source code for programs.
The space requirements for the FSA is low — of the order of
a few kilobytes for typical programs. The FSA uses only a
constant time per system call during the learning as well as
detection period. This factor leads to low overheads for in-
trusion detection. Unlike many of the previous techniques,
our FSA-technique can capture both short term and long
term temporal relationships among system calls, and thus
perform more accurate detection. For instance, the FSA
can capture common program structures such as branches,
joins, loops etc. This enables our approach to generalize
and predict future behaviors from past behaviors. For in-
stance, if a program executed a loop once in an execution,
the FSA approach can generalize and predict that the same
loop may be executed zero or more times in subsequent ex-
ecutions. As a result, the training periods needed for our
FSA based approach are shorter. Moreover, false positives
are reduced without increasing the likelihood of missing at-
tacks. This paper describes our FSA based technique and
presents a comprehensive experimental evaluation of the
technique.

1. Introduction

Forrest et al [5] demonstrated that effective intrusion de-
tection techniques can be developed by learning normal pro-
gram behaviors, and detecting deviations from this norm. In

contrast with users, programs tend to have more narrowly-
defined behaviors. This enables more accurate learning of
normal behaviors, and thus improves the accuracy of intru-
sion detection.

Forrest et al’s [5] approach characterizes normal pro-
gram behaviors in terms of sequences of system calls made
by them. Anomalous program behavior produces system
call sequences that have not been observed under normal
operation. In order to make the learning algorithm compu-
tationally tractable, they break a system call sequence into
substrings of a fixed length � . These strings, called � -
grams, are learnt by storing them in a table. In practice, �
must be small ([5] suggests a value of 6) since the number
of � -grams grows exponentially with � . Figure 1 illus-
trates the � -grams associated with a simple program, where
a value of ����� has been used for illustrative purposes.

A drawback of using small values of � is that the learn-
ing algorithm becomes ineffective in capturing correlations
among system calls that occur over longer spans. For in-
stance, the program in Figure 1 will never produce the se-
quence �	�
���
�����	� . However, the trigrams in this sequence
(� � � � � � and � � � � � �) are produced by the program, and
hence the � -gram learning algorithm would treat this se-
quence as normal. The second difficulty with the � -gram
algorithm is that it can recognize only the set of � -grams
encountered during training; similar behaviors that produce
small variations in the � -grams will be considered anoma-
lous. [8] reports that this lack of generalization in the � -
gram learning algorithm leads to a relatively high degree of
false alarms.

An alternative approach for learning strings is to use
finite-state automata (FSA). Unlike the � -gram algorithm
which limits both the length and number of sequences, an
FSA can capture an infinite number of sequences of arbi-
trary length using finite storage. Its states can remember
short and long-range correlations. Moreover, FSA can cap-
ture structures such as loops and branches in programs —
by traversing these structures in different ways, it is possible
to produce new behaviors that are similar (but not identical)
to behaviors encountered in training data. In spite of these
advantages, experience with finite-state-based learning has
been mostly negative:

1. S0;
2. while (..) �
3. S1;
4. if (...) S2;
5. else S3;
6. if (S4) ... ;
7. else S2;
8. S5;
9. �
10. S3;
11. S4;

�	�
��� �	� ��� �	�
��� �	�
���
��� ���
��� ��� �������
��� �	� ���
��� ���
��� �	�
� �
� � � � � � � � � � � � � � � � � �

Figure 1. An example program and associated trigrams. S0,...,S5 denote system calls.

S1

S2
S4

S4 S2

S0

S0

S5

S5 3S S41 3

5
S S

1 3

4

6 7 8 10 11

Figure 2. Automaton learnt by our algorithm for Example 1

� Several researchers [25, 14] have shown that the prob-
lem of learning compact FSA is hard. For instance,
[14] show that learning approximately optimal FSA is
as hard as integer factorization.

� [16] describe a methodology for learning system calls
using finite-state automata. However, no algorithm
is provided for constructing FSAs from system call
traces. Instead, they rely on human insight and in-
tuition to construct FSA states and edges from se-
quences.

� [30] studied several learning algorithms, including
those based on the Hidden Markov Models (HMM)
[26] that are similar to FSA. In their experiments,
HMMs incurred large overheads for learning, while
improving detection accuracy over the � -gram algo-
rithm only slightly.

Against this backdrop of negative results regarding FSA-
based learning, we present a new, positive result: Com-
pact FSAs characterizing process behaviors can be learnt
fully automatically and efficiently. Whereas [30] concluded
that the � -gram algorithm provides the best overall per-
formance among many different algorithms, our results
show that the FSA-algorithm further improves detection
and training performance significantly. Below we provide

an overview of the FSA-based learning algorithm and sum-
marize its benefits.

1.1. Overview of FSA Algorithm and its Advantages

The central difficulty in learning an FSA from strings
is that the strings do not provide any direct information
about internal states of the automaton. For instance, if
we observed an execution of the program in Figure 1 and
witnessed a sequence of system calls � � � � � � � � � ���	�	� , we
would not know whether to treat the two occurrences of � �
to be from the same automaton state or not. It is this key
problem that leads to the difficulties in efficient learning of
automata from string examples.

The key insight behind our technique is that we can in-
deed obtain state-related information if we knew the pro-
gram state at the point of system call; and that the very same
operating system mechanisms that can be used to trace sys-
tem calls can also be used to obtain the program state infor-
mation. When the above system call sequence is augmented
with point-of-system-call information, we obtain:

�	�
 ����
�	�� ���� �	�
 �	���

Based on the program state information, the FSA-algorithm
will learn the automaton shown in Figure 2 from the above

program. The example provides the basis to illustrate the
advantages of the FSA-algorithm.

� Faster learning. The following two execution se-
quences suffice for learning the complete automaton
shown in Figure 2. In contrast, they contribute only 11
of the 17 trigrams (65%) learnt by � -gram algorithm.

– � �� � �� � � �� �
– � �� � �

� � �
� � �� � �� � �

� � �� � �� � �	 � �� � �� � � �� �
In our experiments, FSA learning converged an order
of magnitude faster than the � -gram learning.

� Better detection. Using program counter information,
it is possible to detect some classes of attacks that
elude algorithms that do not utilize such information.
(See Section 4.5 for further discussions.) Even without
the program counter information, the state-sensitive
nature of the FSA-algorithm will enable detection of
attacks missed by the � -gram algorithm. For instance,
the trigrams in the system call sequence � �
��� ���
�	� all
occur during normal execution of the above program,
and hence the � -gram algorithm cannot detect this se-
quence as anomalous. However, the FSA-algorithm
will detect that the program does not produce this se-
quence.

� Reduction in False Positives. Reduction of false posi-
tives depends upon the ability of a technique to gener-
alize past behavior to predict future behavior. In par-
ticular, on seeing the second of the above execution se-
quences, the FSA-algorithm is able to learn the branch-
ing structure of the program, and is able to predict that
these branches may be combined in other ways, lead-
ing to an infinite set of strings such as:

– � �� � �
� � �� � �� � �� � �� � � �� �

– � �� � �
� � �
� � �� � �	 � �� � �� � � �� �

� Compact representation. Finite-state automata provide
a very compact way to represent the large (typically
infinite) set of execution traces that can be produced
by a program. For instance, the trigram representation
needs to represent 51 system calls in the model. The
corresponding measure in the automaton is the num-
ber of edges in it (with each edge being labelled with
a system call), and this number is only 13. Our exper-
iments show that a factor of 3 to 4 reduction in space
utilization over the

�
-gram algorithm. (We note that

in absolute terms, space requirements are modest for
both the � -gram and the FSA-algorithms.)

� Fast detection. Intrusion detection using the FSA
model requires matching system call sequences using

the FSA. It is clear that matching using the FSA takes
constant time per system call, and this time is fairly
small (less than a hundred instructions). In contrast,
each system call execution typically involves several
hundreds of instructions, thus the overhead of match-
ing using the automaton is small.

1.2. Related Work

Intrusion detection techniques can be classified into two
classes: misuse detection and anomaly detection. Misuse
detection techniques [29, 23, 17] model known attacks us-
ing patterns (also known as signatures), and detect them via
pattern-matching. Their benefit is a high degree of accuracy,
and their main drawback is the inability to identify novel at-
tacks. Anomaly detection techniques [1, 5, 20, 24, 4, 8]
address this problem by flagging any abnormalities in user
or system behavior as a potential attack. One of the main
research problems in anomaly detection is that of learning
normal user or system behaviors. We focus our discussion
below on anomaly detection techniques most closely related
to our approach.

Approaches Based on Learning Program Behaviors.
The use of system call sequences to model program behav-
iors was first suggested by Forrest et al [5]. [16] proposes
to increase the accuracy of the � -gram learning algorithm
by using an FSA representation. However, no algorithm is
provided for FSA construction; instead, a manual procedure
is employed. [18] describes an algorithm for constructing
finite-state automata from strings, but their algorithm treats
only strings of a finite length. Thus, their approach learns
tree-structured automata. The problem of learning tree au-
tomata is computationally much simpler than a general FSA
that contains cycles.

[30] studies four different algorithms for learning pro-
gram behaviors. Of particular interest was a data-mining
based algorithm suggested in [20]; and the Hidden Markov
Model (HMM), which is a finite state model widely used
in speech recognition. They concluded that HMMs provide
slightly increased accuracy, but the length of training re-
quired made them unattractive for intrusion detection. Their
overall conclusion was the the � -gram algorithm provides
the best combination of low training periods, high detection
rates and low false positives. As compared to these algo-
rithms, the FSA learning algorithm possesses the following
advantages:

� It does not limit the length or number of system call
sequences: entire sequence produced by each run of a
program is learnt by the FSA. This factor will likely
contribute to more accurate intrusion detection.

� It captures the branching and looping structures of the
program, thus enabling us to recognize typical varia-
tions in behaviors of programs. This factor will likely
reduce false positives.

� It is capable of learning program behaviors while
“leaving out” behaviors captured by library functions.
This can lead to smaller storage requirements. It can
also contribute to shorter training periods since we do
not waste time in learning the behavior of libraries.

Static Construction of FSA. We note that the FSA learnt
by our approach captures program structures that are sim-
ilar to those captured by control-flow graphs used in com-
pilers. Thus it is possible to develop compile-time analysis
techniques to learn the FSA statically, without any runtime
training. A disadvantage is that interprocedural analysis,
especially in the presence of libraries that are dynamically
linked (and hence unavailable at compile time) poses non-
trivial problems. An alternative is to develop link-time anal-
ysis of object files and libraries to construct the FSA. We
are currently studying this approach. Even if this approach
were to be successful, runtime construction, as proposed in
this paper, would still have additional information to offer.
In particular, a learning algorithm that constructs the FSA at
runtime can incorporate information about frequency of ex-
ecution. This information is unavailable in a compile-time
or link-time approach.

2. Learning Finite-State Automata

Our learning algorithm is based on tracing the system
calls made by a process under normal execution. As each
system call is made, we obtain the system call name as well
as the program point from which the system call was made
(given by the value of the program counter (PC) at the point
of system call). Each distinct value of the program counter
corresponds to a different state of the FSA. The system calls
correspond to transitions in the FSA. To construct the transi-
tions, we use both the current pair of �

���������	�
 � , and the previ-
ous pair,

���
��
�
���������	�
���
���
 � . The invocation of the current system

call ������������� results in the addition of a transition from the
state ���! �"#��� to �$� that is labelled with ���! �" ���#��������� .
The construction process continues through many different
runs of the program, with each run possibly adding more
states and/or transitions. Figure 3 illustrates this process.

The simple algorithm outlined above can deal with stati-
cally linked programs, but does not always work for dynam-
ically linked programs. The key difficulty is that the value
of program counter cannot be relied upon, as the same func-
tions may get loaded at different locations in a dynamically
linked program. One may try to use relative values of pro-
gram counters instead of absolute values, but this does not

work either: the relative locations of functions across two
different libraries can vary from one run to another.

The second difficulty is that most programs make heavy
use of library functions, which in turn make several system
calls. For instance, consider a simple program:

main() {
int ch;
while ((ch = fgetc(stdin)) >= 0)

fputc(ch, stdout);
}

It would be better to capture the behavior of this program
as consisting of read and write system calls made from the
main program. However, if we used the program counter
value at the time of actual system call, no information about
the structure of the main program will be captured. Instead,
we would be capturing the structure of the library functions
— in fact, since every “system call” invocation is actually
made from within a library function within libc, the au-
tomaton will capture no useful information about the struc-
ture of the main program. As a result, the automaton learnt
will remain very similar across different programs, since
library code used by most programs are identical. In or-
der to capture the behavior of the program, it is necessary
to record the location from where the library function was
called, rather than recording the location within the library
code from where a system call was made. We describe our
approach for doing this below, after a brief discussion of the
system call interception mechanisms we use.

2.1. System Call Tracing

Several approaches have been proposed for system call
tracing over the past several years. Some of these tech-
niques involve modifications to the operating system kernel,
as in [7, 6, 19]. The primary benefit of a kernel-based ap-
proach is speed, while its disadvantage is the need to mod-
ify the kernel. Other approaches such as [13] make use of
the process tracing capability provided by most versions of
UNIX in order to perform system call interception at the
user level. We used the second approach in this work.

Most versions of UNIX provide a mechanism by which
one process can trace the system calls made by another pro-
cess. Programs such as strace, truss and par utilize
the low level OS mechanisms and provide a command line
interface for recording system calls. Previous research, such
as [5], utilized such programs to record system calls in a log
file, and then used an offline learning algorithm. In our ap-
proach, we directly make use of the OS mechanisms. The
key benefits are that we are able to use additional infor-
mation (e.g., the contents of the registers and the stack of
the traced process) that is available at the level of the OS-
provided mechanisms, but not made available by the above-
mentioned applications.

������ ������

������ ���������	�

�
���
���

� � � � ���
�

�
� ��� ���� � ��� ���� � ��� ���� �
� ��� ���� � ��� ���� � ��� ���� � ��� ���� �

pc1 pc2

pc3

sc1

sc2sc3
sc4

sc3
end

Figure 3. Two traces produced by a program and the generated automaton

2.2. Keeping Track of Different Sections of Code

The general problem is to trace back each system call to
the innermost function call that was made from certain re-
gions of memory. Note that most libraries are linked and
loaded dynamically, and that the non-library components
are statically linked. We therefore trace back all system
calls to statically linked code sections.

The first step in tracing back is to identify code sections
that are statically linked. Our approach for doing this relies
on (a) the structure of the ELF (Executable and Linking For-
mat) format used in Linux and most other UNIX systems,
and (b) tracing system calls used to load the dynamically
linked libraries. The range of addresses of the statically
linked code segment is obtained from the header informa-
tion in the executable file. For the addresses of dynami-
cally linked regions, we note that in Linux, the dynamically
linked code is loaded using the mmap system calls. From
the return value of this system call, and the size argument
provided to this system call, we can obtain the addresses
corresponding to the dynamically linked libraries.

2.3. Stack Traversal

Procedure calls are implemented using a process stack.
The stack is partitioned into many activation frames, each
of which correspond to an invocation of a procedure. The
innermost active procedure invocation corresponds to the
top-most frame on the stack. An activation record stores in-
formation such as the return address, procedure parameters
and local variables of the procedure. Both the caller and
the called procedures need to access the return address and
parameters. Hence the structure of the activation records
as well as the location of these fields within the activation
record are standardized, even across different programming
languages.

Based on the above structure of the stack, tracing back
of the system call can proceed as follows. We examine the
value of the program counter (which is saved by the proces-
sor when the trap instruction to switch to the kernel mode
was executed) and see if it is from the statically linked por-
tion of the executable. If so, we are done. Otherwise, we
examine the topmost frame on the stack, and extract the re-
turn address information. If this address corresponds to a
statically linked region of the program, we are done. Oth-

erwise, we move to the next stack frame (corresponding to
the next outer procedure invocation) and repeat the same
process.

We observe that this approach will not work satisfacto-
rily if the statically linked portion of the code itself contains
library functions, or wrapper functions that have been in-
troduced for portability. In those cases, the FSA will learn
the location within the library from where a system call is
made.

2.4. Dealing with fork/exec

The fork and exec system calls require special atten-
tion, since they create copies of a running process or change
it altogether. A corresponding change has to be made to the
FSA being learnt for the program.

The fork system call causes the process to create a copy
of itself. We use the same FSA to capture the behavior of
the child as well as the parent. Unless the fork system call
is followed by execve, the child process usually performs
the same tasks as that of the parent (e.g., servicing more re-
quests in a http server) and so this can be justified. After
the fork, subsequent system calls made by either the par-
ent or the child is added as a transitions to the same FSA.
This requires us to keep track of all the current states cor-
responding to the parent and all of the children processes.
When one of these processes makes a system call, an edge
is added from the current state of this process. At intrusion
detection time, we follow a similar procedure.

When an execve system call is made, we need to de-
cide whether the system calls of the new program (to be
executed) are to be learnt using the same FSA, or to use a
different FSA. In the former case, an FSA that is customized
for this particular execution of the new program is created.
This would enable us to capture, for instance, that when a
program A executes another program B, it uses B’s func-
tionality in a restricted way. For instance, a program may
spawn a shell, which may in turn be used to execute a spe-
cific script; but the full functionalityof shell is not accessed.
In the latter case, we retrieve the FSA that has been learnt
so far for the program execve’d, and start augmenting this
FSA to incorporate the sequence of system calls observed in
the current execution. Currently, we use this second option
as the default.

0

1000

2000

3000

4000

5000

1000 10000 100000 1e+06

Si
ze

 (
B

yt
es

)

System calls

FSA method
N-gram method

Figure 4. Convergence on NFS Server.

3. Runtime Monitoring for Intrusion Detection

Matching runtime behavior to the automaton proceeds as
follows. At any point during runtime, the state of the match
would be captured by a current state of the FSA. For each
system call intercepted, we proceed as follows:

� Obtain the corresponding location (within the stati-
cally linked section of the program) from where the
call was made. If an error occurs while doing this, it
would be because the stack has been corrupted, possi-
bly due to a buffer-overflow attack.

� Check if there exists a transition from the current state
to the new state that is labelled with the system call
name that was intercepted. If not, there is again an
anomaly. Anomalies of this kind may arise either due
to attacks, or because of unusual behavior of the pro-
gram that had not been observed during learning.

� Update the state of the automaton to correspond to the
new state. If the new state is not in the automaton,
transition to a “sink” state in the FSA1.

To ensure that isolated mismatches do not immediately
result in an intrusion being flagged, a leaky bucket algo-
rithm is typically used (as in [5, 9]) to aggregate anomalies
over time. Each time an anomaly is detected, an anomaly
count is incremented. When the anomaly count exceeds a
threshold, an intrusion is flagged. The anomaly count is
decremented periodically, which has the effect of ignoring
isolated anomalies.

1Note that the FSA is not “stuck” in the sink state: as soon as the pro-
gram execution returns to a location that had been observed during learn-
ing, the automaton would transition to that state from the sink state. Thus,
the use of program counter information enables the automaton to “resyn-
chronize” with the program even if synchrony is lost momentarily due to
execution of new code.

0

1000

2000

3000

4000

5000

6000

7000

1000 10000 100000 1e+06

Si
ze

 (
B

yt
es

)

System calls

FSA method
N-gram method

Figure 5. Convergence on FTP Server

Several different kinds of anomalies are recognized by
the method described above. Our method associates dif-
ferent weights with different kinds of anomalies. Instead
of incrementing the anomaly count by one, we increment
it by the weight associated with the anomaly observed. The
weight associated with stack corruption anomaly is set to be
high enough that even a single occurrence of the anomaly
will be flagged as an intrusion. The weight associated with
a missing program state is smaller, such that several succes-
sive occurrences of these anomalies must occur before the
threshold for flagging an intrusion is reached. The weight
associated with a missing transition is higher if the system
call corresponding to the transition appears nowhere in the
FSA. Otherwise, the anomaly weight is set to be the same
as that of a missing state.

4. Experimental Evaluation

To evaluate the FSA-based algorithm, we considered
security-critical server programs such as ftpd, httpd, nfsd
and telnetd. Telnetd was later eliminated since its be-
havior was extremely simple and predictable. Among the
other three, ftpd appeared to have the most complex behav-
ior, supporting 70 different operations. nfsd was moderately
complex, supporting 17 operations. httpd supports only a
small number of commands, but is comparable in complex-
ity to NFS server. Our evaluation addresses the following
metrics and compares them with those of the � -gram algo-
rithm: convergence of learning, false positive rate, runtime
and space overhead, and attack detection efficacy.

All the results presented in this section were obtained
for Linux running on a 266MHz Pentium II processor with
32MB RAM and 3GB EIDE disk. For comparison pur-
poses, we implemented the � -gram algorithm from [5].
This implementation uses a trie data structure, which is the
most compact data structure for representing large collec-

tions of fixed-length strings.
We used the following procedure for conducting these

experiments. Most of our experiments were conducted us-
ing training scripts that attempt to simulate the requests
likely to be handled by each of these servers. Some exper-
iments involving the http server were conducted on a live
web server handling requests. While it would have been
better to run all of the tests on live servers, such an approach
was impractical for us because we did not have access to
systems that experienced large enough volumes of traffic to
enable us to conduct such experiments. We present our re-
sults on live servers in Section 4.4, while the following three
sections discuss results obtained using training scripts.

4.1. Convergence

We measured convergence in terms of the space required
for storing the automaton (for the FSA-algorithm) or the
� -grams (for the � -gram algorithm). These figures were
plotted against the number of system calls made by the pro-
gram being learnt. The graphs use a linear scale on the Y-
axis (size of automata or � -gram storage) and a logarithmic
scale on the X-axis (number of system calls). In comparing
the two algorithms, the actual Y-axis values are not impor-
tant: what matters for convergence is whether the curves
flatten out quickly.

For these experiments, we used training scripts that gen-
erated commands to exercise the servers. The training
scripts for FTP and NFS were locally developed, while
we used the WebStone benchmarking suite to exercise
HTTP server. These scripts generate a random sequence
of mostly valid commands, interspersed with some invalid
commands. These commands involve files of sizes rang-
ing from 500 bytes to 5MB. The distribution of these com-
mands (and file sizes) is set to mimic the distributions ob-
served under normal operation.

The training scripts were used to generate larger and
larger sequences of commands in successive runs. The
server behavior observed during each run was learnt using
the FSA and � -gram algorithms. The initial run included
very few commands, typically resulting in about a thousand
system calls made by the server. The final run was about 8
million system calls.

4.1.1 Discussion

Rate of convergence is an important factor that governs the
amount of training time needed to achieve a given level of
false positives. The slower the convergence rate, the longer
the training time would need to be.

For all three servers, the FSA algorithm converged
around a few hundred thousand system calls, and did not
learn any thing new even when the number of system calls

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 10000 100000 1e+06

Si
ze

 (
B

yt
es

)

System calls

FSA method
N-gram method

Figure 6. Convergence on HTTP.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1000 10000 100000 1e+06 1e+07

Fa
ls

e
Po

si
tiv

es
 p

er
 S

ys
te

m
 C

al
l

Training Period (# of System calls)

FSA method
N-gram method

Figure 7. False Positives on NFS Server.

was increased by an order of magnitude beyond this point.
The � -gram algorithm converges much more slowly.

Faster convergence of the FSA algorithm is due to two
factors. First, the FSA algorithm learns the branching and
looping structures in the program. As illustrated with an
example in Section 1.1, this factor enables program behav-
iors to be learnt in fewer runs. The second reason is due
to the fact that our algorithm does not preserve the order of
system calls made from libraries. For instance, if a library
function � is called by the program from a location � , the
FSA would contain several edges from � to itself, each la-
belled with one of the system calls made by � . As a result,
variations in the order of system calls made from libraries
will not produce changes to the FSA.

4.2. False Positives

To determine false positives, we trained the system with
system call traces of different lengths, starting from about

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1000 10000 100000 1e+06 1e+07

Fa
ls

e
Po

si
tiv

es
 P

er
 S

ys
te

m
 C

al
l

Training Period (# of System calls)

FSA method
N-gram method

Figure 8. False Positives on FTP Server

5K and ending at about 8M system calls. After training
with each trace, the system was run in a detection mode
against another system call trace consisting of between 1
and 10M system calls. This trace was produced with the
same program as used for training, but with a slightly dif-
ferent distribution of commands (and file sizes). This was
done to account for the fact that things can (and typically
do) change between the learning and detection times. The
exact same system call traces were used to train and analyze
the FSA and � -gram algorithms.

For the FSA algorithm, each occurrence of a state or
edge that was not present in the FSA was treated as a false
positive. For the � -gram algorithm, each occurrence of
a new � -gram (which has not been learnt during train-
ing) was counted as a false positive. Clearly, more sophis-
ticated thresholding techniques (such as the leaky bucket
algorithm) could be used to detect attacks while reducing
false positives. However, there is no easy way to choose the
parameters, such as the threshold value. Moreover, the op-
timal parameter values would likely be different for the two
algorithms. Rather than spending our efforts in a search for
thresholding techniques optimized for each of these algo-
rithms, we decided to use this simpler measure.

Figures 7 and 8 show the number of false positives re-
ported by each algorithm. It shows that the FSA algorithm
uniformly produces fewer false positives than the � -gram
algorithm. The false positive rate of the FSA algorithm falls
below

���� �
after a training period corresponding to about
�� � system calls. The � -gram algorithm continues to pro-

duce false positives at a higher rate (in the range of

���� � to
���� �) even after training with over

�� �
system calls.

4.3. Runtime and Space Overheads

Figure 9 shows the runtime storage requirements for rep-
resenting the behavior learnt by the FSA and � -gram algo-

Application N-gram Algorithm FSA-algorithm
FTP 7.1 2.4
HTTP 4.8 1.4
NFS 5.4 1.2

Figure 9. Space Requirements (in KB) for
N-gram and FSA-based algorithms.

rithms for the three servers. The figure shows that both algo-
rithms are economical in terms of space usage. FSA-based
algorithm improves on the space utilization of the N-gram
algorithm by about a factor of four.

To measure runtime overheads, we first split the over-
head into two parts: (a) overhead due to execution of learn-
ing and/or detection code, and (b) overhead due to sys-
tem call interception. We measured the two components
independently. The overhead due to execution of learn-
ing/detection code was between 3% and 4% for all of the
three applications. The overhead for the � -gram based al-
gorithm was also about 3%.

The overhead due to system call interception is depen-
dent on the mechanism used for this purpose. Techniques
that intercept system calls within the kernel introduce low
overheads. User-level mechanisms for interception of sys-
tem calls, such as the one used by [5] and us, incur signifi-
cantly higher overheads. This is because of additional task
switches required (between the server process and another
process that is intercepting its system calls) for each system
call. Moreover, every access to server process memory by
the monitoring process (between 3 to 8 such accesses are
made by the FSA learning algorithm) incurs the overhead
of a system call. As a result, the overhead due to system
call interception in our implementation is as high as 100%
to 250% in terms of CPU time. An strace-based imple-
mentation such as that used by Forrest et al in their � -gram
learning algorithm, introduces overheads in the same range
(100% to 250%).

4.4. Results on Live HTTP Server

In this section, we present the results of a compar-
ative experiment involving a live web server. This ex-
periment was performed on http server of the Secure
and Reliable Systems Laboratory at SUNY, Stony Brook
(http://seclab.cs.sunysb.edu/). This site runs
an apache web server, and experiences of the order of 3000
hits a day. The web site consists predominantly of passive
HTML and image files. A minority of requests involve user
authentication, forms and CGI scripts.

One of the difficulties in using a live web server is that
the experiment can no longer be conducted in a controlled
setting. The requests processed by a live server can vary
widely from one day to the next, and thus, we cannot com-

0

1000

2000

3000

4000

5000

6000

7000

8000

100000 1e+06

Si
ze

 (
B

yt
es

)

System calls

FSA method
N-gram method

Figure 10. Convergence on Live HTTP Server

pare false alarms observed on one day with that observed
on the next day. We therefore decided to run the � -gram
and FSA algorithm side-by-side, so that they both make use
of the exact same data.

In our experiments, we trained each system for a partic-
ular number of system calls, and then ran the system for
an extended period of time to compute the false positives
rate. The training period was gradually increased, and the
false positive rates were plotted as a function of the training
period.

One would expect that the false positive rate would fall
monotonically with the increases in training period. Ob-
serve, however, that with a live web-server, this need not be
true. It is possible that the web server received many differ-
ent kinds of requests on the first day of training, when we
used a training sequence of 20,000 system calls. On the sec-
ond day, we may use a training sequence of 40,000 system
calls, but it may turn out that the requests received on the
second day were all very similar. As a result, it is possible
that more of the server behavior was learnt after the 20,000
system calls seen the first day, as compared to what was
learnt after 40,000 system calls the second day. If this were
to happen, it will lead to anomalies in the graphs, which
would make it very difficult to understand the convergence
or false positive rates of these algorithms. To avoid such an
anomaly, we used the following approach. The first 20,000
system calls were used to learn a (FSA or � -gram) model.
A copy of this model was made, and it was frozen. Subse-
quent system calls were learnt by the original model until
we reached 40,000 system calls. At this point, another copy
was made and frozen, while the original model continued
to learn subsequent system calls. This process was contin-
ued until we processed about 1.5 million system calls. Each
frozen version of the model was used to perform false pos-
itive analysis on system calls made by the server after the

1e-05

0.0001

0.001

0.01

10000 100000 1e+06 1e+07

Fa
ls

e
Po

si
tiv

es
 P

er
 S

ys
te

m
 C

al
l

Training Period (# of System calls)

FSA method
N-gram method

Figure 11. False Positive Rate on Live HTTP
Server

point of freezing.
This approach meant that at any time, a system call made

by the web server was processed by seven copies of the � -
gram algorithm and by another seven copies of the FSA-
algorithm. The entire process was repeated once more, and
the results were averaged. (Given the rate of requests re-
ceived at our web server, this experiment took about three
weeks to complete.)

The results of our experiment is shown in Figures 10 and
11. In terms of space requirements, we found that the FSA-
algorithm used 1.6KB, while the � -gram algorithm used
7.3KB. Note that these results obtained with the real web
server are generally similar to those observed with training
scripts. In particular, the difference in the rate of conver-
gence is similar to those observed before. Similarly, the
differences observed in false positive rates are similar —
the false positive rate of the FSA-algorithm is between 6 to
30 times lower than that of the � -gram algorithm. How-
ever, there are some differences as well: the ratio of false
positive rates does not increase with the training period, as
was observed in the previous experiments. Moreover. the
absolute values of false positive rates are much higher. We
attribute this to the fact that there is more variation in live
traffic than what could be simulated using training scripts.
This means that both approaches produce higher false pos-
itives. Moreover, if new types of requests that were never
experienced before arrive at the web server, it is likely that
both approaches would generate the same number of false
positives. Thus, the ratio does not increase as with the train-
ing script based approach.

4.5. Attack Detection

� Buffer overflow attacks. Almost all buffer overflow at-

tacks involve execution of system calls by code run-
ning in the stack segment. Our approach will always
detect such attacks since it will observe a corrupted
stack frame. We have verified this assertion experi-
mentally with a version of FTP server that was mod-
ified to introduce new buffer overflow vulnerabilities.
Even stealthy attacks that do not execute system calls
from the stack could be detected.

� Trojan Horse and other code changes. We used our
system to detect changes in the behavior of FTP, af-
ter inserting a few lines of code. The change modi-
fied the location of most instructions, even those that
corresponded to unchanged portions of code. Conse-
quently, almost every system call made by the mod-
ified server was from a different program location as
compared to the original server, thus leading to a con-
tinuous stream of anomalies. Note that, unlike other
approaches that do not use program counter informa-
tion, the FSA approach can detect changes to code
even before the changed portions are executed.

� Maliciously crafted input. Several attacks rely on in-
adequate checking done by programs on their input
data. By suitably altering the input (or command-line
argument) an attacker can cause the program to behave
unexpectedly. Our approach will detect these attacks,
since the attacks induce programs to execute unusual
sections of code and/or result in unusual system call
traces. As an example, we detected the site exec vul-
nerability in the FTP program.

� Dictionary or Password guessing attacks. These at-
tacks do not cause new sections of code to be executed,
but are characterized by repetitive execution of same
code. Such attacks can be detected by maintaining
frequency-of-execution information with the automata
edges.

� Denial-of-Service Attacks. Most DOS attacks cause
server programs to execute some sections of their code
very frequently. The FSA algorithm can be expected to
detect them using frequency-of-execution information.

Based on our classification [27] of attacks reported in the
CERT database, we note that the above classes of attacks
account for about half of all attacks reported by CERT over
the past few years.

4.5.1 Attacks Not Detected

� Attacks that involve system call argument values.
Some attacks (e.g., attacks involving files accessed via
symbolic links) differ from normal program execution

only in terms of system call arguments. FSA and � -
gram algorithms cannot detect such attacks, since there
are no changes to the system call sequences.

� Attacks that do not change behavior of attacked pro-
gram. Some attacks exploit errors of omission in the
attacked program, such as, race conditions, opening of
files without appropriate safeguards and checks, leav-
ing temporary files with critical information etc. Ex-
ploitations of these errors are accomplished using a
different program from the one containing the error,
and thus do not cause the “attacked program” to be-
have differently. A second class of attacks that do not
change program behaviors are those that exploit sys-
tem configuration errors (e.g., user writable password
file) or protocol weaknesses (e.g, SYN-flooding), and
do not cause programs to misbehave. All these attacks
are outside the scope of FSA and � -gram approaches.

� Certain classes of attacks launched with knowledge of
the intrusion detection techniques being used. We indi-
cated earlier that almost all buffer overflow attacks and
Trojan Horse programs can be detected by the FSA al-
gorithm. However, armed with the knowledge of how
the FSA-based intrusion detection approach works, it
is possible to develop successful buffer overflow at-
tacks, as well as Trojans.

5 Conclusions

In this paper, we presented a new technique for intru-
sion detection based on learning program behaviors. Our
method captures program behaviors in terms of sequences
of system calls. These sequences are represented using
a finite-state automaton. Unlike previous approaches, the
FSA approach does not limit either the number or length of
system call sequences. (Even without such limits, our rep-
resentation ensures that the size of FSA itself is bounded –
in the worst case, its size is linear in the size of the pro-
gram.) Moreover, it captures the looping and branching
structures of a program in a natural way, enabling it to rec-
ognize variations of behaviors learnt during training. The
presence of program state information enables the FSA ap-
proach to perform more accurate detection of execution of
unusual sections of code. Its ability to focus on program
behaviors (while ignoring library behaviors) contributes to
shorter training periods and smaller storage requirements.

Our experimental results support the following conclu-
sions about the FSA method.

� FSA-learning algorithms converge quickly. The length
of training required is one of the most important cri-
teria for judging an anomaly detection technique. Our
experiments show that in absolute terms, FSA learning

converges quickly. For FTP, NFS and HTTP server,
learning was completed after the servers used up sev-
eral minutes of CPU time.

� False positive rate of the FSA algorithm is low. In rel-
ative terms, the FSA algorithm produces much fewer
false positives than the � -gram algorithm. Even the
absolute values are on the low side, corresponding to a
rate of

���� � or less after a moderate period of training.
(On our web server, this would correspond to about 5
false positives a day.) In reality, the actual false posi-
tives experienced will be significantly lower, since it is
unlikely that isolated deviations from the FSA model
will be reported as attacks.

� Space and runtime overhead of FSA-learning is min-
imal. Our experiments show that the space require-
ments for the FSA algorithm is low. Its runtime over-
head is also low.

� FSA approach is effective in detecting attacks. Our
experiments show that the FSA approach can detect
a wide range of attacks.

Several further improvements to the method are still possi-
ble. One promising avenue is the incorporationof frequency
information along with the transitions, so that we can de-
tect and flag attacks that involve many transitions that are
associated with low probability of occurrence. Such an ap-
proach can detect many denial of service attacks.

A second avenue is the incorporation of system call ar-
gument values into the FSA. This extension will expand the
set of attacks detectable by the approach to include many
filename related attacks, such as those involving symbolic
links.

References

[1] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A.
Valdes, Next-generation Intrusion Detection Expert
System (NIDES): A Summary, SRI-CSL-95-07, SRI
International, 1995.

[2] CERT Coordination Center Advisories,
http://www.cert.org/advisories/index.html.

[3] C. Cowan et al, StackGuard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow Attacks,
7th USENIX Security Symposium, 1998.

[4] D. Endler, Intrusion Detection: Applying machine
learning to solaris audit data, In Proceedings of the
1998 Annual Computer Security Applications Confer-
ence (ACSAC98).

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, Intrusion De-
tection using Sequences of System Calls, Journal of
Computer Security Vol. 6 (1998) pg 151-180.

[6] T. Fraser, L. Badger, M. Feldman Hardening, COTS
software with Generic Software Wrappers, Sympo-
sium on Security and Privacy, 1999.

[7] D. Ghormley, D. Petrou, S. Rodrigues, and T. Ander-
son, SLIC: An Extensibility System for Commodity
Operating Systems, USENIX Annual Technical Con-
ference, 1998.

[8] A.K. Ghosh and A. Schwartzbard, A Study in Using
Neural Networks for Anomaly and Misuse Detection,
USENIX Security Symposium, 1999.

[9] A.K. Ghosh, A. Schwartzbard and M. Schatz, Learn-
ing Program Behavior Profiles for Intrusion Detection,
1st USENIX Workshop on Intrusion Detection and
Network Monitoring, 1999.

[10] A.K. Ghosh, A. Schwartzbard and M. Schatz, Us-
ing Program Behavior Profiles for Intrusion Detection,
in Proceedings of the SANS Third Conference and
Workshop on Intrusion Detection and Response, 1999.

[11] A. K. Ghosh, J. Wanken, and F. Charron, Detecting
anomalous and unknown intrusions against programs.
In Proceedings of the 1998 Annual Computer Secu-
rity Applications Conference (ACSAC ’98), Decem-
ber 1998.

[12] K. Ilgun, R. Kemmerer, and P. Porras, State Transi-
tion Analysis: A Rule-Based Intrusion Detection Ap-
proach, IEEE Transactions on Software Engineering,
March 1995.

[13] K. Jain and R. Sekar, User-Level Infrastructure for
System Call Interposition: A Platform for Intrusion
Detection and Confinement, ISOC Network and Dis-
tributed Security Symposium, 2000.

[14] M. Kearns and L. Valiant, Cryptographic Limitations
on Learning Boolean Formulae and Finite Automata,
ACM STOC, 1989.

[15] C. Ko, G. Fink and K. Levitt, Automated detection
of vulnerabilities in privileged programs by execution
monitoring, Computer Security Application Confer-
ence, 1994.

[16] A. Kosoresow and S. Hofmeyr, Intrusion detection via
system call traces, IEEE Software ’97.

[17] S. Kumar and E. Spafford, A Pattern-Matching Model
for Intrusion Detection, Nat’l Computer Security Con-
ference, 1994.

[18] C. Michael and A. Ghosh, Using Finite Automate to
Mine Execution Data for Intrusion Detection: A pre-
liminary Report, Lecture Notes in Computer Science
(1907), RAID 2000.

[19] T. Mitchem, R. Lu, R. O’Brien, Using Kernel Hyper-
visors to Secure Applications, Annual Computer Se-
curity Application Conference, December 1997.

[20] W. Lee and S. Stolfo, Data Mining Approaches for
Intrusion Detection, USENIX Security Symposium,
1998.

[21] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunningham, and M. Zissman, Evaluating In-
trusion Detection Systems: the 1998 DARPA Off-
Line Intrusion Detection Evaluation, in Proceedings
of the DARPA Information Survivability Conference
and Exposition, 2000.

[22] T. Lunt et al, A Real-Time Intrusion Detection Expert
System (IDES) - Final Report, SRI-CSL-92-05, SRI
International, 1992.

[23] P. Porras and R. Kemmerer, Penetration State Transi-
tion Analysis: A Rule based Intrusion Detection Ap-
proach, Eighth Annual Computer Security Applica-
tions Conference, 1992.

[24] P. A. Porras and P. G. Neumann, Emerald: Event mon-
itoring enabling responses to anomalous live distur-
bances, In Proceedings of the 20th National Infor-
mation Systems Security Conference, pages 353-365,
October 1997.

[25] L. Pitt and M. Warmuth, The minimum consistency
DFA problem cannot be approximated within any
polynomial, ACM STOC, 1989.

[26] L. Rabiner, A tutorial on Hidden Markov Models and
selected applications in speech recognition, Proceed-
ings of the IEEE, 1989.

[27] R. Sekar and Y. Cai, Classification of
CERT/CC Advisories from 1993 to 1998,
http://seclab.cs.sunysb.edu/sekar/papers/cert.htm

[28] R. Sekar and P. Uppuluri, Synthesizing Fast Intrusion
Prevention/Detection Systems from High-Level Spec-
ifications, USENIX Security Symposium, 1999.

[29] G. Vigna and R. A. Kemmerer, Netstat: A network-
based intrusion detection approach, In Proceedings
of the 1998 Annual Computer Security Applications
Conference (ACSAC’98), pages 25-34, Los Alamitos,
CA, December 1998, IEEE Computer Society, IEEE
Computer Society Press. Scottsdale, AZ.

[30] C. Warrender, S. Forrest, B. Pearlmutter, Detecting In-
trusions Using System Calls: Alternative Data Mod-
els, 1999 IEEE Symposium on Security and Privacy,
May 9-12, 1999.

