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ABSTRACT
Inclusion of third-party scripts is a common practice, even
among major sites handling sensitive data. The default
browser security policies are ill-suited for securing web sites
from vulnerable or malicious third-party scripts: the choice
is between full privilege (<script>) and isolation (<iframe>),
with nearly all use cases (advertisement, libraries, analyt-
ics, etc.) requiring the former. Previous work attempted to
bridge the gap between the two alternatives, but all the solu-
tions were plagued by one or more of the following problems:
(a) lack of compatibility, causing most existing third-party
scripts to fail (b) excessive performance overheads, and (c)
not supporting object-level policies. For these reasons, con-
finement of JavaScript code suitable for widespread deploy-
ment is still an open problem. Our solution, JaTE, has none
of the above shortcomings. In contrast, our approach can
be deployed on today’s web sites, while imposing a relatively
low overhead of about 20%, even on web pages that include
about a megabyte of minified JavaScript code.

1. INTRODUCTION
A recent study [26] found that nearly 90% of web sites in-

clude third-party scripts. Unfortunately, this practice poses
serious security threats to the first-party web site, threaten-
ing its integrity and confidentiality. Vulnerabilities in third-
party code can expose the first-party to attacks such as
cross-site scripting, or the third-party server may be out-
right malicious or be compromised. Major web sites such as
Yahoo and New York Times [8, 6] have exposed their users
to malware by including third-party content in the form of
advertisements. As a result, there is a pressing need for ap-
proaches to protect web sites from third-party scripts, while
preserving their functionality.

In order to protect first-party code, it is necessary to iso-
late third-party code from accessing (sensitive) first-party
data or functions. There are two main approaches in this
regard:

• Frame-based isolation: The browser’s SOP isolates code
running in different frames, while providing a controlled
means for communicating through the postMessage API.
AdJail [34], Mashic [17] and Pivot [23] rely on this ap-
proach for isolation. MashupOS [41] also relies on frames
and similar isolation mechanisms. While COWL [32] ex-
tends a browser’s SOP further to support a MAC policy,
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it continues to rely on frame-based isolation. The main
drawback of frame-based isolation is that it limits interac-
tions (between first- and third-party code) using familiar
means such as passing objects, or calling another party’s
functions. This limits compatibility with existing first-
party and third-party code.

• Language-based isolation: This class of techniques aims
at isolating individual objects, so that objects can be
shared between parties, and controlled interactions can
take place through function calls. However, works in
this area must first address the challenge of mediating
all of the numerous avenues by which JavaScript pro-
grams can interact. Early works such as Caja [20] and
BrowserShield [29] resorted to rewriting the code to in-
troduce all the necessary runtime checks. Unfortunately,
because of the dynamic nature of JavaScript, most opera-
tions need to be transformed and/or checked at runtime,
often slowing programs down by an order of magnitude or
more. An alternative approach is to develop static analy-
sis techniques that can eliminate the need for most (or all)
runtime checks. ADsafe [11], GateKeeper [13], SES [24],
JSand [9] and others [19] opt for this approach. How-
ever, full JavaScript is not amenable to static analysis,
thus forcing these techniques to impose language restric-
tions. Among these techniques, SES and JSand place the
fewest language restrictions, but these are still too severe
for real-world code: we found that 80% of the Alexa’s Top
500 websites are not supported by them.

Our Goals. We seek a secure object-granularity policy en-
forcement infrastructure compatible with existing browsers
as well as web sites, including all their first- and third-party
code. Specifically, we seek:

• Transparency : The enforcement infrastructure should not
change the execution semantics of benign code1. Our so-
lution achieves this goal except for a few rare corner cases,
none of which could be observed on any of the Alexa Top
500 websites. (See Section 6.2.)

• Object-granularity policy : The infrastructure should allow
third-party code to access any subset of objects deemed
safe by a policy developer, while preventing access to oth-
ers. Even on permitted objects, access to individual op-
erations can be sand-boxed.

• Deployability on existing browsers: To facilitate adop-
tion, the approach must not require modifications to the
browser (specifically, its JavaScript engine), nor can it
impose unreasonable performance overheads.

Our Approach. We present JaTE, a new approach that
satisfies the above requirements. Every object is associated

1Note that the goal of any security policy is to change the ex-
ecution semantics of code that violates the policy. Thus, it is
generally infeasible to ensure transparency in the presence of a
nontrivial security policy. Moreover, since malicious code can
easily detect the presence of a policy framework by simply try-
ing out operations that any sensible policy must deny, we do not
attempt to be transparent to malicious code.
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with a principal, and this principal has direct access to the
object, while the access of other principals is mediated using
a wrapper object that can enforce a policy. The set of all
objects belonging to a principal is held within the principal’s
compartment [40].

Many of the key challenges in JaTE, including complete
mediation and the realization of a secure multi-principal com-
partment model, arise from the complexity and highly dy-
namic nature of JavaScript. We discuss these challenges in
Section 2, followed by an overview and illustration of how
our design overcomes them in Section 3. The design and
implementation of JaTE is described in Sections 4 and 5 re-
spectively. A detailed experimental evaluation is presented
in Section 6, followed by a discussion of related work (Sec-
tion 7) and concluding remarks (Section 8). Below we sum-
marize the technical contributions of this paper.

Contributions.

• Object-capability environment for full JavaScript. Object
capability ensures that only objects explicitly given to
third-party code can be reached by it. It provides the
basis for complete mediation. Ours is the first work to
realize this feature without placing significant restrictions
on the JavaScript language.

• Secure and transparent muti-principal JavaScript confine-
ment without browser modifications. Our solution is ready
for deployment on any web site because existing code does
not need to be modified. It can support policies that pro-
tect mutually untrusting principals, e.g., two advertisers.

• Efficient fine-grained object-level access control.

• Large-scale experimental evaluation of compatibility, per-
formance, and functionality. When enforcing an allow-all
policy, our implementation demonstrates full compatibil-
ity with all sites from the Alexa Top 500, while incurring
an average overhead of about 20%.

2. CHALLENGES
Complete mediation. To ensure complete mediation, all
mechanisms for object access must be handled. This is a
difficult task in JavaScript because the language supports
several unusual ways to reference objects:

• Global object access. Securing global object access is crit-
ical because all other objects are reachable from it. In
addition to the explicit mechanism of accessing the vari-
able window, JavaScript provides implicit access to the
global object via (a) free variables that are interpreted as
property accesses on the global object, and (b) accesses
to the this keyword within a function invoked without
an object argument.

• Native prototype access. JavaScript relies on prototypes
to support object inheritance. Prototypes of native ob-
jects are shared, thus providing a mechanism for third-
party code to affect the semantics of first-party’s use of
native objects. Controlling this access is complex because
third-party code can not only rely on direct access (e.g.,
update Object.prototype), but also indirect access. For
instance, even a seemingly “safe” access to a third-party’s
own object x can allow it to update Object.prototype

using the expression x.__proto__.

• Call stack access. JavaScript allows third-party code to
travel up the call stack. This access can be used by a
third-party function to access sensitive first-party data

such as the arguments of the first-party function that in-
voked it.

Dynamic code. Dynamic code poses a well-recognized
challenge to security. Previous works forbade most dynamic
code (ADSafe, GateKeeper), or replaced eval(s) with a safe
wrapper, say, safeeval(s) (Caja, SES, JSand). Unfortu-
nately, use of a wrapper function might change the semantics
of s: the free variables occurring in s are no longer resolved
in the context where the original eval occurred, possibly
altering the semantics of code such as:

var x=0; eval("alert(x)")

2.1 Discussion
Using an object-capability runtime is a well-established

approach for achieving complete mediation [21, 24, 9, 18].
The major effort in this area is Secure ECMAScript (SES)
[24], an object-capability language based on ES5. SES re-
lies on ES5’s strict mode to prevent the use of caller and
implicit accesses to the global object via this. To eliminate
the threat of code injection into native prototypes, it pre-
vents their modification by freezing them all. Moreover, it
replaces eval with a safe wrapper. All of these restrictions
tend to break existing code, and indeed, backward compati-
bility wasn’t their focus. As a result, we found that the vast
majority of Alexa Top 500 web sites experience compatibil-
ity problems with SES.

JSand [9] uses the object-capability environment of SES to
build a policy enforcement framework for third-party Java-
Script code. JSand exposes permitted objects to third-party
code using Miller’s membrane pattern [25]. In JSand, a
membrane consists of policy-enforcing wrappers around these
objects. If any operation on a wrapped object returns an-
other object, the membrane is extended to wrap the returned
object as well.

A second major goal of JSand is to achieve compatibil-
ity with existing web sites. In addition to handling implicit
access to window via this, JSand addresses a frequent in-
compatibility posed by SES: it performs a simple analysis to
identify global variables in the third-party code, and trans-
forms the code to explicitly synchronize their values with the
correspondingly named attributes of window. While proper-
ties referenced statically can be synchronized this way, dy-
namic property accesses (e.g., window[p]) pose a challenge.
Moreover, other incompatibilities posed by SES, including
the remaining restrictions of strict mode, the use of an eval
wrapper and the use of native prototype extensions, continue
to affect JSand. We found that over 80% of Alexa Top 500
web sites fail to “compile” because of strict mode violations,
while 30% and 49% violate the other two restrictions.

Instead of first denying access to the global object using
SES and then partially mitigating these restrictions, JaTE
is designed from the ground up with a single goal: intercept
every access to protected objects, so that a policy can be
applied to each of those accesses. JaTE exploits the dynamic
and reflection features of JavaScript, together with a simple
lexical analysis2 and transformation of third-party code, to
ensure that all object accesses are mediated at runtime. It
does not place any significant restrictions on JavaScript, a
fact confirmed by our evaluation on Alexa top 500 sites. (See

2Unlike JSand, JaTE does not require full parsing of JavaScript,
but only a lexical analysis. All rewriting is done Just-In-Time
and cannot be circumvented through obfuscation.
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Figure 1: Example for a malicious Facebook “Like” Button

1 var stolen=data["se" + "cret"];

2 function s() {

3 var stolen=this.data.secret;

4 };

5 s();

6 stolen = data.getSecret ();

7 eval("stolen=this.data.secret;");

Figure 2: Malicious “Like” Script

Section 6.2 for details.)
An important feature of JaTE is that it supports multi-

ple mutually-distrusting principals, which arise in web pages
that integrate content from multiple sources, e.g., several
advertisers.

3. OVERVIEW
This section provides a high-level overview of how the

compartment model confines third-party scripts using code
transformation and runtime checking. We illustrate this us-
ing an example of first-party (also called host) web page that
includes sensitive content in an inline script:

data = { secret: ' xxx ' ,
getSecret:function (){return this.secret }}

Also assume that the page includes a Facebook “Like”-
button, but Facebook’s servers have been compromised to
replace the button with malicious code that attempts to
steal the value of secret.

The scenario begins with an HTTP request (1) in Figure 1
for retrieving the first-party web page. The JaTE Network
Module intercepts this request and modifies the page to add
an object jate that contains our confinement library. This
module could be implemented in one of three ways: a client-
side proxy, a browser extension, or a server-side proxy3. Our
implementation relies on a browser extension.

In step (2), the“Like”-script included in the page is fetched
from Facebook. It is transformed by the network module to
enable secure policy enforcement (note that a policy can
decide: a) if code from a domain/url will be confined and b)
its corresponding principal). To illustrate the main elements
of this rewriting step, consider the malicious “Like” script
shown in Listing 2. It includes four distinct mechanisms to
steal the secret:

A: through dynamic property access (line 1),

B: using this, which resolves to global object (lines 2-5),

3Requires cross-origin resource sharing (CORS).

1 jate.enterContext("facebook.com");

2 var scope = jate.createScope("facebook.com");

3 try {

4 with (scope) {

5 var s = function s() {

6 var stolen=processThis(this).data.secret;

7 };

8 var stolen=data["se" + "cret"];

9 s();

10 stolen=data.getSecret ();

11 eval(processEval("stolen=this.data.secret"))

12 }

13 } finally { jate.exitContext(); }

Figure 3: Rewritten malicious “Like” script. Underlined
code segments are added by JaTE.

C: using a function defined in first-party code (line 6), and

D: by executing dynamic code (line 7).

Listing 3 shows the rewritten script, with the transforma-
tions underlined. First, we introduce a preamble to setup a
scope and enclose the original script using a with statement
(used to intercept free variable access). The script is then
transformed using three simple rules:

1. a global function declaration (e.g., function s) is turned
into variable declaration and assignment and moved to
the top of the script to simulate declaration hoisting,

2. this is replaced with processThis(this), and

3. direct eval is transformed to rewrite its argument before
evaluation.

Using these rules, JaTE is able to mediate all cross-compart-
ment accesses, even those from dynamic code.

Step (3) in Figure 1 shows the effect of lines 2-4 from the
rewritten script: this setup creates a new compartment for
facebook.com. This compartment starts its life cycle with
only a mediated reference to window as a global object, but,
if permitted by the policy, it can obtain mediated references
to objects reachable by the original window. Mediation is
achieved using ECMAScript 6 Proxies, which enable trans-
parent interception of all operations on objects.

Compartments represent trust boundaries within the same
JavaScript execution environment: each party is confined
within its own compartment (see Figure 1), and JaTE me-
diates all cross-compartment interactions. While the JaTE
framework itself is general enough to support mutually dis-
trusting first- and third-parties, the threat model considered
in this paper is more limited: our goal is to (a) protect the



first-party from third-party, and (b) if there are multiple
(mutually distrusting) third parties, then protect them from
each other. In this scenario, there is no need to transform
first-party scripts, and hence the host compartment holds
an unmediated reference to window. Although the host code
does not run in a compartment set up by JaTE, it is helpful
to think of it as running in privileged compartment.

Step (4) in Figure 1 depicts the effect of variable dec-
laration and assignment (lines 5 to 7) in Figure 3, which
was originally a function declaration (lines 2 to 4) in Figure
2. Note that the object s is unmediated in facebook.com’s
compartment because it is created by facebook.com. Step
(5) shows the effect of line 8: the policy permits obtaining a
mediated reference to data, but does not allow reading the
value of secret (Step 6), which is a primitive value of type
String. This stops attack (A).

Line 9 is an unmediated function call. However, since
our transformation has rewritten the body of s, accesses to
this now return a reference to a mediated version of window.
When this mediated version is dereferenced, the policy once
again stops reading of secret, thus stopping attack (B).

Line 10 obtains a mediated reference to getSecret (Step
7) and performs a mediated cross-compartment function call,
which is denied by the policy, stopping attack (C).

Finally, line 11 evaluates the string after rewriting it just-
in-time. Note that the exact same technique of Step (2) is
applied again, using the same light-weight rewriting based
on lexical analysis. The rewritten code is:

stolen=processThis(this).data.secret

This makes the attack semantically equivalent to the one on
line 6 (Figure 2), and hence attack (D) is also stopped.

4. DESIGN
This section presents the core mechanisms to implement

the compartment model for multiple mutually-distrusting
principals. Specifically, Sections 4.1 and 4.2 describe JaTE’s
compartments, while Section 4.3 describes the handling of
JavaScript’s challenging features outlined in Section 2. Fi-
nally, Section 4.4 addresses secure DOM access.

Our compartment design relies on Proxies, a feature of the
recently finalized ECMAScript 6 (ES 6) standard. A proxy
could be created for any object w as follows:

pw = new Proxy(w, {get:getHandler })

where getHandler is a function. A read operation pw.x will
invoke the function getHandler. This function can check
if the access should be permitted, and if so, invoke w.x. If
the policy check fails, the operation is not passed on to w,
but instead, our handler raises an exception. (Alternatively,
a safe default value can be returned, allowing the caller to
continue normally.) Thus pw behaves like w, while enabling
transparent interposition of policy checks before any access.

ES 6 defines several traps in addition to the get-trap illus-
trated above. These include the has trap (invoked to check if
an object possesses a certain property), the set trap (invoked
when a property is modified), and the call trap (invoked be-
fore calling a member function). Any subset of these trap
handlers can be specified in the second argument to Proxy.

4.1 Mediating global object access
Assuming that caller, this, native prototypes and DOM

are safely handled, the only way third-party code can access
the global object is through free variables, which are inter-

preted in JavaScript as accesses to properties of the global
object. We intercept all free variable accesses by exploiting
JavaScript’s dynamic nature: we construct a scope object
as shown in Figure 3, and enclose third-party code inside a
with (scope) { } block. This causes all free variable ac-
cesses in the enclosed code to be looked up on scope.

We construct scope to be a proxy object, and define its
has-trap so that it returns true. As a result, JavaScript run-
time never looks up any variable outside the with statement,
thwarting any attempt by third-party code to directly ac-
cess the global object. We also define the remaining traps of
scope so that it forwards these accesses to the virtual global
object, which is a proxy of the global object. This enables
all policy checks to be performed in the virtual global ob-
ject. Appendix 9.2 shows more details how the scope object
is constructed.

While the discussion so far has considered accesses, dec-
larations require additional care:

• global variable declarations (var a): The with-statement
does not prevent enclosed code from declaring a as a prop-
erty of the global object. However, note that this decla-
ration has no effect if a is already a property of the global
object. If not, it ends up declaring a new property with
the value undefined. Note that any subsequent access to
a will be intercepted by scope, so this declaration won’t
allow the enclosed code to bypass policy checks4.

• global variable declaration with initialization (var a = 1).
This case is treated by JavaScript as if it consisted of a
variable declaration, followed by an assignment. Since we
have already dealt with both statements, JaTE needs to
take no additional step for this case.

• global function declarations (function f() {}): We trans-
form this as var f = function f(){}, and move it to the
top of the script. This means function declarations get
handled in the same way as variable declarations.

4.2 Mediating cross-compartment accesses
In our construction, the first-party (aka “host”) has direct

access to the global object, as well as most built-in objects.
We say that these objects are within the host compartment.
The third-party code, as discussed in the above construction,
starts its execution with just the virtual global object in its
compartment.

During execution, a principal can introduce new objects
into its compartment in two ways:

• It can create new objects. Ultimately, all object construc-
tion occurs using literals (e.g., []), or built-in construc-
tors (e.g., Array). We refer to these as direct objects, i.e.,
the principal’s accesses to these objects are not mediated.
Thus, JaTE introduces no additional overheads when a
principal accesses the objects it owns.

• The principal can import objects owned by other princi-
pals through interactions that get mediated in the follow-
ing proxy traps:

– get: If a principal A reads a property of an object
owned by principal B, and the result is an object owned

4There is a possibility that first party code will behave differently
based on the existence of property a, and in this case, third-
party can alter the behavior of first-party code. We consider
this a side-channel that is unlikely to pose a security threat. A
safer alternative, however, would be to simply delete any var
declarations at the top level in the enclosed script.



by A, then a direct reference is returned. Otherwise, a
proxy for that object is created and returned to A.

– set: This is handled in a similar manner, except that
the direction of transfer is reversed in this case.

– call: A call can be treated as a switch from caller’s
to callee’s compartment, followed by get operations to
retrieve actual parameter values from the caller’s com-
partment. When the function returns, a switch back to
the caller’s compartment takes place, followed by a get
operation to retrieve the return value from the callee.

Note that all these operations are subject to the permissions
specified by the policy. In other words, the above behavior
would be observed with a default “allow all” policy, while a
more restrictive policy would deny some of these accesses.
Also note that other traps can be handled similarly, e.g.,
deleteProperty can be handled like the set trap.

Tracking current context. JaTE relies on the single-
threaded nature of JavaScript: the context can only explic-
itly switch in two ways, either at the beginning and at the
end of third-party code execution (handled by rewriting), or
during a cross-compartment function call (handled by the
call trap). In both cases, JaTE tracks the current context
by updating the property jate.currentContext.

Tracking object ownership. JaTE does not need to know
the owner of a direct object until it first crosses a compart-
ment. When this happens, a proxy for the object is created,
and its owner is determined and stored for future use.

Cross-Compartment Exceptions. As a general rule, a
principal should always have direct access to its own ob-
jects, but only have proxies to the objects owned by other
principals. However, there are a few exceptions: (a) certain
built-in functions are frozen and always seen as direct to im-
prove performance, (b) certain objects such as DOM nodes
are always accessed via proxies, even by their owner, and
(c) for security reasons, even the host sees only proxies of
built-in constructors.

4.3 Handling JavaScript challenges
4.3.1 Handling this

JaTE replaces all occurrences of the this keyword with
processThis(this), where processThis returns the virtual
global object if this is the global object.

4.3.2 Handling caller

Note that it is not possible to statically recognize and
rewrite occurrences of caller: such an approach can be cir-
cumvented by obfuscation, e.g., f["c"+"aller"]. Moreover,
since caller is non-standard, we cannot rely on its “official”
semantics either. Instead, we have developed a solution that
is based on how it has been implemented on major browsers,
including Chrome, Firefox, Safari, and Internet Explorer.
On these browsers, caller is not determined from a stack
frame, but simply has a single value that records the most
recent (and still active) caller of a function. As a result, if a
function f is recursive, after the first recursive call, f.caller
becomes f. Hence

(f.caller).caller = f.caller = f

In otherwords, regardless of how many times caller is in-
voked, it becomes impossible to get to the caller of the out-
ermost invocation of f.

JaTE relies on the above semantics of caller to ensure

that third-party code, when called by another principal X,
cannot reach X’s stack frames. To illustrate the approach,
suppose that g is a host function that needs to call a third-
party function h. Since this is a cross-compartment call,
it will go through a call-trap handler, which then calls a
function f defined below:

var t=1;

function f() {if (t) {t=0; f();} else h();}

When h tries to use caller to get to functions in the call
stack, it cannot get any further than f, hence it cannot get
to g.

4.3.3 Handling native prototypes
Intercepting native prototype accesses. JaTE lets prin-
cipals handle direct references to the objects they create.
However, a direct object contains references to the object’s
native prototype and its properties. Since native proto-
types are shared among all principals, JaTE must ensure
that third-party code does not obtain direct references to
them. The most natural way to achieve this is to set a native
prototype to a proxy. Unfortunately, all native prototypes
are non-configurable and non-writable, and so JaTE cannot
change them. For instance, Object.prototype cannot be
made to point to a proxy of the real prototype. Instead,
it is necessary to intercept every possible way to get to a
native prototype, and at that point, return a proxy.

Native prototypes can be accessed through native con-
structors or __proto__. For example, native Array proto-
type can be accessed using Array.prototype or x.__proto__
(where x denotes any array value). Therefore, we first re-
place native constructors with proxies. This is done for all
native constructors such as Object and Array. For instance,
Object is transformed as:

var origObject = Object;

Object = jate.createProxy(origObject);

origObject.prototype.constructor = Object;

To handle __proto__, we replace __proto__’s built-in get-
ter. The new getter will return a proxy if it is one of the
native prototype objects.

Handling accesses to native prototype properties.
For performance reasons, we identified and white-listed na-
tive prototype functions that can be safely called directly
by any principal, e.g., prototype functions of Array, Object
and String. These functions are frozen to prevent mali-
cious principals from replacing their implementations5, and
then a direct reference to these functions is returned. For
functions determined unsafe (for direct calls from untrusted
code), only a proxy is returned. While performing this safety
analysis, we found a bug in V8’s Array prototype functions.
This bug, which led to a leak of the global object, was re-
ported [7] and promptly fixed by Google.

For any property p that is newly added to native proto-
types6, JaTE instead stores a proxy to p. When the current
context is switched to a principal P , JaTE converts all prop-
erties added to native prototypes and owned by P to direct

5In theory, this can affect transparency as it would break code
that attempts such replacement. In practice, however, we find
that overwriting of these built-in functions don’t seem to occur.
6Even though this is considered a bad practice, it seems to be
fairly common — our tests have shown that nearly half of the Top
500 websites extend native prototypes, perhaps because many of
them use the popular Prototype library.



// indirect eval calls

(1, eval)( ' ... ' )
var e = eval; e( ' ... ' );
window.eval( ' ... ' )
this[ ' eval ' ]( ' ... ' )
// direct eval calls

eval( ' ... ' )
(eval)( ' ... ' )
with({ eval: eval }) eval( ' ... ' )

Figure 4: Examples of direct and indirect eval’s.

references, while properties added or owned by other prin-
cipals are replaced by proxies. (We don’t have to do such
replacements for user-defined prototypes because they are
already handled through proxies; it is the non-configurability
of native prototypes that necessitates this special handling.)

4.3.4 Handling eval

ECMAScript defines four constructs to execute dynamic
code: eval, Function, setTimeout and setInterval. Use
of eval can either be direct or indirect [2], as illustrated in
Figure 4 using examples. All of these instances of dynamic
code, with the exception of direct eval, are to be executed in
the global scope. JaTE wraps these instances using a func-
tion, while third-party code is given a proxy to this function.
At the call-trap of this proxy, we first rewrite the code con-
tained in the string argument to perform the transformations
needed to ensure its safe execution. The rewritten string is
then evaluated within the compartment of the currently ex-
ecuting principal.

Direct eval cannot be handled this way since it should
not execute in the global scope, but in the same scope in
which it appears. Therefore, we cannot use the method
described above for handling indirect eval. We describe
correct handling of direct eval below. Our evaluation shows
that about 30.9% of Alexa top 500 websites use direct eval.

Almost all direct eval calls can be identified because they
use the keyword eval. Our implementation transforms
eval(x) into eval(processEval(x))7. Obfuscated, or un-
usual instances of direct eval may not be recognized by this
approach. This is not a security threat since an unrecognized
direct eval will to be treated as an indirect eval.

4.4 Supporting DOM Access
Normally, when a principal creates a JavaScript object, it

receives a direct reference. However, this wouldn’t be safe for
DOM nodes, since they contain read-only built-in properties
that can get to the global object and the whole DOM tree
(e.g., aNode.ownerDocument.defaultView is window where
aNode is a DOM node).

For the above reason, we ensure that only the host has
direct access to DOM-nodes. Third-party code can access
DOM-node creation operations only through proxies. As a
result, all DOM nodes will have the host as the owner, and
be accessed using proxies by third-party. Since object own-
ership information is no longer enough to tell who created a
DOM-node, we record this information explicitly in a field,
and call it DOM-ownership.

JavaScript code generated from HTML. Certain DOM-
operations, such as the setting of innerHTML property and

7We have shown a simplified transformation here. The full ver-
sion, with additional security checks, can be found in Appendix
9.3.

calling document.write, can generate new JavaScript code
from HTML. It is necessary to parse HTML, identify script
code, and rewrite it so that it executes in the same compart-
ment as the principal invoking the HTML operation.

Malicious third parties can attempt to confuse our HTML
parser with malformed HTML so that our parser does not
recognize all the scripts that would be recognized and ex-
ecuted by the browser. We can rely on the solution used
in Blueprint [35] for this purpose, namely, parsing HTML,
filtering the parse tree, and then converting the parse tree
directly into actual DOM nodes using safe DOM API calls.

5. IMPLEMENTATION
We implemented JaTE in Firefox 33. The implementa-

tion consists of (a) a Firefox extension that implements the
JaTE network module, and (b) the JaTE script, written in
JavaScript. When minified, this script is about 30KB in
size. JaTE source has been released under GPL [36].

5.1 Use of Proxy
Use of shadow objects. To provide consistent semantics,
ES6 proxies enforce several invariants within each trap han-
dler. For example, a non-configurability invariant is enforced
in the get trap to ensure that the return value is consistent
for a frozen property. This prevents JaTE from creating a
proxy to such a property. To work around this, instead of
creating a proxy to an object O, JaTE creates a proxy to
a shadow object [38] S that contains a reference to O. The
traps on the proxy are set so as to access O. Since S does
not undergo any modification, all invariants enforced by ES6
proxies will always be satisfied.

Fixing built-in functions. Proxy is still a new concept
and Firefox 33 does not yet completely conform to the ES6
specification. For example, some String prototype functions
such as replace and match that take a regular expression
argument don’t work if a proxy is supplied instead. To work
around this problem, JaTE wraps such problematic func-
tions to replace proxies with direct versions before calling
the original function, and also creates proxies as needed for
return values.

5.2 JavaScript rewriting
JaTE’s rewriting requires static recognition of certain key-

words. We can perform this safely because all dynamic code
is analyzed and rewritten just before execution. By consid-
ering all formats of JavaScript comments, our rewriting is
resilient to lexer confusing attacks [5].

Code undergoes three transformations: direct eval rewrit-
ing, this rewriting, and global function declaration rewrit-
ing 8. These rewriting steps are efficient because they only
require lexical analysis, plus maintaining the current paren-
thesis nesting level, as opposed to more extensive transfor-
mations that require full parsing.

While rewriting, we introduce some identifiers, such as
processThis, processEvalSrc, etc., to the source code. In
the actual implementation, these identifiers are randomly
generated with a safe length to avoid the possibility of col-
liding with the names used by third-party code.

5.3 Supporting EcmaScript 6
Even though JaTE was developed to confine ES 5 code, it

can support new ES 6 features. Some require minor changes:

8To support strict mode, we perform simple global variable dec-
laration rewritings. More details can be found in Appendix 9.1.



for example, let statements need a new rewriting rule to
convert them to var declarations if they are in the global
scope. Other new constructs such as Arrow Functions, Prox-
ies, and WeakMaps do not require changes to JaTE and are
already supported.

6. EVALUATION
6.1 Performance Evaluation
6.1.1 Page Load Overhead

To calculate page load overhead, we developed a test ex-
tension for Firefox. The extension loads URLs sequentially
from an input list, measuring the time it takes for the browser
to emit the load event. The measurement is first performed
10 times without any JaTE components, and then repeated
another 10 times with JaTE enabled. To avoid problems
with network and caching, the extension disables caching
and discards the load time for the first request of each site.

Social Media Widgets. Since JaTE mediates all security-
relevant operations, it can support any policy. Although
we leave the design of a flexible policy framework as future
work, we have developed a suitable policy for our evalua-
tion. The starting point for this policy is one-way isolation
[16], which allows untrusted code to read or modify any data,
but the modifications are visible only to untrusted code. We
then tighten this policy to enforce confidentiality: all reads
of primitive types return a “null” value. Specifically, the
following rules are enforced:

• traversable objects: cross-compartment objects can be ob-
tained but not modified or called. (Built-in functions can
be called). This allows navigating the whole object graph.

• primitive zeroing : reading cross-compartment primitives
always returns a default value, e.g., empty string.

• global object shadowing : property writes on the global
object do not affect other principals. The updated value
is only visible to the current principal.

We then relaxed this policy to support the functionality of
Facebook’s “Like”-button script. This script first creates a
new global variable FB. Since this variable is not shared
with other principals, the default global object shadowing
policy is already permissive enough. The script then looks
for two DIVs, one with id fb-root and one with class name
fb-like, by looping through all DOM nodes using docu-

ment.getElementsByTagName(’*’). The default policy al-
lows calling the built-in DOM functions and looping through
the DOM nodes (traversable objects), but zeroes out their
properties (primitive zeroing). Our policy relaxation is to
avoid such zeroing and providing access to the two DIVs.
Then, the script writes into them. Finally, the script in-
serts a new script tag and a new iframe, both of which
are allowed by the default policy since they pose no security
threats with JaTE. In summary, the default policy needs
only a small change to allow write access to the two DIVs.

We used a process similar to that described above for Face-
book “Like”-button to create policies for Google+, Twitter,
etc. Much like the Facebook button, they also required write
access to a small set of DOM nodes.

Figure 5 shows the overhead for the confinement of each
button. The interception overhead dominates because it in-
cludes rewriting these rather large scripts, while the policy
checks only need to approve the creation of a handful of
DOM nodes. We used a blank enclosing (i.e., first-party)

Widget Size Intercept. Over. Policy Over.

Facebook 177kB 12.06% 0.44%
Google Plus 222kB 18.79% 2.50%
Twitter 361kB 11.77% 2.99%
StumbleUpon 15kB 8.02% 6%
LinkedIn 187kB 9.24% 1.17%

Average 11.97% 2.62%

Figure 5: Performance for Social Media Widgets

Website Interaction Delay Overhead

Yahoo Scroll Page 89.6ms 6.9%
Yahoo Next news item 32.6ms 8.3%
YouTube Scroll Page 73.6ms 7.4%
YouTube Start a video 50ms 2.5%
Google Instant search 50ms 1.3%
Google map Panning 88ms 6.2%
Google map Zooming in/out 202.3ms 15.0%
Amazon Item details 15.1ms 3.0%
Amazon Search suggestions 20.3ms 5.3%

Average 6.21%

Figure 6: User interaction overhead

page for each button, so the overhead figures represent the
worst-case. (A non-empty enclosing page would reduce the
overall overheads because first-party scripts are not confined
— and hence not slowed down — by JaTE.)

Advertisements. In this experiment, we measured the
overhead for confining advertisement scripts on Alexa’s Top
500 websites. Since interception overheads dominate, we did
not develop a specific policy for advertisements, but used an
“allow-all” policy. To identify which scripts on a page are re-
lated to advertisement, we relied on a popular advertisement
host list [1]. These scripts were confined by JaTE, while the
remaining scripts were not confined. The average page load
overhead was 19.5%.

6.1.2 User Interaction Overhead
We also measured the perceived overhead of JaTE on com-

mon user interactions, such as scrolling the page and mov-
ing to the next image in a gallery. These actions trigger
one or more callbacks, which might schedule asynchronous
callbacks of their own (e.g. making an HTTP request and
evaluating the data when it has arrived).

To estimate the interaction delay, we leveraged the single-
threaded nature of JavaScript, instrumenting all mechanisms
used to register callbacks (e.g., addEventListener and Xml-

HttpRequest) to wrap the callback in a special function
which stores its running time. Since only one callback is
executing at a time, the sum of the running times of all
callbacks is the total time spent executing code for the in-
teraction. Adding this number to the time spent loading
new network resources yields a reasonable estimate of the
perceived user delay for the action. Figure 6 shows the de-
lay in JavaScript execution and the total overhead perceived
by the user. Since the network delay is unaffected by con-
finement and usually dominates, the overhead is quite small.

6.1.3 Rewriting Overhead
We assessed the performance of the rewriter by rewrit-

ing 6 common scripts. Figure 7 shows the time required to
rewrite the scripts. Our rewriter is much faster than JSand’s
rewriter — JaTE’s 58ms Vs JSand’s 753ms for rewriting
JQuery in 753ms. This is because their rewriting is signif-



Script Size Time

Google AdSense 22kB 37ms
Google Analytics 40kB 25ms
Google Maps 50kB 47ms
JQuery 2.1 83kB 58ms
Twitter “Share” Button 96kB 60ms
Facebook “Like” Button 160kB 101ms
Total 451kB 328ms

Figure 7: Rewriting overhead

Test Type JaTE JSand

Blank Page Page Load 169% 208%
JQuery Page Load 219% 1230%
Google Maps Page Load 98% 364%
Google Maps (Pan) Interaction 6.2% 31%

Figure 8: JaTE vs JSand Overhead Comparison

icantly more complex than ours. But even JaTE’s smaller
overhead may be deemed significant, e.g., 100ms on Face-
book “Like” button, and hence in our future work, we plan
to implement it in C.

6.1.4 Comparison With Related Work
Comparison with JSand. We compared the performance
of JaTE with that of JSand, a JavaScript confinement solu-
tion based on SES. To compare JaTE’s and JSand’s perfo-
mance, we replicated JSand’s benchmarks. Figure 8 shows
the overhead for opening a blank page, loading the jQuery
library, Google Maps and finally interacting with Google
Maps. Two reasons for the difference in performance are the
full parsing required by JSand during rewrite, which affects
page load times, and its compatibility layer: their confine-
ment setup makes all global variables local, which requires
expensive global object synchronization.

Comparison with Caja. We also compared JaTE against
Caja using a subset of the demos provided by the Caja au-
thors. The chosen subset consisted of programs that could
easily be benchmarked: a canvas clock, a markdown con-
verter and a Game of Life. We modified the code for each
demo to stop after a fixed amount of computations (e.g.
200 generations in Game of Life) and measured the aver-
age time required to complete the computation with Caja,
JaTE and without any confinement to assess the overhead.
For Caja, we tested both ES5/3 mode (compatible with
ES3, uses rewriting to isolate code and a virtual DOM im-
plementation) and ES5 mode (compatible with ES5, uses
SES for isolation and the same virtual DOM implementa-
tion as ES5/3). Figure 9 shows the results; ES5/3 mode is
slower than ES5 mode and JaTE because of its heavy run-
time checks; Caja ES5 mode is faster than ES3/5 mode due
to their use of SES (which realizes object capability without
runtime checks), but still substantially slower than JaTE
because of its virtual DOM implementation.

6.2 Transparency Evaluation
6.2.1 JaTE Transparency

There are three corner cases where JaTE can change the
semantics of a script: (a) use of a cross-compartment caller,
(b) special forms of direct eval, and (c) modification of
white-listed built-in functions.

To assess the prevalence of these corner cases, we un-
dertook a large-scale evaluation involving all sites from the

Benchmark JaTE Caja ES5 Caja ES5/3

Canvas Clock 16.8% 64.9% 1091%
Markdown 3% 136% 2310%
Game of Life 4.1% 566% 640%

Figure 9: JaTE vs Caja Overhead Comparison

Feature Top 500

Strict mode error 87.4%

Use of direct eval 30.9%
Native prototype extension 48.5%

Figure 10: Related Work Transparency

Alexa Top 500. Using the same extension used to calculate
page load overheads, we loaded each site, waited 5 seconds
after the load event, took a screenshot and logged Java-
Script errors, both with and without JaTE. To automate
the inspection of a large number of sites and minimize false
negatives, we compared the error logs and the screenshots of
both runs for each site. If we found different error messages
in the two logs, we inspected the screenshots side-by-side
for missing content. If content appeared to be missing, we
confirmed the test results manually. We did not find any
page that could not be loaded correctly due to a shortcom-
ing of our approach. Thus, we conclude that JaTE achieves
transparency for today’s web sites.

6.2.2 Related Work Transparency
To estimate the transparency of related work, we used the

test extension again to load the same set of pages while con-
fining all code in the strict mode subset used by Caja ES5
mode, SES and JSand. As shown in Figure 10, over 80%
of sites use third-party scripts that break in strict mode,
and hence these sites are not transparent with the afore-
mentioned solutions.

Forcing strict mode is not their only shortcoming. For
example, they also prevent the use of direct eval seman-
tics and freeze native prototypes. To estimate the trans-
parency impact of these two features, we ran our testing
harness again and logged the use of these features in each
web site, as shown in Figure 10. Both restrictions causes
enough transparency problems to discourage websites from
adopting these confinement solutions.

We also estimated the impact of strict mode on the social
media buttons confined in Section 6.1.1. All the buttons
failed to load.

6.3 Security Evaluation
To evaluate the security of JaTE, we tested it against a

collection of attack vectors maintained by Google Caja [4],
which contains 48 different attacks. 23 of these attacks are
not applicable as they rely on non-standard features and do
not work on Firefox. We augmented the test suite with 5
attacks of our own. These attacks either attempt to obtain
unmediated access to cross-compartment references or intro-
duce unconfined code into the page. For example, the Func-

tion constructor can be accessed through the constructor

property of the prototype of Number, to create dynamic code,
such as (3).constructor.constructor("return window").
We put these attacks into categories as shown in Figure 11.
JaTE successfully stopped all other attack vectors, medi-
ating all accesses and running dynamically generated code



Category # of attacks

Prototype poisoning 4
Global object leak 3
Dynamic Code 7
Private data access and poisoning 4
Code obfuscation 3
caller and arguments stealing 3
Lexer confusing 2
Policy related 5

Figure 11: Caja Attack Vectors

using the correct principal.

7. RELATED WORK
In this section, we discuss previous related research, fo-

cusing our attention on efforts that have not already been
discussed in detail.

7.1 Language-based isolation
ADsafe [11] and GateKeeper [13] define a subset of Java-

Script amenable to static analysis to enforce policies using
static verification. Gatekeeper [13] restricts JavaScript to
perform static points-to analysis to reason about unreacha-
bility of security-sensitive resources. ADsafe [11] provides
controlled DOM access to third-party code by offering a
narrow interface through the ADSAFE object, while impos-
ing significant language restrictions aimed at ensuring that
all DOM interaction happens through the object. For exam-
ple, ADsafe prevents access to eval and the use of subscript
notation. Despite these restrictions, bugs were found [28]
in ADsafe, demonstrating the difficulty of realizing object-
granularity access control in JavaScript.

BrowserShield [29] was one of the earliest works in this
area. It avoided language restrictions by relying primarily
on runtime checking. They were the first to propose the
idea of runtime rewriting to handle eval that we have used
in JaTE as well. Caja [20] also relies heavily on rewriting
and runtime checking. In particular, accesses to identifiers,
attributes and functions need to be checked for safety, which
can lead to slowdowns by an order of magnitude or more for
some programs.

7.2 Frame-based isolation
AdJail [34] isolates third-party code in an iframe and uses

postMessage to transparently cooperate with the first-party
page. The advantage of this approach is that it is easier
to reason about complete mediation, since every communi-
cation must explicitly pass through the postMessage prim-
itive. Specifically, it sets up a shadow iframe containing
third-party code and DOM data from the real page that
was explicitly shared by the first-party. Any modification
to the shadow DOM by the third-party code is transmit-
ted to the real page and subject to a policy check before it
is reflected there. Treehouse [14] is a conceptually similar
approach using Web Workers instead of iframes.

Instead of propagating DOM changes, Mashic [17] and
Pivot [23] provide a transparent, synchronous interface for
cross- domain operations on top of postMessage, to support
confinement of general-purpose code. Mashic rewrites all
code to continuation-passing style, while Pivot uses Gener-
ators to achieve the same goal using minor rewriting. How-
ever, they still fail to support complex interactions, such as
pass-by-reference.

AdSentry’s [12] goal is not only to fully mediate access
to DOM resources, but also to protect against drive-by-

downloads. To meet both goals, AdSentry runs third-party
code on a separate JavaScript engine secured using Native
Client sandbox [42]. DOM resources are kept in the main
engine, and complete mediation is achieved by forwarding all
DOM accesses from the shadow engine to the main engine.

MashupOS [41] criticizes the all-or-nothing approach of
the SOP and extends it to better support the trust re-
lationships commonly found in web mashups. It identi-
fies four modes of interaction and introduces new HTML
elements and security abstractions. On the other hand,
COWL [32] leverages traditional mandatory access control
and tracks the secrecy labels of each frame, preventing the
leakage of confidential information to unauthorized parties.
However, both MashupOS and COWL still only support
coarse-grained policies; they don’t tackle object-granularity
access control that we seek in this paper.

The main problem with solutions in this category is that
they are not able to support complex interactions involving
passing object references or cross-frame function calls. As
a result, to preserve functionality, people are taking risk to
run third-party code directly in their websites.

7.3 Other
BEEP [15] allows a browser to examine and approve scripts

before they are executed, according to a policy provided by
the website as a JavaScript function. Content-Security Poli-
cies (CSPs) [31] are a mechanism developed by Mozilla to
restrict the inclusion of resources such as scripts, images and
frames into the web page to a specific subset of third-party
servers. These works were motivated at preventing code in-
jection attacks, e.g., cross-site scripting (XSS). Thus, their
mechanisms are helpful for classifying entire scripts as “al-
lowed” or “disallowed,” but they don’t help with the object-
level isolation and access control problem faced by JaTE.
Indeed, policy enforcement is not a promising approach for
blocking XSS since the inferred origin of the malicious script
would be the same as that of the first-party. This is why XSS
defenses are mainly focused on detecting invalid script con-
tent, such as whole script [10] or partial script [27] content
that has been reflected from HTTP parameters.

ConScript [22] augments Internet Explorer with policy
check callbacks embedded directly in the JavaScript engine.
Its goal is to securely mediate the operations made by a
script, and apply a user-specified policy. WebJail [37] uses
an approach similar to ConScript but implemented on Fire-
fox. Its goal is to provide a higher-level interface to express
policies that impose further restrictions over the SOP, e.g.,
restricting access to local storage, or network operations.
The new HTML 5 specification [3] includes coarse-grained
support for sandboxing iframes by specifying a subset of
capabilities for the contained document, such as running
JavaScript code or opening pop-up windows. While all of
these techniques are helpful for further restricting untrusted
scripts, note that they still only provide a single security
context (such as a frame) for the code. In contrast, JaTE
requires distinct security contexts to be maintained for the
host and third-parties, and distinct policies to be enforced
on them, while allowing them all to run within the same
frame.

8. CONCLUSION
This paper presented JaTE, a compartment-based solu-

tion for confining third-party JavaScript code. Although
this problem is of great practical significance, previous solu-



tions to this problem have not been amenable to real-world
deployment because they impose significant restrictions that
break existing sites, or due to performance considerations.
In contrast, by leveraging JavaScript language features and
using a novel combination of code transformation and run-
time checking, JaTE can safely support the full JavaScript
language and full interaction among principals. Our evalu-
ation shows that JaTE is efficient at confining third-party
code on a range of web sites. Finally, JaTE requires no
browser modification, and thus provides an easy path for
deployment on today’s web sites.

The focus of this paper has been on the development of
a policy enforcement framework. The next important chal-
lenge is the development of policies that achieve high-level
security objectives, without requiring undue amount of hu-
man effort. An important advantage of JaTE is that it in-
tercepts every security relevant operation, and these can be
logged for subsequent analysis using techniques for policy
generation from such logs [30, 33, 39, 43].
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Appendix
9.1 Rewriting global strict code

For global strict code, the rewriting we use in Section 3
does not work because: a)’use strict’ needs to be placed
before any other statements and b) strict mode prohibits the
use of the with statement. As a result, we employ a different
way to rewrite code that uses strict mode in the global scope.
In specific, we move all global variable declarations to the
global scope while putting everything else inside a function
scope where strict mode is enabled. This rewriting is also
simple and only requires lexical analysis. Listing 1 shows
how JaTE rewrites the malicious Like script when the script
runs under strict mode in the global scope.

1 jate.enterContext("facebook.com");

2 var scope = jate.getScope("facebook.com");

3 try {

4 with(scope){

5 var s;var stol;

6 (function(){

7 ’use strict’;

8 s = function s() {

9 var stol=processThis(this).data.secret;

10 };

11 stol=data["se" + "cret"];

12 s();

13 stol=data.getSecret ();

14 eval(processEvalSrc("stol=this.data.secret"

))

15 }();

16 }

17 } finally { jate.exitContext(); }

Listing 1: Rewritten malicious global strict-mode Like
script (underlined code segments are added by JaTE)

9.2 Scope object
jate.createScope = function (domain , window) {

var vWindow=jate.createProxy(window);

var scope = new Proxy({}, {

has: function(target , n){

return true; // pretend to have all

properties

},

set: function (target , n, value , receiver){

vWindow[n] = value;

},

get: function(target , n, receiver){

if (!(n in window)){

throw new Error( ' Ref error ' );
}

else{

return vWindow[n];

}

}

});

jate.allScopes[domain] = scope;

return scope;

}

Listing 2: Scope object creation

The scope object is created as shown in Listing 2. JaTE
does not use the virtual global object directly as the scope

object because we want to correctly handle the in operator
like x in window and reference errors of undeclared global
variables.

9.3 Secure direct eval handling
An eval call is direct if the following conditions hold:

(a) The MemberExpression in the CallExpression must be
evaluated to a reference, not a value; and the identifier is
“eval” within the MemberExpression; and (b) the reference
must be evaluated to the standard builtin function eval.

// inside jate.createScope

...

var directEval = false;

var nEval = jate.getOrigEval(window);

var scope = new Proxy({}, {

...

set: function (target , n, value){

if (n=== ' directEval ' ){
directEval = value;

}

...

}

get: function(target , n){

if (n=== ' nativeEval ' ){
directEval = false;

return nEval;

}

if (n=== ' eval ' && window.eval === nEval &&

directEval){

directEval = false;

return nEval;

}

...

}

}

...

Listing 3: Handling eval

Simply replacing eval(...) with eval(processEvalSrc(...))

does not work because, at the get trap of the scope object,
JaTE can’t tell if a get request for “eval” is direct or indi-
rect. For this reason, eval(...) is replaced with (directE-

val=true, (eval===nativeEval)?(directEval=true, eval

(processEvalSrc(...))):eval(...)).
JaTE uses directEval to distinguish between direct and

indirect eval. Setting directEval to true is used to let the
get trap of the scope object know that this might be a direct
eval call. In addition, comparing (eval===nativeEval) is
used to make sure that eval in this execution context is the
native built-in eval. Specifically, as shown in Listing 3, if a
get request for “eval” is seen: JaTE checks if eval is actually
the native built-in one and directEval is true, then returns
the original built-in eval and resets directEval to false;
otherwise process the get request as usual. As a result, all
indirect eval requests will be proxified and the dynamic code
is treated as new code from the same principal and set up
to run in the same compartment.
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