
Lifting Assembly to Intermediate Representation:
A Novel Approach Leveraging Compilers ∗

Niranjan Hasabnis
Intel †

niranjan.hasabnis@intel.com

R. Sekar
Stony Brook University
sekar@cs.stonybrook.edu

Abstract
Translating low-level machine instructions into higher-level
intermediate language (IL) is one of the central steps in many
binary analysis and instrumentation systems. Existing sys-
tems build such translators manually. As a result, it takes a
great deal of effort to support new architectures. Even for
widely deployed architectures, full instruction sets may not
be modeled, e.g., mature systems such as Valgrind still lack
support for AVX, FMA4 and SSE4.1 for x86 processors. To
overcome these difficulties, we propose a novel approach
that leverages knowledge about instruction set semantics that
is already embedded into modern compilers such as GCC.
In particular, we present a learning-based approach for au-
tomating the translation of assembly instructions to a com-
piler’s architecture-neutral IL. We present an experimental
evaluation that demonstrates the ability of our approach to
easily support many architectures (x86, ARM and AVR), in-
cluding their advanced instruction sets. Our implementation
is available as open-source software.

1. Introduction
Binary analysis and instrumentation form the basis of many
popular systems for program debugging and monitoring
(e.g., Valgrind [37], DynamoRio [13] and Pin [36]), proces-
sor virtualization (e.g., QEMU [12]), and malware analysis
(e.g., BitBlaze [49] and BAP [14]). Numerous techniques
and solutions in software security, including taint-tracking
[38, 42, 44], control-flow integrity [6, 57], sandboxing un-
trusted code [23, 32, 54], malware analysis [22, 52, 55], and
automated exploit and signature generation [10, 19], rely on
binary analysis/instrumentation.

A central challenge faced by all these systems is the
accurate modeling of instruction semantics. Errors in the

∗ This work was supported in part by grants from NSF (CNS-0831298 and
1319137), AFOSR (FA9550-09-1-0539) and ONR (N00014-15-1-2378).
† This work was completed as a PhD student at Stony Brook University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’16, April 02–06, 2016, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4091-5/16/04. . . $15.00.
DOI: http://dx.doi.org/10.1145/2872362.2872380

model will invalidate binary analysis results. Worse, they
may cause instrumented programs to crash or fail in other
ways. The size and complexity of modern instruction sets
compounds instruction semantics modeling: the popular x86
architecture supports over 1000 instructions that are docu-
mented in a 1500-page manual. Despite its roots in RISC,
ARM v7A includes several instruction sets such as Thumb,
ThumbEE and Jazelle that cause the instruction set size to
balloon to about 1200, and the manual to about 1000 pages.

Existing binary analysis and instrumentation systems rely
on manually developed models of instructions. Given the
size of modern instruction sets, manual modeling poses a
daunting challenge even for a single architecture. Support-
ing multiple architectures such as PowerPC, x86, ARM,
SPARC, and MIPS using this approach can be prohibitive.
It is no wonder that even mature systems such as Valgrind1

support only a limited number of platforms, and moreover,
omit instruction subsets such as AVX, FMA4, and SSE4.1
on x86, and ThumbEE and Jazelle on ARM.

In contrast with previous binary analysis and instrumen-
tation works, all of which relied on manual instruction se-
mantics modeling, we present a novel automated approach
in this paper. Our approach leverages the knowledge of in-
struction sets that is already encoded in existing compilers
such as GCC [40] and LLVM [24]. Specifically, their code
generators can translate their (architecture-neutral) interme-
diate language to assembly code for many different architec-
tures. We present techniques to (a) automatically “extract”
this semantics, and (b) to test the accuracy of extracted se-
mantics. Our approach offers several important benefits:
• Automated instruction semantics modeling. Our approach

can greatly reduce the manual efforts needed in modeling
instruction set semantics.

• Architecture-neutrality. This feature has long been recog-
nized as important, starting with early works such as EEL
[35] and UQBT [17]. However, the focus of these works
was on the analysis and instrumentation steps that fol-
lowed a manually implemented step to lift assembly to
an intermediate language (IL). Our work addresses the
significant challenge left open by these (and other sub-
sequent) works, namely, automating the lifting step.

• Leveraging well-tested compiler code. Compilers are
among the most extensively tested pieces of software —

1 We used Valgrind version 3.7.0 for our testing.

both during development and in the field. As a result, er-
rors in instruction semantics are likely to have been found
and fixed. By extracting this “debugged” instruction se-
mantics, our approach reduces the likelihood of errors that
are all too common in manually lifted assembly [1, 3–5].

1.1 Approach Overview and Contributions
Problem Formulation. Modern compilers such as GCC
rely on an architecture-specific machine description (MD)
to drive their code generator. However, as discussed in Sec-
tion 2, these MDs are interpreted using large amounts of
architecture-specific C-code. Indeed, many MD rules di-
rectly contain C-code! As a result, it is not feasible to ex-
tract instruction semantics by directly processing the MDs.
We therefore formulate the model extraction problem as a
machine-learning problem: given examples of IL to assem-
bly translation produced by a compiler, learn a mapping
from assembly to IL.
Algorithm for Learning Assembly to IL Mappings. While
there exist a vast array of machine-learning algorithms, most
of them are focused on the problem of classification or re-
gression, i.e., given an input, they output a (small) inte-
ger or a real-value. The output in our learning problem are
more complex, consisting of tree-structured2 IL snippets.
Secondly, machine learning algorithms are designed with the
assumption that errors can be tolerated, and indeed, are a
necessary component of any solution that generalizes well.
In contrast, translation errors are unacceptable in our con-
text. To our knowledge, the only previous works that sat-
isfy these constraints are on finite-state transducers (FSTs).
However, these algorithms (e.g., OSTIA [39]) operate on
strings, and do not address two major challenges that arise
in our problem context: parameterized translation and tree-
structured data. We describe these challenges in Section 3,
and develop efficient techniques to overcome them.
Efficient Lifting of Whole Binaries to IL. Our learning
algorithm maps (short) sequences of assembly instructions
into IL. Given a long instruction sequence, there can be
multiple ways to lift it to an IL sequence. As a result, a
straight-forward lifting algorithm can have an exponential
complexity. In Section 4, we show how to exploit dynamic
programming to realize a linear-time lifting algorithm.
Correctness of Extracted Mappings. While compilers use
the MD rules to translate IL to assembly, we are using
them in the reverse direction. This raises a question as to
the correctness of the approach. We provide a conceptual
justification of correctness in Section 5, followed by a more
formal treatment and experimental evaluation in Section 6.4.
Experimental Evaluation. Our evaluation in Section 6
establishes the following:
• Ability to support complex instruction sets. Our system

can extract the semantics for about 1100 user-level in-

2 We are referring to a parse tree of the IL snippet.

structions on x86, including advanced instruction sets
such as SSE and AVX; and about the same number for
ARM, including its Thumb, VFP, and SIMD instructions.

• Completeness. We show that our approach can success-
fully lift about 99.5% of Ubuntu/x86 and 99.8% of De-
bian/ARM binaries. Most of the missed instructions are
various forms of NOPs and other instructions that are
never used by GCC. Because of the simplicity of these
instructions, it took us only a few hours to manually ex-
tend the model to incorporate these instructions.

• Architecture-neutrality. It took just 9 person-hours to sup-
port ARM, and 3 hours to support AVR, a popular micro-
controller used in platforms such as Arduino.

• Performance. We trained the system using 1.4GB of code
generator logs. This training produced a transducer with
4830 states in 10 minutes. We then used this transducer
to lift all the binaries from the entire Ubuntu/x86 and De-
bian/ARM distributions, which total about 100M instruc-
tions. This testing took approximately 8 hours.

In a companion paper [41], we describe the application of
the semantics derived by our approach. A short summary
of this application is discussed in Section 6.5. Comparison
with related work is presented in Section 7, followed by
concluding remarks in Section 8.

Our system is available as open-source software [27].

2. Background and Problem Formulation
Compiler researchers have long worked to develop architec-
ture-independent code generators [20]. These code gener-
ators translate code in an architecture-neutral intermediate
language (IL) into assembly code. Their operation is driven
by machine descriptions (MDs) that describe the instruction
set of a target architecture. The core component of an MD is
a set of rules, each mapping a snippet of IL into an assem-
bly instruction (or in some cases, a sequence of assembly
instructions). This general structure is applicable to modern
compilers such as GCC and LLVM, but due to GCC’s ma-
ture support for numerous architectures, our implementation
is based on GCC. An example rule from GCC’s x86 MD is
shown below:
[(set (match operand:0 “register operand” “=a”)

(div (match operand:1 “register operand” “0”)
(match operand:2 “nonimmediate operand” “qm”)))

(clobber (reg: FLAGS REG))]
−→ "div %2"

This rule consists of an RTL3 pattern corresponding to
the divide instruction. This RTL snippet states that the result
of dividing operand 1 by operand 2 is stored in operand 0.
At the assembly level, the first two operands are same and
implicit, a fact captured by (the cryptic) match constraints
“0” and “=a” in the RTL. The applicability of the pattern
is constrained by several other (architecture-specific) con-

3 RTL is the name of GCC’s IL.

straints as well, including “register operand” and “qm.” Of-
ten, compilers do not need to reason about the exact value
of flags after each and every arithmetic or logical instruc-
tion. Hence this rule indicates that flags are modified without
specifying exactly how4.

It may seem that MD rules can be used in reverse to trans-
late assembly to IL, but unfortunately, as illustrated by the
above example, the rules are not self-contained. Several de-
tails, such as the meanings of the constraints and the printing
of assembly-level operands (i.e., how %2 is substituted in the
above example) are hard-coded into architecture-specific C-
functions. Even the output assembly may not be specified for
some rules: instead, the right-hand side of the rule may con-
sist of C-code that, when compiled and executed, will return
a string representing the output assembly instruction! Re-
versing these rules will hence require all such C-code to be
inverted. Computing inverses of arbitrary C-functions is an
intractable problem in general, so we need alternative meth-
ods. One possibility is to rely on human experts to study
these C-functions and hand-generate the inverses. Unfortu-
nately, we find that the amount of C-code that needs han-
dling is far too much to make this approach attractive. For
instance, the x86 MD in GCC consists of 1500 rules (40K
lines), but a far larger 90K lines of C-code. Moreover, such
manual efforts can introduce new bugs, thus negating the pri-
mary benefit of MDs, i.e., they have been tested extensively.

To overcome the above problems, we develop a black-
box approach that observes the IL-to-assembly translations
actually produced by a compiler, and learns a mapping
from these observations. Such an approach eliminates the
need to understand the semantics of MDs or the associated
architecture-specific code. This, in turn, makes the technique
easier to apply to a broad range of compilers, including those
that rely on even more programmatic MDs than GCC. While
coverage is a concern with learning-based approaches, note
that in the context of this problem, large amounts of train-
ing data can be readily obtained by compiling (a virtually
endless supply of) open-source software, and recording the
IL-to-assembly mappings.

We formulate the assembly-to-IL lifting problem as one
of learning a parameterized translation on trees represent-
ing assembly and IL snippets. We say “parameterized” be-
cause the translations involve parameters, which correspond
to operands in the assembly and IL. In addition, we oper-
ate on parse-trees (rather than strings), as their structure pro-
vides additional clues for the learning algorithm, and more-
over, the notion of parameters is more easily understood in
the context of trees. The following abstract example will
help illustrate some of the key requirements of the learning
algorithm we will describe in the next section.

4 Static analysis and instrumentation techniques typically require sound
instruction semantics, but can typically cope with incompleteness, e.g.,
when flags (or in some cases, other operands) are specified as clobbered.
This is why the incompleteness of div semantics does not pose a problem.
For a more detailed discussion, see Section 6.4.1.

Example 1. We use a first-order term notation to represent
trees. For instance, a(e, b(c, d)) represents a tree with the
root symbol a and two children. The first child is the (leaf)
symbol e, while the second child is a tree with the root
symbol b and two subtrees c and d that are leaves. The
following table shows a list of pairs given to the learning
algorithm, and a (possible) rule learned from them:

Asm IL Rule learned
a(4, 2) s(2, b(2, 2, 8))
a(1, 1) s(1, b(2, 1, 2)) a(x, y) −→ s(y, b(2, y, f(x)))
a(7, 3) s(3, b(2, 3, 14))

Here, f is a function that multiplies its argument by 2,
while x and y are universally quantified variables that rep-
resent parameters. This example has been chosen to illus-
trate several common features we observe in the assembly
to IL translation. For instance, parameters may be reordered
because IL tends to list its destination operand first, while
assembly may list it last. Parameter duplication is also com-
mon since assembly typically uses two-operand format for
most operations, while IL uses 3-operand format. It is also
relatively common for IL to add additional operators such as
b — for instance, a constant 10 in assembly may be repre-
sented as (cint 10) in IL. Finally, constants may be trans-
formed using simple functions such as f , e.g., they may be
offset or scaled by a small number. Thus, the learning algo-
rithm needs to be able to recognize such transformations.

Some of the constants in the first two columns correspond
to parameters, while others, such as the first child of b, don’t.
The learning algorithm needs to distinguish between them
by observing several examples.

Operating on trees means that we need to first parse
assembly code as well as RTL. The latter task is easy because
RTL uses an S-expression syntax that is easy to parse, and
moreover, it is a one-time effort. Parsing assembly, on the
other hand, is an architecture-specific task. To minimize
its development effort, we build a “rough” parser, one that
recognizes the nesting of operators and operands to build
a tree, but is unaware of many other syntactic distinctions,
e.g., the differences between addressing modes. As a result,
the entire parser code for x86 is less than 100 lines.

3. Learning Algorithm
We begin by enumerating the key requirements for the algo-
rithm for learning translations:
1. Error-free: Translation errors cannot be tolerated, be-

cause they will undermine the soundness of tools relying
on the mapping derived by the approach. At a minimum,
our algorithm should avoid errors on the training data;
ideally, it will have no errors (except, possibly, missing
translations) on test data.

2. Fully automatic: This algorithm should not require man-
ual supervision or any form of intervention.

3. Parameterized translation: Both assembly and RTL con-
sist of operands that often range over large domains (e.g.,
32-bit integers), and may go through transformations such
as the addition or multiplication by small constants, big
endian to little endian conversions, etc. Our algorithm
should be able to learn such common transformations.

4. Scalable to handle large data sets: As mentioned before,
a large amount of labeled training data is available in the
context of this problem, and so we seek an algorithm that
is efficient enough to exploit it.

To the best of our knowledge, previous techniques do not
satisfy several of these requirements. For instance, machine-
learning techniques target applications that can tolerate er-
rors. Often, a conscious trade-off is made that modestly in-
creases the error rate in order to achieve better generalization
from training samples. This is particularly true in the context
of modern machine translation literature, where the focus is
on the very difficult problem of natural language translation.

In the simpler setting of string translations, techniques
that focus on minimizing errors have been developed. Specif-
ically, Oncina et al [39] developed an algorithm called OS-
TIA for learning so-called onward subsequential transduc-
ers5 from examples. Being onward means that the transducer
emits as much of the output as possible at each transducer
state, instead of waiting until all of the input is examined.
Doing so exposes commonalities among states, enabling
more generalization (achieved by merging similar states).

A key property of OSTIA is its guarantee of zero errors
on the training data. However, OSTIA does not support the
concept of parameters such as those shown in Example 1, or
transformations on them. As noted in Example 1, even the
identification of parameters is nontrivial. Moreover, OSTIA
operates on strings, while our translation algorithm operates
on trees. While trees can be flattened into a string represen-
tation, this is undesirable for many reasons. First, important
structural information, which can provide clues for the learn-
ing algorithm, is lost. Second, the kind of parameter reorder-
ing shown in Example 1 leads to a situation where almost
no output can be emitted until all of the input is read6. This
leads to degenerate transducers that emit all their output in
the very last state, with the output being distinct for every
distinct input. In effect, this leads to a degenerate case of
learning, namely, exact recall, which memorizes input/out-
put pairs observed during training, and can recall the output
when a previously seen input is presented again. We will use
this exact recall algorithm as a baseline for our comparison,
while developing a new algorithm that satisfies all the re-
quirements listed above. Our system, called LISC (Learning

5 Transducers are very similar to automata: while automata accept an input
language, transducers perform translations, and as such, their transitions not
only consume inputs but also emit outputs.
6 This is because the last parameter of the input produces the first parameter
of the output, so the only output that can be produced before consuming all
input is the symbol “s”.

Instruction Semantics from Code generator), uses three main
steps as discussed below: (1) training data collection, (2) pa-
rameterization, and (3) transducer construction.

3.1 Training data collection
We first use GCC to compile many source code packages and
collect concrete pairs of assembly and IL-snippets produced
by the code generator. Note that this collection occurs at the
very last step of code generation: at this point, GCC has
completed register allocation, so the RTL refers to hardware
registers. This factor simplifies the learning step. A few
example pairs are shown below, where the RTL has been
abbreviated a bit to improve readability.

Asm RTL
sub $8, %eax (set (reg eax) (+ (reg eax) (cint -8)))
sub %ebx, %eax (set (reg eax) (- (reg eax) (reg ebx)))
sub %eax, (set (mem (+ (reg esp) (cint 8)))

8(%esp) (- (mem (+ (reg esp) (cint 8)))(reg eax)))

Both the assembly and IL are represented as first-order terms
after parsing. For instance, the term pair corresponding to the
first row of the table is

〈sub(8, eax), set(reg(eax),+(reg(eax), cint(−8)))〉

Note that a function g(n) = −n has been applied to the
parameter 8, similar to the function f(n) = 2n used in
Example 1. Other features of Example 1, such as parameter
reordering and duplication, are also present.

Typically, there is just a single assembly instruction per
pair, but there are instances where there is a sequence of
them. Our algorithm makes no distinction between these
cases, treating the sequence operator as yet another assembly-
level operator.

3.2 Parameterization
The goal of parameterization is to (a) identify all parameters
from a concrete pair 〈A, I〉, and (b) determine any functions
that are being applied to these parameters. Since we cannot
definitively identify a parameter by just looking at one 〈A, I〉
pair, we conservatively flag every constant (i.e., a leaf in the
term) in assembly as a potential parameter7.

We next identify, for each pair 〈A, I〉, the ways to derive
each of the leaf terms in I from the potential parameters
identified in A. Our design here is based on our observation
that there are only a small number of transformations that
are commonly found in assembly to IL mappings:
• eq: Identity is the most common transformation.

• +,−: Addition or subtraction of a small integer k > 0.

• ∗, /: Multiplication or division by a small integer k > 0.

7 Non-leaf subterms represent expressions containing an operator at their
root. Since we expect operators to have different semantics (if not syntax)
in assembly and IL, we do not consider them as parameters. In contrast,
constants such as “8” or “eax” can be copied over from assembly to RTL
or vice-versa, and hence we consider them as potential parameters.

• 2k, log2: These occur when a multiplication operation by
a power of two is translated into a shift operation.

• Numeric conversions such as big-endian to little-endian.

• Subword extraction, e.g., extracting a specific byte of a
32-bit value. We have observed this often in the context
of SIMD instructions, where multiple 8-bit values from
RTL are packed into a single 32-bit assembly operand.

Our parameterization algorithm starts with a small set f1, . . . ,
fr of transformation functions such as those listed above.
(We explicitly omit more complex functions, e.g., kx+ l or
kx2.) Then, for each leaf l in I and each potential parameter
x in A, it checks if fi(x) = l. If there is no such fi, l is
left as is. Otherwise, l is replaced by a combination of all
such transformations, plus l itself. If there is any potential
parameter x that is unused in any of these transformations,
then it is eliminated from consideration as a parameter. We
illustrate this procedure using a few examples below.

In/out pair After parameterization
a(5, b) t(s) a(5, b) t(s)

a(2, c) t(6) a(x, c) t({6, x ∗ 3, x + 4})
a(4, c) t(8) a(x, c) t({8, x ∗ 2, x + 4})
d(2, 4) u(5, 3) d(x, y) u({5, x + 3, y + 1}, {3, x + 1, y − 1})
d(5, 6) u(7, 6) d(x, y) u({7, x + 2, y + 1}, {6, x + 1, y})

Figure 1. Examples of parameterization

In the first row, the arguments of a are not considered
parameters, as they bear no relationship to the leaf s. In the
second row, the leaf 2 is identified as a potential parameter.
It may either be multiplied by 3, or added to 4 in order to
yield the leaf 6 in IL. It is also posssible that 6 is a constant
that won’t be affected by changes to the parameter value 2.
While parameterizing, we capture all these three possibilities
by using a set notation for the output parameter value, with
the semantics that all of the expressions in the set yield the
correct value for the output parameter.

The fourth and fifth rows involve two parameters instead
of one, but as before, we simply replace each leaf in I by a
set of expressions. If the learning algorithm, at some point,
concludes that the same parameterized rule is implied by
two distinct examples, then the two parameterized pairs are
merged, provided the following conditions hold:
• they match at every non-leaf position, and

• the intersection of corresponding leaves is nonempty.
The intersection corresponding to rows 4 and 5 will yield the
IL-term u(y+1, x+1). (Since the sets consist of just a single
expression, we have omitted the braces around them.)

3.3 Transducer construction
Our transducer operates on terms, and is hence a tree-
transducer. Such a transducer is similar to a trie or an acyclic
DFA. Like a DFA, a transducer operates in time that is linear
in the size of its input, and hence it provides fast translation

procedure MkDucer(S,R):
1. j = select(RA); Record j in S
2. for each b in RA[j] do
3. Rb = {〈RA, RI〉 ∈ R | root(RA[j]) = b}
4. Tb = mcp(Rb)
5. Create new state Sb

6. Create a transition from S to Sb annotated with Tb

7. R′b = {residue(R, Tb) | R ∈ Rb}
8. if R′b = ∅
9. then mark Sb final
10. else MkDucer(Sb,R

′
b)

Figure 2. Transducer construction algorithm

from assembly into IL. At the same time, a tree transducer
differs from a DFA in two important ways:
• a transducer’s transitions specify not only the input sym-

bols that must match, but also output symbols that are
emitted on each transition.

• unlike a string transducer, whose input consumption (and
output emission) occurs in a strictly left-to-right manner,
a tree transducer traverses its input (and emits output) in
any order, as long as it visits parent nodes before children.

Our algorithm MkDucer for constructing a transducer is
shown in Fig. 2. We begin with an intuitive illustration of
this algorithm on the example of Fig. 1, which results in
the transducer shown in Fig. 3. The states of the transducer
are annotated with a set of 〈A, I〉 pairs and a position to be
examined next in A. The start state S0 of the transducer is
associated with the entire set R of 〈A, I〉 pairs from Fig. 1.
At S0, there is only one option for the next position to
examine, i.e., the root of A, so we don’t show it explicitly.

Inputs in Fig. 1 are of the form a(x, y) or d(x, y), so we
create a transitions from S0 to capture these two cases. The
output is of the form t(z) in the first case. In the second case,
we obtain an output of u(y + 1, x+ 1) using the merge step
described at the end of Section 3.2. We annotate the edges
from S0 with these 〈in, out〉 pairs.

State S1 corresponds to the first three rows of Fig. 1. At
S1, we have examined a(x, y), the maximal common prefix
(mcp) of the three (assembly) terms, and emitted t(z), the
mcp of the three IL terms. (A prefix of a term is obtained
by omitting some of its subterms.) The subterms omitted in

S0: R

S1: R1, y

〈a(x,y), t(z)〉

S2

〈d(x,y), u(y+1, x+1)〉

S3

〈b, s〉

S4

〈c, x+4〉

Figure 3. Result of MkDucer (Fig. 2) on Fig. 1

the prefix are called residues — they represent the yet-to-be-
examined parts of the assembly instruction, and the yet-to-be
determined parts of the output. Note that a residue consist of
lists of subterms [t1, . . . , tn] that we call as a fringe. The
state S1 is annotated with this set R1 of residues. From the
first three rows of Fig. 1, it is easy to see

R1 = {〈[5, b], s〉, 〈[2, c], 6〉, 〈[4, c], 8〉}

We have omitted brackets when a fringe is singleton.
MkDucer uses a helper function select to determine the

next position to visit from S1. Suppose that y represents this
position. This choice is noted in S1. Since there are two
possible values for y, namely, b and c, two transitions are
created out of S1. On each of these transitions, the output
is fully determined, so S3 and S4 are marked as final states,
and MkDucer terminates.

Now we proceed to a technical description of MkDucer.
An invocation of MkDucer(S,R) builds a subtree rooted
at a state S. A prefix of the input and output terms, as
specified by the path from the transducer root to S, has been
examined. R represents the residues of 〈A, I〉 pairs that are
compatible with this prefix. Thus, each element of R is a pair
of fringes 〈RA, RI〉, where RA and RI are each sequences
of subterms of a parameterized pair 〈A, I〉 that have not been
captured in the common prefix.

MkDucer uses a helper select to pick the next input po-
sition to examine. Since we are interested in selecting from
input positions, select is a function of RA, the input com-
ponents of R. (For simplifying the illustration, this selection
was identified using a variable name in Fig. 3, but the algo-
rithm uses an integer index into the fringe array.)

Next, we partition R on the basis of the symbols occur-
ring at this selected position. The partition corresponding to
a symbol b is denoted Rb. The members of Rb agree on this
symbol b, but they may share more. We use the function mcp
to identify their maximal common prefix Tb. We then create
a new state Sb and a transition from S to Sb annotated with
Tb.8 This annotation means that Tb will be examined on this
transition, so we compute what is left to be examined in Rb

using the function residue. If the residue is empty, then we
are done, and we mark Sb as final. Otherwise we make a re-
cursive call to complete the transducer subtree rooted at Sb.

To complete this algorithm, we define mcp and residue:
DEFINITION 1 (Maximal common prefix). mcp(t1, ..., tn)
is the largest term t such that every ti is an instance of t. It
is defined inductively as follows:
• If t1 or t2 is a variable x, or root(t1) 6= root(t2) then
mcp(t1, t2) = x

• If t1 and t2 represent sets of expressions (from Section 3.2) then
if t1 ∩ t2 = φ then mcp(t1, t2) = x, otherwise it is t1 ∩ t2

8 By the properties of mcp, Tb includes the maximal part of the output that
can be determined at this point. Eagerly emitting output in this manner isn’t
critical for this version of the algorithm but is important for an optimization
we discuss later.

• Otherwise t1 = c(t11, . . . , t1r) and t2 = c(t21, . . . , t2r), and
mcp(t1, t2) = c(mcp(t11, t21), . . . ,mcp(t1r, t2r))

For two fringes T1 = [t11, . . . , t1r] and T2 = [t21, . . . , t2r],
mcp(T1, T2) = [mcp(t11, t21), . . . ,mcp(t1r, t2r)].

DEFINITION 2 (Residue). If t1 is an instance of t2 then
residue(t1, t2) = [t11, . . . , t1r] such that t1 is obtained by
substituting the ith variable in t2 by t1i, for 1 ≤ i ≤ r.
Otherwise the residue is undefined.
For two fringes T1 = [t11, . . . , t1r] and T2 = [t21, . . . , t2r],
residue(T1, T2) = [residue(t11, t21), ..., residue(t1r, t2r)]

We illustrate mcp and residue in the following tables:
t1 t2 mcp(t1, t2)

t(s) u(5, 3) x

{5, x+ 3} {5, x+ 2} 5

{5, y + 1} {7, y + 1} y + 1

a(5, a(b, c)) a(4, a(b, b)) a(x, a(b, y))

t1 t2 residue(t1, t2)

t(6) t(x) 6

a(5, a(b, c)) a(x, a(b, y)) [5, c]

a(b, {x+ 2, y ∗ 3}) a(x′, y′) [b, {x+ 2, y ∗ 3}]

Defining select. For the basic version of MkDucer, it is
easy to define select. It chooses only non-parameter posi-
tions. Among non-parameter positions, it chooses a posi-
tion that minimizes the number of immediate children of
the current state. If only parameter positions remain, this ba-
sic version of the algorithm fails. For the related problem
of building matching automata for trees, such a choice has
been shown to be optimal [45–47]. Extensions to this basic
algorithm are described later in this section.

Building DAG Transducers. Since assembly language
grammars typically have a fixed number of operands with
very limited depth, cycles are not useful (or even meaning-
ful) in our transducers. However, DAG structure can still be
useful, as it can produce considerable space savings.

While conversion to DAG is usually thought of as a
bottom-up post-processing optimization, such an approach
wastes significant resources: Tree automata can be exponen-
tially larger than DAG automata, so post-processing tech-
niques can perform exponentially worse than direct DAG
construction approaches.

Given our choice of passing only residues (“unseen inputs
and unemitted outputs”) into MkDucer, there is a simple
and elegant approach for direct DAG construction: before
creating a new state Sb corresponding to Rb, simply check
if there already exists another state S′ with the same residue,
and if so, create a transition to the existing state, and avoid
the recursive call. Such an approach works correctly because
MkDucer’s behavior is fully determined by the argument
R, and hence two invocations that pass in the same R will
result in identical subautomata.

Improving select. Typically, branching on parameter po-
sitions can be avoided if the assembly language parser is ca-
pable of distinguishing between basic operand types, such
as immediates and registers. However, in the interest of sim-
plicity, our parser does not make this distinction, so we
needed to generalize select further. Secondly, even if a better
parser were available, this generalization makes MkDucer
more powerful, capable of handling complexities that would
trip up the basic version. Thirdly, this generalization can pro-
duce space savings by avoiding multi-way branches with nu-
merous branches, instead using two-way branches.

When select is unable to find a non-parameter position to
branch on, or when the branching factor is too large, it builds
if-then-else branches. If the position contains parameters of
different types such as integers and strings, then the branch
will be on the basis of type. Otherwise, select compares with
a constant that divides the current set of residues into two
equal halves. Values less than this constant will follow the
then-branch, while the rest will follow the else-branch.

Extending select in this manner requires the mcp and
residue operations to be extended so that we can deal with
inequalities. Due to space constraints, we omit the details
here, but an interested reader can find them in Reference
[50], which studies the problem of building matching au-
tomata for network packets.

4. Efficient Lifting of Whole Binaries to IL
We next turn our attention to the problem of using the
assembly-to-IL mapping learned in the previous section to
lift whole binaries to IL. In order to do this, binaries need
to be first disassembled. While this is a nontrivial problem
itself, recent works (e.g., [56, 57]) have developed robust
solutions, at least for our experimental platform. Thus we
focus on the next step, namely, lifting (long) sequences of
assembly instructions to IL.

Lifting would be straight-forward if the mapping derived
in the last section operated on a single assembly instruction
at a time. However, there are many instances where the trans-
lation operates on multiple instructions at the same time.
This arises typically because compilers require some prim-
itives that cannot be realized using a single instruction. For
instance, manipulating stack canaries requires multiple as-
sembly instructions that should not be separated for security
reasons. Handling such groups is necessary not only because
some instructions may occur only in groups9, but also be-
cause it is advantageous to reconstruct the higher-level prim-
itives when lifting up back to IL.

The most obvious approach for lifting in the presence of
instruction groups is to use a greedy approach that maxi-
mizes the size of each group that can be lifted in one run of
the transducer. The greedy strategy is motivated by the ob-
servation that larger sequences can reconstruct more of the

9 In fact, we find that many instructions that operate on the gs register on
x86 occur in such multi-instruction bundles.

high-level information. Unfortunately, it can be easily shown
that a greedy strategy is not optimal: a greedy choice early
on in the assembly sequence may preclude the use of many
larger groups later on. Indeed, a greedy strategy is not even
guaranteed to find any solution at all, unless it uses back-
tracking. Moreover, such a backtracking approach can have
an exponential worst case complexity.

On further reflection, it becomes clear that the exponen-
tial blowup occurs due to repeated efforts to solve overlap-
ping subproblems. By recognizing this structure, we develop
an efficient algorithm that uses dynamic programming. The
subproblems we consider correspond to prefixes of the given
sequence A1 · · ·An of assembly instructions. We let Cj de-
note the minimum cost of lifting the prefix A1 · · ·Aj . To
compute this cost, we need to assign a cost GC to each group
of assembly instructions that can be lifted by a single pass of
the transducer. To express our preference for larger groups,
we set GC(B1B2 · · ·Br) = −r if the transducer can trans-
late B1B2 · · ·Br, otherwise the cost is set to∞.

The minimum cost Cj is given by the following equation,
where k denotes the size of largest group that can be trans-
lated by the transducer.

Cj =Min
1≤i≤k

[Cj−i +GC(Aj−i+1Aj−i+2 · · ·Aj)]

To see why this is correct, note that a minimum cost
partitioning (into groups) of A1 · · ·Aj must have a last
group. The size of this group cannot be larger than k, the
largest group for which the transducer provides a transla-
tion. Moreover, preceding this last group is a partitioning of
A1 · · ·Aj−i. Clearly, the cost of this group should be Cj−i
or else we can replace this partitioning with a lower-cost
way and hence have a contradiction. This establishes the
correctness of the above equation.

To analyze the complexity of computing Cj , note that it
can be computed starting with j = 1 and going to j = n.
Thus, we need to perform the “min” operation above n
times. Each run of this min operation takes O(k) time. Note
that k should be property of the machine description used
in the compiler, and should be small. In our experiments on
x86, k ≤ 4. When k is treated a constant, computing Cj

takes O(n) time. Thus we have a linear-time algorithm for
lifting whole binaries to IL.

As with other dynamic programming algorithms, it is not
enough to compute the minimum cost, but we also need to
identify the corresponding partitions. But this step is routine,
so we don’t describe it further.

5. Soundness
Code generators use machine descriptions to perform IL to
assembly translations, so a natural question is whether it is
sound to use them in reverse. We begin by describing how
MDs are developed and used, and how this use supports
their use in reverse. A more formal and rigorous treatment
is provided in Section 6.4.

Machine descriptions are developed by enumerating in-
structions in the target architecture, and specifying the se-
mantics of those instructions in IL. Thus, the developer view
indeed corresponds to an assembly to IL mapping. Secondly,
note that the IL-to-assembly mapping performed by a code
generator must be sound, or else it will generate incorrect
code. Therefore, an assembly instruction must perform all
of the actions that are included in IL. This suggests that per-
haps the assembly instruction could do more than what was
asked for by the IL, e.g., change an additional register. If so,
assembly-to-IL translation does not capture these extra ac-
tions. However, consider the fact that the IL optimizer per-
forms several optimizations such as removal of redundant
computations and reordering of code snippets. These would
be unsound if we allowed an IL snippet to be replaced by
an assembly instruction that modified CPU state in ways be-
yond what was stated in IL. Modern compilers such as GCC
make use of many such optimizations even on the lowest lev-
els of their IL. Undocumented effects of assembly instruc-
tions will invalidate these optimizations, thereby leading to
the generation of incorrect code. Since code generators un-
dergo extensive testing (by virtue of compiling vast amounts
of code), it is reasonable to expect that such bugs in MDs
would long have been found and fixed.

Finally, and most importantly, we have previously for-
mulated the notion of correctness of code generators [26].
Based on this formulation, we have developed an automated
testing approach for checking the equivalence of IL seman-
tics and the corresponding assembly instruction. We summa-
rize this formulation, and our experimental results in apply-
ing this formulation, in Section 6.4.

6. Evaluation
Our evaluation addresses completeness (Section 6.1), archi-
tecture-neutrality (Section 6.2), performance (Section 6.3)
and correctness (Section 6.4). Additionally, we evaluate the
effectiveness of the extracted model by developing an appli-
cation using it (Section 6.5). Our implementation platform
is Linux, and the architectures we target are x86, ARM and
AVR. AVR processors are widely used in embedded sys-
tems: they underpin the popular Arduino platform, as well
as numerous automotive applications.

All experiments were performed on a quad-core Intel i7
processor running 32-bit Ubuntu-14.04 OS. Compilers and
other tools needed for ARM and AVR were obtained using
cross-compilers for these architectures.

6.1 Completeness
For completeness experiments, we first build a transducer
using the set of concrete pairs observed while compiling a set
of programs (Ptrain). We then use this transducer to translate
assembly instructions from a set of test binaries (Ptest). We
used objdump for disassembly, as it is quite robust on Linux.

% insns lifted LISC (%) Missing
Ptrain Exact Missing Missing Mnemo-

Recall LISC Mnem- Oper- nics
onics ands (absolute)

openssl-1.0.1f 63.72 98.46 1.05 0.49 464
+binutils-2.22
+ffmpeg-2.3.3 68.21 98.74 1.03 0.23 377
+glibc-2.21 68.74 98.80 1.01 0.19 346
+ffmpeg-2.3.310 69.07 98.89 0.88 0.23 303
+gstreamer-1.4.5 71.07 99.10 0.79 0.11 221
+qt-5.4.1 72.45 99.21 0.69 0.09 161
+linuxkern-3.19 73.97 99.49 0.44 0.07 49
+Manual 74.04 100.00 0.00 0.00 0

Figure 4. Completeness result for x86

Ptest consisted of all the unique instructions in all bina-
ries (including kernel modules) on a standard Linux desktop
distribution. While the total number of instructions in these
binaries approaches a trillion, after eliminating exact dupli-
cates, we arrived at about 40M instructions in Ptest. Note
than neither Ptest nor Ptrain include instructions executable
only in kernel mode, as GCC never generates them.

We provide two types of numbers on completeness: the
first, expressed as a percentage, concerns the fraction of the
approximately 40M unique instructions in Ptest that could
not be translated by LISC. To interpret these percentages,
we compare them with that obtained by the baseline tech-
nique of exact recall (ER), which is able to translate an in-
struction in A ∈ Ptest only if A ∈ Ptrain. Note that ER is a
good baseline because (a) the previously known transducer
algorithm OSTIA reduces to ER in our setting, and (b) ER
provides the same correctness guarantee as our system, i.e.,
the system will correctly lift any A ∈ Ptrain.

Our second completeness metric is an absolute number: it
counts the fraction of (distinct) instruction mnemonics that
are not lifted by LISC. Note that both x86 and ARM support
about 1200 distinct mnemonics.

The training data set, which was always a subset of Ptest,
was varied as follows. We started with Ptrain consisting of
two binaries openssl and binutils. We then identified
the binary that had the lowest completion rate with this
training data, and then added that binary to Ptrain. This
step was repeated until maximum possible completeness was
obtained. This is not 100% because some instructions are
never generated by the compiler used in our experiments. We
now discuss these completeness results for each architecture.

6.1.1 Completeness Results for x86
Coverage on Ptest. The results for x86 are shown in Fig-
ure 4. Rows in the figure list the packages that were added
to Ptrain in each round. So +ffmpeg in the second exper-
iment means that ffmpeg was added to the base training
data of openssl and binutils in second iteration. We used
gcc-4.6.4 for 32-bit x86 with commonly used GCC flags
(-O2, -msse1, -msse4.2, -mavx, -mi387, -mmmx, etc.) to

10 ffmpeg was recompiled with SSE, i387, AVX enabled one-by-one.

% insns lifted LISC (%) Missing
Ptrain Exact Missing Missing Mnemonics

Recall LISC Mnemo- Operan- (absolute)
nics ds

Openssl + 34.58 88.21 6.86 4.94 814
binutils

+libfftw 44.60 92.77 6.01 2.22 553
+swig 51.43 95.67 3.72 0.61 422
+gcc 62.54 96.26 1.73 2.01 366
+libc 65.41 97.87 1.37 0.76 314
+gs 67.69 98.92 1.02 0.04 276
+slapd 69.54 98.95 0.85 0.2 246
+busybox 71.45 99.61 0.3 0.09 196
+libpoppler 71.90 99.66 0.3 0.04 126
+lib7z 72.10 99.78 0.21 0.01 76
+manual 72.23 100.00 0.00 0.00 0

Figure 5. Completeness result for ARM

capture a more complete set of instructions in the compiled
packages. Ptest consisted of all x86 binaries (including ker-
nel modules) found on Ubuntu-14.04 desktop installation.
To the best of our knowledge, Ubuntu uses GCC to produce
these binaries. These binaries (9237 of them) were disassem-
bled using objdump-v2.24.

After training LISC with a combination of openssl and
binutils, which contain about 0.35M unique instructions,
we could lift 98.46% of the 38M unique instructions in all
of x86 binaries on Ubuntu-14.04. By adding a few more
packages to the training set, coverage was increased to about
99.5%. At this point, the training data included about 3.1M
unique instructions. Obtaining 100% coverage requires a
small amount of manual effort, since the missing instructions
are not used by GCC. This point is further elaborated below.

Coverage of Mnemonics. While counting instructions, we
have counted a single mnemonic with different modes (byte
vs word) separately. With this way of counting, there are
1187 total mnemonics on x86. (Recall that this number
excludes instructions that are only available in the kernel
mode.) Of these 1187, 49 mnemonics (4%) appear only
in hand-written assembly, and are not generated by GCC.
These include instructions such as nop and enter (inserted
by the assembler), some rarely used arithmetic instructions
(e.g., aaa, and aad operations on binary-coded decimals)
and instructions to set/clear flag bits (e.g., cld), and low-
level instructions such as cpuid, invpcid, and rdtsc.

Advanced instruction set extensions such as sse, avx and
fma are covered in the semantics extracted by LISC. This
contrasts with the fact that many of these extensions are not
supported by mature (and popular) tools such as Valgrind.

We manually modeled these missing instructions. Since
many of the instructions were simple, this wasn’t a hard task,
and took us only a few hours of effort.

6.1.2 Completeness Results for ARM
Coverage on Ptest. For ARM, Ptest contained all instruc-
tions obtained by compiling all binaries (7.3K in total) found
on Debian-7.8.0 desktop installation, yielding a total of

Component (language) Arch-neutral code x86 ARM AVR
Log collection (C) 70 - - -
Parameterization and
transducer construction 2400 - - -
(OCaml) - - -
Assembly lexer (Ocamllex) 74 10 12 7
Assembly parser (OCamlyacc) 76 75 60 89
Utility code (scripts) 500 50 16 15

Figure 6. Breakdown of LISC implementation effort

about 55M unique instructions. We used gcc-4.7.3 cross-
compiler for 32-bit ARM cortex-v7A [8], and used arm-

linux-gnueabi-objdump-v2.24 as the disassembler. The
results are summarized in Figure 5. About 99.8% coverage
could be obtained on Ptest after training with about a dozen
binary packages.

Coverage of Mnemonics. By our count, there are about
1200 distinct mnemonics supported by ARM v7A, of which
76 (about 6%) were missing in the learned semantic model
because they were unused by gcc-4.7.3. These can be
classified as: a few miscellaneous instructions (such as dbg
and dmb), some low-level instructions (such as isb, mcr2,
mrs, and wfi), and a few other advanced instructions (such
as vtbl, vtbx, and vstm).

The total time taken to implement code changes for sup-
porting ARM, including the time for testing and debugging,
was around 9.5 person-hours.

6.1.3 Completeness Results for AVR
We then selected the AVR [9] processor. We trained LISC
by using the same base packages for training as the earlier
experiments, and used avr-gcc-v4.8.2 cross-compiler to
compile them. We then tested the extracted model on a few
coreutils binaries (ls, cp, cat, echo and head) for AVR.11

We used avr-objdump-v2.23.1 disassembler to disassem-
ble these binaries. Unfortunately, we could not get complete
coreutils package to cross-compile. The extracted model
covered 72 of the 76 AVR mnemonics. Our system was able
to translate all of the assembly instructions from the input
binaries.

Manual modeling was required for just 4 mnemonics
(break, nop, wdr, and sleep).

6.2 Effort for supporting multiple architectures
Figure 6 shows the breakdown of the number of lines of
code that is architecture-specific. Log collection adds a small
amount of code to GCC to record 〈assembly, IL〉 pairs for
learning. (Recall that testing data comes directly from bina-
ries.) This code, as well as the code for learning the trans-
ducer, is architecture neutral.

Manual effort needed to support a new architecture is
very small. It takes less than 100 lines of OCaml Lex and

11 These binaries were obtained by using avr-gcc-v4.8.2 cross-compiler
to compile source code of these utilities. We did not attempt to run these
binaries, as that is not needed for our experiments.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 262144 524288 1.04858e+06 2.09715e+06 4.1943e+06
 0

 80

 160

 240

 320

 400

 480

 560

 640

N
u
m

b
e
r

o
f
F

in
a
l
S

ta
te

s
 i
n
 T

ra
n
s
d
u
c
e
r

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of Concrete Pairs

Time to Build Transducer (in sec)
Number of Final States in Transducer

Figure 7. x86 Transducer Details

Yacc code to support each architecture. Note that this code
is particularly easy to write since we are not writing full
parsers for assembly, but a “rough” parser that can make out
the approximate tree structure.

The effort for supporting ARM, including the develop-
ment of about 100 lines of code, and verifying that all com-
ponents “work as expected” took about 9.5 person-hours.

The effort required for AVR was about 3.5 person-hours.

6.3 Performance
Figure 7 captures the performance of the learning algorithm.
Note that the chart shows both time and size on the Y-
axis. The Y-axis is linear, while the X-axis is logarithmic.
So, although the transducer time may visually appear to
increase super-linearly, the actual increase is close to linear.
The time needed by the algorithm is relatively small, about
10 minutes for the largest training data consisting of about
3.5M concrete pairs on x86. We have not optimized space
usage yet, but it is reasonable already — about 200MB for
the largest transducer we have built.

The performance charts for ARM are qualitatively sim-
ilar, but the actual transducer construction is almost four
times as fast, and space usage is about half as much as the
x86 transducer.

Performance for Lifting Entire Binaries. We described
a linear-time dynamic programming algorithm for lifting
binaries. We have experimentally verified that its runtime
increases roughly in proportion to the size of the binary that
is lifted. Due to space constraints, we will just summarize its
performance below.

Using this algorithm to translate all binaries on Ubuntu
and Debian took approximately 8 hours each. The total time
includes the disassembly time, which is approximately a fifth
of the total time to lift a binary.

6.4 Correctness of translation
We experimentally evaluate correctness in three ways.

• Semantic equivalence test: We rely on ArCheck [26] to
test the correctness of the mappings derived by our ap-
proach.

• Consistency test: Note that it is possible for distinct IL-
snippets to result in the generation of the same assembly
instruction A. In this case, A may be lifted to two distinct
IL-snippets, which may seem like an error in lifting. We
describe a systematic investigation to analyze them.

• Loop-back test: Given a binary with a list A of assembly
instructions, lift it up to IL I using LISC, and then use
GCC to generate code for I and check that this code
matches A.

6.4.1 Semantic equivalence test
Here, we rely on ArCheck [26], which defines two notions
of correctness:
• Soundness: This notion permits IL to leave some effects

of assembly instructions unspecified, e.g., the IL may
indicate that certain registers (or memory locations) are
clobbered. In particular, IL may over-approximate the
effects of assembly, but it cannot miss any effects.

• (Strong) Equivalence: Here the semantics of IL and as-
sembly must be identical. In other words, the IL precisely
captures the effect of assembly.

ArCheck currently supports 140 of the basic x86 instruc-
tions. We used it to verify the soundness of the IL produced
by LISC for all these instructions. While this does not elim-
inate the possibility of soundness errors for the remaining
instructions, it does validate our approach, and suggests that
such errors are unlikely.

The only soundness problem we have observed so far
arises in the context of a call instruction. In particular, an
IL-level call indicates the number of actual parameters, but
this information is unavailable at the assembly level. We can
address this problem by lifting a call instruction to indicate
no parameters at the IL level.

We also used ArCheck to verify that the IL produced
by LISC preserves strong equivalence for 109 of the 140
instructions. For the remaining 31, differences arise due to
CPU flags as discussed below.

Impact on Binary Analysis/Instrumentation. Soundness
is a requirement for most applications of binary analysis and
instrumentation. Without soundness, the lifted IL would be
incorrect in some cases, and lead to problems and failures.
Equivalence is desirable but not critical for all applications.
Indeed, we observe that equivalence failures arise primar-
ily in the context of CPU flags, which are typically left un-
specified after most arithmetic and logical instructions. GCC
uses only a small subset of these instructions (e.g., the com-
pare instruction) to translate conditionals, and hence speci-
fies flags accurately for this subset.

Binary analyses typically rely on abstraction — what is
needed is a sound approximation, which is what we focus

on. Instrumentation involves preserving original code, while
adding new code to maintain metadata or to enforce poli-
cies. For instructions whose IL is not strongly equivalent, a
simple liveness analysis of over-approximated fields can be
performed. Specifically, a static analysis can be used to de-
termine if subsequent instructions rely on any of state (say,
flags) that is over-approximated in the IL; if not, then the
approximation cannot have any negative effect. On the other
hand, if there is a possible use, then the instrumentation sys-
tem can be designed to ensure that the exact same instruction
is emitted again, thereby preserving the original semantics.

6.4.2 Consistency test
The approach discussed above shows that every pair 〈I, A〉
produced by the code generator represents a sound transla-
tion of assembly code A to IL I . However, this leaves the
following question open: if the code generator produces the
same assembly code A for two distinct IL snippets I1 and I2,
which of these should be used as the IL for A? The following
possibilities arise:
• If any one of the IL translations preserves strong equiva-

lence, then choose this IL as the preferred translation.

• Otherwise, there exist n sound ILs I1, . . . , In for an
assembly instruction A, but none of them are strongly
equivalent to A. Since each of I1, . . . , In is a sound ap-
proximation, their intersection is also a sound approxi-
mation of A. Moreover, this intersection is likely to be
more complete than any individual Ij , and indeed, may
be strongly equivalent.

For the ILs learned by LISC for x86, we made the following
observations:
• Of the total 1187 mnemonics in x86, around 24% map to

multiple possible ILs.

• Of these 24%, a vast majority of them — specifically,
22% — mapped to at least one IL that was strongly
equivalent to the assembly instruction.

• For the remaining 2%, we apply the intersection opera-
tion. We found that for most of them, differences arise
because the ILs define different subsets of CPU flags. By
taking the intersection, we were able to achieve strong
equivalence for most of these mnemonics.

Similarly for ARM, we made the following observations:
• Of the nearly 1200 assembly mnemonics, 15% (around

180) had multiple possible ILs.

• A vast majority of these — about 14% — mapped to
at least one IL that was semantically-equivalent to the
assembly instruction.

• For almost all of the remaining 1%, we applied the inter-
section operation and obtained semantic equivalence.

6.4.3 Loop-back test
There are factors to be noted in this context. First, note that
GCC is unable to regenerate code for instructions such as
nop that it never generates on its own. Second, due to the
fact that two distinct assembly instructions A1 and A2 could
be equivalent to the same IL, it is possible that lifting A1 and
regenerating code may result in A2. We compensate for both
factors in our test.

We have successfully performed this test on most of the
data in Ptest but not all. This is because GCC is not designed
to accept externally produced RTL and translate it. As a re-
sult, our attempts to translate the lifted RTL can fail inex-
plicably in some cases. Moreover, the fact that GCC may
not recognize some of the manually-introduced ILs (about
5% of assembly mnemonics) introduces an additional chal-
lenge. Our efforts have been focused on understanding GCC
internals to model such instructions in a GCC-friendly way.

Despite these challenges, we have been able to carry
out the loop-back tests successfully for several large bina-
ries such as vim, gedit, python interpreter, latex, wireshark,
mplayer, and packages from coreutils, binutils, and SPEC.
In total, around 67% x86 binaries, 74% ARM binaries and
94% AVR binaries from our test data pass loop-back test.
(Note that these numbers refer to entire binaries that passed
the test. If we counted the instructions that were successfully
regenerated, that number would be much closer to 100%.)

6.5 Application of extracted semantic model
We have applied our model for binary analysis, specifically,
for implementing a robust shadow stack [41]. Shadow stack
provides strong protection against stack smashing and ROP
attacks, but the technique has not been deployed because
previous approaches suffered from false positives on com-
plex programs. In particular, complex code ends up using
return instructions for purposes other than returning from a
function call. A deep and precise static analysis is necessary
to identify such uses of return instructions, and instrument
them differently from normal returns. We applied the de-
tailed instruction semantic models derived by LISC to per-
form this static analysis. As a result, we were able demon-
strate the absence of false positives on a wide range of large
and complex applications.

7. Related work
Binary analysis and instrumentation. Most previous bi-
nary analysis/instrumentation systems, including Dynamo-
Rio [13], Pin [36], QEMU [12], Valgrind [37], SecondWrite
[7], CodeSurfer [11], UQBT [17] and many other systems
[16, 21, 31, 33, 48] require a hand-written target instruction
specification to drive the translator. We are not aware of other
efforts that use compilers to fully automate this effort.

Some previous [15, 29] have developed assembly-to-IR
translators by relying on QEMU’s support for multiple ar-
chitectures. Specifically, they have written a backend for

QEMU to translate QEMU’s IR to LLVM’s IR. BAP [14],
on the other hand, directly uses Valgrind’s assembly to IR
translator. These methods thus inherit any completeness is-
sues from QEMU and Valgrind, which manifest as (a) sup-
port for only the most commonly used platforms, and (b)
missing support for new and advanced instruction sets.

DisIRer [30] and Dagger [2] are two efforts that leverage
compiler infrastructures to lift binaries to an IL. Dagger re-
lies on the LLVM infrastructure, but their approach for lift-
ing is manual. Hence it requires a considerable amount of
additional code development, as well as a good understand-
ing of LLVM internals.

DisIRer’s goals are similar to ours: using MDs in reverse
to lift binaries. However, as discussed earlier, there are many
parts of MDs that are not specifications, and the only way
to invert them is if we understand the C-code involved, and
manually write functions to invert them. This requires a large
amount of manual development effort for each architecture,
thus negating the main advantage of using compiler MDs.

Language translation and transducers. Modern language
translations efforts have been focused on natural languages.
However, the complexity of natural languages implies that a
certain rate of errors must be accepted. Our goals are thus
closer to some of the earlier works, such as OSTIA [39] that
emphasize error-free translation of simpler languages. (This
relationship has already been discussed earlier in this paper.)

While we have defined tree transducers as automata,
many earlier works have defined them using a formalism
similar to grammars [43, 53]. Nevertheless, we are not aware
of works that fully automate the learning of tree transduc-
ers. Language translation works that rely on tree transducers
(e.g., [53]) still require humans to specify a (weighted) trans-
ducer, with the weights being derived using a learning pro-
cess [25]. (Their choice of weighted transducers has again
been influenced by the complexity of natural languages.)

While our goal has been to learn assembly to IL map-
pings, Derive [28] goes in the other direction: it learns the
machine encoding of assembly instructions. There are some
similarities between our work and theirs, e.g, they too want
to identify simple transformations such as endian conver-
sions. However, they do not concern themselves many of the
problems we address, such as the learning of tree transduc-
ers (it is hard to represent machine code encodings as a parse
tree), or avoiding strong assumptions about the structure of
assembly code, or the interpretation of operands.

Collberg’s [18] effort was more ambitious, attempting to
learn MDs from a C-compiler. His approach is to construct
very simple C-programs that perform operations such as an
addition, analyze the instructions produced, and deduce the
semantics. The approach was reported to work on common
arithmetic operations. However, it is unclear how the ap-
proach can be generalized beyond simple arithmetic oper-
ations on registers.

Matching Automata and Decision Trees. The problem of
efficiently matching terms has been studied extensively in
the context of functional and logic programming, as well as
automated theorem-proving. Given a set of terms t1, ..., tn,
the problem is one of compiling the terms into an automaton
that speeds up the identification of the term ti that matches a
given query term s. As compared to string matching, the key
differences are (a) the need to handle variables, and (b) the
ability to vary the order of traversing the nodes in the term so
as to build more compact and efficient automata. Reference
[45] discusses an array of techniques to handle a wide range
of queries that arise in automated reasoning systems.

The criteria used for constructing compact matching au-
tomata are closely related to those used to construct deci-
sion trees in machine learning. While machine learning tech-
niques rely on heuristics such as information gain that aren’t
guaranteed to construct optimal trees, it has been shown
that under certain conditions, an optimal matching automa-
ton can be constructed [46, 47]. Reference [51] extended the
approach to matching network packets, and in that context,
demonstrated major gains in terms of space and runtime over
a previous technique [34] that relied on information gain.
Many of the concepts used in this paper, such as mcp and
residue, as well as the implementation of the select func-
tion, have been based on that work [50, 51]. The main differ-
ence is that the current paper develops algorithms for learn-
ing translations on trees, while those previous works were
focused on the (simpler) problem of term matching.

8. Conclusion
In this paper, we described an automated black-box ap-
proach called LISC for learning assembly-to-IL translators.
Our experiments validate the hypothesis that by leveraging
the knowledge already encoded in today’s compilers, in-
struction semantics for diverse architectures can be obtained
with relative ease. We showed that new architectures can be
supported with as little as several hours of effort.

In a companion paper [41], we have demonstrated an ap-
plication of the semantic model derived in this paper for per-
forming a detailed static analysis on binaries. In our future
work, we plan to study several additional applications that
require accurate analysis and instrumentation of large bina-
ries. Moreover, to aid other researchers working on similar
problems, we have made an open-source version of LISC
available for download from our laboratory web site [27].

Our approach can only recover the semantics of instruc-
tions generated by the compiler that feeds the 〈assembly, IL〉
pairs for our learning algorithm. Manual instruction model-
ing is required for those missing instructions. However, this
factor does not reduce the value of our work: as our eval-
uation shows, manual effort is limited to about a twentieth
of the instruction set. Moreover, these instructions tend to be
very simple in nature (e.g., NOPs), so the effort needed is re-
duced by one to two orders of magnitude over a fully manual
approach for modeling instruction semantics.

References
[1] Bad rounding in cvtsi2ss instruction. https://bugs.kde.

org/show_bug.cgi?id=319393.

[2] Dagger. http://dagger.repzret.org.

[3] Incorrect decoding of vpbroadcastb,w reg,reg forms. https:
//bugs.kde.org/show_bug.cgi?id=340725.

[4] insn basic test might crash because of setting and not clear-
ing DF flag. https://bugs.kde.org/show_bug.cgi?id=
326983.

[5] Power lxvw4x instruction uses 4 32 byte loads. https:

//bugs.kde.org/show_bug.cgi?id=339433.

[6] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Lig-
atti. Control-flow Integrity Principles, Implementations, and
Applications. ACM Trans. Inf. Syst. Secur.

[7] Kapil Anand, Matthew Smithson, Aparna Kotha, Khaled El-
wazeer, and Rajeev Barua. Decompilation to Compiler High
IR in a binary rewriter. Technical report, Univ of Maryland,
2010.

[8] ARM. ARM Architecture Reference Manual ARMv7A and
ARMV7-R edition. http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ddi0406c/index.

html, 2014.

[9] Atmel. Atmel AVR 8-bit Instruction Set. www.atmel.com/

images/Atmel-0856-AVR-Instruction-Set-Manual.

pdf, 2014.

[10] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and
David Brumley. AEG: Automatic Exploit Generation. In
Network and Distributed System Security Symposium, 2011.

[11] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim
Teitelbaum. CodeSurfer/x86 — a platform for analyzing x86
executables. In Compiler Construction, 2005.

[12] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’05, 2005.

[13] Derek L. Bruening. Efficient, Transparent, and Comprehen-
sive Runtime Code Manipulation. PhD thesis, Cambridge,
MA, USA, 2004.

[14] David Brumley, Ivan Jager, Thanassis Avgerinos, and Ed-
ward J. Schwartz. BAP: A Binary Analysis Platform. In Pro-
ceedings of the 23rd International Conference on Computer
Aided Verification, CAV’11, 2011.

[15] Vitaly Chipounov and George Candea. Dynamically Trans-
lating x86 to LLVM using QEMU. Technical Report EPFL-
TR-149975, 2010.

[16] Cristina Cifuentes, Brian Lewis, and David Ung. Walkabout
- A Retargetable Dynamic Binary Translation Framework. In
Workshop on Binary Translation, 2002.

[17] Cristina Cifuentes, Mike Van Emmerik, and Norman Ramsey.
The design of a resourceable and retargetable binary transla-
tor. In Reverse Engineering, 1999. Proceedings. Sixth Work-
ing Conference on, 1999.

[18] Christian S. Collberg. Reverse Interpretation + Mutation
Analysis = Automatic Retargeting. In Proceedings of the
ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation, PLDI ’97, 1997.

[19] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Row-
stron, Lidong Zhou, Lintao Zhang, and Paul Barham. Vig-
ilante: End-to-end containment of Internet worm epidemics.
ACM Trans. Comput. Syst., 26(4), December 2008.

[20] Jack W. Davidson and Christopher W. Fraser. Code Selection
Through Object Code Optimization. ACM Trans. Program.
Lang. Syst., 1984.

[21] Thomas Dullien and Sebastian Porst. REIL: A platform-
independent intermediate representation of disassembled code
for static code analysis. 2009.

[22] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin,
and Dawn Song. Dynamic Spyware Analysis. In 2007
USENIX Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference, ATC’07, 2007.

[23] Úlfar Erlingsson, Martı́n Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. XFI: Software Guards for Sys-
tem Address Spaces. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, OSDI ’06,
2006.

[24] LLVM Foundation. The LLVM Compiler Infrastructure
Project. http://llvm.org.

[25] Jonathan Graehl, Kevin Knight, and Jonathan May. Training
Tree Transducers. Comput. Linguist., 2008.

[26] Niranjan Hasabnis, Rui Qiao, and R. Sekar. Checking Cor-
rectness of Code Generator Architecture Specifications. In
Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’15,
2015.

[27] Niranjan Hasabnis and R Sekar. LISC - Learning Instruction
Semantics from Code Generator - software release. http:

//seclab.cs.sunysb.edu/seclab/lisc/.

[28] Wilson C. Hsieh, Dawson R. Engler, and Godmar Back.
Reverse-Engineering Instruction Encodings. In Proceedings
of the General Track: 2001 USENIX Annual Technical Con-
ference, 2001.

[29] Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-Jan
Wu, Ding-Yong Hong, Pen-Chung Yew, and Wei-Chung Hsu.
LnQ: Building High Performance Dynamic Binary Transla-
tors with Existing Compiler Backends. In Parallel Processing
(ICPP), 2011.

[30] Yuan-Shin Hwang, Tzong-Yen Lin, and Rong-Guey Chang.
DisIRer: Converting a retargetable compiler into a multiplat-
form binary translator. ACM Trans. Archit. Code Optim., 7,
December 2010.

[31] Johannes Kinder and Helmut Veith. Jakstab: A Static Analy-
sis Platform for Binaries. In Proceedings of the 20th Interna-
tional Conference on Computer Aided Verification, CAV ’08,
2008.

[32] Vladimir Kiriansky, Derek Bruening, and Saman P. Ama-
rasinghe. Secure Execution via Program Shepherding. In
USENIX Security Symposium, 2002.

[33] Julian Kranz, Alexander Sepp, and Axel Simon. GDSL: A
Universal Toolkit for Giving Semantics to Machine Language.
In Programming Languages and Systems, Lecture Notes in
Computer Science. 2013.

https://bugs.kde.org/show_bug.cgi?id=319393
https://bugs.kde.org/show_bug.cgi?id=319393
http://dagger.repzret.org
https://bugs.kde.org/show_bug.cgi?id=340725
https://bugs.kde.org/show_bug.cgi?id=340725
https://bugs.kde.org/show_bug.cgi?id=326983
https://bugs.kde.org/show_bug.cgi?id=326983
https://bugs.kde.org/show_bug.cgi?id=339433
https://bugs.kde.org/show_bug.cgi?id=339433
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
http://llvm.org
http://seclab.cs.sunysb.edu/seclab/lisc/
http://seclab.cs.sunysb.edu/seclab/lisc/

[34] Christopher Kruegel and Thomas Toth. Using Decision Trees
to Improve Signature-Based Intrusion Detection. In RAID,
2003.

[35] James R. Larus and Eric Schnarr. EEL: machine-independent
executable editing. In Proceedings of the SIGPLAN 1995
Conference on Programming Language Design and Imple-
mentation, June 1995.

[36] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, 2005.

[37] Nicholas Nethercote and Julian Seward. Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation. In
Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’07,
2007.

[38] James Newsome and Dawn Song. Dynamic taint analysis
for automatic detection, analysis, and signature generation of
exploits on commodity software. In Network and Distributed
System Security Symposium (NDSS), 2005.

[39] J. Oncina, P. Garcı́a, and E. Vidal. Learning Subsequen-
tial Transducers for Pattern Recognition Interpretation Tasks.
IEEE Trans. Pattern Anal. Mach. Intell., 1993.

[40] GNU Project. The GNU Compiler Collection. http://gcc.
gnu.org.

[41] Rui Qiao, Mingwei Zhang, and R. Sekar. A Principled Ap-
proach for ROP Defense. In Proceedings of the 31st Annual
Computer Security Applications Conference, ACSAC 2015,
2015.

[42] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim,
Yuanyuan Zhou, and Youfeng Wu. LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Se-
curity Attacks. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 39,
2006.

[43] William C. Rounds. Mappings and grammars on trees. Math-
ematical systems theory, 4(3), 1970.

[44] Prateek Saxena, R Sekar, and Varun Puranik. Efficient fine-
grained binary instrumentation with applications to taint-
tracking. In Proceedings of the 6th annual IEEE/ACM in-
ternational symposium on Code generation and optimization,
CGO ’08, 2008.

[45] R Sekar, IV Ramakrishnan, and Andrei Voronkov. Term in-
dexing, Handbook of automated reasoning. Elsevier Science
Publishers BV, Amsterdam, The Netherlands, 2001.

[46] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adap-
tive Pattern Matching. In Proceedings of the 19th Interna-
tional Colloquium on Automata, Languages and Program-
ming, ICALP ’92, 1992.

[47] RC Sekar, R Ramesh, and IV Ramakrishnan. Adaptive pattern
matching. SIAM Journal on Computing, 24(6):1207–1234,
1995.

[48] Alexander Sepp, Julian Kranz, and Axel Simon. GDSL: A
Generic Decoder Specification Language for Interpreting Ma-

chine Language. Electronic Notes in Theoretical Computer
Science, 2012. Third Workshop on Tools for Automatic Pro-
gram Analysis (TAPAS’ 2012).

[49] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome,
Pongsin Poosankam, and Prateek Saxena. BitBlaze: A New
Approach to Computer Security via Binary Analysis. In Pro-
ceedings of the 4th International Conference on Information
Systems Security. Keynote invited paper., December 2008.

[50] A. Tongaonkar and R. Sekar. Condition Factorization: A
Technique for Building Fast and Compact Packet Matching
Automata. IEEE Transactions on Information Forensics and
Security, 2016.

[51] Alok Tongaonkar, R. Sekar, and Sreenaath Vasudevan. Fast
packet classification using condition factorization. In Pro-
ceedings of the 7th International Conference on Applied
Cryptography and Network Security, ACNS ’09, 2009.

[52] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis. In In Proceeding of the Network
and Distributed System Security Symposium (NDSS), 2007.

[53] Kenji Yamada and Kevin Knight. A Syntax-based Statistical
Translation Model. In Proceedings of the 39th Annual Meet-
ing on Association for Computational Linguistics, ACL’01,
2001.

[54] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen,
Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,
and Nicholas Fullagar. Native Client: A Sandbox for Portable,
Untrusted x86 Native Code. In Security and Privacy, 2009
30th IEEE Symposium on, 2009.

[55] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel,
and Engin Kirda. Panorama: Capturing System-wide Infor-
mation Flow for Malware Detection and Analysis. In Pro-
ceedings of the 14th ACM Conference on Computer and Com-
munications Security, CCS ’07, 2007.

[56] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar.
A platform for secure static binary instrumentation. In ACM
SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments (VEE), 2014.

[57] Mingwei Zhang and R. Sekar. Control Flow Integrity for
COTS Binaries. In Proceedings of the 22nd USENIX Con-
ference on Security, SEC’13, 2013.

http://gcc.gnu.org
http://gcc.gnu.org

	1 Introduction
	1.1 Approach Overview and Contributions

	2 Background and Problem Formulation
	3 Learning Algorithm
	3.1 Training data collection
	3.2 Parameterization
	3.3 Transducer construction

	4 Efficient Lifting of Whole Binaries to IL
	5 Soundness
	6 Evaluation
	6.1 Completeness
	6.1.1 Completeness Results for x86
	6.1.2 Completeness Results for ARM
	6.1.3 Completeness Results for AVR

	6.2 Effort for supporting multiple architectures
	6.3 Performance
	6.4 Correctness of translation
	6.4.1 Semantic equivalence test
	6.4.2 Consistency test
	6.4.3 Loop-back test

	6.5 Application of extracted semantic model

	7 Related work
	8 Conclusion

