
UNIVERSITÀ DEGLI STUDI DI MILANO
Facoltà di Scienze Matematiche, Fisiche e Naturali

DOTTORATO DI RICERCA IN INFORMATICA
XX CICLO

SETTORE SCIENTIFICO DISCIPLINARE INF/01 INFORMATICA

Comprehensive Memory Error Protection via
Diversity and Taint-Tracking

Tesi di
Lorenzo Cavallaro

Relatore
Prof. R. Sekar

Co-relatore
Prof. D. Bruschi

Coordinatore del Dottorato
Prof. V. Piuri

Anno Accademico 2006/2007

UNIVERSITÀ DEGLI STUDI DI MILANO
Facoltà di Scienze Matematiche, Fisiche e Naturali

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
XX CICLO

Comprehensive Memory Error Protection via
Diversity and Taint-Tracking

PhD Candidate
Lorenzo Cavallaro

Adviser
Prof. R. Sekar

Co-adviser
Prof. D. Bruschi

PhD Coordinator
Prof. V. Piuri

Academic Year 2006/2007

Copyright c© February 2008 by Lorenzo Cavallaro

Abstract of the Dissertation

Comprehensive Memory Error Protection via
Diversity and Taint-Tracking

by
Lorenzo Cavallaro

Doctor of Philosophy
in

Computer Science

Università degli Studi di Milano
2008

Memory errors in C and C++ programs are one of the oldest classes of vul-
nerabilities. Attackers have been exploiting these errors since late 80’s and these
issues are still a real and concrete threat. To date, several countermeasures to
combat memory error vulnerabilities have been proposed. They cover a broad
range of Computer Science disciplines, going from safe programming language so-
lutions, anomaly detection approaches, and information-flow (also known as taint
analysis) based strategies, to techniques that modify the underlying compiler,
the operating system and underlying hardware, and system libraries. Among
the others, transformation techniques which aim to provide artificial diversity,
or are based on taint analysis approaches, seem to be the most promising and
effective against a broad class of memory error vulnerabilities. Unfortunately, as
protection mechanisms improve, so do the attacks, and existing transformation
techniques which aim to provide artificial diversity or to perform taint analysis
either cannot deal with all the memory errors, or they provide only probabilis-
tic protection (e.g., artificial diversity) or, again, they have a high rate of false
positives when dealing with some memory error vulnerabilities (e.g., pointer and
non-pointer data corruption). This dissertation aims to provide comprehensive
solutions to memory error vulnerabilities. Recognizing the effectiveness of the
aforementioned diversity, taint-tracking, and anomaly-based detection strategies,

ii

we propose two different approaches that are able to deal with a broad class of
memory error vulnerabilities. In our first approach, we extend the concept of
process diversification. So far, diversification has been applied on a process by
itself, for instance by adopting address space and instruction set randomization
schemes. Our approach, instead, couples diversification and replication together.
It applies a form of diversification that involves a process P along with Pr, the
process replica of itself. By monitoring P and Pr behavior, and by replicating data
on particular rendez-vouz points, our diversified process replicæ approach detects
behavioral divergences triggered by memory error exploits. In most cases, our
strategy gives a deterministic protection. The second approach takes advantage
of taint-tracking and anomaly detection techniques. The proposed strategy trans-
forms a given benign application P into PT , a taint-enhanced version of P . Then,
by coupling taint analysis and anomaly detection, our taint-enhanced anomaly de-
tection approach dynamically analyzes sinks, that is, relevant events (e.g., system
calls or security sensitive functions) of the transformed taint-enhanced applica-
tion, during a so-called training or learning phase. Taint information as well as
different models are used to automatically infer the security policies which repre-
sent the behavioral profile M of the protected process PT . Subsequently, during
a so-called detection phase, similarly to any anomaly-based detection strategy,
single events of PT observed at run-time are checked one at a time to see whether
they are consistent to the learnt behavioral profileM. ShouldM be inconsistent
with respect to these traces, an alarm will be raised. The dissertation ends by
providing experimental results and comparison to existing and similar techniques.
Moreover, performances and effectiveness of these approaches are also discussed,
as well as their weaknesses, limitations and possible improvements.

iii

Acknowledgement

T
his dissertation would have not been possible without the help, the pres-
ence, the comfort and the professionalism of several people and friends.
I wish to thank my tutor and co-adviser Prof. Danilo Bruschi for having

always allowed me to freely express myself and my ideas the way that I liked the
most. This way, I have been able to work on topics that I enjoy and, hopefully,
I will keep doing it in the future.

I am extremely in debt with my adviser, Prof. R. Sekar. He taught to me how
research has to be done. He also supported and provided me with motivations
even when almost everything seemed to be lost. It is not just a matter of hard
work. It is also a matter of curiosity, imagination, and interests in different topics.
I spent a wonderful period overseas and I have grown both under the personal
and professional point of view.

I am also extremely in debt with the external referees of this dissertation,
namely Prof. David Evans (thank you also for having invited me to University
of Virginia), Prof. Engin Kirda, and Prof. Christopher Kruegel. I wish to thank
them for the time and energy they have spent on the dissertation as well as for
the insightful comments and suggestions they provided.

I would also like to thank my “old” friends as well as the “new” one I met at
Stony Brook University. In particular, I wish to thank Andrea Lanzi for all the
research work we have done together and all the discussions and brainstorming
we had, but mostly because of his friendship. He has always been a source of
inspiration to me. I wish to thank Lorenzo Martignoni which I always admired
for his strength and skills and for his friendship as well. I hope to collaborate with
him as well as soon as possible. Of course, a warm thank goes to all the rest of
the Laser lab at Dipartimento di Informatica e Comunicazione of Università degli
Studi di Milano (in no particular order): Mattia Monga, Giampaolo Fresi Roglia,
Emanuele Passerini, Roberto Paleari, Alessandro Rinaldi, and Alessandro Rozza.
Thank you for making the work place a better and funnier place. A special thanks
goes to Linda Pareschi for her friendship and also for a practical help during this

iv

latest period.
On the USA side, I met several nice and smart people which I wish to thank

in this dissertation. Again, in no particular order, they are: Alok Tongaonkar,
Weiqing Sun, Munyaradzi Chiwara, Yves Younan, Wei Xu, Sandeep Bhatkar,
Saad Arif, Daniel Finke, Emir Malikov, Jennifer Dixson, Ezio Bartocci, Oliviero
Riganelli, and Ilaria Zanardi. I wish to thank them for their friendship and I
hope to stay in touch with all of them even after my overseas experience will be
over and our life will be split apart.

A special thanks, of course, goes to Orgoglioni. They are too many to be
singularly cited but I wish to thank all of them for their friendship, the wonderful
time they were able to give to me and, I am sure, they will still give in the future.

I wish to thank my family as well for giving me all the love and support I
needed during these hard PhD years.

Finally, I would like to thank Simona, which soon will become my wife and my
family, for everything. Not even a little thing would have been possible without
you.

I surely am far from being a good researcher, but I will do all of my best to
become it. Hopefully, this dissertation will not be the end, but just the beginning
of a wonderful journey.

v

to Simona, the love of my life

Contents

I Introduction 1

1 Introduction 2
1.1 Dissertation Organization . 6

2 Memory Errors 7
2.1 Buffer Overflows . 11

2.1.1 Stack-based Buffer Overflows 11
2.1.2 Heap-based Buffer Overflows 12
2.1.3 Static Buffer Overflows . 14

2.2 Format String Vulnerabilities . 14
2.3 Integer Overflows . 15

II Research Work 17

3 Diversified Process Replicæ 18
3.1 Preliminaries . 20

3.1.1 Executable and Linking Format 20
3.1.2 Process Address Space . 21

3.2 Process Replication with Diversification 22
3.2.1 Model Framework . 22
3.2.2 Non Overlapping Processes Address Spaces 23

3.3 Replicator Module . 26
3.4 Evaluation . 29

3.4.1 Effectiveness . 30
3.4.2 Experimental Results . 31
3.4.3 Discussion . 34

3.5 Practical Issues . 36
3.5.1 Shared Memory . 36

vii

3.5.2 Signals and Non-Determinism 43

4 Taint-enhanced Anomaly Detection 45
4.1 Preliminaries . 46

4.1.1 Taint Analysis . 47
4.1.2 Anomaly Detection . 48

4.2 Taint-enhanced Anomaly Detection 49
4.2.1 Implementation . 53

4.3 Evaluation . 55
4.3.1 Effectiveness . 55
4.3.2 Models Comparison . 64
4.3.3 False Positives . 67
4.3.4 Discussion . 68

5 Related Literature 72
5.1 Artificial Diversity . 72
5.2 Information Flow . 73
5.3 Learning-based Anomaly Detection 74
5.4 Control-Flow Integrity . 76

III Future Directions & Conclusions 78

6 Future Directions 79
6.1 Diversified Process Replicæ . 79

6.1.1 Optimizations . 79
6.1.2 Dynamic Binary Translation 80
6.1.3 Program Transformation 81

6.2 Taint-enhanced Anomaly Detection 81

7 Conclusions 83

Bibliography 85

viii

List of Figures

1.1 Breakdown of NIST National Vulnerability Database of software
security vulnerabilities (2006 and 2007-Q1/Q2) 3

2.1 Code snippet that can be exploited by an IPE attack. 10
2.2 Stack-based buffer overflow vulnerability. 12

3.1 Model Framework . 22
3.2 Diversified Process Replicæ . 24
3.3 A typical stack-based buffer overflow vulnerability 30
3.4 A typical security check that can be bypassed with an IPE attack. 31
3.5 Diversified process replica for defeating absolute memory errors

exploits . 32

ix

List of Tables

3.1 Experimental results: Throughput. 32
3.2 Experimental results: Latency. 33

x

Part I

Introduction

1

You need the willingness to fail all the time.
You have to generate many ideas and then you have to work very hard only to discover that
they don’t work. And you keep doing that over and over until you find one that does work.

John W. Backus (1925 - 2007)

1
Introduction

S
oftware security has become an increasing necessity for guaranteeing, as
much as possible, the correctness of computer systems. Unfortunately,
software vulnerabilities are omnipresent. In the last few decades, many

new vulnerabilities have been discovered, and old ones have been continuously
exploited.

Memory errors in C and C++ programs have been known for decades and
are one of the oldest classes of software vulnerabilities. Attackers have been ex-
ploiting these errors since the days of the Internet Worm of 1988 (also known
as Morris Worm) ([72]). Despite decades of research on memory error coun-
termeasures, these software vulnerabilities are still a real and concrete threat,
as a recent breakdown of the NIST National Vulnerability Database (NVD) of
software vulnerabilities depicts in Figure 1.1.

Since their first public exploitation, a number of different types of memory er-
ror vulnerabilities have been discovered and, unfortunately, successfully exploited
by attackers. To date, buffer overflows are probably the most common memory
error vulnerability ([25]). As the name suggests, a buffer overflow vulnerability
takes advantage of an erroneous or the lack of bounds checking on a buffer. As
a direct consequence, buffer overflows can be exploited to write past the end of
a buffer with the intent to corrupt adjacent memory locations. This carefully
crafted corruption permits an attacker to generally execute arbitrary code, or, to
perform actions that are as dangerous.

Memory errors can be eliminated by using type-safe languages such as Java.
Unfortunately, these languages do not provide enough low-level control on mem-
ory management and data representation. These are features which are mostly
required for systems software, therefore it is unlikely that these type and memory
safe languages will substitute C or C++, at least in this context.

To date, a number of memory error countermeasures have been studied and
proposed. For instance, to defeat stack-based buffer overflows [25], Cowan et
al. [15] proposed StackGuard, a compiler patch that inserts a canary value right
before the return address to detect attempts to corrupt a return address using

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Breakdown of NIST National Vulnerability Database of software security
vulnerabilities (2006 and 2007-Q1/Q2)

a buffer overflow. Unfortunately, not only has it been shown how to bypass
StackGuard-based protections ([63]), but the offered protection is, most impor-
tantly, limited to a specific vulnerability. In fact, it has been designed to work
only for stack-based buffer overflows. It has no effect, as is, for other kinds
of buffer overflows, or for other memory error vulnerabilities, such as format
strings [69, 35], therefore providing a very limited degree of protection.

The countermeasure proposed by Cowan et al. is just one of several others
that have kept researchers busy providing different and progressively more com-
plete solutions to memory errors in the past several years. Proposed solutions
cover a broad range of Computer Science disciplines, going from safe program-
ming languages ([43, 58]), anomaly detection ([87, 85, 28, 39, 70, 56, 54, 9]), and
information-flow ([47, 13, 59, 89, 60]), to techniques that modify the underlying
compiler ([15]), system libraries ([88, 82]), the operating system, or the hard-
ware ([62, 79, 31]). Among these approaches, transformation techniques which
aim to provide artificial diversity, or are based on information-flow approaches,
seem to be the most promising and effective against a broad class of memory
error vulnerabilities.

Transformation techniques that aim to provide artificial diversity to a pro-
gram base their assumption on the fact that, generally speaking, memory error
exploits leverage on the monoculture of systems. Therefore, once a memory error
vulnerability is discovered on an application running on a particular operating
system (OS) and architecture, it is fairly easy for an attacker to take over the
rest of similar configurations (e.g., application, OS, architecture) which present
the same type of memory error. In fact, this is possible because a process address
space is organized always in the same way, for a particular OS and architecture,

3

CHAPTER 1. INTRODUCTION

and memory error exploits rely on corrupting particular memory locations (e.g.,
where a function return address is stored on the stack, or where a function global
offset table (GOT) is stored in the vulnerable process address space) with suit-
able values. For this reason, memory error exploits can be thwarted by applying
approaches that use diversity on computer systems, such as address space ran-
domization (ASR) [79, 88, 67, 68], instruction set randomization (ISR) [24], and
so on. Unfortunately, these approaches either cannot deal with all the memory
errors or, even when successful, they provide only probabilistic protection.

On the other hand, information-flow (or taint analysis) based approaches focus
their attention on how untrusted data is used and processed by a protected appli-
cation (i.e., how information flows into the application), to check whether these
data corrupt security sensitive memory locations. More precisely, taint analysis is
a technique which aims to detect whether untrusted data is incorrectly used in se-
curity sensitive actions. To this end, taint analysis usually marks untrusted data
coming from taint sources (e.g., data coming from the network, or other input-
related system calls) as being tainted, and, as data propagates through memory,
it propagates the taint information associated with the data itself. Any attempt
to use security sensitive data which has been marked as tainted at security sensi-
tive points, called sinks (e.g., particular system calls, or when a function is about
to return), is generally a manifestation of an attack. For instance, a memory er-
ror exploit which aims to corrupt a code pointer, can overwrite a function return
address with the intent to hijack the legal process execution flow. Naturally, the
overwritten return address will be marked as tainted as a consequence of this
attack attempt. The low-level implicit policy adopted by taint-based approaches
does not allow to dereference tainted code pointers, as function return addresses
are security sensitive data which should never become tainted. In fact, they are
manipulated by the application code which is considered to be trusted.

Unfortunately, as protection mechanisms improve, so do the attacks. Recently,
Chen et al. [14] pointed out that it is no longer necessary to exploit a memory error
vulnerability with the goal to hijack a legal process’ control-flow to cause harm.
In fact, damage can also be caused by memory error attacks which do not target
code pointers but, instead, aim to overwrite data and data pointers. Even if this
seems to be a strict restriction, Chen et al. showed that these attacks can be as
powerful as the classic ones (i.e., which corrupt code pointers). It may be argued
that such attacks are not very common nowadays, as their exploitation require a
better understanding of the application logic. As long as memory error attacks
which corrupt code pointers will still be effective, attackers have no motivations
to make their exploit harder to code and, most of all, succeed. Naturally, should
existing research countermeasures become widely used, the attackers will modify
their attacks to stick to this new technique, as confirmed by recent and related
research [13, 56, 9, 8, 47] as well. Therefore, it is our belief that comprehensive
memory error countermeasures should no longer ignore such a class of memory
error attacks.

This dissertation aims to provide comprehensive solutions to memory error at-

4

CHAPTER 1. INTRODUCTION

tacks. To this end, we propose two different program transformation techniques
which provide protection from a broad class of memory error attacks. While,
both approaches deal with attacks which corrupt code and data pointers, the
second approach also considers memory errors which corrupt arbitrary data as
well. It could seem that the second approach is more effective and provide a
better protection from memory error exploits to not justify the need for the first
technique. However, as we will briefly see, this is not true. In fact, our first tech-
nique mainly offers a deterministic protection, while our second approach offers
a probabilistic protection when data and data pointers corruption are involved.
Moreover, the underlying mechanisms of the proposed approaches are different
and this can suggest contexts where the proposed strategies find, respectively, a
better deployment with respect to each other. In particular:

• In our first approach, we extend the concept of process diversification. So
far, diversification has been applied on a process by itself, for instance by
adopting address space and instruction set randomization schemes. Our ap-
proach, instead, couples diversification and replication together. It applies
a form of diversification that involves a process P along with Pr, the process
replica of itself. By monitoring P and Pr behavior, and by replicating data
on particular rendez-vouz points, our diversified process replicæ approach
detects behavioral divergences triggered by memory error exploits. In most
and more frequent cases, our strategy gives deterministic protection.

• Our second approach takes advantage of taint-tracking and anomaly detec-
tion techniques. The proposed strategy transforms a given benign applica-
tion P into PT , a taint-enhanced version of P . Then, by coupling taint anal-
ysis and anomaly detection, our taint-enhanced anomaly detection approach
dynamically analyzes sinks, that is, relevant events (e.g., system calls or se-
curity sensitive functions) of the transformed taint-enhanced application,
during a so-called training or learning phase. Taint information as well as
different models are used to automatically infer the security policies which
represent the behavioral profile M of the protected process PT . Subse-
quently, during a so-called detection phase, similarly to any anomaly-based
detection strategy, single events of PT observed at run-time are checked one
at a time to see whether they are consistent to the learnt behavioral profile
M. Should M be inconsistent with respect to these traces, an alarm will
be raised.

At first glance it could seem counter-intuitive to consider approaches which
provide artificial diversity as program transformation techniques. Indeed, pro-
gram transformation techniques aim to modify the original program in order to
preserve its semantics. As we will see, both our approaches transform a program P
so that it can be augmented with information used by the underlying protection
mechanism adopted. Naturally, as every transformation technique guarantees,
the semantic of P when non-malicious input is involved is preserved.

5

1.1. DISSERTATION ORGANIZATION

The dissertation ends by providing experimental results and comparison to
existing and similar techniques. Moreover, performances and effectiveness of these
approaches are also discussed, as well as weaknesses, limitations and possible
improvements.

1.1 Dissertation Organization

The dissertation is organized as follows. Chapter 2 reminds the most important
concepts about memory errors, what they are, what different kind of memory
error vulnerabilities exist out there, and how they can intuitively be exploited.
Chapter 3 introduces our first proposed memory error countermeasure, diversified
process replicæ, while taint-enhanced anomaly detection, our second approach, is
described in Chapter 4. Chapter 5 describes related literature, while we give some
suggestions about future directions that can be taken to improve the proposed
approaches in Chapter 6. The dissertation ends by giving concluding remarks in
Chapter 7.

6

C++ and Java, say, are presumably growing faster than plain C, but I bet C will still be around.

Dennis Ritchie (1941 -)

2
Memory Errors

T
his chapter provides an introduction on memory error vulnerabilities in
C programs. While it is out of the scope of the chapter and of the whole
dissertation to provide a complete survey on memory error vulnerabilities

and their common exploitation techniques, for which we redirect to [90], we would
like to briefly summarize these concepts as we believe that they might help to
better understand the rest of the dissertation. Also, we would like to remind the
reader that there exists several interesting advanced memory error exploitation
techniques that have been proposed over the years. We try to cite them as ap-
propriate while describing common memory error vulnerabilities, although some
of them will be probably missing from the discussion that follows as we prefer to
spend more time on the defensive countermeasures proposed in the rest of this
dissertation.

To the best of our knowledge, there is not a formal definition of a memory
error. However, broadly speaking, it is possible to say that a memory error
occurs when an object accessed using a pointer expression is different from the
one intended. It is possible to classify memory errors in spatial or temporal errors
or they can also be classified depending on the type of corruption they aim to
pursue. In this case, it is possible to further distinguish among attacks which
corrupt code pointers, data pointers and non-pointer data.

Spatial error. A spatial error occurs when a pointer which points outside the
bound of its referent1 is de-referenced. It is possible to further distinguish
in the following categories:

(a) De-referencing non-pointer data. It occurs when an integer is erro-
neously assigned to a pointer p and p is subsequently de-referenced.
Misinterpreting integer as pointers, under the right circumstances, can
cause arbitrary corruption of process’ memory locations. If sensitive,
under a security point of view, memory locations are involved, the
vulnerability can be exploited to fulfill the attacker’s will.

1The referent of a pointer is the object the pointer is pointing to.

7

CHAPTER 2. MEMORY ERRORS

(b) De-referencing uninitialized pointers. It is similar to the temporal error
described in the next paragraph except for the fact that the referent
of the involved pointer does not change. It is fairly complicated to
successfully exploit this vulnerability when dealing with static (global
data) or dynamically allocated pointers (heap). In fact, static pointers
are allocated once, at program start-up. Moreover, de-referencing an
uninitialized static pointer will most likely cause the program to crash
as the pointer is generally implicitly initialized to 0 (as it is stored in
the .bss section), and usually any access to the first page of a process
address space (AS) will generate a page fault (PF) as the page is
usually unmapped (to catch NULL pointer de-referencing). Therefore,
pointers allocated on the stack offer a better venue for an attacker
(no matter whether the pointer referent is allocated on the (previous)
stack frame(s), or on the heap, or on the data/bss). It is possible to
imagine a situation where a function f is invoked which allocates and
eventually initializes a local pointer variable p. When f terminates,
the local stack frame is freed but the values are still stored at the same
memory locations (i.e., the memory location which corresponded to p
still holds a valid pointer value). Therefore, if f is invoked a second
time, p will contain the same valid pointer value even before its explicit
initialization. Under the right circumstances, p can be prematurely de-
referenced and the memory error exploited.

(c) Valid pointers used with invalid pointer arithmetic. It is probably the
most known scenario as it typically refers to out-of-bounds accesses of
buffer-like variables. The classical buffer overflows (see § 2.1).

Temporal error. A temporal error occurs when a pointer which points to a
referent which no longer exists is de-referenced (e.g., referent previously
freed). Representatives of this category are dangling pointers [3] and double
free [5, 52] memory error exploitation techniques2.

As we introduced at the beginning of the Chapter, memory errors can also
be classified depending upon the type of corruption they aim to pursue. At-
tackers have developed different, clever and interesting way to exploit memory
error vulnerabilities. Moreover, as countermeasures are researched, developed,
and deployed, several different exploiting techniques have been proposed to by-
pass them. In fact, as we briefly already noted, a memory error exploit aims to
usually corrupt code pointers, data pointers, and non-pointer data of a vulnerable
process, regardless of the underlying exploitation technique adopted.

2It is worth noting that the techniques for double free exploitations are actually generally
enough to be used to corrupt heap management information which allows an attacker to write
arbitrary bytes in arbitrary writable memory location of the vulnerable process (write-anything-
anywhere primitive).

8

CHAPTER 2. MEMORY ERRORS

Code pointer corruption. This corruption refers to data belonging to a pro-
cess address space which is used to control the process execution flow.
This category mainly embraces (function) return addresses stored on the
stack, application-specific function pointers stored on the stack or onto the
data/bss segment, and other code pointers usually introduced by the under-
lying binary specification or programming language. For instance, global
offset table (GOT) entries described by the ELF specification [81], and C++
virtual pointers table are examples of such pointers.

A memory error exploit usually aim to overwrite these code pointers. De-
pending upon how much freedom the attacker has (i.e., how “deeply” the
vulnerability can be exploited), the code pointers can be fully or partially
overwritten. The former case permits an attacker to (i) execute arbitrary
injected code [25], (ii) execute already existing code by performing what
is known as return-into-lib(c) [62] or return-into-text [74] attack, or, (iii)
trigger an impossible path execution (IPE). On the other end, a partial over-
write can cause a more limited damage as it permits to trigger an IPE-like
attack only. It is worth nothing that, technically speaking, returning-into-
text techniques and IPE are achieved in the same way, i.e., to perform
an IPE attack, it is necessary to return into the process code. However,
return-into-text is a more general exploitation technique which is not lim-
ited to trigger an IPE attack (e.g., used to jump to a jmp *%esp, or ret

instructions which are in turn used to reach and execute injected code).

Impossible paths can be defined as a sequence of instructions that can
never be executed under normal circumstances due to a particular pro-
gram structure. A typical example of this situation is represented by an
if () then ... else ... statement. If the CPU ends up by executing
some instructions in the true branch, it is impossible to jump into the false
one3. It is simply an impossible path to follow due to the structure of the
program and the if/then/else semantic. If properly individuated, an im-
possible path can be exploited by an attacker in order to execute application
code in a way that would not otherwise be possible; security-critical checks
as well as “jumping” over unwanted (from a security viewpoint perspective)
code can be, more or less, easily bypassed by this kind of attack.

The host intrusion detection system (HIDS) research community has been
proposing techniques to deal with this and other types of attacks which
can be triggered by exploiting memory error vulnerabilities. However, as
shown in [87, 28] some of these models are able to detect a subset of IPE
attacks but fail in detecting all. To this end, Figure 2.1 depicts an example
of code snippet originally proposed by [28] and slightly modified to better
show how an IPE attack can be successfully perpetrated. Let us suppose
that the function is_regular(uid) (line 20) invokes the open system call

3As suggested by “best programming practice”, we assume no spaghetti code at all, and
hence no local jump, i.e. goto, from one branch to the other are present/used.

9

CHAPTER 2. MEMORY ERRORS

twice in order to open, respectively, /etc/passwd and /etc/group to check
whether the given uid represent a regular user or not (implementation not
shown). Afterwards, the true if branch is executed if the user represented
by uid has no particular privileges, whilst the execution will fall into the
false one otherwise: entering the true branch and “jumping” into the false
one represents an impossible path. The memory error vulnerability present
in the code snippet of Figure 2.1 can be exploited to execute arbitrary com-
mand with full (superuser) privileges. In fact, a regular user camouflaged
as an attacker, by entering the true branch of the if statement (lines 21-27)
and by exploiting the stack-based buffer overflow in read_next_cmd at line
8, is able to divert the program P execution flow in order to enter the false
branch which eventually will give him full privileges.

It may be argued that IPE attacks could be difficult to perform since they
depend on too many factors (e.g., program structure, vulnerability “at the
right position”) but, however, as pointed out by Feng et al. [28], they should
not be left unconsidered since it may be quite easy, for an attacker, to
deliberately introduce the right conditions in the program source code that
may lead to an execution of an impossible path.

1 u_char *read_next_cmd(void) {

2

3 u_char input_buf[64];

4 u_char *p;

5

6 umask(2);

7 ...

8 strcpy(&input_buf[0], getenv("USERCMD"));

9 /* memory leak? */

10 p = (char *)strdup(input_buf);

11 return p;

12 }

13

14 void login_user(int uid) {

15 char *cmd;

16

17 if (is_regular(uid)) {

18

/* unprivileged mode */ 19

cmd = read_next_cmd(); 20

setuid(uid); 21

22

system(cmd); 23

24

} else { 25

26

/* superuser! */ 27

cmd = read_next_cmd(); 28

setuid(0); 29

system(cmd); 30

31

} 32

return; 33

} 34

Figure 2.1: Code snippet that can be exploited by an IPE attack.

Data and data pointer corruption. Differently from the previous point, this
memory corruption do not directly target data used to control the process
execution flow. This classification comprises all the program’s data which
are sensitive under a security point of view. Therefore, their corruption
can be as dangerous as code pointers corruption, even if it does not give an
attacker the ability to directly execute arbitrary code or perform IPE-like
attacks. Data and data pointers corruption have been recently described
by Chen et al. in [14], and, as pointed out by the authors, these attacks
can be as dangerous as the ones corrupting code pointers.

Pointer. In certain situations they might be the target of an overflow

10

2.1. BUFFER OVERFLOWS

and, if subsequently used, can permit an attacker to either bypass
vulnerability-specific memory error countermeasure ([63]), indirectly
corrupt other security sensitive data, or simply write-anything-anywhere
in the address space of the victim process.

Non-pointer. Security sensitive data are crucial for the correctness of a
program. For instance, it is easy to understand how a variable auth

could be set to a non-zero value to indicate a successful authentication
process. The corruption of such security sensitive data due to mem-
ory error exploits would compromise the security of the whole process
(e.g., unauthorized access, code execution with full privileges). Simi-
larly, cryptographic keys stored into the process address space can be
corrupted and replaced by means of this type of memory error. Of
course, a similar argumentation can also be made for data used as
arguments of security critical functions (or system calls).

In the following, we briefly remind the most common memory error vulnera-
bilities that can be found in software. We also remind that every vulnerability can
be exploited to eventually corrupt code pointers, data pointers, or non-pointer
data.

2.1 Buffer Overflows

In the C programming language, when a buffer (or array) is declared, space for
it is reserved as a consecutive sequence of elements of the same type (e.g., buffer
of bytes). No ancillary information on the buffer, such as its length, are stored
elsewhere4. A buffer overflow occurs when data is written past the end of the
involved buffer. This is due to the lack of or improper check on the size of the
buffer (bounds checking) during a copy operation and, as a direct consequence,
memory locations adjacent to the overflown buffer are corrupted. Depending on
where the buffer is stored, it is possible to talk about stack-based, heap-based,
and static data buffer overflows.

2.1.1 Stack-based Buffer Overflows

Stack-based buffer overflows [25] are probably the most common, well-understood
memory error vulnerabilities. As the name suggest, they happen on the stack
when a buffer overflows and overwrites adjacent memory regions. The most
common way to exploit a stack-based buffer overflow is to write past the end
of the buffer until the function (saved) return address, stored on the stack is

4That is, the programmer should keep track of every buffer length. Sometimes, this is
easy and can be done implicitly. For instance, C strings are represented as sequence of NULL-
terminated bytes (char). The NULL marker (byte whose value is 0) represents the end of the
string.

11

2.1. BUFFER OVERFLOWS

reached. The corruption of this code pointer permits to execute arbitrary code.
The example shown in Figure 2.2 depicts a classical scenario.

1 int foo(char *input) {

2 char lbuf[64];

3 int i;

4

5 for (i = 0; i < strlen(input); i++)

6 lbuf[i] = input[i];

7

8 return 0;

9 }

(a)

input

saved return address

saved frame pointer

lbuf[63]

lbuf[62]

lbuf[0]

High Addresses

Low Addresses

Stack Growth

(b)

Figure 2.2: Stack-based buffer overflow vulnerability.

When the function foo is invoked, the CPU pushes the function return address
onto the stack and the execution begins at the foo entry. Afterwards, the function
prologue – if any – is executed. This has the effect to save the value of the frame
pointer register, which points to the caller stack frame, onto the stack, in order
to be able to set the new stack frame as current, by initializing the frame pointer
register appropriately. Next, function local variables (lbuf and i in this order)
are allocated and subsequent instructions are executed. The for loop starting
at line 5 does not check whether the destination buffer is big enough to hold a
copy of input, the argument passed to the function foo. As a result, a memory
error exploit can write past the end of lbuf, corrupting the saved frame pointer5,
and either jump back on the injected code [25], as shown in the (b) column
of Figure 2.2, or jump to execute already existing code [62] (for instance, if
non-executable stack/data countermeasure is present [41, 71]), thus, executing
arbitrary code in both cases or, again, corrupting security sensitive data [14].

2.1.2 Heap-based Buffer Overflows

One of the initial way that has been proposed to exploit heap-based buffer over-
flows was to overflow heap allocated buffers with the intent to overwrite function
pointers that were stored adjacent next to the overflown buffer [50]. Alternatively,
corruption of C++ virtual pointers table which is usually stored at the beginning
of a dynamically allocated object, would allow to invoke arbitrary (malicious)
code at the object’s method invocation [64]. Tampering with adjacently stored

5We remind that controlling the saved frame pointer is sufficient to eventually execute arbi-
trary code [46].

12

2.1. BUFFER OVERFLOWS

data was also possible, but attackers’ opportunities were not as appealing as the
ones which could be gotten by exploiting stack-based buffer overflow (there, a
code pointer always exists on the stack).

Anyway, in 2001, others techniques targeting heap allocated objects were pro-
posed which corrupted heap management information. In fact, as a function
return address is stored on the stack and could potentially be reached by means
of overflows or other indirect attacks (e.g., pointers corruption, format string
vulnerabilities), heap management information are stored right before the data
which is directly usable by the program. Therefore, if we have two adjacent heap
allocated buffers, writing past the end of the first will overflow into the second,
corrupting its heap management information. Without going into much details,
the attack exploit the way some internal heap management functions work which,
eventually, act on the doubly linked list of free chunks the underlying heap mem-
ory allocator maintains (see [22], for instance). In particular, one of these function
is the macro unlink. Its instructions remove an element from the free list (either
because it has to be allocated, or because two free chunks border and they have
to be coalesced into a bigger unique free chunk to avoid having lots of small frag-
mented chunks), as shown in the following (snippet shown in (a) is equivalent to
the one shown in (b). The latter only explicits offsets in the structure).

1 chunk2->fd->bk = chunk2->bk;

2 chunk2->bk->fd = chunk2->fd;

(a)

1 (chunk2->fd + 12) = chunk2->bk;

2 (chunk2->bk + 8) = chunk2->fd;

(b)

The values chunk2->bk and chunk2->fd are part of the heap management
information stored in-band (i.e., at the beginning of the chunk) and they point
to the previous and to the next free chunk, respectively. Let us suppose that
chunk1 data is under the attacker control (i.e., allocated) and that chunk2 is
a free chunk which is adjacent to (i.e., it follows) chunk1. Let us also suppose
that chunk1 overflows into chunk2. As a consequence, chunk2 heap-management
information are corrupted. To see how this information can be corrupted to
permit the attacker to overwrite an arbitrary memory location and, usually, to
eventually execute arbitrary code, let us also suppose that chunk2->fd holds A
and chunk2->bk holds S, attacker supplied values. When the overflown chunk
is freed, it will be merged with chunk2 as they border and they are both free
chunks. However, chunk2 has to be removed from the list of free chunks as it is
no longer a chunk by itself, but it has been coalesced with chunk1. The unlink

macro is now involved and its two instructions shown above have the effect to
write the value S at the memory location A + 12 (A + 12 = S) and the value A
at the memory location S + 8 (S + 8 = A). For exploits which aim to corrupt
code pointers, S is usually the address where the shellcode6 is stored, while A

6A shellcode represents a sequence of bytes which allows an attacker to execute arbitrary
code. Historically, the final attacker’s goal was to execute the shell interpreter /bin/sh and,
even if this no longer holds, it is the reason why this sequence has been called this way.

13

2.2. FORMAT STRING VULNERABILITIES

represents the memory location of a code pointer which is necessary to trigger
the execution of the malicious code. Due to the aforementioned simple math,
if the attacker supplied A − 12 instead of A it would definitely achieve the
effect to write at A the intended value7. More generally, this attack represents
a write-anything-anywhere primitive, therefore allowing the attacker to perform
more sophisticated attacks.

2.1.3 Static Buffer Overflows

These overflows happen on the data segment (i.e., .data and .bss sections which
are usually stored within the same writable segment [81]) and they are similar to
the heap-based ones, except that they do not usually target heap management
information or at least, not directly. Through a static buffer overflow, it is pos-
sible to overwrite ELF-specific data, as .dtors (that can be seen as a table of
application-specific function pointers that will be invoked upon application ter-
mination) [44], and process GOT entries, but this is highly constrained on the
way the program has been linked. In fact, current linker scripts usually put all
these sections before the data section. Therefore, in this case, the corruption of
those data is possible only through indirect overwrite (i.e., the corruption of a
pointer which will be subsequently used to corrupt other memory regions). To
summarize, in its simplest form, a static overflow aims to corrupt application-
specific function pointers stored on the data segment itself, which would allow for
a direct code execution, data pointers, which would allow to indirectly corrupt
other memory regions, or non-pointer adjacent security sensitive data.

2.2 Format String Vulnerabilities

Format string vulnerabilities [69, 35] are a more recent discovery than buffer
overflows. Discovered at the end of the ’90, they represent a serious and danger-
ous vulnerability. Unlike buffer overflows, format string vulnerabilities are easily
used as a write-anything-anywhere primitive, therefore potentially corrupting the
whole address space of a victim process. Beside this, format bugs (another name
for this kind of vulnerabilities) can also be exploited to arbitrary read the whole
address space of a process. This way, disclosing confidential data (e.g., crypto-
graphic keys, pseudo-random number used by some memory error countermea-
sures [15, 79]) as well as dumping the whole address space content of a victim
process becomes possible.

This vulnerability affects the printf family of functions. These variable ar-
guments functions take usually a format string as argument and a series of other
arguments, accordingly to the formatting string. If the format string is under the

7The careful reader has probably noted that the second instruction corrupts 4 bytes of the
shellcode starting at offset 8. This is not really a big constraint, as the injected code can be
easily written to jump over the corrupted sequence.

14

2.3. INTEGER OVERFLOWS

control of an attacker (e.g., printf(buf)), the vulnerability can be exploited.
What would happen if the function would have fewer arguments than the one
expected (and specified by the formatting string)? The missing arguments would
be looked up into and retrieved from the stack or, more generally, from the pro-
cess’ address space. Depending upon the formatting directive used, double words
can be directly (e.g., %x) or indirectly (e.g., %s) retrieved. Moreover, the number
of bytes written so far by the these printf family of functions can also be written
at next address to be retrieved from the stack (typically), by using the %n or one
of its variants (e.g., %hn, %hhn, %k$n). A typical exploitation of this vulnerability
requires to reach the buffer controlled by the attacker (e.g., by popping double
words off from the stack) which represents the format string itself so that, by
using the aforementioned formatting directives, arbitrary memory regions can be
corrupted (write-anything-anywhere primitive). As a consequence, arbitrary code
can be executed or security sensitive data becomes under attacker’s control.

2.3 Integer Overflows

Integer overflows [10] are not memory errors by themselves. However, incorrect
integer handling can trigger memory errors, such as buffer overflows or write-
anything-anywhere-like primitive, depending on the involved integer misinter-
pretation. The issue arises due to the way integer are represented on comput-
ers. For instance, on IA-32 an unsigned int type is usually 4 bytes, while 2
bytes are needed for an unsigned short int type. If the value assigned to an
unsigned short int variable is 216 − 1− k, that is far from its maximum value
of k, adding k+1 will cause the variable to wrap around and its value will become
0 (a similar reasoning can be made for underflow). This can be used to bypass
security checks or write to (almost) arbitrary memory regions, especially when
unsigned int variables are involved8.

A more subtle way to exploit integer overflows is caused by the fact that
two different representations are used depending whether the considered integer
is unsigned or signed. For instance, let us consider the following example which
tries to prevent buffer overflows conditions by performing explicit bound checking.

1 ...

2 char buf[64];

3 ...

4 void *safe_copy(void *dst, const void *src, short len) {

5

6 if (len > 64)

7 len = 64;

8 return memcpy(dst, src, len);

9 }

8In fact, unsigned int variables are 32 bits wide and so they can be used to address the
whole default user space process address space on IA-32 machines.

15

2.3. INTEGER OVERFLOWS

The condition at line 6 tries to check that the number of bytes that must be
copied from src to dst does not exceed dst buffer size (64). Unfortunately, the
argument len given to the function safe_copy is a signed short, while the one
used by memcpy is unsigned. This means that by giving a negative number as
len, the bound checking enforced at line 6 will be useless. However, the memcpy

function will interpret this length argument as a non-negative (unsigned) value,
bigger than the buffer size, therefore causing buf to overflow. For instance, using
0x8000 as len will bypass the check at line 6 as len will be interpreted as −32768,
while the same length will be interpreted by memcpy as 32768, which in turn will
cause memcpy to write past the end of the buffer buf.

16

Part II

Research Work

17

Imagination is more important than knowledge.

Albert Einstein (1879 - 1955)

3
Diversified Process Replicæ

D
iversity plays a crucial role for the survivability of every biological species
and, quite recently, the concept, has also been applied to computer pro-
grams [49, 68, 24, 67, 33, 65, 79]. Researchers in the computer security

field started to apply different kinds of software transformations such as address
space layout randomization [79, 67], instruction set randomization [24, 33] and
several forms of more general program transformation techniques [68] in order
to strongly thwart memory error attacks, no matter whether such diversities are
made available by the OS kernel or by automated user space transformation ap-
proaches. By memory error exploits we mean all those techniques that an attacker
may use for exploiting a particular vulnerability (see for example [25, 62, 69]) by
overwriting and thus corrupting suitable memory addresses. The final purpose
is to hijack a program P execution flow to either execute arbitrary code or to
bypass security mechanisms.

One of the main drawback of such approaches is their probabilistic nature. In
fact, software diversity applied on a process P can just improve the likelihood
of resisting to some form of memory error exploits. Moreover, it has been ob-
served that the existing forms of process diversification might be eluded by means
of information leakage (see for example [69]) or are not so effective in protect-
ing a process or, again, cannot protect from all the existing memory corruption
attacks [4, 40].

In this dissertation, we provide a different interpretation of the notion of
software diversity, independently conceived by Cox et. al in [7] as well. Such
an interpretation is based on the concept of process replica. Given a process P ,
we define P ’s replica as a process Pr which behaves identically to P even if it
presents some “structural” diversity from it.

By adopting such a notion of diversity, it is possible to devise mechanisms
for detecting attacks in a deterministic way. The idea is very simple. A process
and its replica fed by the same external non malicious input will behave in the
same manner. However, a malicious input will modify some particular part of the
internal P structure (as in the case of any memory error exploits) so that either

18

CHAPTER 3. DIVERSIFIED PROCESS REPLICÆ

the P or its replica Pr will eventually start to behave in a different detectable
way, giving the opportunity to block the attack with a deterministic protection.

More precisely, in our solution, a process and its replica only differ in their
address space layout. In particular, we make the following contributions:

1. We devise a model which defeats memory error exploits targeting absolute
memory addresses as well as those which partially overwrite a memory
address. The former, independently addressed by Cox et al. in [7] as well,
refers to all those exploitation techniques an attacker may use to overwrite
a suitable memory object with an absolute memory address value in order
to hijack a process execution control flow. The latter, instead, permits to
overwrite a memory object with a partial value, thus allowing a relative
execution flow hijacking. This latter class of attacks, generally known as
Impossible Path Execution (IPE) attacks, can permit an attacker to bypass
critical application-based security checks. Even if at first glance it might
argued that IPE attacks are not so realistic, as pointed out in [28], this class
of attacks are becoming a serious real security threat.

2. We give a complete characterization and propose a solution with respect to
shared memory management, one of the biggest practical issue introduced
by the approach proposed in [7], as well as diversified process replicæ, the
one herein described. This issue, and others, has to be solved to permit a
real and practical deployment of the whole strategy. Moreover, preliminary
ideas on how to deal with synchronous signals delivery between a process
and its replica are faced as well.

3. We developed a prototype proof-of-concept using the ptrace system call,
on a little endian 32-bit Intel Architecture host running on a 2.6.x Linux
kernel. Even if the performance results might not seem enthusiastic at first
glance, conceptually speaking the idea is correct and seems to be a viable
way towards systems survivability.

It is worth noting that existing techniques which provide a probabilistic pro-
tection [24, 33, 67, 68, 88, 79] do already provide acceptable solutions to memory
errors. However, we would like to briefly cite fewer limitations which more justify
a deterministic protection as the one proposed in the following.

Some existing memory error techniques are either too specific (e.g., [63, 15,
31]) or they are constrained by the underlying architecture or, again, they show
other drawbacks. For instance, the approach proposed in [15] and similar tech-
niques are too specific and thus fail to give comprehensive protection to memory
errors. Moreover, they can easily be bypassed [63]. Address space layout random-
ization techniques (e.g., the one provided in [79] – or the one natively adopted
by the 2.6.x Linux kernel) have some drawbacks as well. For instance, (i) they
are not very effective on 32-bit architecture, as shown by [40] due to architec-
tural constraints (e.g., memory pages aligned on 4KB boundary at least, which

19

3.1. PRELIMINARIES

cut off the 12 least significant bits that cannot be randomized), (ii) they are
not effective against information leakage attacks, and (iii) they do not provide
protection to impossible path execution (IPE) attacks – that is, attacks able to
perform relative jumps to bypass security critical piece of code due to a par-
tial address overwrite, for instance. Address space obfuscation/randomization
(ASR) techniques, as the one provided by [8, 68, 67] provide a better and more
comprehensive protection than the previous approaches by using a fine-grained
address space randomization. However, the transformation proposed is more in-
vasive than the one performed by the approach proposed in the following. ASR
requires source code, and dealing with assembly code present in the source code
is problematic as well. Furthermore ASR does not generally provide protection
from IPE, and only probabilistic protection to information leakage attacks which
eventually corrupts code/data pointers is provided. Moreover, this protection
highly depends on the vulnerability encountered (see § 2). For instance, a format
bug will have more chances to be successful than a buffer overflow, in this sce-
nario. The strategy proposed in the following sections only partially shares some
of the aforementioned limitations and drawbacks while achieving or improving
the protection power.

3.1 Preliminaries

This section reminds fewer concepts about the Executable and Linking Format
(ELF) [81] specification. Moreover, some remarks on a process address space
layout are given at the end of the section.

3.1.1 Executable and Linking Format

The ELF specification [81] describes the format of executable, shared and relocat-
able objects. While we are not concerned with the latter one, in the following,
we briefly recall on a fewer concepts about the others.

An ELF executable object (ET_EXEC) is an object file that holds a program
code and data ready for the execution by the underlying operating system (OS).
Two different cases have to be considered, for this type of executable object:

statically-linked binary. The object file contains all the code and data needed
for its execution, that is, any external reference to library code and data is
properly retrieved, relocated and correctly linked into the object file by the
link editor, which eventually produces the desired executable object.

dynamically-linked binary. It contains only the executable program code and
data while references to any external libraries or, more generally, shared
objects (ET_DYN) referenced by the executable, will be resolved and managed
at run-time by rtdl, the run-time dynamic linker (see also § 3.1.2).

20

3.1. PRELIMINARIES

An ELF executable object usually hold absolute code and data, no matter
if the object is statically or dynamically linked. That is, the virtual addresses
the object is mapped at are fixed. Moreover, any relocation information of the
considered binary is generally stripped and thus it cannot be neither re-linked nor
relocated anymore (obviously, dynamically-linked binaries have all the required
information the dynamic linker will use for binding external references to their
definition at run-time).

An ELF shared object (ET_DYN), instead, holds code and data that is usually
dynamically linked into a process address space. Since different processes may
use a different number of shared objects, such objects cannot contain absolute
code and data references. Thus, they might potentially be mapped at different
virtual addresses into the processes address space that make use of them. For
such a reason, shared objects contain position independent code1 (PIC) in order
to permit the rtld to dynamically load the object into a process address space at
an “arbitrary” base address and to correctly perform dynamic resolution of its
symbols.

3.1.2 Process Address Space

The address space of a user-space process consists of all the virtual memory
addresses a process may access [19]. Usually, on a vanilla Linux kernel running
on a 32-bit Intel Architecture, a process, running in user-mode, is allowed to access
the first 3GB of its address space while the whole 4GB is generally addressable
in kernel mode.

For convenience and to ease the management of virtual memory a process
address space is usually divided into regions each of which hosts particular parts
of the ELF object being mapped. A typical division for a Linux process tries to
map ET_EXEC ELF object text segment starting at the virtual address 0x08048000
([81]) followed by its whole data segment (both .data, .bss and the start of dy-
namic heap). Everything must reside on a page boundary and it is necessary to
honor any existing displacement present in the physical object file. If the exe-
cutable object is dynamically-linked the kernel maps the run-time linker, usually
ld-linux.so, which in turns eventually maps all the shared objects used by the
executable, usually starting at the address 0x400000002. Finally, the kernel sets
up the mapping for the stack region that grows downward, towards lower memory
addresses starting from the address 0xbfffffff, the last virtual memory address
addressable in user space.

It is worth noting that such a mapping is applied to every process. Every
process has the same view of its virtual address space which is a process’ private
resource.

1Indeed, even ET_EXEC ELF object can be made PIC in order to be mapped at a different
base address by only experiencing a little performance slowdown.

2Even if using a 2.6.x Linux kernel, we are assuming the legacy address space layout.

21

3.2. PROCESS REPLICATION WITH DIVERSIFICATION

3.2 Process Replication with Diversification

Process replication aims to create a process replica Pr of a given process P . To
this end, P and Pr are artificially diversified so that each of them has a different
non-overlapping memory address space layout. Thanks to the replication actions
(§ 3.3) and diversification approaches (§ 3.2.2) both P and Pr will exhibit the
same behavior as long as they are in the same environment and they are fed
by the same benign input. However, malicious input that carries memory error
exploits attempts will let the process and its replica to diverge in their behavior.
The reason behind this lies in the fact that a memory error exploit should use an
attack pattern usually comprising a given absolute memory address A. Since P
and Pr are artificially diversified (non-overlapping address space) and replicated,
it is impossible that A is suitable for both processes. Any attempt to use A into
P ’s and Pr’s context will make them behave differently (generally one of them
will eventually crash) giving the opportunity to spot the attack.

Partial address overwrite attacks can still be successful if we only ensure non-
overlapping address space. However, such attacks class can be defeated if relative
distances between P and Pr address spaces are properly diversified, as shown in
§ 3.2.2.

In the following we describe the model framework we devised as well as how
diversity and replication are obtained and mapped by the framework.

3.2.1 Model Framework

The model framework is represented in Figure 3.1, and it is composed by three
main elements: the process P , its replica Pr and a replicator and monitoring
process T which we will call the tracer. Even if not further specified, it is clear
that even T must be somehow protected.

Process
Process
Replica

Replicator
&

Monitoring

Figure 3.1: Model Framework

The main goal of T is to start, perform I/O replication and system calls
management actions, and monitor the execution of P and Pr, while looking for
any anomalous condition (see § 3.3).

22

3.2. PROCESS REPLICATION WITH DIVERSIFICATION

Thus, T has to feed Pr with the same input given to P and it has also to
correctly manage the system calls invoked by both processes so that they will ex-
hibit the same behavior. To this end, P and Pr must be maintained synchronized
by T and this is done on a syscall-based granularity by making P and Pr reach
what we called a rendez-vouz point. The processes that are going to interact
with P would not even notice the presence of Pr. Before going into the details of
the diversification and replication approach, we can anticipate its effectiveness in
defeating absolute and partial address overwriting attacks as show in Figure 3.5
(see § 3.4.1 for a description of the approach).

Details about the differences between Pr and P as well as the mechanisms
adopted by T for “hiding” Pr while keeping P and Pr behavior consistent are the
topics of the following sections.

3.2.2 Non Overlapping Processes Address Spaces

The diversity approach we adopted, independently conceived by Cox et al. in [7],
aims to provide a non-overlapping address space between a process P and its
replica Pr in order to defeat memory error exploits which aim to corrupt absolute
memory addresses. By non-overlapping, we mean that no overlapping address
spaces can be found when comparing the virtual addresses where the processes
have been mapped at. A possible example is depicted in Figure 3.2. As re-
minded in § 3.1, usually every process is mapped starting at the same virtual
memory address and the same applies for the stack region as well as memory
mapping area created by the mmap system call. The main objective of address
space diversification is to break such an assumption.

However, as noted at the beginning of § 3.2, the diversification proposed
in [7] cannot deal with partial address overwrite attacks. In fact, these can
still be successful even when adopting such a diversification between P and Pr.
The reason behind this lies in the fact that partial address overwrite can permit
“relative jump” to bypass security checks because “relative” distances between P
and Pr address spaces are kept the same by default. Thus, our idea is to break
this assumption here as well and to “shift” the address space of P ’s replica by k
bytes. This way, relative distances between P and Pr address spaces are properly
diversified thwarting partial address overwriting attacks.

In the following we describe the strategies adopted for reaching such an ob-
jective in the case of statically-linked binaries and dynamically-linked ones.

Statically-linked Binaries

In order to successfully diversify ET_EXEC ELF objects, we modified the default
ld linker script3 to achieve the following goals:

3Obviously, the same approach can also be applied to ET_REL ELF objects, that is, relocat-
able code.

23

3.2. PROCESS REPLICATION WITH DIVERSIFICATION

0x08048000

text

data

bss

heap

stack

0x0

0xbfffffff

unused

0x08048000

0x64023fff

text

data

bss

heap

stack

0x0

0xbfffffff

unused

0x68048000

Figure 3.2: Diversified Process Replicæ

• load Pr starting at a custom address different from the one defined in the
ELF ABI [81]; for our test purpose we initially used 0x68048000 instead
of the default one (0x08048000). Obviously, a checking of the sizes of P
and Pr (.text, .data, .bss segments as well as dynamically checking for
heap expansions) are required to ensure non-overlapping processes address
spaces;

Note that, in order to achieve full non-overlapping address space, other
regions, such as stack and memory mapped area (heap comes after the .bss
segment so, it can be transparently handled by the modified linker script)
have to be mapped at different addresses too. In order to accomplish this
task and to be as transparent as possible with respect to the diversified
executable object, we modified ld-linux.so, the dynamic run-time linker
by using an approach similar to the one described in [88]. Of course, also
the dynamic linker itself has to be “relocated” as well.

• modify the least significant byte (LSB) of the address at which ET_EXEC ELF
object will be mapped at. This is achieved by inserting “junk” data right
at the beginning of the .text segment description in the linker script, using
the LONG(k) linker script keyword, taking care of the required alignment
constraint4 (e.g., 4-byte alignment). Thus, all the code is moved k bytes
upward (towards higher addresses), thus shifting the executable entry point,
as well as its code and data segments. This mechanism may be repeated
as long as it is possible to obtain different “LSB values” for P and Pr thus

4Indeed, there are other keywords that may be used to achieve the same result. Moreover,
due to sections padding and sections-to-segment mapping it may be necessary to carefully insert
these junk bytes.

24

3.2. PROCESS REPLICATION WITH DIVERSIFICATION

defeating any memory errors exploits that target partial memory address
overwrite (IPE attacks).

In our initial test, the 0x68048000 has been shifted of 8 bytes and which
gave us good results (see § 3.4.1).

Dynamically-linked Binaries and Shared Objects

Dynamically-linked binaries are a bit more tricky to deal with since the shared
objects used by the executable have to be diversified in order to take full advantage
of the entire diversification approach.

The “main” executable object (ET_EXEC) can be diversified as previously de-
scribed while ET_DYN ELF objects, that is dynamic libraries or more generally
shared objects, have to be properly handled. On the other hand, the base address
of the considered shared object O is transparently diversified by the modified
ld-linux.so described in the previous section. However, in order to achieve
protection from partial address overwriting attacks, it is necessary to perform
the same object “shifting” performed on statically-linked binaries. There are
basically two alternatives.

1. The first one chooses to diversify shared objects when they are just going to
be loaded by ld-linux.so, the run-time dynamic linker (rtdl), right after
the rtdl maps the shared object O using the mmap system call but before they
are used even by the rtdl itself, penalty the corruption of the in-memory
shared objects data structures involved. The tracer T can easily handle this
situation since the rtdl operates on behalf of the executing process and T
monitors both P and Pr.

Roughly speaking, after the rtdl maps a particular shared object segment
m via mmap, T has to:

(a) keep track in a table of the address returned by the mapping request
as well as its length and the amount of desired shift (see next point);

(b) shift the segment M just mapped by k bytes;

(c) update relocation entries and the program header table (PHT) of the
ET_DYN object as relocation references are shifted by k bytes;

(d) give back to rtdl the mmap’d address displaced by the k-byte shift
performed in order to permit the run-time linker to correctly reference
the ELF header of the object O as well as all the others relevant ELF
structures of O and the whole mapped region5;

(e) monitor any non-anonymous un-mapping request via munmap, in order
to adjust by k bytes the address specified in the request and have the

5This is true for the segment that contains .text, .rodata, .plt sections and so on. Others
loadable segments, such as the one holding “writable data”, have to be subjected to the same
shifting operation to honor the relative addressing that PIC objects exhibit.

25

3.3. REPLICATOR MODULE

kernel to correctly un-map the region, using the information stored in
3.

Unfortunately, this approach has limitations and drawbacks. Segments are
usually padded during load time in order to obtain in-memory segments
on a page boundary (e.g., 4KB-aligned) while respecting relative segments
addressing. The shift operation exploits the padding introduced in order
to use some unused in-memory room to shift the whole segment. Conse-
quently, the aforementioned approach cannot be deployed on those segments
whose size is already equal to a memory page. However, preliminary tests
we conducted on a Debian GNU/Linux testing system reported that the
percentage of shared libraries that would hardly take benefit of such an
approach due to low-padding space is really low (about 0.4% on a 1947
sample). The great majority of the rests would be smoothly diversified.
Nonetheless, we are currently investigating other solutions to undertake in
order to achieve the same protection provided by the in-memory shifting
operation for all the shared objects involved.

Another big drawback of this approach is the waste of (physical) memory
that is required because of the shift operation (transparently handled by
the copy-on-write (COW) kernel mechanism).

It is also worth noting that a kernel level patch has to be developed for
handling the run-time dynamic linker since it also has to be modified by
the same “run-time patching” mechanism applied to the shared objects.
Object shifting to achieve LSB diversification has also to be applied to
plugins loaded by means of dlopen library function which eventually invokes
the mmap system call6. Moreover, a “stack shifting” has to be performed as
well by the aforementioned kernel patch.

2. The second approach is simpler but it needs shared objects source code,
which is not always available. It performs the address space “shifting” at
compile time, by recompiling the needed ET_DYN object, using a custom
linker script as it has been used for the statically-linked binary case.

Currently, our prototype supports the latter approach.

3.3 Replicator Module

The replicator and monitoring component T of the framework depicted in Fig-
ure 3.1 is in charge of (i) letting P and Pr reach a common execution point
which defines what we have called rendez-vouz point to synchronize P and Pr

6In order to correctly perform this step, the tracer T can keep track of the object i-node
whose file descriptors are used as argument to a non-anonymous mmap. This way it would be
possible to perform the shared object shifting without incorrectly act on non-shared objects.

26

3.3. REPLICATOR MODULE

behavior, (ii) performing I/O replication and system calls management, and (iii)
continuously monitor P and Pr, raising an alarm and terminating the both pro-
cesses upon anomalous conditions are detected (attaks). In particular, T has to
performs the following actions:

(i) It executes a process P and its replica Pr which has been previously di-
versified (see § 3.2). It is worth noting that T actually traces P and Pr

execution using the ptrace system call. Such a system call permits T to
“asks” the OS kernel to stop the execution of the traced processes every time
they “enter” a system call s, that is before actually executing it, and right
before they are willing to “exit” from s, that is after s has been actually ex-
ecuted by the OS kernel on behalf of P or Pr. It may also be observed that
while performing these steps, T acts like a kind of a “high-level” scheduler
whose purpose is better explained in the following items (however, the real
“low-level” process scheduler remains the kernel).

(ii) It performs I/O replication on some I/O related system call invoked by P
and Pr. Moreover, T has to correctly manage all the system calls invoked
by P and Pr. To this end, T ensures that both P and Pr enter a system
call s, reaching what we define a “rendez-vouz” point7. The main purpose
of this synchronization point is to permit P and Pr to reach a common
state in their execution flow f before actually execute s. This is necessary
since, due to the peculiarity introduced by diversification and replication,
different actions have to be taken depending on the considered system call
and whether it has been invoked by P or by Pr. It is worth noting that
if P and Pr receive the same non-malicious input they behave identically
since they only differ in the memory locations they have been mapped at.
Moreover, since T starts the execution of P and Pr, monitors them and takes
the appropriate decision on a system call-based granularity, both P and Pr

will end up by invoking the same system call s (with the same equivalent or
comparable arguments). In particular, it is possible to classify the system
calls depending on the actions T must carry out. In particular:

simulated system call. T enables the execution of s only to P . At the
end of the system call, i.e., before enabling P to continue with its
execution (that is at s exit), T replicates the effects produced by s
onto Pr address space. For example, if s is represented by the read

system call, T waits for P and Pr to enter s and it checks whether they
both want to invoke it (also comparing all those immediate values that
can be compared to, e.g., file descriptor, flags and mode if present).
Afterwards, P invokes s and, once s is correctly executed, T replicates
the data just read, if any, from P ’s address space to Pr’s address space,
accordingly modifying s’ return value in Pr context as well. Non-
erroneous and non-malicious read actions would not alter any code

7This term as a well defined semantic but here it is used with its more general meaning.

27

3.3. REPLICATOR MODULE

and data pointers stored in the process memory address space. P and
Pr semantic will be identical and they will exhibit the same behavior.

executed system call. Both P and Pr execute s since it creates or mod-
ifies in-kernel process structures; such an execution is necessary since
the actions performed and the values returned by s may be subse-
quently used by other system calls or a “simulation” would require too
much effort to be done without kernel intervention (e.g., mmap or mmap2,
excluding the “write” mode that deserve special treatment as further
explained in § 3.5.1). A typical example is represented by the open

system call since it creates in-kernel structures whose user level repre-
sentation (i.e. file descriptor) might be used as an argument to other
system calls that will be possibly executed by the involved processes
(e.g., close can decrease an object file usage reference count);

carefully treated system call. There are fewer system calls, such as mmap,
mmap2 and IPC related ones like shmat and shmget8, that have to be
treated carefully since otherwise they may render inconsistent both P
and Pr address spaces as well as the mapped objects. A step toward a
possible correct treatment of such system calls is given in § 3.5.1.

Actually, due to the nature of our user-space approach, some system calls
present a mixture of the first two points, that is they have to be somehow
executed since they cannot be made to fail by our user-space prototype, but
they also have to be simulated in order to provide consistency between P
and Pr address spaces. A typical example of this situation is represented by
the getpid system call: in order to guarantee a consistent behavior between
the processes getpid invocations made by P and Pr have to yield the same
process for both processes.

(iii) Finally, T continuously monitors P and Pr in order to check whether they
receive signals so that proper actions can be taken. For example, during a
classical successful memory error exploit, one process, say P , will keep going
on while Pr, which has a different non-overlapping address space layout, will
eventually crash letting T to correctly handle this situation by either raising
an alarm or terminating P (see § 3.2). Thus, if we assume that in order to
make real and useful damage on a system at least one system call has to be
executed [87], this way no meaningful, from the attacker viewpoint, harm
or damage can be successfully perpetrated against the protected system.
In fact, it should be observed that both P and Pr have to synchronize
themselves by reaching a rendez-vouz point. This means that both have to
enter a system call s before it can actually be executed. So, if a process P
is tricked into invoking a system call s but Pr is crashed, no rendez-vouz
point will be reached and thus no system call will be invoked at all.

8Indeed, it depends on the considered kernel whether these represents actually a system call
or a library function call that eventually invokes the same system call.

28

3.4. EVALUATION

Recent research [14], however, showed that indeed is not always necessary to
execute a system call to cause damage. Even if some memory error attacks
which do not corrupt code pointers are currently caught by our approach,
others are not. This is, unfortunately, a limitation of our approach. In
particular, as long as pointers (code or data) are considered, there is a
good confidence that one process, say Pr, will crash as soon as the pointer
is dereferenced, while the other, say P , will not. This running process is
clearly the real issue. Following this scenario, P can, (i) keep corrupting the
process address space, or (ii) eventually invoking a system call. In (i) it has
further choices. It can corrupt pointers or non-pointers data. In the former
case the process will crash as soon as the pointer is dereferenced, while in
the latter not. Clearly this could potentially be an issue. If the monitor (i.e.,
the ”detection mechanism”, the tracer T) resides within the process address
space, and no further protections (ala software fault isolation) are used then
it would be possible for the attacker to subvert the detection mechanism at
once, by corrupting its internal data structure. Consequently, the attacker
would be able to execute system calls without being detected anymore (no
more process replica, no more replication). However, in our implementation,
the tracer T uses the ptrace system call to accomplish its replication task
(i.e., monitoring at system call level, replicating data, and so on). The tracer
is therefore a separated process which does not share data neither with P
nor Pr. A way by which a corrupted process P can tamper T ’s address
space is, for instance, to use the ptrace system call as well. However,
this is more tricky and can completely be avoided by using simple anti-
debugging technique so that no external high privilege process can attach
and monitor T (e.g., T executes ptrace(PTRACE_TRACEME) which implicitly
does not allow any other processes to attach to itself anymore). The point
(ii) poses no particular issue as we remark that the tracer T waits for P
and Pr to reach their rendez-vouz point. One process, say Pr, has already
been terminated due to a reference to an invalid memory access. When the
other process, say P reaches the synchronization point, T knows that Pr

will never do that, so it kills P as well. No damage is done on the system.

Further discussion about attacks on the proposed approach as well as argu-
mentation on the protection provided are remarked in § 3.4.3.

3.4 Evaluation

In the following, we present the evaluation of our diversified process replicæ ap-
proach in terms of effectiveness and experimental results. The section ends by
analyzing the security of the approach pointing out its weaknesses, limitations
and, wherever possible, solutions to these issues.

29

3.4. EVALUATION

3.4.1 Effectiveness

In order to validate the feasibility of the approach herein proposed we test its
effectiveness with respect to memory errors exploits that aim at:

• overwriting memory addresses with absolute values needed to divert the
legal process execution flow.

• corrupting least significant bytes of a memory address thus performing what
has been so far called partial address overwriting.

The former method can be used by an attacker to exploit common memory
corruption vulnerabilities, such as buffer overflows, heap overflows, format string
bug, jmp_buf overwriting and so on, to usually execute arbitrary code. The latter
method, instead, may be used to successfully perform what in literature known
as an impossible paths execution (IPE) attack [85, 28, 16].

Impossible paths can be defined as a sequence of instructions that can never
be executed under normal circumstances due to a particular program structure.
A typical example of this situation is represented by an if () then ... else ... state-
ment. If the CPU ends up by executing some instructions in the true branch,
there is no way to jump into the false one9. It is simply an impossible path
to follow due to the structure of the program and the if/then/else semantic. If
properly recognized, an impossible path can be exploited by an attacker in or-
der to execute application code in a way that would not otherwise be possible;
security-critical checks as well as “jumping” over unwanted (from a security view-
point perspective) code can be, more or less, easily bypassed by Impossible Path
Execution (IPE) attacks. Usually, to perform a successful IPE attack, it suffices
to overwrite the LSB of a suitable code pointer, such as stack return address, for
example.

1 void foo(char *arg) {

2 char littlebuf[128];

3 ...

4 strcpy(littlebuf, arg);

5 return;

6 }

Figure 3.3: A typical stack-based buffer overflow vulnerability

Obviously a lot of sophisticated exploitation techniques exist, but for exposi-
tion purpose we consider only the simplest ones. Figures 3.3 and 3.4 depict code
snippets showing respectively a stack-based buffer overflow vulnerability and a

9Again, as noted in § 2 and suggested by “best programming practice”, we assume no
spaghetti code at all, and hence no local jump, i.e. goto, from one branch to the other. Moreover,
we are not considering any interpreted language.

30

3.4. EVALUATION

1 u_char *read_next_cmd(void) {

2
3 u_char input_buf[64], *p;

4 u_char *e = getenv("USERCMD"), *q = &input_buf[0];

5
6 umask(2);

7 ...

8 while (*q++ = *e++) ;

9 /* memory leak? */

10 p = (char *)strdup(input_buf);

11 return p;

12 }

13
14 void login_user(int uid) {

15
16 char *cmd;

17
18

if (is_regular(uid)) { 18
19

/* unprivileged mode */ 20
cmd = read_next_cmd(); 21
setuid(uid); 22
/* yes, system is safe ;-) */ 23
system(cmd); 24

25
} 26
else { 27

28
/* superuser! */ 29
cmd = read_next_cmd(); 30
setuid(0); 31
system(cmd); 32

33
} 34
return; 35

} 36
37

Figure 3.4: A typical security check that can be bypassed with an IPE attack.

security check that can be bypassed by performing an IPE10. In particular, Fig-
ure 3.4 depicts a situation where an attacker, camouflaged as a regular user, enters
the true branch (lines 19-25) and exploits the stack-based buffer overflow (line
8) by overwriting the LSB of read_next_cmd return address. Once the function
ends, the execution flow will return into the false branch (lines 28-33) ending up
by running cmd as a privileged user, thus performing an IPE attack.

On the other hand, Figure 3.3 shows how the control-flow can be diverted
by overwriting foo return address, pointing back into the vulnerable buffer itself
which contains the malicious injected code.

Such attacks can be defeated by the process replication with address space
diversification mechanism, no matter if they target absolute or partial address
overwriting, as long as the address space is properly diversified with the ap-
proaches proposed in § 3.2.2. For example, consider the code snipped reported in
Figure 3.3 and the stack layout of the process P associated to such a code and its
replica Pr at the time the stack-based buffer overflow vulnerability is exploited, as
reported in Figure 3.5. If the attacker were able to exploit the stack-based buffer
overflow vulnerability, P and Pr would exhibit a different behavior. In fact, Pr

will eventually reference an unmapped memory region in its address space and
thus, it will be killed, along with P , by the replicator and monitor component t
(or viceversa, that is Pr gets exploited and P is killed). The same holds for the
IPE attacks described above.

3.4.2 Experimental Results

We conducted some experimental tests in order to evaluate the impact of the
process replication with diversification approach herein described. To this end, a
user-space ptrace proof of concept (PoC) which we developed, has been executed
on a 1.3Ghz Intel Centrino with 512MB of RAM, running a Debian GNU/Linux
with a 2.6 vanilla kernel. The PoC is in charge of correctly replicating and

10Example showed in Figure 3.4 was first proposed by [28] and slightly modified in [16].

31

3.4. EVALUATION

0xbfff1234

higher
addresses
(stack growth)

Process Stack

lower
addresses

arguments

SFP (overwrit)

Injected
Malicious

Code

0xbfff1234
0xbfff1234

 Process Replica Stack

arguments

SFP (overwrit)

Injected
Malicious

Code
0x7fff1245

Unmapped
Area

(segfault)
0xbfff1234

(a) (b)

Figure 3.5: Diversified process replica for defeating absolute memory errors exploits

monitoring thttpd [42], a small and fast web server, as described throughout
the Chapter. Moreover, httperf [17], an HTTP benchmark utility, has been
used on three client hosts to assess the latency and throughput slowdown on an
unsaturated 100Mbps LAN using 100 connections, 4 sessions per connection, 13
requests per connection, on a 7.5MB site. The last test case (#5), instead, was
conducted using 10 connections on a 98MB site11.

Throughput MB/s (real system) MB/s (DPR) % slowdown
1 thttpd (mmap) 12386.9 12238.8 1.20%
2 thttpd (mmap-nocache) 12718.4 12496.5 1.75%
3 thttpd (read) 12599.5 12117.4 ∼ 3.8%
4 thttpd (read-nocache) 12603.7 7086.3 ∼ 43.8%
5 thttpd (read-nocache-single) 9134.5 2838.1 ∼ 69%

Table 3.1: Experimental results: Throughput.

Table 3.1 and 3.2 summarize the experimental results we achieved. In par-
ticular, we were quite surprised by the 1.20% throughput slowdown since, it was
our belief that, due to the nature of the idea and of the PoC implementation, a
more heavy performance impact and network slowdown (mainly caused by the
need to simulate some system calls, such as the read) were expected. It is worth
noting, in fact, that one of the more heavy system call the proof-of-concept must
simulate is the read system call (as other similar input-related system calls, such
as readv, recv, recvfrom, . . .) since, as pointed out in § 3.3, it has to replicate

11The real system column shown in tables 3.1 and 3.2 refers to the execution of the original
application thttpd without its replica but under ptrace monitoring to avoid including any
overhead introduced by a simple system call tracing mechanism as the one brought by the
ptrace system call. Of course, the column flagged as DPR refers to the approach proposed in
this dissertation.

32

3.4. EVALUATION

Latency ms (real system) ms (DPR) slowdown
1 thttpd (mmap) 3.5 4.6 31%
2 thttpd (mmap-nocache) 3.5 4.5 29%
3 thttpd (read) 3.5 5.3 51%
4 thttpd (read-nocache) 3.7 21.6 ∼ 6x
5 thttpd (read-nocache-single) 166 646 ∼ 4x

Table 3.2: Experimental results: Latency.

data from one process to its replica, without actually letting the replica to execute
the system call. However, further investigation on the testbed web server showed
that, by default, thttpd uses the mmap system call, where available, in order to
map VFS objects into the process address space, by avoiding any use of the slow
read system call as much as possible and demanding to the kernel the loading of
the remaining VFS object onto the process address space when needed. More-
over, the web server uses a cache system to avoid duplicate mapping or reading
of VFS objects. This helped to give initial acceptable performances downgrade
both for latency (31%) and for throughput (1.20%).

However, in order to be as much complete as possible and to better assess
the introduced cost caused by the replication approach, we modified thttpd to
force it to either use any combination of mmap and (simulated) read syscall with
caching facility enabled or not. Table 3.1 and 3.2 report the combination we
obtained and, as we expected, more realistic overheads were reported. Latency
ranged from 4.5ms (31%) to 21.6ms (∼ 6x) on the 7.5MB web site, for non
caching read operations, while it reached 646ms (∼ 4x) for the 98MB testbed
web site. Likewise, we reported a throughput slowdown of ∼ 44% to ∼ 69% for
non caching read operations on a 7.5MB and 98MB web site, respectively.

It is worth noting that the high overhead is mainly introduced by the replica-
tion task and by the underlying prototype implementation. In fact, every 4 bytes
of data that need to be replicated, at least two ptrace system calls (and process
context switch as well) have to be executed, as noted at the end of § 3.4.3. This
is particularly onerous. A different implementation which does not make use of
ptrace would certainly improve performances. Moreover, as it will be pointed
out in § 6, parallel execution of P and Pr would further improve performances.

As a final note, it is worth noting that the overhead introduced by the read

syscall simulation may be decreased if we were able to distinguish whether a read
operation is performed on a regular VFS object file or from a socket or standard
input, for example. In the former case, in fact, there is no reason to simulate the
syscall at all, while in the latter case such a simulation is a must in order to guar-
antee for the correct processes behavior. Such an optimization would give better
throughput on “download” operations (from a client perspective) while, unfortu-
nately, would be practically useless on “upload” ones. Further speculations are
given in § 6.

33

3.4. EVALUATION

3.4.3 Discussion

The approach herein proposed provides a deterministic protection when a memory
error exploit corrupts a 32-bit code or data pointer (absolute overwrite).

Generally speaking, to successfully exploit a memory error vulnerability, it is
necessary that (i) a vulnerability allows for the corruption of some security crit-
ical data (e.g., code and data pointers in the considered scenario), and (ii) that
these data are overwritten with known attack-provided values. Our replication
approach correctly feeds both P and Pr with the same input. As P and Pr have
disjoint address spaces (ASs), i.e., they do not share any address in common,
thanks to the diversification strategy adopted by our approach, a memory error
exploit which corrupts the aforementioned security critical pointers, will be valid
on one address space (e.g., P), while will cause a segmentation violation on the
other one (e.g., Pr), whenever the corrupted pointer is de-referenced due to ref-
erences to unmapped portions of the involved process AS. This anomalous event
is caught by the tracer T which terminates both processes, before any harmful
activity can be performed. In fact, as it is clear that one process has no chance
to execute even one instruction, the other one has. To better understand why
no harmful actions can be performed anyway, let us consider the following sce-
nario. Let us suppose that P is the process where the attack-provided address
overwrites a code pointer with the intent to execute arbitrary code by referencing
to a mapped page of P AS. On the other hand, the same address will cause Pr

to crash as soon as the corrupted code pointer is de-referenced. On uni-processor
machines, scheduling mechanisms might let P to execute some instructions re-
lated to the attack-provided input. However, this does not represent an issue as
to cause harm to the system, eventually a system call has to be invoked. We
remind that the tracer T waits for both P and Pr to reach the rendez-vouz point.
Anyway, P might reach it (attack-controlled) while Pr will never. No matter on
the (small) number of instructions executed by P due to scheduling mechanisms,
eventually, Pr will generate a segmentation violation (code pointer corrupted with
a wrong unmapped address), which in turn will cause the termination of itself
and P as well. A similar but simpler reasoning can be made if a data pointer is
corrupted as no attack-induced code can be executed at all, neither on P nor on
Pr.

Things change a little if partial overwrites are considered. The underlying
reasoning is similar, even if the protection provided by the address space shifting
strategy proposed provides only a probabilistic protection. Let us suppose that
P and Pr address spaces are disjoint and that Pr AS is shifted by k bytes with
respect to the one of P . The consequence is that, for instance, a code pointer
c of P points to an address whose least significant byte (LSB) is x, while the
same pointer for Pr points to an address whose LSB is x + k. Of course, Both
code pointers refers to the same object. Let us consider an attack scenario like
the one proposed before. For instance, let us consider an attacker that wants to
partially overwrite a code pointer to perform an IPE attack and skip security-

34

3.4. EVALUATION

relevant checks (e.g., authentication check). Let us say that by replacing the LSB
of c in P from x to y will allow the attacker to fulfill this goal. As the input
is replicated by our approach, also Pr code pointer will have its LSB replaced
by y. However, while this is the correct “offset” for P , it is not for Pr as its
AS is shifted by k bytes. Of course, the correct value for Pr would be y + k
but then this would be incorrect for P . Most likely Pr will jump in the middle
of an instruction, and it will either generate a segmentation fault due to illegal
instruction decoding (SIGILL or SIGBUS). Alternatively, it will start executing
some instructions which are not equivalent to the one executed by P as Pr will be
“behind” P as it jumped k bytes less than the one expected. The processes most
likely exhibit behavioral divergence and the tracer T will terminate both either
upon receiving a segmentation fault-like signal or whenever they try to execute
different system call (or the same acting on different parameters).

Unfortunately, as briefly discussed previously, the proposed approach does not
provide protection when arbitrary non-pointer data are corrupted, as the example
here below proposed by Mutz et al. in [56] depicts.

1 void write_user_data(void) {

2

3 FILE * fp ;

4 char user_filename[256];

5 char user_data[256];

6

7 gets(user_filename);

8

9 if (privileged_file(user_filename)) {

10 fprintf(stderr, "Illegal filename. Exiting.\n");

11 exit(1);

12 }

else { 13

gets(user_data); // overflow 14

fp = fopen(user_filename, "w"); 15

if (fp) { 16

fprintf(fp, "%s", user_data); 17

fclose(fp); 18

} 19

} 20

} 21

22

23

24

The user_filename array obtained at line 7 (gets function) is subjected
to a security check performed by the function privileged_file (line 9) that
checks whether user_filename specifies a name of a privileged file or not. In
affirmative case, the program prints an error message and quits. Otherwise (i.e.,
non privileged file), more data is read into the array user_data, through the
function gets at line 14, and the file name specified by user_filename is opened
at line 15. An attacker can overflow user_data by overwriting past its end, and
overflowing into user_filename. As the overflow happens after the security check
performed at line 9, an attacker can specify a legal file name for user_filename
that will be replaced later on thanks to the overflow.

A limitation of our strategy is that it cannot defeat the aforementioned at-
tack as no pointers corruption are involved and the considered vulnerability is
a straight buffer overflow which corrupt adjacent buffers (relative addressing at-
tacks). On the contrary, this would be possible if the vulnerability would make
use of pointers to achieve its final goal. For instance, this is the case for a format
bug which aims to corrupt a non-pointer security sensitive data if the format bug
uses attack-provided addresses (as in most of the cases), as shown by the example
in § 4.3.1.

35

3.5. PRACTICAL ISSUES

An inherent drawback of the proposed solution is that replicating legal point-
ers values (i.e., non attack-provided input) from P to Pr or the other way around,
is inherently seen as a manifestation of an attack and both processes are termi-
nated (one will cause a segmentation fault which in turn will cause the termination
of the other). Moreover, the prototype implementation uses the ptrace system
call. Beside being an easy-to-use but slow approach for replicating information
from one process address space to another (e.g., every replication of 4 bytes re-
quires the execution of at least 2 ptrace system calls), it is not considered to be
secure to provide local protection as well [32]. We believe this is not really a big
concern, indeed. A different prototype implementation would simply do.

3.5 Practical Issues

Unfortunately, even if the idea of diversified process replication is simple and
quite effective in combating a broad range of memory error exploits, there are
some practical issues, namely shared memory, signals and non-determinism (e.g.,
threads) situations, that we have to cope with in order to successfully and broadly
deploy such a defensive mechanism.

3.5.1 Shared Memory

Shared memory management is probably one of the biggest practical issue intro-
duced by diversified processes replicæ.

In fact, as already pointed out in § 3.3, P and Pr have to synchronize them-
selves at each system call (rendez-vouz point) to let T to correctly perform the
replication task. However, no system calls are invoked when shared memory is
involved. It might not so clear at first glance where and how to achieve such a
rendez-vouz point for synchronization. Moreover, it might also be unclear how to
deal with a shared resource R in order to guarantee consistency between P and Pr

behavior and R. In fact, as we will briefly see in § 3.5.1, it is fairly easy to make
examples on how things can go wrong between P , Pr (behavioral divergence) and
the involved resource R (data inconsistency).

For the sake of clarity and for explanation purpose, we would briefly remind
how shared memory to achieve inter-process communication (IPC) is obtained
and what resources are actually involved in the process. Depending on the needs,
in fact, we may obtain shared memory either by means of mmap system call or by
means of classical shared memory IPC form (shmget, shmat, ...)12.

The main difference between the two approaches is that the former one pro-
vides shared memory by acting on a file system (FS) object O which, once mapped
onto a process P address space (AS), will be shared to provide inter-process

12It is worth noting that it might happen that, on certain Unix systems, IPC shared memory
is obtained using the mmap system call. As we will see shortly, this does not interfere with our
treatment.

36

3.5. PRACTICAL ISSUES

communication. We can talk, in this case, of non-anonymous (shared memory)
mapping.

On the contrary, the classical shared memory approach makes directly use
of a memory area that will be shared among the processes that will attach to
it. We can talk, here, of anonymous (shared memory) mapping. Without loss of
generality, we will use the general term shared memory to refer to both approaches
by default, unless differently stated, no matter if the resource being shared is a
memory area or a FS object O. The main point, in fact, is that whenever a FS
object is shared with such an approach, it is transparently accessed and modified,
with the help of the underlying OS, without any I/O operation but only through
memory accesses the process mapping O makes use of. Moreover, we will use the
terms shared resource R, shared mapping, and shared memory interchangeably,
unless differently stated.

It is worth noting that, however, not all the features provided by the afore-
mentioned approaches are dangerous in our framework as well as in the model
proposed by [7]. In the following we summarize how it is possible to obtain
shared memory and whether the particular “type” of shared memory is suitable
for inter-process communication (problematic case) or not.

mmap-based: can provide both anonymous (memory area) and non-anonymous
mapping (FS object mapped onto a process address space).

1. non-anonymous can be further divided in:

(a) private mapping, that creates a private copy-on-write mapping. It
only provides what we call intra-process communication. That is,
the resource R is shared only among parent/children relationship
which only modify the memory associated with R in their AS;
there is no modification of R at all. It is worth noting that, as
long as the private mapping is not modified (copy-on-write), every
modification of R made through a shared mapping (see next) is
reflected into the private mapping as well;

(b) shared mapping, that provides true inter-process communication
among the processes mapping R; for this reason R can potentially
be modified. Moreover, every modification performed on R is
automatically reflected into the AS of the processes which map
R.

2. anonymous that provides intra-process communication; the mapping
is private and belongs to the process P ’s AS and its children, if any.

classical shared memory: can only provide anonymous (memory area) map-
ping. As above, it can be further divided in:

(a) private mapping, similar to the intra-process communication mapping
provided by the mmap-based approach (point 2), with the exception

37

3.5. PRACTICAL ISSUES

that the mapping is completely private and not on mapping modifica-
tion;

(b) shared mapping, that, as in the mmap-based approach (point 1b), shares
the resource R providing inter-process communication among the in-
volved processes.

As we will soon describe in § 3.5.1, it is easy to see that the only problem-
atic situations are (i) when a resource is actually shared, like in the mmap-based
approach (point 1b), and (ii) in the classical shared memory (point b) approach.

We try to cope with the shared memory management issue with a step-by-
step approach. We start with a simple scenario where related-only processes are
involved (best case scenario easy to cope with). Next we move on a more tricky
and realistic scenario when unrelated processes are involved (worst case scenario),
to put the basis for a generic solution at the end of the Section.

By related-only processes, we mean a scenario where no external processes,
beside P , Pr and their children (if any), are present. Synchronization between P
and its children for accessing a shared resource R has to be properly done and it
is not a side-effect introduced by our model.

We can anticipate that the main issue is that both P and Pr would end up
by acting on the same shared resource R and this might cause inconsistency if
not properly handled. The example described in § 3.5.1 shows such a situation
(mmap-based (point 1b) approach) in a related-only processes scenario with no
children (only P and Pr).

Data Inconsistency and Behavioral Divergence

The following example clarifies the main issue related to the management of
shared memory regions in the process replication model. Even if the example is
focused on a best-case scenario we show how it is easy to get data inconsistency
and behavioral divergence between P and Pr.

Suppose that P creates a readable and writable13 (PROT_READ|PROT_WRITE)
non-anonymous shared memory segment (MAP_SHARED), that is a memory seg-
ment that maps a FS object O, via the mmap system call. Since both P and Pr

are fed by the same input, also Pr will end up by creating the shared memory
segment as well. In the following, we show a code snippet which P and Pr could
execute following a different execution flow, thus exhibiting a different divergent
behavior. As a direct consequence, O will be shared between P and Pr as well.
This can be considered as the main cause of the issue, that is, P and Pr will start
having an unwanted form of inter-process communication.

The consequences are that every modification made by P on the shared mem-
ory segment mapping O, will automatically be reflected onto Pr address space as
well as into O itself (see § 3.5.1). As previously noted, if not properly handled this

13Note that read-only shared memory is not an issue. We will not further elaborate on this
point here.

38

3.5. PRACTICAL ISSUES

could lead to data inconsistency and processes behavioral divergence. Obviously,
this is something to avoid as could be seen as false positive of the model that
would bring the system in a stalled situation (termination) with a even worst
side-effect of data corruption.

1. let ptr points to the mmap’d shared memory segment and suppose the first
byte of O contains the value A. Suppose both P and Pr are ready to execute
line 1 in the following code snippet (so, they have already been “scheduled”
by R but they are waiting for being scheduled by the kernel).

1 if (*ptr == ’A’)

2 *ptr = ’B’;

3 else

4 *ptr = ’C’;

5 ...

6 /*

7 * execute something based

8 * on the value held by *ptr

9 */

Suppose the kernel schedules-in P 14. As can be observed, since there are
no system calls involved, there are also no rendez-vouz points; moreover,
suppose that P executes the true branch, setting the byte pointed by ptr

to the value B, before its quantum expires;

2. afterwards, let P be scheduled-out by the kernel scheduler which eventually
schedules in Pr that starts its execution at line 1; since *ptr has been
changed by P and ptr points to a non-anonymous writable shared memory
segment, Pr will enter the false branch, setting the byte pointed by ptr to
the value C;

3. but since Pr is just a P ’s replica, it must exhibit the same behavior exhibited
by P as long as both processes are fed by the same “good” input by R. This
example shows a subtle way to feed P and Pr with different inputs. In fact,
P thinks *ptr holds A while Pr not and such a situation might modify their
behavior if further decisions are going to be taken based on the value stored
in *ptr. Moreover, O might end up in an inconsistent status.

Related-only Processes

In this scenario we consider only P and Pr but no other external processes that
might operate on the shared resource R. As highlighted in § 3.5.1 both P and
Pr will act on the same shared resource R. The main issue is that they were
not even suppose to share R between each other, starting, in this way, a form of
inter-process communication between them as a direct consequence.

14Indeed, as noted elsewhere (§ 3.3), T is able to somehow control the scheduling of P and
Pr by interacting with the kernel using the ptrace system call, but only from an high-level
point. Actually, the kernel is in charge of performing the real process scheduling task and all
the processes, even P , Pr and R, are involved.

39

3.5. PRACTICAL ISSUES

Given this observation, the solution would seem to be trivial: to turn Pr

inter-process sharing into an intra-process one so that P would not interfere
with Pr behavior and viceversa, and R’s data will be consistent with that they
were supposed to be. Unfortunately, as pointed out in the previous section,
an intra-process communication (private mapping) creates a private copy-on-
write mapping. As long as the private mapping is not modified, it sees every
modification made via a shared mapping, to the object being mapped. In this
scenario, one process, P will create a shared mapping, while Pr will create a
private one, falling in the situation just described. Thus, it is not sufficient to
let Pr perform a private mapping, even in this simple scenario of related-only
processes. In fact, due to scheduling policies, it could happen that the view of R
is not always consistent. Moreover, for the same reasons, it could happen that P
and Pr will exhibit an inconsistent behavior. Instead, in this scenario we can act
in three different ways:

1. Allow P to create a shared mapping, while let Pr to create a private one.
As we saw, the default behavior of “sharing and private” provided by the
mmap system call, would not give us the behavior we are looking for (e.g.,
no IPC between P and Pr), as, even if Pr mapping is not shared (i.e., no
changes made by Pr will be visible on O and in P mapping), the contrary
is not true (i.e., P changes will be visible both on O and Pr mapping –
therefore keeping a form of IPC between a process and its replica).

Thus, we need to change the behavior of mmap when such mappings, created
by a process and its replica, are involved. This can be achieved by modifying
the underlying kernel, which represents the main downside of this approach.

2. Allow P and Pr to create the mapping they want to (e.g., shared) but
redirect Pr to work on Or, a replica of the FS object O mapped by P
(selective on-demand FS replication).

The downside of this approach is the necessity to replicate O. If O is too
big, the replication would incur high overhead and would waste lot of disk
space.

3. No shared mappings are allowed, neither for P nor for Pr. This has the
advantage that no further handling is required, as P and Pr will work on
their private copy of the memory mapped FS object O. The downside is
that O will never be updated as all the changes are made on the memory
which maps O. Therefore, if the processes are terminated and re-executed
later on, they will start working on an old stale version of O (as all the
changes made in the previous run in memory changes would be lost).

A solution to this issue is to check when the mapped areaM is unmapped
and let T to flush the content of M into O (respecting mapping offsets,
if any). T also checks that M of P and Pr are identical (i.e., consistent).
If this is not true it means that there is a conflict as P and Pr have a

40

3.5. PRACTICAL ISSUES

different view of the mapped object O. Therefore, the processes are killed
and O is not updated at all. On the other hand, if the mapped regions M
are consistent, munmap or msync system call are executed once for P , while
munmap operation invoked by Pr would simply map O out of Pr address
space (msync would behave similarly to a no-op system call – respecting
the replication mechanism described in § 3.3). This has the advantage of
not requiring any additional handling beside M flushing at munmap time
(e.g., no selective FS object replication). This is the approach adopted by
our prototype.

Things are more tricky when unrelated processes are to be considered. It is
worth noting that whenever Pr start writing on a private mapping, the kernel
disassociate the mapping with the file object. This is not an issue because the
simple assumption we are claiming here is that no other external processes are
working on the mapped object O. For this reason, P , Pr and their children, start-
ing from an identical version (consistent) of O and executing the same operation
(exhibiting the same behavior) in a deterministic way, produce the same output
on O (consistency).

Unrelated Processes

This scenario is more tricky to deal with because, beside P and Pr, there are even
unrelated processes which we do not have the control of and that want to interact
with the shared resource R. The mmap semantic helps us out to provide up-to-
dated version or R as long as the process which created the private mapping does
not write into it.

Therefore, it is necessary (i) to find a way to allow P and Pr to execute
instructions which operate on their mappings in an interleaved manner, and (ii)
to ensure that no process (no matter if it is P , Pr, or E) will operate on R
leaving it in an inconsistent state. If this is achieved, we only need to replicate
the semantic of every write operation performed by P onto Pr address space,
paying attention to update the shared resource R (e.g., the file system object)
as well. It is fairly easy to guarantee the second requirement, as long as the
involved processes (e.g., P , Pr, and E) use synchronization mechanisms whenever
they attempt to access a shared resource R. We believe that this is not a strict
requirement because without this assumption poorly written programs that make
use of shared resources are going to break soon, even without any malicious intent
by an adversary (it is a matter of processes/threads scheduling most of the time,
which is, generally unpredictable or so)15.

To achieve our goal, we propose an approach similar to Fault Interpreta-
tion [20]. The idea is simple: we exploit the CPU page fault (PF) exception

15“[...] What is normally required [when using shared memory], however, is some form of
synchronization between the processes that are storing and fetching information to and from
the shared memory region” [73].

41

3.5. PRACTICAL ISSUES

to know whenever P or Pr attempts to access a given memory page(s)M16 of its
own which refers to the shared resource O. To achieve this goal, we mark M of
both P and Pr with no permissions. This task can be done by T which intercepts
P and Pr system calls (see § 3.3), whenever the mapping is created. Alternatively,
this task can be performed by T after the mapping has been created by injecting
the code to invoke mprotect with the right parameters. This provides control
over the execution of the instructions accessing M, as every execution of those
instructions will generate a PF exception which is caught by the tracer T . Let us
see how this mechanism can be used with a proper mapping strategy to achieve
our goal (i.e., data and processes behavioral consistency).

We let P to create a shared mapping, and Pr to create a private one. E is the
external unrelated process which creates a shared mapping as well. As we have
seen in the previous scenario, this means that as long as Pr does not write into its
private mapping, no modification are reflected onto neither the mapped object
O nor the existing (memory) mappings of O. Of course, our goal is to avoid
that Pr writes into its private mapping, otherwise the copy on write (COW)
mechanism will disassociate Pr mapping from the other shared ones. This would
have the side effect to not show an up-to-dated version of O to Pr anymore. As
we will briefly see, this is easy to achieve, by exploiting the fault interpretation
mechanism described above.

When E writes into the shared memory mapping, this is reflected both into
P and Pr address space (mmap semantic). Thanks to the assumption, E operates
on the shared mapping only when it has acquired the lock. Therefore, anytime
E operates on M it implicitly updates the mapping for P and Pr, providing
them always with an up-to-dated version of O. Let us see now what happens
when P tries to write into M (similar reasoning about the locking holds here as
well). Whenever P tries to write on the shared mapping, it generates a PF (no
permission on the mapping). T waits until the same happens to Pr, therefore
defining a “new” rendez-vouz point (of course, the contrary is valid as well).
At this point, if the instruction tries to write into M, T executes the culprit
instruction once (stepi) for P so that the instruction outcome can be propagated
to every existing mappings and to O as well. Then, T needs only to replicate the
instruction outcome/side-effects (e.g., %eflags updating) onto Pr address space.
If P attempts to read from M, then T just needs to execute the instructions on
both P and Pr (after they reached the rendez-vouz point), so that they both can
have the outcome of the executed instruction in their address spaces. In practice,
any write action performed by P is executed once and replicated for Pr, while
any write action attempted by Pr is ignored, as its outcome will be provided by P
execution. To make a similarity, this is similar to the handling of a read system
call, for instance.

16Whenever needed, we will use M′
and M′′

to refer to P ’s and Pr’s shared mapping
respectively.

42

3.5. PRACTICAL ISSUES

3.5.2 Signals and Non-Determinism

Unfortunately, shared memory does not represent the only critical issue that may
arise due to the replication approach. Indeed, also signals handling and non-
determinism should be analyzed, in order to guarantee a correct behavior of the
process replication approach.

However, we believe that even if it is quite impossible for T to deliver to both
P and Pr the same signal, which is asynchronous by nature, at the same time
and at the same “point” (location and context), such a “delay” should not create
significant differences in the behavior of P and Pr. This because both P and
Pr have to reach their rendez-vouz point before the execution of every invoked
syscall and, as already observed, this is guaranteed and carried out by T (see
§ 3.3).

Actually, since T catches every signals sent to P and Pr, it could delay the
signal delivery a little bit and it can arrange the thing to fire up the received signal
at each rendez-vouz point, thus achieving perfect synchronization with respect to
signal delivering. The main problem with this approach is that, however, intensive
CPU bound processes that make few system call could probably not benefit from
this delayed action, but even in this case, the signal should be delivered at a given
time chosen by T anyway.

Of course, things will break if, for instance, the state of a variable used in a
system call depends on when the signal is delivered, or if there is a loop (containing
no system calls) that needs to be interrupted. Unfortunately, the former case
leaves nothing or little to be done. The latter case, instead, could be addressed
by correctly identifying loops beforehand, and by transforming the application in
order to insert dummies system calls inside the loop. This way, P and Pr will
be forced to regularly synchronize themselves and that rendez-vouz would be the
best one to deliver the caught signal.

Alternatively, when necessary, as shown in previous works ([34, 80]), we can
leverage on CPU specific counters (branch_retired) and on the adopted diver-
sification approach (§ 3.2.2) to turn an asynchronous event like a signal delivery
to a synchronous one, even if absence of rendez-vouz points.

We also believe that, non-determinism situation should not generally pose a
problem. In fact, since Pr is fed by the same input of P , it must behave identically
to P , unless, as observed throughout the paper, the input received is a malicious
one. Randomness should not be problematic since we believe that such data have
to be collected generally via some sort of system calls17. Thus, as long as P
input is correctly replicated into Pr address space, both processes will exhibit the
same behavior unless relative-address data are involved. The situation could be
different if threads are considered, as the outcome of an instruction executed on
threads shared memory can be cause data inconsistency and behavioral divergence
(even if this time the inconsistency and divergence will be inside the address

17An exception to this could be a random memory access used to provide a seed to initialized
a pseudo-random number generator.

43

3.5. PRACTICAL ISSUES

space of a given process). A preliminary solution could be to control the threads’
scheduling mechanism so that a thread L of a process P would be scheduled in
the “same order” (one after each other on UP machines) as Lr, the thread of its
process replica Pr. Scheduling ordering might not be sufficient as it is necessary
to understand whether L is going to operate on some shared resources because it
acquired a lock, while Lr not because it has been scheduled out before acquiring
the lock. Clearly, even this situation is problematic and, a naive solution, beside
dealing with threads scheduling mechanisms, should consider also threads quanta
(or number of instructions executed by the threads). For instance, L and Lr

should be scheduled one after each other (on UP machines) or simultaneously
(on SMP machines), and they should occupy the CPU for the same amount of
time or number of instruction executed.

44

Prediction is difficult, especially about the future.

Niels Henrik David Bohr (1885 - 1962)

4
Taint-enhanced Anomaly Detection

M
emory errors have been known for decades. Most likely, the first known
public memory error exploitation can be traced out back to 1988, with
the Morris Worm [72]. Since then, several researchers have been working

on providing more or less comprehensive memory error protection mechanisms.
Proposed solutions cover a broad range of Computer Science disciplines, going
from safe programming languages [43, 58], anomaly detection [87, 85, 28, 39, 70,
56, 54, 9], and information-flow [47, 13, 59, 89, 60], to techniques that modify the
underlying compiler [15], system libraries [88, 82], the operating system, or the
hardware [62, 79, 31].

As we have shown in the previous chapter, techniques which aim to intro-
duce artificial diversity to combat the software monoculture that is predominant
nowadays, seem to be promising and effective. As we already noted, as protection
mechanisms improve, so do the attacks. Recently, Chen et al. [14] pointed out
that it is no longer necessary to exploit a memory error vulnerability with the
goal to hijack a legal process’ control-flow to cause harm. In fact, damage can be
caused not only by corrupting code pointers, but also by tampering with applica-
tion’s data and data pointers as well. Even if this seems to be a strict restriction,
Chen et al. showed that these attacks can be as powerful as the classic ones.

The diversified process replicæ approach described in the previous chapter rep-
resents a step toward providing a more comprehensive protection against memory
error attacks which corrupt code and data pointers, by mostly providing a deter-
ministic protection. Unfortunately, as we will see in the following sections and,
as shown in [14], memory error attacks target arbitrary non-pointer data as well.
In this situation, the approach previously describe fails to provide protection as
this, usually, requires a better understanding of the internal application logic.
To this end, we propose an approach which couples taint analysis and anomaly
detection, to provide a more comprehensive protection against memory errors. In
particular, we make the following contributions:

1. We propose taint-enhanced anomaly detection, a technique which couples
taint analysis and anomaly detection. To the best of our knowledge, no

45

4.1. PRELIMINARIES

existing similar techniques have been proposed so far in the context of pro-
tection of benign applications. Anomaly detection or, better, learning-based
approaches help to automatically infer security policies, as already shown
by existing techniques [87, 85, 28, 39, 70, 56, 54, 9]. Unfortunately, these
techniques have two major drawbacks. They (i) often exhibit high false pos-
itive rates issues as learning phases are hard to be exhaustive, and (ii) they
are vulnerable to mimicry attacks [86, 85, 48, 78, 77] as attack-provided
data can often stick to statistical learning-rules used to characterize the
process behavior. By using taint analysis, we constraint these drawbacks
as (i) unknown untainted traces seen during detection are no more consid-
ered as manifestations of attacks, and (ii) by largely constraining execution
of foreign code and by enhancing learning rules with taint information to
infer taint-enhanced security policies, mimicry-like attacks – even if still
possible – are considerably constrained. More precisely, an attack involves
a combination of a vulnerability, and an attackers ability to exercise this
vulnerability. Anomaly detection techniques detect behavioral deviations
that occur when a vulnerability (targeted by an attack) is exercised. Fine-
grained taint information, instead, can provide information about the abil-
ity of the attacker to exercise this vulnerability, significantly increasing the
odds that an attack is in progress.

2. Comparison with state of the art models shows that our approach is at worst
as much as effective as the combination of all those work, for the class of
attacks considered (i.e., memory errors). Moreover, false positives (FPs)
one of the main drawbacks of anomaly based approaches, are considerably
reduced.

3. We developed a prototype implementation of the proposed approach which
transforms a program P to a taint-enhanced version PT , semantically equiv-
alent to the original one. Then, by leveraging on taint information, PT is
further enhanced to perform (i) a training phase where properties of tainted
sinks’ arguments, that is, relevant events (e.g., system calls or security sen-
sitive functions) are learnt and modeled to generate a behavioral profile
M of PT , and (ii) a detection phase during which single events of PT are
observed at run-time and checked one at a time to see whether they are
consistent to the learnt behavioral profile M. Should M be inconsistent
with respect to these traces, an alarm will be raised.

4.1 Preliminaries

For clarity, in the following we briefly remind the main concepts behind taint
analysis and anomaly-based detection approaches. We then describe how our
technique works by taking the advantages of these approaches while constraining
their limitations and drawbacks.

46

4.1. PRELIMINARIES

4.1.1 Taint Analysis

Information-flow based techniques have been studied for decades [6, 29, 21, 51,
84, 57, 66]. Recently, these techniques, sometime known as taint analysis, have
shown to be successful in thwarting memory error exploits [89, 59], and a broad
range of software attacks [89, 60].

Taint analysis is a technique which aims to detect whether untrusted data
is incorrectly used in security sensitive actions. To this end, taint analysis usu-
ally marks untrusted data coming from taint sources (e.g., read, recv, or other
input-related system calls) as being tainted, and, as data propagates through
memory, it propagates the taint information associated with the data itself. Any
attempt to use security sensitive data which has been marked as tainted at secu-
rity sensitive sink 1 (e.g., open, write, printf-like, code pointers dereference, or
system call and functions of interest), is generally a manifestation of an attack.
For instance, a memory error exploit which aims to corrupt code pointers, can
overwrite a function return address with the intent to hijack the legal process ex-
ecution flow. Naturally, the overwritten return address will be marked as tainted
as a consequence of this attack attempt. The low-level implicit policy adopted
by taint-based approaches does not allow to dereference this code pointers, as
functions return addresses are security sensitive data which are never marked as
tainted.

Taint information can be propagated in different ways. It is possible to prop-
agate taint information based on data dependency, or based on direct control
dependency. Implicit flows [21, 66, 38], which are a generalization of direct con-
trol dependencies, are generally not considered as benign programs usually offer
little bandwidth to permit successful implicit flow exploitation [89].

Without going into much detail, data dependency taint propagation occurs
whenever there is a direct data assignment, such as x = expr, where expr has
been previously marked as tainted.

On the other hand, direct control dependency occurs whenever the execution
of an operation depends on the result of a tainted condition, as the example below
depicts.

1 if (x == expr1)

2 y = expr2;

Here, y has to be marked as tainted only if the condition (x = expr1) that
guards the true branch (y = expr2) has been marked tainted. The condition
is marked tainted only if x or expr1 has been marked tainted beforehand. The
instructions which are guarded by the tainted condition form what in literature
has been called a tainted scope.

1Taint analysis terminology considers sink to be a security sensitive function or system
call of interest where a security policy should be enforced. Likewise, through the rest of this
dissertation, we will use the term sink, system call, or function interchangeably, unless differently
noted.

47

4.1. PRELIMINARIES

Tracking of control dependencies is easy to do, even in binaries, by associating
a taint label2 with the program counter ([89, 23]). Whenever the condition involved
in a branch decision is tainted, the program counter is also tainted. An assignment
causes the target variable to be tainted if the program counter is tainted, or if
its right-hand side expression is tainted. The label of the program counter is
restored at the merge point following a conditional branch.

We could avoid performing direct control-data dependency taint propagation
but sometimes this is useful to catch application-specific taint data transformation
(e.g., ’+’ → ’ ’) and look-up tables. However, as pointed out in [18, 13] data
pointer taintedness and direct control-dependencies tracking should be enabled
to improve detection capabilities (a good discussion on the utility of look-up
tables is given in [18]).

4.1.2 Anomaly Detection

Broadly speaking, anomaly detection approaches build a behavioral model M
of a monitored application P , during a training phase where some P behavioral
properties are learnt.

Several anomaly-based models have been proposed in the past years [87, 85,
28, 39, 70, 56, 54, 9] and each of them learns different properties out of a given
event of interest (e.g., system call). Some of them learn the sequence of system
calls executed by a process [39], while others consider the calling context as well by
representing the process control flow graph as a finite state automata (FSA) [70].
Others again, exploit call stack information to provide a snapshot of the function
flow graph the process invoked to check whether an invoked system call complies
with a call stack configuration learnt during a training phase [28]. Statistical
properties of system calls arguments are considered by other models [56, 54], as
well as data flow relationship between system calls arguments [9].

Generally speaking, the main goal of these approaches is to keep learning
behavioral properties of a monitored process P with the intent to build a profile
M of P . Then, when M is meaningful enough to represent an approximation
of the overall P ’s behavior, the system starts a detection phase, where P events
are observed at run-time and are checked, usually one at a time, to see whether
they are consistent to the learnt behavioral profile M. Traces inconsistent with
M are considered to be anomalous, and as anomalous events are considered to
be a manifestation of an attack, an alarm will be raised.

2Typically, the term “taint” is used in the context of data integrity, while “sensitive” is used
in the context of data confidentiality. Similarly, the terms “taint-tracking” and “taint analysis”
are used predominantly in the context of integrity, whereas the term “information flow tracking”
and “information flow analysis” may be used in the context of data confidentiality as well as
integrity.

48

4.2. TAINT-ENHANCED ANOMALY DETECTION

4.2 Taint-enhanced Anomaly Detection

An important benefit of the taint analysis approach briefly described in the pre-
vious section is that it can accurately detect many classes of attacks without
requiring application-specific policy development. In fact, the enforced policies
are generic and easy to specify. However, to provide more comprehensive protec-
tion against other types of memory errors [14] or unknown types of attacks, it
would be desirable to develop application-specific policies that can tightly con-
strain the behavior of the protected application. Development of such policies
can be time-consuming. Moreover, it could be hard to describe manually, what
a policy should look like. On the other hand, anomaly detection techniques have
had an advantage in this regard: they do not require manual effort for developing
behavior profiles; instead, profiles are automatically learnt using training data
that is acquired during normal operation of an application.

The drawback of anomaly detection techniques is that in practice, they suffer
from a high rate of false positives (FPs). This is because of the fact that training
can never be exhaustive, and hence some unseen (but legitimate) behaviors will
be classified as attacks. We believe that the discriminating power of anomaly
detectors can be improved by combining them with fine-grained taint analysis.
The intuitive justification for this is as follows. Note that an attack involves a
combination of a vulnerability, and an attackers ability to exercise this vulner-
ability. Anomaly detection techniques detect behavioral deviations that occur
when a vulnerability (targeted by an attack) is exercised. Now, fine-grained taint
information can provide information about the ability of the attacker to exercise
this vulnerability. More concretely, consider a system that detects anomalous
system call arguments. Such a system may detect an anomalous argument to
an execve system call, which raises a suspicion. If, in addition, this argument
is tainted, then it significantly increases the odds that an attack is in progress.
Based on this observation, we propose a mixed approach which couple anomaly
detection techniques and fine-grained taint-tracking.

Since taint is a property of data, our proposed approach will be focused on
learning properties of system call arguments rather than their names. Let Σ be the
set of all the sinks, and s(a1, a2, · · · , an) ∈ Σ a generic sink, where a1, a2, · · · , an

are sink’s arguments. As aforementioned, our approach uses taint analysis and
anomaly detection using a learning-based approach to learn taint information of
sinks’ arguments. For instance, our model considers all the system calls and some
function of interest (e.g., print-like functions used in format string attacks) as
sinks.

As other approaches [9, 70, 56], our analysis is context-sensitive. That is, it
considers contexts for each system call that can be utilized to refine argument
learning. For instance, our approach can distinguish between open system calls
made from two different locations, and can thus learn different properties for the
arguments of the two calls. This increases accuracy of the model if, say, one of
the open’s is used to open a configuration file, while the other is used to open a

49

4.2. TAINT-ENHANCED ANOMALY DETECTION

data file specified by a user. In fact, intuitively, the former system call uses an
untainted file name argument, while the latter uses a tainted ones. This improves
the likelihood to detect an attack should the untainted file name argument be
marked tainted during the detection of our approach.

As other anomaly-based approaches, our strategy roughly consists of two
phases, namely a learning phase, and a detection one. During the learning phase
our approach build a profile M of a monitored application, based on the in-
formation we will describe here below. Afterwards, when the learning phase is
terminated, the application is executed in detection mode and a new profile M′

is created incrementally. Should M deviate from M′
, an alarm will be raised.

In the following, we describe what kind of taint information is learnt by our
strategy, and how this can be used to thwart memory error exploits.

Using Coarse-grain Taint Information

Taint information associated to a sink argument ai are learnt. For aggregate
data such as struct’s and arrays, the taint status of all bytes of the data will be
combined into one. Multiple taint values, e.g., explicit (data dependencies) versus
implicit (direct control dependencies) taint, are learnt independently. As we will
see in Section 4.3.1, to successfully detect particular class of memory errors, it is
necessary to keep track of how taint information has been propagated.

At detection time, an alarm can be raised if an argument that was not tainted
during training is now found to be tainted. This approach can detect many buffer
overflow attacks that modify system call arguments, as opposed to modifying
control flows. In fact, it is worth noting that taint analysis implicitly provides a
form of control flow integrity, as, generally, tainted code pointers cannot be de-
referenced (and therefore, the legal application control flow cannot be altered).
Examples of documented attacks that can be detected by this extension are (a)
an attack on the popular WU-FTPD that corrupts userid argument to a setuid
system call [14], and (b) an attack on Netkit telnet server that overwrites the
name of a login program, which is subsequently used as an argument to execve
system call [14].

Using Fine-grained Taint Information

For some aggregate data, the above approach may lose too much information by
combining the taint values associated with the data. To improve precision, we
can avoid this combination step. For instance, we can individually learn taint
information associated with each field of a struct. This is particularly useful for
some system calls, e.g., recvmsg, sendmsg, readv, writev, where a more detailed
understanding of the involved data structure is required, in order to gather more
meaningful taint-provided information). However, to improve performance, we
limit this extension to only those fields specified in a configuration file. For
arrays, user may select specific array elements for which taint information needs

50

4.2. TAINT-ENHANCED ANOMALY DETECTION

to tracked individually. Currently, our proof of concept implementation does not
exploit this feature.

Deriving Application-specific Taint-enhanced Policies

Policy-based and anomaly-based detection techniques possess complementary
benefits: the main benefit of policy-based detection is a low rate of false pos-
itives, while their drawback is the effort required for policy development. In
contrast, anomaly detection requires no such effort, but in practice, tends to suf-
fer from a higher rate of false positives. Our strategy combines the strengths of
the two approaches by using models built for taint-based anomaly detection to
suggest (taint-enhanced) security policies that hold for the application. In this
manner, the manual effort for policy development can be significantly reduced.

Learning whether a sink argument ai is tainted or not already improves the
accuracy of our approach and, as aforementioned, allows to detect some memory
error attacks which corrupt data pointers (see for instance WU-FTPD, and Netkit

in § 4.3.1). However, a better characterization of the argument considered is
needed when more general memory error attacks are involved (e.g., [56]). To this
end, for every sink argument ai, to better characterize its usage, the adopted
learning-rules characterize the following properties, depending on whether a sink
argument ai is fully or partially tainted.

(a) ai is fully tainted. That is, each byte of ai is tainted. The following argument’s
properties are inferred by the underlying learning-rules:

Maximum length. Since the argument is tainted, this property inferred
during training phase (which is attack-free) gives an approximation of
its probable maximum length lmax which is expected during detection
phase. This helps to detect memory error attacks that try to overflow
buffers with the intent to overwrite security sensitive data used at sinks
(see [56] for instance). In fact, during detection these tainted arguments
will exhibit a length l > lmax which, as a direct consequence, will violate
the inferred security policy.

Structural inference. There are situations where characterizing arguments’
lengths is not enough. An attacker might not try to overflow any buffers
but, instead, he might try to modify the normal structure of the con-
sidered argument to bypass some security sensitive checks. To this end,
the structure of ai is inferred so that each byte is clustered in proper
byte classes. Currently, our model classifies uppercase letters (A-Z) to
A, lowercase letters (a-z) to a, and numbers (0-9) to 0. Each other
byte belongs to a class on its own. For instance, if the model sees
an open("/etc/passwd", ...) system call invocation, the finite state
automaton (FSA) which is generated for the string /etc/passwd will
recognize the language /a*/a*. We further simplify the obtained FSA
by removing byte repetition, as we are not concerned about learning

51

4.2. TAINT-ENHANCED ANOMALY DETECTION

lengths with this model. The final FSA will recognize the language
/a/a. If during detection the structure of the considered ai is different
from the one learnt, an alarm will be raised.

It can be noted that for particular sinks, trying to infer their (tainted)
arguments structure can rise FPs if the structure for that sink is highly
unpredictable during learning (i.e., it keeps changing frequently). For in-
stance, when arbitrary data D are read from the network, they are marked as
tainted as network input is considered untrusted. Let suppose that D is sub-
jected to some application-specific transformation (e.g., encoding/decoding)
or application-specific sanity/security check, subsequently. Let D

′
be the

transformed data. When D
′

reaches other sinks, such as output sinks (e.g.,
open, stat, execve) its structure will be either different from the initial one
(e.g., encoding/decoding), or its structure will have a “fixed shape” (e.g., san-
ity/security check) when that particular output sink is reached. Therefore, to
try to constrain FPs due to an incorrect characterization of the analyzed ar-
gument, and to make the learning phase less data-dependent, it makes sense
to enable only the learning of the argument maximum length for particular
sinks (e.g., gets at proper context, for example [56])3.

(b) ai is partially tainted. That is, ai has both tainted and untainted bytes, the
tainted portion is subjected to the learning of the aforementioned properties,
while the following learning rules are considered for the untainted part (ai

can have different tainted/untainted portions and all of them have to be
considered. However, our current implementation considers only the first
found pairs):

Minimum length. When an untainted portion of a tainted argument is
considered, what is important to remember is its minimum length lmin.
In fact, considering its maximum length would be misleading as the
argument would likely not have the same length all the time and, as
the argument portion is untainted (i.e., trusted), we are more concerned
on the fact that the argument will always have a minimum number
of untainted bytes. Intuitively, this is an indication that the attacker
will not be able to overwrite the whole untainted argument portion. In
most cases the attacker will not be able to overwrite not even a byte
of the untainted portion as usually, lmin will be identical to lmax (e.g.,
sinks arguments which operate on the same untainted data). However,
for those situations where this is not true, lmin provides a lower bound
under which it is not possible to go without raising an alarm.

Longest common prefix (LCP). Untainted arguments (or portion of them)
should have a more regular “structure” or shape than the tainted coun-
terpart (as they are not directly influenced by user input). Therefore,

3Although argument length depends on data, it is not data-dependent in the sense that it
does not depend on any particular data value.

52

4.2. TAINT-ENHANCED ANOMALY DETECTION

our approach learns the longest common prefix for every considered sink
argument which is partially untainted. Should the learnt longest com-
mon prefix be different during detection, an alarm would be raised.

In practice, by using taint information, the taint-enhanced anomaly detection
approach herein described ignores unknown untainted traces that are encoun-
tered during detection phase, but have not been learnt during the training step.
A trace (or event, i.e., a system call or function of interest) is considered to be
untainted if none of its arguments are tainted. Of course, for these events, no ar-
guments characterization is made. As FPs usually arises because of an incomplete
learning phase, we are able to lower the FPs rate as our strategy considers legal
unknown untainted traces as not anomalous, therefore, not as manifestation of
an attack. On the other hand, the aforementioned learning rules are adopted for
every encountered tainted trace (i.e., an event which has one or more (partially)
tainted argument).

Further discussion about attacks on the proposed approach as well as argu-
mentation on the protection provided are remarked in § 4.3.4.

4.2.1 Implementation

As a first step, the approach proposed in this Chapter takes a program Po as input
and produces P , a semantically-equivalent taint-enhanced version of it. We based
the taint analysis transformation on the approach developed by the Secure Sys-
tems Lab of Stony Brook University [1] to transform a program and taint-enhance
it. The main goal of that approach [89] is to enforce taint-enhanced security poli-
cies on particular sinks (e.g., printf, open). Of course, it is a programmer (or
administrator) duty to specify these policies. As we have described in § 4.2, there
are situations where it is hard or almost impossible to manually come up with an
effective taint-enhanced security policy, unfortunately. Therefore, by adopting
dynamic learning rules, our approach automatically infers taint-enhanced poli-
cies as already described in § 4.2. As a direct consequence, the taint analysis
prototype developed by [1] has been modified to fulfill the following goals.

• For every sink, that is for every system call or function of interest invoked
by P , a wrapper W is introduced by the transformation approach. This
enables to (i) learn properties of sinks’ arguments, and (ii) mark some in-
put as tainted (e.g., those coming from the network). Depending on the
involved sink, wrappers can be inserted before or after its invocation. For
instance, wrappers for sink responsible to mark inputs as tainted or not are
invoked after the sink. The reason is simple. For these sinks, in fact, taint
information is available only after the sink invocation and this information
is used to build the application profile.

Following this reasoning, it is possible to automatically infer and enforce
taint-enhanced security policies for every sink s by using the information
and learning rules described in section 4.2.

53

4.2. TAINT-ENHANCED ANOMALY DETECTION

• Tracking of control dependency are fully enabled to be able to further en-
hance the inferred policies not only with taint information but also with
information on how taint information is propagated throughout the appli-
cation lifetime. As shown in 4.3.1, this information can help to further
thwart memory error attacks which corrupt arbitrary non-pointer data.

In the following we detail the aforementioned steps, the building blocks of
taint-enhanced anomaly detection.

1. P is monitored during the training phase and a log file is created. The
log file includes sink’s names and their context information (e.g., calling
site), sink’s arguments and, for each argument, taint information as well as
further characterization, if needed, by using the model described in § 4.2.
For instance, a typical log entry looks like the following:

read@0x8048f5c 3 arg0={ A:U } arg1={ A:U V[0-98]:T C:99:0:ls -la } arg2={ A:U }

The meaning is as follows. The sink name (read) is followed by its calling
site (0x8048f5c). Next, the number of arguments follows (3) and details
about these arguments are considered. For instance, the entry for the second
argument (arg2) tells that the address (A) where the sink buffer of size 99
(V[0-98]) is stored at is untainted (A:U), while the buffer content is tainted
(V[0-98]:T). Moreover, the content of the tainted buffer which starts at
offset 0 is ls -la. These information will be used by the next step.

The learning phase is implemented by using a dynamic shared object loaded
into P address space which wraps and overrides the original sinks behavior,
re-invoking them whenever necessary.

2. The log file is analyzed off-line to build a profile M of the behavior of P
by using the information provided by the previous step. In particular, (i)
identical events, that is events whose names and call sites are identical are
merged into a single event instance, and (ii) untainted events are inserted
as part of M but no further information is gathered (or considered later
on) for them.

For instance, considering the previous example, the tainted sink read in-
voked at the calling site 0x8048f5c has the first and third argument un-
tainted, while the second argument a1 is tainted. Moreover, lmax, the max-
imum length for a2 is 99 while, accordingly to the learning rules described
in § 4.2, its structure is a -a.

The profile created during this step is serialized and re-loaded during the
next step. This permits to update the profile whenever there is the need to
do so, without re-building the out-of-dated one.

54

4.3. EVALUATION

3. P is monitored during a detection phase. An on-the-fly behavioral profile
M′

of P is incrementally created. The information contained in M′
are

consistent with the one considered in 1. Should M′
be inconsistent with

M an alarm will be raised.

The detection phase is implemented by using a dynamic shared object
loaded into P address space which wraps and overrides the original sinks
behavior, re-invoking them whenever necessary.

The anomaly detection part has been implemented by using the C, C++ and
Python programming languages with approximately 15, 000 lines of code.

4.3 Evaluation

In the following, we present the evaluation of our taint-enhanced anomaly detec-
tion approach. We evaluate our approach in terms of effectiveness in detecting
memory error attacks, and false positives (FPs). As every learning-based ap-
proach, the training phase is the most important. Unfortunately, there are no
meaningful publicly available traces that can be used to evaluate the effective-
ness of a learning-based approach. Thus, we compare our model with other recent
models and show that taint-enhanced anomaly detection is at least as powerful
as the models herein considered. Moreover, we show that by considering only
tainted events in contrast to every event, we are able to constraint FPs as un-
seen/unknown untainted events are not considered anomalous during detection.
Thus, they are not considered a manifestation of an attack and no alarm is raised.

4.3.1 Effectiveness

It can first be observed that taint analysis by itself provides enough protection
for memory error attacks which corrupt security sensitive code pointers, such
as function return addresses saved on the stack or function pointers. In fact,
it is possible to not consider these kind of memory error exploits in our effec-
tiveness evaluation thanks to the taint analysis approach adopted (see [59, 89])4.
Therefore, in the following we consider several different examples of attacks which
corrupt data and data pointers.

Data and Data Pointers Corruptions

In [14], Chen et al. clearly described a memory corruption attack that does
not alter the execution flow of the vulnerable program. They showed that these
attacks are a realistic threats on real-world software and that the severity of

4Indeed, we could relax this restriction and enhancing our learning rules to consider whether
a code pointer is allowed to be tainted or not. This is not the case generally, but when direct
control dependencies are fully tracked, there might be the situation where a code pointer is
marked as tainted based on control dependency taint propagation.

55

4.3. EVALUATION

the resulting security compromise is as dangerous as the one caused by memory
corruption attacks that alter a normal program control flow.

In their paper, Chen et al. showed that (i) configuration data, (ii) user input,
(iii) user identity data, and (iv) decision-making data are critical to software
security. They provide examples for each of this categories which we report here
below, for clarity. Moreover, were necessary, we modify the example to show that
our approach is effective regardless of the kind of memory error vulnerability (e.g.,
buffer overflow, format string).

For each of the proposed attacks, we downloaded the exploit or reproduced
artificially the vulnerability and the attacks to show the effectiveness of our ap-
proach.

Format String Attack against User Identity Data

A version of WU-FTPD is vulnerable to a format string vulnerability in the SITE EXEC

command ([14]). The default exploits alter the control-flow of the application to
directly execute injected code or existing one. The attack proposed by Chen et
al. aimed to keep the process’ privilege level as high as possible (i.e., root). In
this way, a regular authenticated user could upload a custom /etc/passwd file
which allowed him to log in as root subsequently.

By considering the following code snippet, part of the function getdatasock,
it is clear that this goal can be achieved by overwriting the pw->pw_uid field
which contains the cached credential of the current authenticated user5.

1 FILE *getdatasock(...) {

2 ...

3 seteuid(0);

4 setsockopt(...);

5 ...

6 seteuid(pw->pw_uid);

7 ...

8 }

Our approach can defeat this attacks in at least two different ways. In fact,
we can consider whether seteuid argument is tainted or not, or we can detect
structural divergence in the tainted arguments of the printf-like function used
to exploit the format string vulnerability.

In particular, during the training step, our strategy learns that the seteuid

argument pw->pw_uid at line 6 is always untainted during the (attack-free) learn-
ing phase6. On normal situation, where no memory error exploit is attempted,

5Although, it is not clear whether the attack proposed in [14] properly works or not (the
used injection vector would have the effect to write 10 in the pw->pw_uid field, in the best case
(for the attacker)), it should be possible to achieve what is claimed in the paper anyway, even
if requires a slightly more complicated attack pattern.

6Even if pw->pw_uid is derived from user input, the result of this system call is marked as
untainted. Moreover, also the result of the function getpwnam, which would likely be used to

56

4.3. EVALUATION

this will be true also during detection phase. On the other hand, it will be tainted
when pw->pw_uid is overwritten by a memory error attacks.

Considering the type of vulnerability (i.e., format string), our approach can
also detect this attack as the printf-like function used in the SITE EXEC com-
mand uses a tainted format string. By using the learning rules described in
§ 4.2, we can detect any structural divergence of tainted printf arguments. In
fact, being the training step attack-free, we are sure that the structure of the
tainted format string learnt during the training phase will be different from the
one observed at detection time (e.g., there will be tainted formatting directives).

Heap Corruption Attacks against Configuration Data

Null HTTPD The attack devised exploits a heap-based buffer overflow vulner-
ability. It aims at overwriting the CGI-BIN configuration string prefix to
change it from the value /usr/local/httpd/cgi-bin (default value) to
the string /bin. Every CGI script/program invoked by the client will be
searched in this new CGI directory. For instance, the attacker will be able
to easily invoke the shell interpreter.

In this scenario, it can be observed that the available options for the attacker
are mainly two: (a) to either completely overwrite the original CGI-BIN

configuration string, or (b) partial overwrite the configuration string. In this
latter case, the goal could simply be to execute commands in a sub-directory
of the original CGI-BIN or, alternatively, perform a directory traversal to
reach the intended directory.

Depending on the attacker choices, it is possible to observe different scenar-
ios. For the sake of simplicity, let us consider that the sink of interest here
is the open system call.

(a) During the training step our approach would learn that the i-th ar-
gument of the sink s invoked at the context c is a combination of
untainted data (i.e., the original CGI-BIN configuration string) and
tainted one (i.e., the command derived from untrusted input).

When an attempt to exploit the memory error is made, it is clear
that during detection phase the input will have no untainted compo-
nent. Thereby, our system will raise an alarm for the anomalous event
(untainted argument expected).

(b) This case is similar to the previous one because even if we still do
have some untainted data, the observed length l of this data during
detection phase is less then the one learnt during the training phase
(with lmin > 0). Therefore, an alarm would be raised.

obtain information on the credential of a user, is marked as untainted. This holds for several
other system calls/functions of interest, but not for others (e.g., the number of bytes read by
read is marked as tainted as it can be used to influence loops or similar actions.

57

4.3. EVALUATION

However, it is worth noting that lmin could be less or equal to l (e.g.,
argument ai of s at context c operates on different untainted strings).
To be successful, an attack should perform a directory traversal attack
in order to backward-traverse the original directory while keeping the
length of the untainted data consistent to what has been learnt. Since a
directory traversal attack exhibit clear patterns, and the injected bytes
are tainted as they come from the attacker, our structural inference
learning rule will discover the divergence with the structure learnt
during the training phase (unless, of course, such a pattern would
have been learnt, at the same position, during such step).

Netkit Telnetd The attack devised exploits a heap-based buffer overflow vul-
nerability. It aims at overwriting the program name which is invoked upon
login request by referencing the loginprg variable as showed by the follow-
ing code snippet.

void start_login(char *host, ...) {

addarg(&argv, loginprg);

addarg(&argv, "-h");

addarg(&argv, host);

addarg(&argv, "-p");

execv(loginprg, argv);

}

With this type of memory error attack, the daemon ended up by invoking
/bin/sh -h -p -p (underlined characters are tainted).

Our approach detected this attack in a similar way as it detected the attack
launched on Null HTTPD described above.

Stack Buffer Overflow Attack against User Input Data

The exploitation of this stack-based buffer overflow vulnerability was tricky but
the authors of [14] where able to bypass the directory traversal check the applica-
tion deployed by the application. In short, after the directory traversal check and
before the input usage, a data pointer is changed so that it points to a second
string which is not subjected to the application-specific sanity check anymore,
thus it can contain the attack pattern (similar to a TOCTOU).

As the attack previously reported, also this memory error exploits can be
detected in a similar way. In fact, if the tainted argument does not contain
attack pattern during the training phase (e.g., directory traversal ../ patterns),
an attack attempt during detection phase will present a different structure from
the one previously observed.

Straight Overflow on Tainted Data

The following example has been proposed in [56] by Mutz et al..

58

4.3. EVALUATION

1 void write_user_data(void) {

2

3 FILE * fp ;

4 char user_filename[256];

5 char user_data[256];

6

7 gets(user_filename);

8

9 if (privileged_file(user_filename)) {

10 fprintf(stderr, "Illegal filename. Exiting.\n");

11 exit(1);

12 }

13 else {

14 gets(user_data); // overflow into user_filename

15 fp = fopen(user_filename, "w");

16 if (fp) {

17 fprintf(fp, "%s", user_data);

18 fclose(fp);

19 }

20 }

21 }

The possible memory error attack is simple. The user_filename array ob-
tained at line 7 (gets function) is subjected to a security check performed by the
function privileged_file (line 9) that checks whether user_filename specifies
a name of a privileged file or not. In affirmative case, the program prints an error
message and quits. Otherwise (i.e., non privileged file), more data is read into the
array user_data, through the function gets at line 14, and the file name specified
by user_filename is opened at line 15. An attacker can overflow user_data by
overwriting past its end, and overflowing into user_filename. As the overflow
happens after the security check performed at line 9, an attacker can specify a
legal file name for user_filename that will be replaced later on thanks to the
overflow.

Our approach detects this data attack by learning the maximum length lmax

of the tainted arguments of the gets invoked at line 7, and 14 (the training phase
must be attack free). It is possible to infer the structures of their arguments as
well, but due to the nature of the program, this might raise too FPs. Of course,
using lmax by itself could raise FPs as well, as it highly depends on the accuracy of
the learning step. Nonetheless, this does not depend on the value of the observed
data, and therefore on the precision of the underlying statistical models.

Actually, this attacks and other similar memory errors which overflows adja-
cent variables could be solved in a different way, as we describe here below.

Roughly speaking, some modification to the way data is tainted are necessary.
The taint propagation mechanism is kept unmodified – it just uses more bits to
mark a data as tainted.

As in every taint-based approach, we would mark untrusted input of
interest as tainted. However, instead of marking the data as tainted
or not, we tag that piece of data ideally with a 4-byte identifier (label).
This identifier tracks the source, i.e. the context, where the tainted

59

4.3. EVALUATION

piece of data came from7. As a consequence, the mechanism permits
to know if a tainted tag which belongs to a sensitive memory location
identified by x flows into y.

This solution is similar to what has been proposed in [83] which provides
a dynamic information flow security (IFS) framework to ensure confidentiality
of sensitive data. “[. . .] IFS policies consist of security labels and legal flows.
Security labels are annotations associated with each storage location. Labels
are used to classify information [...]. Flows are label pairs that determine valid
information flow. For example the flow l1 → l2 allows information to flow from
label l1 to label l2.”

This approach would exploit the advantages provided by a dynamic learning
mechanism to learn information flow policies and to raise an alarm whenever
a policy is violated. It is worth noting that this approach would, however, be
somehow different to IFS because we do not aim at providing confidentiality.
Therefore, generally, we will not observe any flow from a tainted data marked
with the taint tag (label) l1 to another one marked with a different tag l2. If this
happens, it means that some information leaked into another variable. By com-
paring this behavior and observing this anomaly at run-time, it will be possible
to raise an alarm to stop the attack.

Coming back to the attack proposed by Mutz et al., to better understand
how our taint-enhanced anomaly detection would detect this attack, using the
different taint marking strategy, let us consider the training and the detection
phases of our approach.

Training During the training phase, each event which is a taint source is marked
with a unique taint tag which comes directly from the calling context. For
our purpose, let us consider the program line numbers as unique proper
context’s tags.

The taint propagation mechanism, then, propagates the corresponding tag.

At each sink point s we would collect its properties (e.g., sink’s arguments)
of s. In our example, both user_filename and user_data will be marked
as tainted. However, the former will have a unique tag (7) as well as the
latter one (14).

During training we should not learn any attack instance, therefore, at fopen
and fprintf sink points we would correctly learn the right taint tag asso-
ciated with the arguments of the considered sink points.

Detection During detection phase, when no attack are encountered, our ap-
proach should correctly detect that the tainted data with its corresponding
learnt taint tag is consistent to what has been seen during the training
phase.

7A similar idea slightly more complicated was introduced in [53] even if the final goal was
different.

60

4.3. EVALUATION

If we consider the data attack proposed in [56] it is clear how the user_data
taint tag flows into the user_filename taint tag, as user_data data flows
into user_filename as well. By comparing the actual model with the
expected one, it is clear that an alarm would be raised.

It is worth noting that the model proposed in [56] can deal with this attack
as well by leveraging the fact that two different system call are invoked (on the
contrary, their previous context-insensitive model [55] would miss it), thereby two
different context are considered. While our model would leverage on the same
fact, there are two main differences with the approach proposed by Mutz et al.

(a) in this example, the approach proposed in [56] has to perform a good training
phase. That is, the model learnt for the gets invoked in different context
must not overlap. Our model, instead, would not consider data in this case
because it would use the taint tag as the main source of information. The
only requirement is that those instructions have to be executed at least once.

(b) our model should also be able to thwart other data attacks even in the pres-
ence of only one taint source s invoked by a particular context c. In fact, it
is quite common to find direct control dependency in benign program used
in security critical cases. Our approach should then be able to distinguish
between a legal and illegal tainted data usage by leveraging on the type of
taint propagation that has been performed.

In most of the case, a memory corruption attack causes a direct data de-
pendency taint propagation to take place while a condition variable relevant
from a security perspective “comes from” a direct control dependency taint
propagation, as shown by the next example.

Format Bug to Bypass Authentication

This example has been proposed in [47]. As we will see, even if the vulnerability
herein considered is a format string and can be detected by our approach by using
the learning rules described in § 4.2, we will also show that our approach detects
the data attack which aims to corrupt the non pointer variable auth by using
taint information only. This is possible by considering the different types of taint
propagation involved (i.e., data and direct control dependencies) during learning
and detection (when the attack is actually performed) phases.

1 void do_auth(char *passwd) {

2 char buf[40];

3 int auth;

4

5 if (!strcmp("encrypted_passwd", passwd))

6 auth = 1;

7 else

8 auth = 0;

9

61

4.3. EVALUATION

10 scanf("%39s", buf);

11 printf(buf); // format string

12 if (auth)

13 access_granted();

14 }

The attack is simple. Normally, the variable auth is set to 1 or 0 depending on
the fact that the right authentication credential is given as input or not (line 5).
An attacker, can exploit the format string vulnerabilities at line 11 and overwrites
auth with a non-null value so that the subsequent check of the credential (line
12) will grant privileged access.

Again, we can stop this attack in two different ways:

1. By modeling the format string (printf(buf), line 11) itself we can learn
whether tainted format directives have been used during the training step,
along with their structure (structural inference on tainted arguments). If
so, we check if the ones we are observing are consistent to the model we
learnt. Since we learnt attack-free dangerous and tainted patterns, it should
be impossible to mimicry those in order to perform a successful format bug
attack, as this require the use of tainted % format string directives. (both
memory corruption and information leakage).

2. If access_granted invokes a function or system call of interest S, we are
able to detect the memory corruption attack by comparing the type of
taint propagation that has been performed at S during detection with the
one learnt during the training step. We remind that tracking of control
dependencies is easy to do by associating a taint label with the program
counter ([23, 89]). Whenever the condition involved in a branch decision
is tainted, the program counter is also tainted. An assignment causes the
target variable to be tainted if the program counter is tainted, or if its
right-hand side expression is tainted. The label of the program counter is
restored at the merge point following a conditional branch.

More precisely, different situation can be considered:

• When a tainted scope is created by a condition whose taint value has
been determined based on data dependency only, every taint propa-
gation in the tainted scope will be marked as due to direct control
dependency only, unless the expression involved in the propagation is
tainted; in this case, the union of the taint values is considered.

• A similar situation happens when a tainted scope is created by a con-
dition whose taint value has been determined based on control depen-
dency only

• On the other hand, when a tainted scope is created by a condition
whose taint value has been determined based on both data and direct
control dependency, every taint propagation in the tainted scope will
inherit this label as well

62

4.3. EVALUATION

For instance, let us consider an attack-free scenario. During the training
phase, the variable auth is marked as tainted based on a tainted scope
created by a condition whose taint values is based on data dependency only
(lines 5 − 8). Therefore, the taint label associated with auth is a control
dependency taint value. The same happens when auth creates the tainted
scope at line 12. Therefore, every taint propagation performed in auth

tainted scope will inherit its taint label as well (control dependency only).
If this is respected during detection as well, no alarm would be raised.

On the other hand, the exploitation of the format bug at line 11 has the
effect to overwrite auth with a non-null value to be able to get successful
unauthorized authentication. This tampering has the effect to augment the
taint value of auth to be based on data dependency as well (auth retains
the one given by control dependency). Therefore, every taint propagation
performed in auth tainted scope will be based on both data and control
dependency. This is inconsistent with respect to the profile learnt during
training phase, and an alarm would be raised.

Integer Overflow Attack against Decision-Making Data

This attack has been proposed in [14] and aims at overwriting the variable
authenticated so that authentication check will be bypassed even in case of
erroneous authentication. This is shown by the following code snippet. It is very
similar to the example shown above. The only difference is that the tainted scope
created by authenticated is soon interrupted by a break. No further instruc-
tions are executed. We propose to insert harmless system calls pairs, just to insert
useful sink where the learnt profile can be compared to (e.g., getuid/Studi pairs
would do). If this is done, the scenario can be reduced to the one shown in the
example above. Currently, our prototype does not support this scenario.

void do_authentication(char *user, ...) {

int authenticated = 0;

...

while (!authenticated) {

type = packet_read();

switch (type) {

...

case SSH_CMSG_AUTH_PASSWORD:

if (auth_password(user, password))

authenticated = 1;

break;

case ...

}

if (authenticated)

break;

}

do_authenticated(pw);

}

63

4.3. EVALUATION

Untainted Format String Attacks

As pointed out in [18] it is possible to exploit format string vulnerabilities in such
a way to being able of writing untainted data to untainted memory locations.
This attack would be very hard to perform, however our taint-enhanced anomaly
detection provides protection against it, because of the learning rules used on
tainted sinks’ arguments.

4.3.2 Models Comparison

For all the data attacks aforementioned, we summarize the effectiveness of our
taint-enhanced anomaly detection as well as the one of related works ([56, 47, 9,
55, 13, 75]) in the following.

Format String Attack against User Identity Data [14]

Model Detect? Reasons/Comments
Anomalous System Call Detec-
tion [55]

No The missing context information would
create only one model for a given system
call.

Exploiting Execution Context for
the Detection of Anomalous Sys-
tem Calls [56]

Yes Learning performed only on a subset of sys-
tem calls. Therefore, printf-like calls will
be missed. However, if the learning sets of
the seteuid call overlap, is easier to per-
form mimicry (e.g., learning performed on
2 users allow one of them to impersonate
the other).

Dataflow Anomaly Detection [9] Yes If the learnt sets overlap is easier to per-
form mimicry.

Secure Program Execution via
Dynamic Information Flow
Tracking [75]

No The approach detects only code pointers
corruption.

Defeating Memory Corruption
Attacks via Pointer Taintedness
Detection [13]

Yes By denying any tainted pointer de-
referencing the approach might exhibit
high false positives rates.

Improving Software Security via
Runtime Instruction-level Taint
Checking [47]

Yes The approach is not able to differentiate
between good and bad taint usage. It
might exhibit high false positives rates.

our approach Yes It learns policies on tainted format string
– if any. Moreover, it is also possible to
signal that a tainted format argument is
used, during training.

64

4.3. EVALUATION

Heap Corruption Attacks against Configuration Attacks [14]

Model Detect? Reasons/Comments
Anomalous System Call Detec-
tion [55]

Prob. No Highly dependant on learning performed
on the same system call on different con-
texts. The string length has to represent
all these contexts, therefore it is easy to be
able to overflow a variable. Others model
might be bypassed by mean of mimicry.

Exploiting Execution Context for
the Detection of Anomalous Sys-
tem Calls [56]

Prob. Yes Highly learning-dependant.

Dataflow Anomaly Detection [9] Prob. Yes Same as above.
Secure Program Execution via
Dynamic Information Flow
Tracking[75]

No The approach detects only code pointers
corruption.

Defeating Memory Corruption
Attacks via Pointer Taintedness
Detection [13]

Yes By denying any tainted pointer de-
referencing the approach might exhibit
high false positives rates.

Improving Software Security via
Runtime Instruction-level Taint
Checking [47]

Yes The approach is not able to differentiate
between good and bad taint usage. It
might exhibit high false positives rates.

our approach Yes It learns policies on untainted/tainted ar-
guments as well as their structural infer-
ence and longest common prefix.

Integer Overflow Attack against Decision-Making Data [14]

Model Detect? Reason
Anomalous System Call Detec-
tion [55]

No There is profile as no system calls/function
of interests are involved.

Exploiting Execution Context for
the Detection of Anomalous Sys-
tem Calls [56]

No Same as above.

Dataflow Anomaly Detection[9] No Same as above.
Secure Program Execution via
Dynamic Information Flow
Tracking [75]

No Same as above.

Defeating Memory Corruption
Attacks via Pointer Taintedness
Detection [13]

No (see pag. 5 and 8 of the paper).

Improving Software Security via
Runtime Instruction-level Taint
Checking [47]

No Due to untainting operations.

our approach No However, it could be detected by adding
a fictional sink in the tainted scope and
learning the type of taint propagation as
described at the end of the previous sec-
tion.

65

4.3. EVALUATION

Stack Buffer Overflow Attack against User Input Data [14]

Model Detect? Reasons/Comments
Anomalous System Call Detec-
tion [55]

Prob. No Highly dependant on learning performed
on the same system call at different con-
texts.

Exploiting Execution Context for
the Detection of Anomalous Sys-
tem Calls [56]

Yes

Dataflow Anomaly Detection [9] Yes
Secure Program Execution via
Dynamic Information Flow
Tracking [75]

No The approach detects only code pointers
corruption.

Defeating Memory Corruption
Attacks via Pointer Taintedness
Detection [13]

Yes By denying any tainted pointer de-
referencing the approach might exhibit
high false positives rates. Highly
vulnerability-dependant.

Improving Software Security via
Runtime Instruction-level Taint
Checking [47]

Yes The approach is not able to differentiate
between good and bad taint usage. It
might exhibit high false positives rates.
Highly vulnerability-dependant.

our approach Yes It learns policies on untainted/tainted ar-
guments and their structural inference and
longest common prefix.

Straight Overflow on Tainted Data [56]

Model Detect? Reasons/Comments
Anomalous System Call Detec-
tion [55]

No

Exploiting Execution Context for
the Detection of Anomalous Sys-
tem Calls [56]

Yes Highly dependant on the learning. Over-
lapping sets make mimicry attacks easier.

Dataflow Anomaly Detection [9] Yes Highly dependant on the learning. Over-
lapping sets make mimicry attacks easier.

Secure Program Execution via
Dynamic Information Flow
Tracking [75]

No The approach detects only code pointers
corruption.

Defeating Memory Corruption
Attacks via Pointer Taintedness
Detection [13]

Yes By denying any tainted pointer de-
referencing the approach might exhibit
high false positives rates. See also next.

Improving Software Security via
Runtime Instruction-level Taint
Checking [47]

Yes The approach is not able to differentiate
between good and bad taint usage. As
above for the rest.

our approach Yes It learns the maximum length of the
tainted argument and possibly its struc-
ture. Alternatively, it could use the pro-
posed labeling schema. In this case, the
approach would not highly depend on the
learning as it would be sufficient to execute
instructions at least once to learn how in-
formation flows.

66

4.3. EVALUATION

Format Bug to Bypass Authentication [47]

Model Detect? Reason
Anomalous System Call Detec-
tion [55]

Depends . . . on the learning (see below).

Exploiting Execution Context for
the Detection of Anomalous Sys-
tem Calls [56]

Depends . . . on the learning. However, the proposed
model should hardly be able to infer the
structure in this case. The other mod-
els might not be so useful (e.g., the string
might have some non-consecutive % charac-
ters and the model will learn it (prone to
mimicry).

Dataflow Anomaly Detection [9] Prob. Yes Highly dependant on the learning.
Secure Program Execution via
Dynamic Information Flow
Tracking [75]

No

Defeating Memory Corruption
Attacks via Pointer Taintedness
Detection [13]

No

Improving Software Security via
Runtime Instruction-level Taint
Checking [47]

Depends Yes, if control-dependencies are not
tracked. In this case, auth has to be ma-
nipulated by taintless-instruction. How-
ever, if control-dependencies are tracked,
then the approach is not able to detect the
attack. As pointed out in [18], control-
dependencies tracking has to be enabled to
improve detection capabilities.

our approach Yes It learns the right policies (or, alterna-
tively, by using the extended proposed
taint labelling schema).

4.3.3 False Positives

Usually, in anomaly-based approaches false positives arise when an unknown
legitimate event is encountered during detection phase. Our approach does not
consider legitimate events encountered during detection phase, as long as these
events are untainted (i.e., no events arguments have to be tainted). Of course,
it is not possible to say whether an unknown tainted event is a manifestation
of an attack or not. Therefore, as in every anomaly-based approach, should an
unknown tainted event be encountered during detection, most likely will raise an
alarm. Nonetheless, as our approach uses some statistical models to characterize
properties of sinks’ arguments, FPs have to be expected as well. As every learning-
based approaches, the learning phase is the most critical.

Not considering unseen/unknown untainted traces during detection phase al-
ready constrain FPs. To further constraint them we disable the structural infer-
ence and longest common prefix for some sink, should they show a too irregular
and arbitrary structure. For instance, read, recv, and other input-related sys-
tem calls are highly sensible to the input they receive. A poor characterization

67

4.3. EVALUATION

of these input will result in either in a too specific or in a too generic model. The
former will raise FPs, while the latter will give raise at FNs. However, it can
be noted that, whenever possible, input will reach output sink. Therefore, it is
possible to enforce statistical models more on output sinks than on some input,
where lighter properties could be learnt (e.g., maximum input length seen so far).

The following table summarize the FP rates we experienced while testing
proftpd.

App # Traces (Learning) # Traces (Detection) FP FP rate
1 proftpd 59, 729 1, 532, 293 0 0%

The following table shows the percentage of tainted events the have been en-
countered during the learning phase. As it can be noted, only a small percentage
of the whole profile has to be considered.

App # Traces # Taint. (%) # Uniq. # Uniq. Taint. (%)
1 proftpd 59, 729 19, 798 (33.15%) 330 39 (11.80%)

Finally, in the following table, we show the overhead introduced by our taint-
enhanced anomaly detection.

App slowdown (taint) slowdown (taint-learn) slowdown (taint-detect)
1 proftpd 3.10% 5.90% 9.30%

Various activity were performed during learning/detection. Among the oth-
ers, the following were issued: change directory, download (∼ 138MB), upload,
recursive directory listing.

4.3.4 Discussion

The proposed approach couples taint analysis and anomaly detection techniques.
To the best of our knowledge, no existing similar techniques have been proposed
so far in the context of benign services protection. Anomaly detection or, better,
learning-based approaches help to automatically infer security policies, as shown
by existing techniques [87, 85, 28, 39, 70, 56, 54, 9]. Unfortunately, these tech-
niques have two major drawbacks. They (i) often exhibit high false positive rates
issues as learning phases are hard to be exhaustive, and (ii) they are vulnerable
to mimicry attacks [86, 85, 48, 78, 77] as attack-provided data can often stick
to statistical learning-rules used to characterize the process behavior. By using
taint analysis, we constraint these drawbacks as (i) unknown untainted traces
seen during detection are no more considered as manifestations of attacks, and
(ii) as foreign code cannot be executed anymore and learning-based rules use taint
information to infer security policies, mimicry-like attacks – even if still possible
– are thwarted.

68

4.3. EVALUATION

The taint-tracking mechanism of our taint-enhanced anomaly detection pro-
vides deterministic protection when a memory error exploit corrupts a code
pointer (absolute or partial overwrite). In fact, code pointers are usually ini-
tialized and manipulated by application code (e.g., function return addresses),
which is considered to be trusted8, therefore untainted. As a direct consequence,
mimicry attacks ([86, 85, 48, 78, 77]) which rely on hijacking the execution flow
of the vulnerable process to either invoke in-trace system calls (or, more gener-
ally, sinks), or to corrupt security sensitive data by executing foreign code are no
longer possible.

Unfortunately, while this class of arbitrary code execution and mimicry at-
tacks are defeated, others – even if thwarted – could still be possible. More
precisely, mimicry attacks can target sinks’ arguments, or generically tamper
the process address space with the intent to corrupt security sensitive data. In
fact, learning-based rules are used to automatically infer a security policy to
be enforced on system calls or functions of interest (i.e., sinks). Unfortunately,
sometimes these rules could be either over permissive or over restrictive. False
negatives (FNs) and false positives (FPs) are, respectively, the consequence of
this characterization. Following this reasoning, it is possible to distinguish these
cases:

Untainted sinks arguments. Taint information is used by the whole approach
to infer security policies to be enforced on sinks during detection phase.
This already gives a better process behavior characterization compared to
previous models (see [87, 85, 28, 39, 70, 56, 54, 9], for instance). Generally,
previous models had focused their attention on every event of the monitored
process to better characterize its behavior. Of course, over simplified models
carry minimal information and are more likely to be defeated by mimicry-
like attacks. Likewise, over specialized events characterizations as well as
unknown unseen events encountered during detection phase, would lead to
high false positives rates. In our approach, instead, a sink argument a found
to be untainted during training phase, must be untainted during detection
as well. Therefore, a large number of mimicry attacks that aim to tamper
with untainted data are no longer possible, as attack-provided data or, more
generally, input data9 are always considered untrusted and thus marked as
tainted.

Moreover, untainted events, that is sinks whose arguments are untainted,

8As noted elsewhere, it is possible to relax this requirement as function pointers might be
initialized based on tainted control dependency conditions. A conservative approach is to permit
the code pointer to be either untainted or tainted due to control dependency taint propagation.
In the latter case, an enumerated set of admissible and legal addresses learnt during training is
maintained and checked against for consistency during detection. The main drawback is that a
“selected” mimicry attack could be executed (instead of an arbitrary one). However, the ability
to cause meaningful damage is constrained.

9Which, for our model, are network inputs.

69

4.3. EVALUATION

encountered during detection phase are not considered as attacks’ manifes-
tations, therefore lowering false positives (FPs) rates.

As described in § 4.2, things change a little when a combination of tainted
and untainted arguments are characterized. In fact, the untainted part
is characterized by using the minimum length, and longest common pre-
fix models. These models are highly dependant on the value of the data
seen during training. However, these data are untainted, therefore (i) they
cannot be modified by an attacker without raising an alarm (in our threat
model, network inputs – and thus attacker-provided inputs as well – are
always marked as tainted), and (ii) depending on the considered sink, they
should be more “predictable”, thus easier to characterize constraining FPs.

Tainted sinks arguments. Unfortunately, tainted sinks arguments can be con-
trolled by an attacker. Therefore, mimicry attacks are still possible on the
models – maximum length, and structural inference – used to character-
ize these tainted inputs. Anyway, as foreign code or already present code
which does not logically follow the normal execution flow, cannot be ex-
ecuted anymore (tainted code pointers cannot be de-referenced anymore),
it is harder for an attacker to stick to the models inferred during training
phase. In fact, this extremely relies on the type of memory error vulnera-
bility involved (see § 2) and the position where the vulnerability is located.
A critique of the adopted models in this context follows.

(a) Maximum length. As described in § 4.2, the main purpose of this simple
model is to provide an upper bound to the number of bytes considered
for a given sink argument. An over permissive model (i.e., too high
upper bound) would permit overflows to occur during detection phase.
As a direct consequence, variables adjacent to the overflown buffer
could be controlled by an attacker potentially missing attacks (e.g.,
mimicry-like). On the other hand, an over restrictive model (i.e., too
low upper bound) would wrongly characterize a given sink argument.
As a direct consequence, FPs would be more likely to occur.

(b) Structural inference. As already noted in related literature [54], there
are cases where an attacker is able to craft its input in order to stick to
the considered model yet being able to cause harm. As described in § 4,
the purpose of the structural inference model is to learn the structure
of a given sink argument. While the model herein considered could be
more vulnerable to mimicry-like attacks, others (e.g., [54]) are not (see
next).

We remark that some of the considered model are not new (see for in-
stance [54, 56], which also propose a better structural inference model).
However, it is important to note that the learning rules and models con-
sidered herein can be definitely replaced by more accurate models (e.g.,

70

4.3. EVALUATION

temporal relationship among system calls arguments [9], other statistical
models [56]). The strategy of coupling taint analysis with anomaly de-
tection offers independent benefits from the underlying learning-rules and
models adopted, as already pointed out in 4.2.

Security sensitive data. The adopted learning-rules not only consider whether
a sink argument is tainted or not, but also keep track of how security sen-
sitive data or, more generally, memory locations, have become tainted. In
fact, as pointed out in § 4.2 and showed in § 4.3.1, taint marks carry differ-
ent values depending on whether they originate from data or control depen-
dency taint propagation, or a combination of both. As shown in § 4.3.1, this
permits to thwart memory error attacks which target non pointers data.

It is worth noting that the approach proposed in this Chapter can, some-
times, detect memory error exploits attempts even before reaching a system call
argument (e.g., format string and tainted formatting directive). While the ap-
proach described in the previous Chapter is generally vulnerability-independent,
our taint-enhanced anomaly detection can be more successful depending on the
underlying vulnerability considered (e.g., format string versus buffer overflow).
For instance, one of the conditions that must hold to successfully exploit a for-
mat string vulnerability (e.g., § 2.2 and [69, 35]) is that the formatting string has
to be controlled by the attacker. This means, that the format string has to be
tainted. Therefore, our approach provides protection in two ways. First, during
learning it signals that a particular formatting string is tainted. As there is no
reason to have a tainted format string, the application could be fixed right away
(e.g., printf("%s", buf) instead of printf(buf)). Second, if this is not possi-
ble, as the learning step has to be performed in an attack-free environment, no
dangerous formatting directives can be learnt. Therefore, the inferred structure
will not contain any dangerous tainted formatting directive (e.g., %x or %n).

In summary, taint-enhanced anomaly detection offers a deterministic protec-
tion for code pointers corruption and, depending on the specific scenario, for
attacks which corrupt data and data pointers. In other cases, the offered pro-
tection is probabilistic. The catch is that learning phase is still an open issue
(e.g., how long to learn for? Is the learning meaningful, i.e., synthetic – probably
no but attack-free – versus “in the wild” – more meaningful but probably not
attack-free? What about code coverage?), especially because it is not exhaustive
and this most likely contributes to raise false positives during detection. The
proposed approach, besides (i) providing deterministic protection for some class
of memory error attacks, and (ii) thwarting mimicry-like attacks for others, it
also constraints false positives. In fact, differently from other anomaly-based ap-
proaches ([87, 85, 28, 39, 70, 56, 54, 9]), we remark that in our approach, unknown
and untainted events encountered during detection phase, are not considered as a
manifestation of attacks, but as the fact that learning-based approaches are hard
to be exhaustive in completely characterizing an application behavior.

71

Not everything that counts can be counted, and not everything that can be counted counts.
(Sign hanging in Einstein’s office at Princeton)

Albert Einstein (1879 - 1955)

5
Related Literature

The approaches proposed in this dissertation are mainly related to three research
topics, namely artificial diversity, information flow (also known as taint analysis),
and learning-based anomaly detection. In the following, we describe related works
that have been done in these areas. Likewise, wherever appropriate, we extend
the discussion to other interesting strategies as well.

5.1 Artificial Diversity

Forrest et al. suggested preliminary ideas for building diverse computer sys-
tems [65]. In their paper they observed that computer systems were mainly
monoculture with no diversity at all. Due to this, a memory error exploit would
be successful on almost all the computer systems belonging to the same “species”.
Hence, they proposed the use of several forms of randomization in order to in-
troduce diversity into computer systems and, following such an idea, others re-
searchers faced the problem of providing diversity to computer systems.

In [79], a kernel level patch has been developed in order to give the oppor-
tunity to load the memory segments of a process (code, data, heap, stack), as
well as the shared objects the process makes use of, at different memory loca-
tions achieving what has been called address space layout randomization (ASLR).
Since no knowledge on the process behavior or structure is required, the approach
can only guarantee the randomization of the segments base addresses but it lacks
of a more fine-grained randomization. Moreover, as run-time relocation is gen-
erally not possible, information leakage attacks or the not-so-strong effectiveness
of ASLR on 32-bit Intel Architecture [40] can defeat these coarse-grained diver-
sification mechanisms.

Other address obfuscation techniques have been proposed in [68, 67] by Bhatkar
et al. as a particular form of program transformations to combat memory error
exploits which corrupt pointers (code and data) and non-pointer data. Such ap-
proaches differ from the one proposed in [79] since they aim to provide a more
fine-grained diversification via address space obfuscation. The objectives of the

72

5.2. INFORMATION FLOW

obfuscation transformations are to randomize the absolute locations of all code
and data of a process in order to achieve protection from memory error exploits
targeting code pointers (both absolute and partial overwrite), and to randomize
the relative distance between different data objects in order to defeat relative ad-
dressing attacks [14]. To this end, various obfuscating transformations have been
proposed; they range from the randomization of the base addresses of common
memory regions (stack, heap, mmap’d area, text and static data), the permuta-
tion of the order of variables and routines, and the introduction of random gaps
between objects. A further improvement over such an idea has been proposed
in [68], where a source-to-source transformation on C programs has been de-
veloped to produce self-randomizing programs with the intent to randomize a
process address space [67, 68] and its data representation [8].

All the aforementioned techniques share a common concept: they provide
diversity on a process itself and thus, they provide a defensive mechanism that,
in general, only provides a probabilistic protection from memory error exploits.

Recently, Cox et al. faced in [7] the concept of process replication with di-
versification. Their framework is similar to the one proposed in this dissertation
(see Chapter 3). As an application, they propose two different diversification
approaches to defeat (i) memory errors which corrupt 32-bit addresses (address
space disjointedness), and (ii) code injection attacks (instruction set tagging).
We improve the diversification strategy adopted by addressing memory errors
which partial overwrite pointers. Moreover, the model proposed in [7], as ours
one, introduces some unwanted issues that can negatively influence a practical
real model deployment. For instance, shared memory and synchronous signals
delivery have to be properly managed to guarantee data and process behavioral
consistency. To this end, we provide a solution that, to some extent, can represent
a first step toward a more realistic model usage.

5.2 Information Flow

Information flow analysis has been researched for a long time [6, 29, 21, 51, 84, 57,
66]. Early research was focused on multi-level security, where fine-grained analysis
was not deemed necessary [6]. More recent work has been focused on language-
based approaches, capable of tracking information flow at variable level [61]. Most
of these techniques have been based on static analysis, and assume considerable
cooperation from developers to provide various annotations, e.g., sensitivity la-
bels for function parameters, endorsement and declassification annotations to
eliminate false positives. Moreover, they typically work with simple, high-level
languages. In contrast, much of security-critical contemporary software is written
in low-level languages like C that use pointers, pointer arithmetic, and so on. As
a result, information flow tracking for such software has been primarily based on
runtime tracking of explicit flows that take place via assignments.

Recently, several different information flow-based approaches, often known as

73

5.3. LEARNING-BASED ANOMALY DETECTION

taint analysis as they are concerned with data integrity, have been proposed [59,
89, 13, 47, 76]. They give good and promising results when employed to pro-
tect benign software from memory errors [59, 89], and a broader class of at-
tacks [89] by usually relying, for instance, on some implicit assumptions which
are common grounds on benign software (e.g., no tainted code pointers should
be de-referenced, no tainted SQL directive should be used). Other researchers
(e.g., [47, 76]) extended basic taint-tracking techniques in order to generically
address attacks which corrupt data and data pointers [14] as well. Preliminary
results seem promising, even some of them require architectural change ([47]) and
it is still unclear whether they can thwart a broad range of memory error attacks
while exhibiting only a limited rate of false positives.

5.3 Learning-based Anomaly Detection

The underlying idea of any dynamic learning-based anomaly detection approach
is to monitor an application P in order to characterize its behavioral profile M,
during an initial period often known as training or learning phase. Afterwards,
the same application P is monitored again generating M′

, a behavioral profile
of P observed during its normal operations. Should M′

somehow differ from
M, an alarm will be raised. While learning-based approaches usually share the
aforementioned steps, they usually differ in the way the application behavior is
inferred.

The idea of using syscall obfuscation for preventing computer intrusions has
been introduced by [49], where an obfuscation scheme based on the randomization
of the system call mappings has been used for dealing with some type of buffer
overflows. Following this idea, Forrest et al. [30, 39] introduced a learning-based
anomaly detection strategy in order to characterize the behavior of an applica-
tion P . This system is built following the intuition that the “normal” behavior
of a program P can be characterized by the sequences of system calls it invokes
during its executions in a sterile environment. In the original model the charac-
teristic patterns of such sequences, known as N -grams, are placed in a database
and they represent the language L characterizing the normal behavior of P . To
detect intrusions, sequences of system calls of a given length are collected dur-
ing a process runtime, and compared against the contents of the database. The
Hamming distance between the collected string and L is computed, and when it
exceeds a certain threshold, an alarm is raised by the host intrusion detection
system (HIDS).

The N -gram model is very simple and very efficient but it is characterized by
a relatively high degree of false alarms [36], mainly because correlations among
syscalls are lost, since there is no provision for storing information about the
position where the syscalls are invoked. Furthermore, in [85] it has been shown
that such a HIDS model is unable to detect two particular forms of computer
attacks, namely the mimicry [86, 85, 48, 78, 77] and impossible path execution

74

5.3. LEARNING-BASED ANOMALY DETECTION

(IPE) [28, 85] attacks. Quite recently various authors started to propose varia-
tions to the N -gram model in order to improve its “precision”, i.e. its ability to
correctly detect a computer instrusion, with a particular attention to both the
IPE and mimicry attack. All these models try to overcome the limitations of the
original model adopting a better characterization of a program behavior. Such a
characterization is obtained by saving for any considered syscall, additional in-
formation such as the value of the program counter, the stack configuration, and
information regarding the control flow graph (see for instance [70, 85, 28, 37]).
However, even these models suffer of some limitations. For example, in [85, 28]
it has been shown that the callgraph model proposed in [85] as well as the model
proposed in [70] are not able to deal with some forms of IPE, while in [86, 48] it
has been shown that all the models above mentioned are susceptible, with various
degrees of resistance, to some forms of mimicry attacks.

In a recent paper, Kruegel et al. [48] observed that even if the introduction
of such techniques in anomaly-based HIDS [11, 28, 70] has significantly reduced
the possibility to perform successful traditional mimicry attacks [78, 77, 86], they
do not impose any kind of restriction on the execution of arbitrary code which
does not directly invoke system calls (i.e., system call-free code). For instance,
the execution of a piece of code that is able to modify writable memory segments
represents a threat by itself. This observation, brought Kruegel et al. to devise
a variation of the traditional mimicry attack which is able to hijack a program
execution flow, execute malicious system call-free code, relinquish the execution
flow to the diverted program to regain it later on.

This malicious code is usually executed as a preamble of in-trace syscalls.
Its main objective is either to change the value of the system call parameters in
order to eventually execute arbitrary code, or to modify the value of some control-
dependent data variable in order eventually influence the process execution flow.
In [48] a proof of concept tool is provided which is able to automatically identify,
inside a program, the instructions which can be used for such a scope. For this
reason we refer to such an attack as automatic mimicry. More precisely, the main
goal of the automatic mimicry is to elude HIDS checks by continuously diverting
the process execution flow in order to execute arbitrary code with the purpose
of changing system calls parameters without directly invoking any system call.
However, most of the time these steps cannot be completed at once. Thus, any
piece of malicious code has to take care of continuously regaining the control of
the execution flow. Such a task is usually performed by modifying appropriate
code pointers. It is worth noting that the research works described in this dis-
sertation (see Chapters 3 and 4) catches any de-reference of corrupted code and
data pointers, therefore defeating or, in some cases constraining, this particular
threats. While this could be somehow misleading for the approach proposed in
Chapter 3 as the technique does not involve any learning phase, it is indeed par-
ticularly important for the taint-enhanced anomaly detection approach proposed
in Chapter 4.

On the basis of the previous observation (i.e., execution of foreign code), other

75

5.4. CONTROL-FLOW INTEGRITY

techniques have been recently proposed for containing automatic mimicry [48].
For instance, [12] proposes a strategy which consists of localizing, inside a IA-
32 binary P , all the dangerous regions ai, · · · , an, where dangerous region, also
known as liveness area, are code areas between the definition D and use U of
the values V of the system calls parameters. After the liveness areas have been
determined for any area ai 1 ≤ i ≤ n, the “trusted values” t1, · · · , tk of the
code pointers defined in ai are collected at run-time. Subsequently, the process
P image is instrumented so that at run-time, code pointers in ai will always be
restored to their corresponding trusted values, before their use. Consequently,
the attacker will not be able to regain the control of P ’s execution flow and the
attack will be thwarted.

As pointed out in [48] and further reiterated by [14], for instance, it is clear
that system call monitoring by itself is no longer sufficient to correctly characterize
an application behavior. To this end, researchers proposed statistical models [56,
55] which try to characterize system calls arguments to improve the precision
of the application’s behavioral profile. Likewise, data flow relationship between
system calls arguments [9] have been recently proposed to address broader classes
of attacks (e.g., memory errors, race conditions).

5.4 Control-Flow Integrity

Originally, one of the main goal of a successful memory error exploitation was to
execute arbitrary code. To this end, code pointers had to be eventually corrupted
to be able to divert the normal process execution flow. Following this reasoning,
several strategies have been proposed to guarantee code pointers integrity which
in turn provides control-flow integrity. Some of them [15, 26], aim to protect
the integrity of a limited set of code pointers (e.g., return addresses and saved
frame pointers). Some of them [92, 91], offer a very good protection with a very
limited performance slowdown for some code pointers corruption. Unfortunately,
they leave several different venues to the attackers as the offered protection is not
comprehensive (see § 2).

In [2], Abadi et al. propose Control-Flow Integrity (CFI), an approach to
guarantee the integrity of the execution control flow of a protected application
P . By forcing P ’s execution to dynamically follow only paths defined by its
Control Flow Graph (CFG), their approach defeats attacks which, as a final goal,
attempts to hijack a program execution flow to alter its behavior. CFI leverages
on fewer assumptions to achieve its goals. In particular, it relies on non-writable
code, and non-executable data segments. While, generally, these are common
sense requirements, as noted by the authors, the assumptions can be somewhat
problematic in the presence of self-modifying code, run-time code generation, and
the unanticipated dynamic loading of code.

Program shepherding, proposed by Kiriansky et al., monitors control flow
transfers to enforce a security policy [45]. While CFI could be enforced by pro-

76

5.4. CONTROL-FLOW INTEGRITY

gram shepherding, the approach proposed by Kiriansky et al. is more general.
In fact, it prevents execution of data or modified code and ensures that libraries
are entered only through exported entry points, without making any assump-
tion apriori. Moreover, program shepherding provides sandboxing that cannot
be circumvented, allowing construction of customized security policies. On the
other hand, this monitoring technique may impose a quite moderate overhead for
certain types of programs. Moreover, existing code attacks can be stopped only
in some cases.

77

Part III

Future Directions & Conclusions

78

Debugging is twice as hard as writing the code in the first place. Therefore, if you write the
code as cleverly as possible, you are, by definition, not smart enough to debug it.

Brian W. Kernighan (1942 -)

6
Future Directions

T
he research works proposed in this dissertation aim to provide compre-
hensive memory errors protection. The previous chapters showed that
the proposed approaches are effective against a broad range of memory

error vulnerabilities. Nonetheless, the methods are far from being complete and,
as pointed out in the respective chapters, they suffer from some limitations and
drawbacks. In the following, we aim to highlight possible future directions that
can be taken to improve the underlying ideas proposed in the dissertation.

6.1 Diversified Process Replicæ

The main drawbacks of the approach described in Chapter 3 refer mainly to
performance issues, relative-addressing attacks, and side-effects introduced by
the adoption of the approach (e.g., threads management). In the following, we
sketch possible directions to be examined in the future to improve the diversified
process replicæ approach.

6.1.1 Optimizations

One of the main drawback of the proposed approach is about the introduced
overhead. In fact, as pointed out in § 3.4.2, as P and its replica Pr have to be
executed, the introduced overhead is of at least 100%. To this percentage it is
necessary to add the overhead introduced for replication management which is,
depending on the cases, not always negligible. Moreover, the prototype imple-
mentation uses the ptrace system call, which is known to be slow (in fact, it
should be used for debugging purposes). To lower the overhead, it is possible to
act in the following ways:

1. Native execution. As pointed out in § 3.4.2, there are situations where data
replication from P to Pr is not needed. It is possible to let P and Pr to
execute a file system (FS) input-related system call without resorting to

79

6.1. DIVERSIFIED PROCESS REPLICæ

replication. For instance, an open and read issued on a not shared FS
object can be executed by P and by Pr. The saving is about the overhead
introduced by T for performing the replication task. We recall that this
overhead is not negligible, especially with the current prototype (i.e., at
least two ptrace system calls have to be executed by T to replicate 4 bytes
from P to Pr address space1.).

2. SMP. P and Pr have to be completely executed and this alone corresponds
to an overhead of 100%, at least. However, it is worth noting that the
main requirement for the whole approach about these processes is that they
can synchronize themselves at particular rendez-vouz points. Therefore,
before reaching such points, it is reasonable to execute P and Pr in parallel.
Symmetric multi-processors (SMP) can greatly help in this direction. By
scheduling one process, say P , on one CPU and the other, say Pr, on the
other CPU, the overhead introduced due to sequential execution of P and
Pr on uni-processor (UP) machines can be considerably cut down.

6.1.2 Dynamic Binary Translation

Another drawback of the proposed approach refers to the issues raised in § 3.5.
While solutions have been proposed for shared memory and signals management,
threads management represents still an open issue. As pointed out in § 3.5.2, to
correctly handle situations where co-operating threads which act on shared re-
sources, it should be necessary to (i) schedule a thread L followed by its replica Lr,
and (ii) let them execute the same number of instructions (or the same quanta).
This should guarantee consistent states for involved shared resources.

A way to achieve this goal is to use dynamic binary translation techniques,
such as those offered by the Qemu processor emulator [27]. Moreover, by using
dynamic binary translation, it is possible to directly work on binaries instead of
requiring source code. Diversity is achieved by the translation approach: when-
ever a pointer (or a memory access) is de-referenced (or made), address reloca-
tion is performed. While this approach does not provide meaningful diversity
for memory errors protection on a process by itself (i.e., attack-provided memory
addresses will be relocated as well), it should be effective with the replication ap-
proach considered in this dissertation. In summary, dynamic binary translation
would provide:

(i) Transparent diversification by not requiring program recompilation to pro-
vide diversity.

(ii) A faster implementation than the one provided by using the ptrace system
call.

1This is the minimum requirement. In fact, the number of ptrace invocation is generally
higher as system calls invoked by Pr have to fail and Pr status (e.g., system call return code)
has to be kept synchronized with P as well. This requires other ptrace invocations.

80

6.2. TAINT-ENHANCED ANOMALY DETECTION

A drawback of this solution is that protection for partial address overwriting
attacks is lost and relative addressing attacks are not addressed either.

6.1.3 Program Transformation

Alternatively, instead of operating directly on the binary, it would be possible to
improve the protection for partial overwrite and relative addressing attacks, by
using lightweight diversification techniques similar to the one proposed in [8]. In
particular, since the underlying diversified process replicæ approach can already
deal with absolute code and data pointers corruption by providing a deterministic
protection, it is possible to relax and weak the complexity of the transformations
approaches described in [8] yet achieving a strong probabilistic protection for
this class of memory errors. For instance, a subset of attacks which corrupt
non-pointer data could be thwarted by inserting non-overlapping gaps between
buffer-like variables of P and Pr.

6.2 Taint-enhanced Anomaly Detection

An open issue in the approach proposed in Chapter 4 concerns the learning phase.
While it is out of the scope of this dissertation to give answers to this, so far,
learning represents an open issue which affects every dynamic learning-based
approaches. For instance, it is still unclear to what extent a synthetic learning
– which is attack free – is as effective as the one performed in the wild – which
has no guarantee to be attack free. Moreover, how long to perform the learning
phase for is also another question that needs an answer.

Despite this issue, the combination of taint analysis and anomaly detection
seem to be effective to provide protection to a broad class of memory errors.
Motivated by this and by previous results on taint-enhanced policies enforcement
([89]), we believe that the approach can be extended to provide protection to a
broader range of software vulnerabilities (e.g., web-based vulnerabilities). After
all, as shown in this dissertation, the anomaly detection or, better, dynamic
learning-based approach will help to automatically infer taint-enhanced policies
representing the application behavior to be enforced. For instance, it would be
possible to:

(i) Leverage on a context-sensitive analysis on taint-enhanced (transformed)
PHP interpreter to provide more accurate characterization of sinks invoca-
tion.

(ii) Learn policies for SQL injection attacks that – among common attacks –
deal with:

• 2nd order SQL injection.

• dynamic construction of SQL query (e.g., fuzzy advanced search).

81

6.2. TAINT-ENHANCED ANOMALY DETECTION

(iii) Leverage on the learning-based component to infer/learn safe attack pattern
usage to constraint false positives and false negatives.

82

The important thing is not to stop questioning. Curiosity has its own reason for existing.

Albert Einstein (1879 - 1955)

7
Conclusions

M
emory errors in C and C++ programs have been known for decades
and are one of the oldest classes of software vulnerabilities. Researchers
have been working on memory error protection mechanisms for decades.

Nonetheless, it seems that this kind of vulnerability is far from being completely
defeated.

This dissertation presented two program transformation techniques to provide
comprehensive solutions to memory error attacks. Recognizing the effectiveness
of artificial diversity, taint-tracking, and anomaly-based detection strategies, we
proposed two approaches that are able to deal with a broad class of memory
error vulnerabilities. In particular our first approach, diversified process replicæ
extends the concept of process diversification. So far, diversification has been ap-
plied on a process by itself, for instance by adopting address space and instruction
set randomization schemes. Our approach, instead, couples diversification and
replication together. It applies a form of diversification that involves a process P
along with Pr, the process replica of itself. By monitoring P and Pr behavior, and
by replicating data on particular rendez-vouz points, our technique detects behav-
ioral divergences triggered by memory error exploits. In most and more frequent
cases, our strategy gives deterministic protection. Moreover, by giving solutions
to unwanted side-effects introduced by the approach (e.g., shared memory and
signal management), the dissertation provides a first step toward a more realistic
deployment of the protection mechanism. Taint-enhanced anomaly detection, the
second approach proposed by this dissertation, takes advantage of taint-tracking
and anomaly detection techniques. The proposed strategy transforms a given
benign application Po into P , a taint-enhanced version of Po. Then, by coupling
taint analysis and anomaly detection, the approach learns a profile M of the
transformed taint-enhanced application, during a so-called training or learning
phase. Taint information as well as different models (e.g., structural inference,
longest common prefix and data lengths) are used to automatically infer the se-
curity policies which represent the behavioral profile of the protected process P .
Subsequently, during a so-called detection phase, similarly to any anomaly-based

83

CHAPTER 7. CONCLUSIONS

detection strategyM is checked againstM′
, the profile of P observed during nor-

mal runs and generated by the same learning rules adopted during the training
phase. Should M be inconsistent with respect to M′

, an alarm will be raised.
Both approaches are able to deal with memory error attacks which corrupt

code and data pointers, by generally providing a deterministic protection. More-
over, by leveraging on taint information and a learning-based approach, the sec-
ond approach also deals with those attacks which corrupt arbitrary data, as well.

84

Bibliography

[1] Secure Systems Lab. http://seclab.cs.sunysb.edu/seclab/.

[2] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In CCS ’05: Proceedings of the 12th ACM conference on Computer
and co mmunications security, pages 340–353, New York, NY, USA, 2005.
ACM Press.

[3] J. Afek and A. Sharabani. Dangling Pointer: Smashing the Pointer for Fun
and Profit. Watchfire, 2007.

[4] Ana Nora Sovarel and David Evans and Nathanael Paul. Where’s the FEEB?
The Effectiveness of Instruction Set Randomization. In 14th USENIX Secu-
rity Symposium, August 2005.

[5] Anonymous. Once upon a free()... Phrack Magazine, Volume 0x0b, Issue
0x39, Phile #0x09 of 0x12, December 2001.

[6] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report MTR-2547, Vol. 1, MITRE Corp., Bedford,
MA, 1973.

[7] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu,
Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-
Variant Systems: A Secretless Framework for Security through Diversity.
In 15th USENIX Security Symposium, 2006.

[8] Sandeep Bhatkar. Defeating Memory Error Exploits Using Automated Soft-
ware Diversity. PhD thesis, Stony Brook University, December 2007.

[9] Sandeep Bhatkar, Abhishek Chaturvedi, and R. Sekar. Dataflow anomaly
detection. In SP ’06: Proceedings of the 2006 IEEE Symposium on Security

85

and Privacy (S&P’06), pages 48–62, Washington, DC, USA, 2006. IEEE
Computer Society.

[10] blexim. Basic Integer Overflows. Phrack Magazine, Volume 0x0b, Issue 0x3c,
Phile #0x0a of 0x10.

[11] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. An Efficient Tech-
nique for Preventing Mimicry and Impossible Paths Execution Attacks. In
3rd International Workshop on Information Assurance (WIA 2007), April
2007.

[12] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Static Analysis on x86
Executable for Preventing Automatic Mimicry Attacks. In GI SIG SIDAR
Conference on Detection of Intrusions and Malware & Vulnerability Assess-
ment (DIMVA), July 2007.

[13] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Ravis-
hankar K. Iyer. Defeating Memory Corruption Attacks via Pointer Tainted-
ness Detection. In DSN ’05: Proceedings of the 2005 International Confer-
ence on Dependable Systems and Networks (DSN’05), pages 378–387, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[14] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. Non-Control-Data Attacks Are Realistic Threats. In SSYM’05: Pro-
ceedings of the 14th conference on USENIX Security Symposium, pages 12–
12, Berkeley, CA, USA, 2005. USENIX Association.

[15] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. B eattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive de-
tection and prevention of buffer -overflow attacks. In Proc. of the 7th Usenix
Security Symposium, pages 63–78, Jan 1998.

[16] D. Bruschi and L. Cavallaro and A. Lanzi. Syscalls Obfuscation for Prevent-
ing Mimicry and Impossible Paths Execution Attacks. Technical Report RT
10-06, Università degli Studi di Milano, 2006.

[17] D. Mosberger (main author), S. Eranian, and D. Carter.
httperf - HTTP performance measurement tool.
http://www.hpl.hp.com/research/linux/httperf/ – Hewlett-Packard Re-
search Laboratories.

[18] M. Dalton, H. Kannan, and C. Kozyrakis. Deconstructing Hardware Ar-
chitectures for Security. In Fifth Annual Workshop on Duplicating, Decon-
structing, and Debunking (held in conjunction with the 33rd International
Symposium on Computer Architecture), 2006.

[19] Daniel P. Bovet, and Marco Cesati. Understanding the Linux Kernel, 2nd
Edition. O’Reilly, December 2002.

86

[20] Daniel R. Edelson. Fault Interpretation: Fine-Grain Monitoring of Page
Accesses. In USENIX Winter, pages 395–404, 1993.

[21] D. E. Denning and P. J. Denning. Certification of programs for secure infor-
mation flow. Communications of the ACM, 20(7):504–513, July 1977.

[22] Doug Lea. dlmalloc Memory Allocator. http://g.oswego.edu/.

[23] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic spyware
analysis. In Usenix Tech Conference, 2007.

[24] Elena Gabriela Barrantes and David H. Ackley and Stephanie Forrest and
Darko Stefanovic. Randomized instruction set emulation. ACM Trans. Inf.
Syst. Secur., 8(1):3–40, 2005.

[25] Elias “Aleph One” Levy. Smashing the Stack for Fun and Profit. Phrack
Magazine, Volume 0x07, Issue #49, Phile 14 of 16, December 1998.

[26] H. Etoh. GCC extension for protecting applications from stack-smashing at-
tac ks (ProPolice), 2003. http://www.trl.ibm.com/projects/security/

ssp/.

[27] Fabrice Bellard. Qemu – open source processor emulator.
http://fabrice.bellard.free.fr/qemu/.

[28] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly Detection
using Call Stack Information. IEEE Symposium on Security and Privacy,
Oakland, California, 2003.

[29] J. S. Fenton. Memoryless subsystems. Computing Journal, 17(2):143–147,
May 1974.

[30] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A Sense of
Self for Unix Processes. In SP ’96: Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy, page 120, Washington, DC, USA, 1996. IEEE
Computer Society.

[31] Mike Frantzen and Mike Shuey. StackGhost: Hardware facilitated stack
protection. In SSYM’01: Proceedings of the 10th conference on USENIX
Security Symposium, pages 5–5, Berkeley, CA, USA, 2001. USENIX Associ-
ation.

[32] Tal Garfinkel. Traps and pitfalls: Practical problems in in system call in-
terposition based security tools. In Proc. Network and Distributed Systems
Security Symposium, February 2003.

[33] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering
Code-Injection Attacks With Instruction-Set Randomization. In ACM Con-
ference on Computer and Communications Security (CCS), 2003.

87

http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/

[34] George W. Dunlap and Samuel T. King and Sukru Cinar and Murtaza
Basrai and Peter M. Chen. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Symposium on Operating Systems
Design and Implementation (OSDI), 2002. http://www.eecs.umich.edu/

~kingst/revirt.pdf.

[35] gera and riq. Advances in format string exploitation. Phrack Magazine,
Volume 0xb, Issue 0x3b, Phile #0x07 of 0x12.

[36] A. K. Ghosh and A. Schwartzbard. A Study in Using Neural Networks for
Anomaly and Misuse Detection. In USENIX Security Symposium, 1999.

[37] J. T. Giffin, S. Jha, and B. P. Miller. Detecting Manipulated Remote Call
Streams. 11th USENIX Security Symposium, 2002.

[38] J. A. Goguen and J. Meseguer. Security policies and security models. sp,
00, 1982.

[39] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection Using
Sequences of System Calls. Journal of Computer Security, 6(3):151–180,
1998.

[40] Hovav Shacham and Matthew Page and Ben Pfaff and Eu-Jin Goh and
Nagendra Modadugu and Dan Boneh. On the Effectiveness of Address-Space
Randomization. In CCS ’04: Proceedings of the 11th ACM Conference on
Computer and Communications Security, pages 298–307, New York, NY,
USA, 2004. ACM Press.

[41] Ingo Molnar. Exec-Shield, September 1999.

[42] J. Poskanzer. thttpd - tiny/turbo/throttling HTTP server.
http://www.acme.com/software/thttpd/ – version 2.23beta1-3sarge1.

[43] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. Cyclone: A Safe Dialect of C. In USENIX
Annual Technical Conference, General Track, pages 275–288, 2002.

[44] Juan M. Bello Rivas. Overwriting the .dtors section.
http://www.synnergy.net/downloads/papers/dtors.txt.

[45] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure
execution via program shepherding. In Proceedings of the 11th USENIX
Security Symposium, pages 191–206, Berkeley, CA, USA, 2002. USENIX
Association.

[46] klog. The Frame Pointer Overwrite. Phrack Magazine, Volume 9, Issue 55,
Phile 8 of 19, September 1999.

88

http://www.eecs.umich.edu/~kingst/revirt.pdf
http://www.eecs.umich.edu/~kingst/revirt.pdf

[47] Jingfei Kong, Cliff C. Zou, and Huiyang Zhou. Improving Software Security
via Runtime Instruction-level Taint Checking. In ASID ’06: Proceedings of
the 1st workshop on Architectural and system support for improving software
dependability, pages 18–24, New York, NY, USA, 2006. ACM Press.

[48] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automat-
ing Mimicry Attacks Using Static Binary Analysis. In Proceedings of the
USENIX Security Symposium, Baltimore, MD, August 2005.

[49] M. Chew and D. Song. Mitigating Buffer Overflows by Operating System
Randomization. Technical Report CMU-CS-02-197, Carnegie Mellon Uni-
versity, December 2002.

[50] Matt “shok” Conover & w00w00 Security Team. w00w00 on Heap Overflows.
http://www.w00w00.org/files/articles/heaptut.txt, January 1999.

[51] J. McLean. A general theory of composition for trace sets closed under
selective interleaving functions. pages 79–93, May 1994.

[52] Michel “MaXX” Kaempf. Vudo - An object supertitiously believed to em-
body magical powers. Phrack Magazine, Volume 0x0b, Issue 0x39, Phile
#0x08 of 0x12, December 2001.

[53] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring Multiple
Execution Paths for Malware Analysis. In SP ’07: Proceedings of the 2007
IEEE Symposium on Security and Privacy (S&P’07), pages 231–245, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[54] D. Mutz, F. Valeur, C. Kruegel, and G. Vigna. Anomalous System Call
Detection. ACM Transactions on Information and System Security, 9(1):61–
93, February 2006.

[55] D. Mutz, F. Valeur, C. Kruegel, and G. Vigna. Anomalous System Call
Detection. ACM Transactions on Information and System Security, 9(1):61–
93, February 2006.

[56] Darren Mutz, William Robertson, Giovanni Vigna, and Richard Kemmerer.
Exploiting Execution Context for the Detection of Anomalous System Calls.
In Proceedings of the 10th International Symposium on Recent Advances in
Intrusion Detection (RAID’07), 2007.

[57] A. C. Myers. JFlow: Practical mostly-static information flow control. pages
228–241, January 1999.

[58] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy code. In Symposium on Principles of Programming
Languages, pages 128–139, 2002.

89

[59] James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and SignatureGeneration of Exploits on Com-
modity Software. In NDSS, 2005.

[60] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Auto-
matically hardening web applications using precise tainting, 2005.

[61] Perl. Perl taint mode. http://www.perl.org.

[62] Rafal “Nergal” Wojtczuk. The Advanced return-into-lib(c) Exploits: PaX
Case Study. Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile #0x04 of
0x0e, December 2001.

[63] Gerardo Richarte. Four different tricks to bypass StackShield and Stack-
Guard protection, April 2002.

[64] rix. Smashing C++ VPTRS. Phrack Magazine, Volume 0xa, Issue 0x38,
Phile #0x08 of 0x10, May 2000.

[65] S. Forrest and A. Somayaji and D. Ackley. Building Diverse Computer
Systems. In HOTOS ’97: Proceedings of the 6th Workshop on Hot Topics
in Operating Systems (HotOS-VI), page 67, Washington, DC, USA, 1997.
IEEE Computer Society.

[66] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1), January 2003.

[67] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error Exploits.
In 12th USENIX Security Symposium, 2003.

[68] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits. In 14th USENIX
Security Symposium, 2005.

[69] scut / team teso. Exploiting Format String Vulnerabilities, September 2001.
version 1.2.

[70] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-
Based Method for Detecting Anomalous Program Behaviors. In SP ’01:
Proceedings of the 2001 IEEE Symposium on Security and Privacy, page
144, Washington, DC, USA, 2001. IEEE Computer Society.

[71] Solar Designer. Non-executable Stack Path.

[72] Eugene H. Spafford. The Internet Worm Program: An Analysis. Technical
Report CSD-TR-823, Department of Computer Sciences, Purdue University,
IN, USA, November 1988.

90

[73] W. Richard Stevens. Unix Network Programming: Inter Process Communi
cations, volume 2, chapter 12, page 303. Prentice-Hall, 1999.

[74] Clad “RORIV” Strife and Xdream “RO-
JIV” Blue. Ret onto Ret into Vsyscalls.
http://seclists.org/bugtraq/2005/Apr/att-0312/ret-onto-ret en txt.

[75] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
Program Execution via Dynamic Information Flow Tracking. In ASPLOS-
XI: Proceedings of the 11th international conference on Architectural support
for programming languages and operating systems, pages 85–96, New York,
NY, USA, 2004. ACM Press.

[76] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
Program Execution via Dynamic Information Flow Tracking. In ASPLOS-
XI: Proceedings of the 11th international conference on Architectural support
for programming languages and operating systems, pages 85–96, New York,
NY, USA, 2004. ACM Press.

[77] Kymie M. C. Tan, Kevin S. Killourhy, and Roy A. Maxion. Undermining an
anomaly-based intrusion detection system using common exploits. In Pro-
ceedings of the 5th International Symposium on Recent Advances in Intrusion
Detection, 2002.

[78] Kymie M. C. Tan, John McHugh, and Kevin S. Killourhy. Hiding intrusions:
From the abnormal to the normal and beyond. In Information Hiding, pages
1–17, 2002.

[79] The PaX Team. PaX: Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net.

[80] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tol-
erance. In ACM Transactions on Computer Systems, pages 14(1):80–107,
February 1996.

[81] TIS Committee. Tool Interface Standard (TIS), Executable and Linking
Format (ELF) Specification, May 1995. Version 1.2.

[82] Timothy K. Tsai and Navjot Singh. Libsafe: Transparent system-wide pro-
tection against buffer overflow attacks. In DSN ’02: Proceedings of the 2002
International Conference on Dependable Systems and Networks, page 541,
Washington, DC, USA, 2002. IEEE Computer Society.

[83] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan,
Guilherme Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani,
and David I. August. RIFLE: An Architectural Framework for User-Centric
Information-Flow Security. In MICRO 37: Proceedings of the 37th annual

91

IEEE/ACM International Symposium on Microarchitecture, pages 243–254,
Washington, DC, USA, 2004. IEEE Computer Society.

[84] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. 4(3):167–187, 1996.

[85] D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In IEEE
Symposium on Security and Privacy, Oakland, California, 2001.

[86] D. Wagner and P. Soto. Mimicry Attacks on Host Based Intrusion Detection
Systems. In Proc. Ninth ACM Conference on Computer and Communica-
tions Security., 2002.

[87] H. Xu, W. Du, and S. J. Chapin. Context Sensitive Anomaly Monitoring
of Process Control Flow to Detect Mimicry Attacks and Impossible Path s.
RAID LNCS 3224 Springer-Verlag, pages 21–38, 2004.

[88] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent Run-
time Randomization for Security. volume 00, page 260, Los Alamitos, CA,
USA, 2003. IEEE Computer Society.

[89] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced Policy Enforce-
ment: a Practical Approach to Defeat a Wide Range of Attacks. In USENIX-
SS’06: Proceedings of the 15th conference on USENIX Security Symposium,
Berkeley, CA, USA, 2006. USENIX Association.

[90] Y Younan, W Joosen, and F Piessens. Code injection in C and C++: A
Survey of Vulnerabilities and Countermeasures. Technical Report CW386,
Departement Computerwetenschappen, Katholieke Universiteit Leuven, Bel-
gium, July 2004.

[91] Yves Younan, Wouter Joosen, and Frank Piessens. Efficient Protection
against Heap-based Buffer Overflows without Resorting to Magic. In
Eighth International Conference on Information and Communication Secu-
rity (ICICS), December 2006.

[92] Yves Younan, Davide Pozza, Frank Piessens, and Wouter Joosen. Extended
Protection against Stack Smashing Attacks without Performance Loss. In
Twenty-Second Annual Computer Security Applications Conference (AC-
SAC), December 2006.

92

	I Introduction
	1 Introduction
	1.1 Dissertation Organization

	2 Memory Errors
	2.1 Buffer Overflows
	2.1.1 Stack-based Buffer Overflows
	2.1.2 Heap-based Buffer Overflows
	2.1.3 Static Buffer Overflows

	2.2 Format String Vulnerabilities
	2.3 Integer Overflows

	II Research Work
	3 Diversified Process Replicæ
	3.1 Preliminaries
	3.1.1 Executable and Linking Format
	3.1.2 Process Address Space

	3.2 Process Replication with Diversification
	3.2.1 Model Framework
	3.2.2 Non Overlapping Processes Address Spaces

	3.3 Replicator Module
	3.4 Evaluation
	3.4.1 Effectiveness
	3.4.2 Experimental Results
	3.4.3 Discussion

	3.5 Practical Issues
	3.5.1 Shared Memory
	3.5.2 Signals and Non-Determinism

	4 Taint-enhanced Anomaly Detection
	4.1 Preliminaries
	4.1.1 Taint Analysis
	4.1.2 Anomaly Detection

	4.2 Taint-enhanced Anomaly Detection
	4.2.1 Implementation

	4.3 Evaluation
	4.3.1 Effectiveness
	4.3.2 Models Comparison
	4.3.3 False Positives
	4.3.4 Discussion

	5 Related Literature
	5.1 Artificial Diversity
	5.2 Information Flow
	5.3 Learning-based Anomaly Detection
	5.4 Control-Flow Integrity

	III Future Directions & Conclusions
	6 Future Directions
	6.1 Diversified Process Replicæ
	6.1.1 Optimizations
	6.1.2 Dynamic Binary Translation
	6.1.3 Program Transformation

	6.2 Taint-enhanced Anomaly Detection

	7 Conclusions
	Bibliography

