
MCC End-User Management Framework

Secure Systems Laboratory

Stony Brook University

August 31, 2006

Contents

1 Introduction 2

2 System Architecture 2
2.1 Control Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Model Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Policy Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Support Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Overview of Operation 5
3.1 Operations in Normal User Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Operations in Expert mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Security Policy Development 10
4.1 Integrity Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Confidentiality Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Classification of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Security Policy Authoring using MCC 14
5.1 Setting up new policies from scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Policy Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A MCC Software Setup 21
A.1 Startup Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2 Building the MCC components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.3 Build the program model generator (optional) . . . . . . . . . . . . . . . . . . . . . . 22
A.4 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.4.1 configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.4.2 Keys and Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B Application Classes 25
B.1 Multimedia and Document Viewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.2 Archive creation and Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B.3 File Organization and Album Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.4 Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.5 Games, P2P Applications, Web Agents and Screensavers . . . . . . . . . . . . . . . . 27
B.6 Document Search, Vulnerability Scanners and Network Sniffers . . . . . . . . . . . . 28

C Policy Repository Operations 29

1



1 Introduction

This document describes the key issues and operations involved in the use and management of
MCC that a system administrator must be familiar with for its proper deployment in an enterprise.
It discusses the various components of MCC and how they interact with each other with general
guidelines for the system administrator to make the entire enterprise secure.

The primary purpose of MCC management infrastructure is to enable users to select security
policies that should be applied to different applications. The management interface must allow for
selection of one of previously defined policies, or development of customized policies for use with
a particular application. It should be integrated well with other management tools such as those
used in software installation.

There are two basic paradigms for building security tools, namely, the “invisible” security
paradigm and the visible security paradigm. The former is required in a scenario where the end-
users are typically unaware of the security mechanisms and threats. For example, the Secure Socket
Layer and Virtual Private Networks are largely designed to be invisible to most users, and is hence
fairly easy to use for naive users. On the other hand, the visible security paradigm is more suited
to an operating environment in which the users are well-informed of security issues. In this case,
a much richer interface is needed that exposes all relevant security details conducive to the user’s
understanding of the security risks involved. For example, intrusion detection systems and network
firewalls should be administered only by users with an in-depth understanding of security issues.

In practice, neither paradigm works well by itself. What is typically needed is a combination
that allows security mechanisms to be largely invisible to naive users, while expert users and security
administrators seek configurability and controllability. To address these conflicting requirements,
we have developed two management interfaces for MCC. The first one, exposed to naive users, is
very simple, and seldom requires users to make security-critical decisions. The second interface,
designed for security administrators, exposes much more information to users, and offers a great
deal of control. This expert interface also provides the ability to control and configure the manner
in which the naive user interface operates.

The rest of this report is organized as follows. Section 2 presents the MCC system architecture
in terms of the infrastructure required for the operating environment. An overview of the operations
of MCC is provided in Section 3. Section 4 provides a flavor for the development of security policies.
Section 5 follows this with an extensive guide to security policy authoring using the MCC tool. A
detailed guide to setting up the MCC system is presented in Appendix A. Finally, Appendix B
will give our detailed classification for applications.

2 System Architecture

The MCC software is composed of several components that work in conjunction with each other as
illustrated by in Figure 1. Two of these components, namely, the policy repository and the model
repository may be accessed over the network. While the model repository may be hosted by a
third party, the policy repository is expected to be within an organization’s Intranet. This section
discusses in detail all the components that make up the MCC environment.

2.1 Control Center

The Control Center is the primary component of MCC that coordinates with all other MCC compo-
nents for the proper working of the system. Specifically, it interacts with the model repository, the
policy repository and other components that we collectively refer to as the support infrastructure.
(In Figure 1, the support infrastructure consists of the policy verifier, execution monitor and the
kernel-resident interceptor.) The Control Center is active during the entire runtime of MCC. This

2



Figure 1: System Architecture

component can work in two distinct modes of operation:

• Normal User Mode: works in background in case of a naive user

• Expert Mode: becomes an interactive GUI-based interface when MCC is run by an expert,
e.g., system administrator

In case of a naive user, the policy selection and verification happens without the knowledge of the
user, in keeping with our invisible security paradigm for such users. However, when MCC is run by
an expert, the Control Center displays untrusted applications in the GUI before they are allowed
to run. She can view the policies applicable to each application, verify the model against any of
these policies, select an appropriate policy for runtime enforcement and allow the application to
run under the control of an execution monitor. The user may also choose to abort the application
in some cases, for example, if its model violates all the policies applicable to it. Other times, she
may refine the policies to permit the execution of the application. Finally, if she is the system
administrator, she can enable the selected policies for other users.

2.2 Model Repository

In this document, we assume that the models may be furnished by either the code producer or a
third party. The model repository may be local to the enterprise, or be hosted by a third party.
These program models are indexed by a secure hash value obtained from the program’s executable,
specifically, MD5. The MCC Control Center will download the model and associated information
like vendor and version by specifying this hash value, ensuring a secure association between the
program and the model. We use an SSL connection to authenticate the model repository server
and download the information through an encrypted channel. In addition to the model, the model

3



repository hold information about the application name, version, and vendor.

2.3 Policy Repository

In our current implementation, we have used a Berkeley database to store security policies. Along
with the policies, it also stores metadata information about the policies, like the commonly identi-
fiable name of the policy and the textual description of the policy. The operations on the database
are done over a secure connection through a servlet deployed in a lightweight servlet container.
Each policy or a set of policies is indexed by the following triple of attributes:

• Application name. This attribute specifies the name of an application, including its version
number. Clearly, access requirements of an application will depend on its functionality, and
hence security policies will be dependent on the application.

• Vendor name. The level of trust placed on an application will be determined to a large extent
by its vendor, and hence this information is useful in making policy decisions.

• End-user. This attribute identifies the end-user that is attempting to access an untrusted
application. Some users may be more trusted. or be more knowledgeable about security, as
compared to others. Thus, the set of policies allowable for expert users are likely to differ from
those permitted for a naive user.

To enable reuse and to simplify policy management, a notion of groups is introduced for all three
attributes. Application groups are called as application classes. For instance, all versions of a
particular application may be grouped into one class. Application classes may be nested, e.g.,
multiple application classes may be grouped together into a document viewer class. Finally, there
is a special group called all that includes all the applications in the enterprise. It is likely that
policies would be specified on the basis of an application or application class. It is less likely that
policies would be associated with specific versions of an application.

Vendors are organized into vendor groups. We don’t envision a deep hierarchical structure for
groups for vendors. Instead, there may be a few groups, each corresponding to a different degree
of trustworthiness.

Users are also organized into groups, and this grouping may be based on trustworthiness and/or
knowledgeability of users.

The groups are organized into a hierarchy. The root of the hierarchy is the group called all.
In the case of users, this group includes all users; for applications, it includes all applications; and
for vendors, it includes every vendor. The leaves of the hierarchy are the specific users, application
versions (or applications), and individual vendors.

The policy repository takes four attributes as inputs: application, application class, vendor and
username. It returns all the matching policies. Matching is performed first using application,
application class and vendor attributes, and then based on the user attribute. The first stage
matching proceeds as follows:

• If there is an exact match for the application name, then vendor information is ignored, and we
proceed to the next stage. (The assumption here is that the application name already implies
a specific vendor, so there is no reason to look up on the vendor name.)

• If there is no match based on application name, then a match is attempted on the basis of the
application class, and then vendor information

• If there is no match for the application class, then policies acceptable for the vendor specified
in the query are used. These are policies that have been associated with the user group all.

The policies returned by the first stage are refined, based on matching with user information.

4



If there is a match for multiple groups, then the most specific groups are used. In terms of the
group hierarchy mentioned above, this means that a match would be returned for a group only
if none of its subgroups (i.e., nodes that are descendants of this group) match the query. Note
that this definition still permits multiple policies to be returned, e.g., if an application belongs
to multiple application classes. For each of the matched policies, the policy repository returns
the corresponding application class, vendor, and user (or user group) information. The detailed
contents of the policies themselves are not relevant to the repository – it is up to the consumers of
this data to define the details of what goes into a policy. (See Section 5 for details.)

Our interpretation for multiple matching policies is that any of the returned policies may be
chosen and applied by the user, so it is the responsibility of the system administrator to ensure
that every policy returned by the policy repository provides adequate security for the enterprise.
However, in terms of implementation, the naive user can be given the option of choosing which
policy should be enforced or the first policy in the list that can be successfully verified is used. For
the expert user, the policy list is explicitly shown, and the user asked to make a selection.

2.4 Support Infrastructure

The support infrastructure consists of the kernel interceptor, policy verifier and execution monitor,
each of which is described below:

• Kernel Interceptor Module: This module is a kernel-resident loadable module that intercepts
all execve calls made in the system. It examines the argument to this system call to determine
if an untrusted executable is being executed, and if so, notifies the Control Center. On receiving
a response from the Control Center, the system call is either aborted or allowed to proceed.

• Policy Verifier: This component is used to check if a model satisfies a policy. The Control Cen-
ter invokes the Verifier after retrieving policies and applications from appropriate repositories.
The response from the Verifier indicates if the verification was successful or not. In the latter
case, a compact description of the violations is provided by the Verifier to the Control Center.

• Execution Monitor: If the Control Center permits execution of an untrusted application, then
the Execution Monitor comes into picture. It is responsible for enforcing policies selected by
the Control Center. The Execution Monitor consists of two components: a detection engine
(for detecting policy violations) that is generated from the policies, and a runtime environment
for intercepting system calls and delivering them to the the detection engine. More information
about the policy language can be found in [1]. A description of the runtime environment can
be found in [2].

Note that policy violations are possible even for verified policies because the corresponding
models can in general be incomplete, or because untrusted code is exhibiting potentially ma-
licious behavior that isn’t captured by the model. To deal with policy violations, two kinds of
violations are identified: soft violations and hard violations. Soft violations are indicative of
unusual but not unacceptable behavior, and the user decides (through the use of a dialog box)
whether to allow such behaviors. Hard violations indicate unacceptable behavior, and code
execution is terminated immediately by the Control Center.

3 Overview of Operation

The Control Center is activated when the MCC kernel interceptor module (see section 2.4) detects
execution of untrusted code. It then contacts the model repository to download the corresponding
model and vendor information.

5



Untrusted code1 may arrive at an end-user’s computer in two ways. First, it may be implicitly
downloaded and executed, e.g., by clicking a hyperlink. Second, it may be explicitly downloaded
and installed. As far as MCC is concerned, the distinction between the two cases is not very
significant, so we don’t worry about this distinction from here on.

Note that in some cases, one may simply execute a trusted application with untrusted input,
e.g., view a file with a PDF viewer. Since untrusted input can potentially subvert a trusted
application, it is prudent to treat such applications themselves as untrusted, so that the end-user
can be protected against damages due to a subverted application. This approach is particularly
appropriate in light of prominent vulnerabilities that have been recently been discovered on multiple
platforms on document and multimedia display software.

Next, we explain the operational steps with respect to the two modes of operation: normal
user and expert. At this point it is assumed that the MCC software is setup and appropriately
configured for the enterprise. Please refer to Appendix A for a detailed setup guide.

3.1 Operations in Normal User Mode

• Trapping the application. The first thing that MCC does when a new application is run is
to check whether it is trusted or untrusted. The Kernel resident Interceptor intercepts every
execve system call and performs this check. If the application that is about to be executed
is an untrusted application then it contacts the Control Center and provides the application
name. Otherwise, application execution is allowed to continue, as it would in the absence of
the kernel interceptor.

• Obtaining the program model. The Control Center will compute the MD5 hash of the
program to be executed and formulates a request containing this hash value and sends it to the
model repository. As the program models are indexed by the hash value of the program in the
repository, the correct model is downloaded. Along with the model, the Control Center will
also receive an application name, version and vendor information for the application. As the
model repository can be located on third party network, and the communication is through the
Internet, https protocol (http over SSL) is used to ensure secure transmission of the model.

• Obtaining the relevant security policies. The policy repository is queried by the Control
Center by providing the application name, application class, vendor and the identity of the user
that invoked the untrusted application. The policy repository returns one or more policies that
match the values of these attributes along with the metadata information for those policies,
like the user identifiable policy names and textual description of policies.

• Policy Verification. If a single policy is returned by the policy repository, it is sent to
the policy verification module for verification, together with the program model. If multiple
policies are returned by the policy repository, then verification is attempted on each one of
them, and the first policy in the list that verifies successfully is used. If none of them can be
verified, then a policy violation error message is produced and application execution is aborted.

• Running the program with policy enforcement. If the policy verification fails, the
Control Center displays a message to that effect and notifies the kernel interceptor to disallow
the execution of the program. See Figure 2. On the otherhand, a successful verification will
result in the execution of program.

During execution, the selected policy is enforced on the program, thereby ensuring that the
policy won’t be violated even in cases where the model is incomplete, or the untrusted applica-
tion turns out to be malicious. As mentioned earlier, two kinds of policy violations are possible

1Throughout this document, the term “untrusted code” is used to refer to code that is not fully trusted, and hence

needs to be executed under the control of MCC.

6



Figure 2: MCC Control Center displaying Policy Verification failure in Normal User Mode

at runtime. Hard violations cause the program to be terminated, and an error message to be
displayed to the user, and possibly logged on a central server. In the case of soft violations,
the user is expected to make a decision as to whether the access should be permitted or not. A
policy-specified prompt is displayed to the user, and if the user answers “yes” then the process
is allowed to continue. Otherwise it is terminated. Figures 3 and 4 illustrate the two cases.

Figure 3: Example of a soft violation dialog-box for a text editor Gedit

Figure 4: Example of a hard violation error message

3.2 Operations in Expert mode

In the expert mode, MCC provides a powerful wizard based interface that offers a significant degree
of flexibility for the user in terms of policy selection. For instance, an expert user, if he is given
appropriate privileges by the MCC system administrator, can create a new policy for an application,
rather than simply using one of the policies returned by the policy repository. The process of setting
up security policies for programs is described in section 5. This section talks about policy selection
and verification in expert mode.

The initial few steps for running a program in MCC’s expert mode is similar to that of normal
user mode.

• Application execution is trapped by the Kernel Interceptor module

• The Control Center downloads the program model and related information for the program
from the model repository

7



• The Control Center queries the policy repository for the security policy corresponding to the
program. In return it receives one or more policies, along with the metadata for the policies.

The remaining steps differ from the normal user mode and are explained below:

• Policy Verification. A wizard guides the user through a step-by-step process of selection of
policy, changing policy rules and parameters, enforcing the desired policy and resuming the
monitored execution of program. A new wizard is launched for each instance of execution of
the untrusted application. This process has three steps and is described below.

Figure 5: The Information Panel of MCC Control Center wizard for XMMS

1. Information Panel. This panel is displayed when an untrusted application is launched. It
tells the user an untrusted application was executed and will be monitored by MCC. Only
the name of the monitored application is shown. This screen does not provide options to
select or modify application policies. See Figure 5.

2. Policy Selection Panel. It displays all the policies returned to the Control Centre. At this
point, the user can select the desired policy that he wants to enforce. It provides for deletion
of policies for that application that the expert user thinks might no longer be necessary.

Each policy returned by the policy repository consists of several components described
below. Each of these components is mapped to a corresponding user interface control in
Figure 6. This mapping enables the user interface design to be decoupled from the specifics
of the policies that are supported.

(a) Name of the Policy. The commonly identifiable name of the policy. Usually same as
that of the application.

(b) Application name, class, vendor and related information.

8



Figure 6: The Policy Selection Panel of MCC Control Center wizard for XMMS

(c) Description. High-level textual description for the policy

The list on top in Figure 6 shows the list of policies retrived for a particular application.
Here xmms happens to have a specific security policy, named XMMS, configured for it. If
some application has multiple policies, policy name for each is displayed here. The user
can select any policy he wants to be enforced. Different policies can have same name.
The “Specifications” section can be used to distinguish between such policies and select the
appropriate one. As policies are selected, the Control Center maps each piece of information
corresponding to that policy to an appropriate component in the pane.(Section 2.3 outlined
the set of information that is returned for each policy by the policy repository).

3. Rules Panel. This pane provides controls to modify the rules and/or parameters for the
selected policy. It is illustrated in Figure 7. The components of rules panel are described
below.

(a) Policy details. This component specifies the actual policy, written in MSPL language
described in [1].

(b) Rules. High level names of the rules comprising the policy (refer to Appendix B for a
full description of the rules). A checkmark next to the rule indicates whether that rule
is enabled or disabled. Only those rules with a checkmark are included in verification, or
enforced at runtime.

(c) Rule Parameters. Each rule is associated with a set of parameters. These parameters
and their values can be viewed by clicking on the “?” button next to the rule. Section 5.2
explains the concept of parameters in detail.

9



Figure 7: The Rules Panel of the MCC Control Center wizard for XMMS

In addition, the modified rules can be overwritten onto the existing policy or a new policy
with a desired policy name can be created.

After making any changes to the rules and/or their parameters, the user can click on the
“Verify” button to verify the modified policy against the application’s model. If the verifi-
cation completes without any errors, a message is displayed that conveys the same. If there
are violations, an error message is shown, with the violating rules highlighted in red. (See
Figure 8.) The user can either abort the program at this time by clicking on the “Abort”
button, or allow execution to proceed any way by clicking the “Run” button. More likely, the
user will review the verification violations and proceed to refine the rules. More information
on interpreting the verification violations and fixing them are dealt in Section 5.

After a successful verification process, the administrator can proceed to run the program
by clicking the “Run” button. Only those rules with a checkmark are enforced.

4 Security Policy Development

A policy is a set of rules that govern the execution of an application, ensuring that it does not
hamper the security of the enterprise. MCC has different policies for different types of applica-
tions based on their functionality and access needs. The system administrator is responsible for
maintaining these policies.

The high level objective of MCC policies is to protect the integrity and confidentiality of the
system on which MCC is deployed. MCC policies are typically focussed on integrity for two
reasons. First is a technical reason – confidentiality policies cannot in general be enforced by
simply monitoring security-critical operations made by a program; they require an examination

10



Figure 8: Message indicating verification violations for XMMS in Expert mode

of the internal logic of the program as well. Specifically, only coarse-granularity confidentiality
policies can be enforced, e.g., not permitting an application to communicate outside an enterprise,
as opposed to finer-granularity policies that allow such communication but regulate the source and
content of this information. Second, integrity is typically much more important that confidentiality
in most business settings where untrusted applications are used.

Another point to be noted about MCC policies is that they can bound the risk of damage
due to a misbehaving application, but cannot provide any assurances about its correct operation.
As such, it would be inappropriate to rely solely on MCC for those applications whose correct
operation is essential for security. We identify such applications as security-critical applications,
and rely on other mechanisms (such as signed code from trusted vendors) to provide an adequate
level of security. These mechanisms may be used in conjunction with MCC to provide additional
assurances, especially regarding privacy and confidentiality.

4.1 Integrity Policies

Based on the notion of security-critical applications, we can formulate the following policy to ensure
system integrity:

Permissive policy: unless the vendor of a piece of software is trusted sufficiently, it should not
be permitted to interfere with the operation of security critical applications. The system
administrator at this point can select any one of the policies (if more than one are present).

• it should not be permitted to modify the executables, libraries, or configuration files used
by security-critical applications or the OS kernel itself

• it should not be permitted to interfere with security-critical processes by using mechanisms
such as signals, or by accessing or modifying resources used by these processes

• if a security-critical application is believed to contain vulnerabilities, and/or the untrusted
code is suspected to be malicious, then any input files accessed by this security-critical
application should not be allowed to be modified by the untrusted application

In a sense, the above statement puts a ceiling on the maximum privilege that can be provided to
untrusted code. The difficulty in using this policy is that we need an accurate list of security-critical

11



applications. If some application is accidentally left out of this list, then a malicious untrusted
application can cause damage to the system in spite of MCC protection. This difficulty can be
avoided by the following policy:

Conservative policy: If an untrusted application only creates new files or modifies files that are
never accessed by any application other than itself, then this application can be run securely,
without interfering with the operation of any other application (trusted or otherwise) on the
system.

Note that the conservative policy is equivalent to the permissive policy when the list of security-
critical applications includes every application installed on the system. One can use a policy that is
in between, e.g., using the permissive policy with a safe upper bound on the list of security-critical
applications.

In order to actually enforce these policies, we need to classify all the files in the system into two
main categories with respect to each application:

• Owned Files: The files that are created by an application during its installation are said to
be owned by the application. The application requires these files in order to run and provide
the functionality it is meant for. The configuration files created by a user to customize a
particular application are, however, not considered to be owned by the application. (But a
“preferences” file that is created and modified by the application is considered to be owned by
the application.)

An application can read, rename, delete, or modify owned files, or create new files in owned
directories without being expected to cause any harm to the overall system integrity, and would
likely be allowed by typical policies used with MCC.

When MCC starts, it loads a preconfigured database of all owned files for all untrusted ap-
plications. This database is frequently looked up in order to enforce policies as they tend to
rely on ownership information. Whenever a new application is included for running under the
control of MCC, the database has to be updated with the names of the files owned by that
application. This is typically done from the information obtained during software installation
– in our implementation, we use the RPM (RedHat Package Manager) database that is a part
of all RedHat Linux instances to get this information.

• Security critical Files: The files that are crucial for the security of the system are called Secu-
rity critical files. This category will typically include all the files in system directories such as
/bin, /boot, and /usr/bin, any files owned by the packages corresponding to these applications,
their configuration files, and so on. A list of directories containing security-critical applications
is provided by the system administrator, and the list of security-critical files is automatically
derived by MCC from this information. Moreover, untrusted applications are generally pre-
vented from reading configuration files owned by these security critical applications if they
subsequently access anything outside the enterprise network. This restriction can be relaxed
by a system administrator as appropriate.

Please note that this classification is not an exhaustive one but seems to be a good starting
point for building a practical system. The list of owned and security critical files is constructed as
follows:

• from software installation data, as described earlier. The input required is the set of security-
critical applications, which may be specified using regular-expression patterns.

• by monitoring creation of files by MCC applications. This will enable identification of files that
are created by untrusted code, and hence can be considered to be “owned” by the untrusted
code.

12



• by relying on OS-specific conventions (e.g., directory names and files beginning with the “.”
character in user home directories are used in UNIX to store user-specific configuration data)
and knowledge about security critical files and directories.

4.2 Confidentiality Policies

Confidentiality policies can be developed by considering the flow of potentially confidential infor-
mation. In general, we want to restrict confidential information as follows:

• prevent flow of confidential information into public files

• prevent flow of sensitive information from files into the network

Information flow can be prevented by restricting untrusted application from:

• reading sensitive files, or,

• writing to the network or public files

In order to concretely define policies that protect confidentiality, we need to identify the list of
files whose confidentiality needs to be protected. At one extreme, we could consider every file on
a host to be confidential. This can have the unfortunate side effect of producing security policies
that will disallow execution of most applications. To obtain useful security policies, one may have
to take the step of identifying commonly accessed files that may not contain highly sensitive data,
e.g., the name of a host. More generally, we envision that OS-specific conventions can be used to
identify files that contain information that is easily obtained or predicted. We can consider every
file other than these to be confidential.

4.3 Classification of Applications

Based on our discussion of high level policies in the previous section, four basic categories of
applications can be identified:

• Restrictive integrity policy, Restricted reads, Unlimited network access and creation/modification
of files that don’t compromise integrity (R/RR/UNW)

• Permissive integrity policy, Restricted reads, Unlimited network access and creation/modification
of files that don’t compromise integrity (P/RR/UNW)

• Restrictive integrity policy, Unrestricted reads, Restricted network access and creation/modification
of files (R/UR/RNW)

• Permissive integrity policy, Unrestricted reads, Restricted network access and creation/modification
of files (P/UR/RNW)

Based on our study of applications in Linux, we have identified the following major classes of
applications in terms of their functionality. Along with each application class, we specify which of
the above categories that the application is in.

1. Multimedia and Document viewers (R/UR/RNW). Includes viewers for common doc-
ument types such as PDF, PostScript, and Word; image viewers like xview; and media players
like xmms.

2. Archive Creation and related utilities (P/UR/RNW). Applications in this category
include atool, bzip2, rar and so on. Also included are format conversion applications such as
antiword, ascii2pdf and html2latex.

3. File Organization (P/UR/RNW). Example applications in this category include photo
album generators (album, picturepages, etc.), tools for renaming and reorganizing files (e.g.,
rta and mmv file utlities).

13



4. Editors (P/UR/RNW). Includes image and photo editors like gimp, text editors like emacs,
web page editors, and so on.

5. Games, P2P Applications, Web agents and Screensavers (R/RR/UNW). Includes
applications like web crawlers, Instant messengers, games, web browsers, news readers.

6. Document Search, Scanners and Network Sniffers (R/UR/RNW). Example applica-
tions include tcpdump (network sniffer), snort (Intrusion detection system), webstone, SSLperf

(performance monitor), http-analyze, nettracker (log file analyzers).

MCC comes with a default policy for each of these application classes. We defer the detailed
discussion of these policies to Appendix B.

5 Security Policy Authoring using MCC

The policy language used in MCC, called MSPL (MCC Security Policy Language), is described in
detail in [1]. Any one who wants to develop a new security policy from scratch needs to be familiar
with this language, and develop the policies in this language. In addition, they need to structure
their policy specifications in such a way that that it is compatible with the policy authoring wizard,
so that the policies could be further customized. This is described further in Section 5.1. Here,
we focus on the easier task of customizing policies that have already been specified in MSPL. This
customization of previously defined policies is achieved using the following mechanisms:

• Enable/disable rules within a policy. An MSPL policy consists of a collection of rules, each of
which regulate a particular aspect of application behavior, e.g., files created by the application
or overwritten by it. The wizard interface allows an expert to enable or disable rules within a
policy.

• Modify policy parameters. Each MSPL policy may use parameters. The wizard allows users
to examine these parameter values and modify them as needed.

The Rules Panel allows an expert to enable or disable rules within a policy. It also allows users to
examine specific parameters for each rule and modify them as needed.

These modified policies may be saved to the policy repositories and/or associated with specific
applications. A system administrator (called “sysadmin” from now) will have total control over the
policy repository, and can set policies that are allowable for other users. An expert user without
system administration privileges will be able to set policies for himself, provided this is permitted
by the sysadmin. We explain the process of policy authoring by taking an example where a new
program xifrac, a 3D tetris like game for Linux, is configured for use as an untrusted application.

1. The sysadmin starts MCC Control Center (in expert mode) and then launches xifrac. As
explained earlier, the program model is downloaded from the model repository, and the policy
from the policy repository.

2. The sysadmin clicks on “Next” button after verifying that application name showed by MCC
is correct. Since xifrac is unknown to the policy repository, it returns a default set consisting
of six policies, each corresponding to an application class described in the previous section.
See Figure 9.

3. The sysadmin realizes that the best match for xifrac would be a policy for “Games and IM.”
She selects this policy for xifrac. She changes the specification (Application, Application Class,
Vendor, User) to (xifrac, games, all, all) and gives an appropriate description to help identify
the behavior of the new policy. She then clicks on “Next” to move on to the rules panel.

4. The rules panel presents the user with an array of policy rules and a button to modify the
parameters associated with each, if any. In order to determine whether the selected policy is

14



Figure 9: The Policy Selection Panel of MCC Control Center Wizard for xifrac

satisfied by xifrac’s program model, the user performs the verification process for the default
selection of rules by clicking on the “Verify” button.

5. The verification process generates one violation as illustrated by Figure 10.

6. The user double-clicks on the rule marked in Red in order to learn about the verification
violation. She notices that the violation for the rule named Restrict unowned file overwrite is
for the parameter WRITABLEFILE. This means that the verification violation has occured
due to the parameter WRITABLEFILE being too restrictive. In general, a rule can be violated
by one or more parameters.

7. She clicks on the “View” button in the Violations dialog box in order to view all those values
of parameter WRITABLEFILE that caused the violation. This will bring up a dialog box that
shows all the violating values. See Figure 11. It indicates that xifrac will write a file ifrac.scores
to the user’s home directory and this is not allowed by the “Games and IM” security policy.
Hence the violation. Now the sysadmin has two alternate courses of action:

• If the violating values do not come across as a threat to the saftey of the system, they can be
added to the WRITABLEFILE parameter so that in future, there are no violations on this
parameter. This also means that when xifrac is allowed to run, it will be allowed to write to
/home/foo/ifrac.scores. Since this is a reasonable option, she will click on “Add” to add
the selected value to the WRITABLEFILE parameter. The Violating values dialog box also

15



Figure 10: The dialog notifying the verification violations for xifrac

has an optional textbox for entering an aggregate value which is an expression terminating
in ’*’ (i.e., a restricted form of regular expression). For instance, if the list consists of many
filenames from a directory /home/foo/xifrac/, an aggregate value /home/foo/xifrac/* can
be added to the parameter instead of adding all of the listed values. This option is just for
convenience in managing the parameter.

In case that the violating parameter is a directory path, the values are displayed as a file
system tree. In this case, any node along the path can be added. This has the same effect
as adding a prefix of the violating parameter followed by a wild card.

• If the violating values indicate some malicious behavior or just some action that is not
acceptable, it is a warning to the sysadmin that the program could potentially do the same
action if it is run. This highlights one of the main benefits of program verification. It can
infer the actions of a program from its model and check whether it complies with a given
policy as long as the model stays correct. At this point, the sysadmin can dismiss the dialogs
and click on “Abort” to abort the program in question, and perhaps uninstall it.

If the sysadmin decides to take the former action, she will proceed to inspect the verification
violations in other rules as well and possibly update other violating parameters as well.

8. Finally, when she is satisfied with the program behavior and decides not to abort it, the
sysadmin commits all the changes made to the policy into the policy repository by clicking
on the “Save As” button and specifying “XIFRAC” as the policy name. This will create a
new policy in the repository that is indexed by the specification values (xifrac, games, all, all)
selected by her. Future invocation of the same program “xifrac” will result in this new policy
being selected for verification and enforcement.

If the new policy is to be overwritten over the existing policy, the user should click on “Save”
button. The previous policy will be overwritten be the new policy possibly with new name,
description, specification triplet and rules.

9. When a program that has been configured in MCC is about to be uninstalled, the policies
created for it can be removed by starting the program and then clicking on the “Delete”

16



Figure 11: Viewing the parameters and their values that caused verification violations

button in the policy selection panel of the wizard. This will remove the customized policy
from the policy repository and then terminate the program.

5.1 Setting up new policies from scratch

An important requirement in the design of policy-authoring tool is to make it independent of any
specific policies, or knowledge specific to certain policies. Instead, the tool needs to be able to
handle arbitrary policies, while continuing to provide a user-friendly interface. Below, we describe
how we accomplish this.

When a new policy is being developed from scratch, it is to be specified in a particular format
so that the policy can be added into the policy repository and then fine tuned using the policy-
authoring tool. This is done by writing down all the basic set of information in text files and loading
them into the repository. See Appendix C for the complete syntax and the steps for updating the
repository.

The first step is to indicate the unique identifiers for the policy: The Application Name, Appli-
cation Class, Vendor Name and the User Name. One or more of the identifiers can contain “all” if
the information is unknown or is not relevant. When the policy will be put to use, these identifiers
are used for searching the policy in the repository. This is followed by the user identifiable policy
name, a high-level textual description of the policy so that it may be easily understood by system
administrators that wish to customize or refine this policy.

Secondly, the policy must be divided into a collection of rule subsets, each of which indicates a

17



security property that should be satisfied. A rule subset contains one or more rules that are coded
in the MSPL language. Indicated along with a rule subset are a simple name, a short, logical,
higher level textual description and possibly one or more parameters to provide customization as
required by the logic of the ruleset. A rule can either make use of already defined parameters or
declare new parameters. Newly declared parameters must be defined later. For each rule subset
described as above, the policy-authoring tool lists it with the simple name along with the textual
description provided for that rule subset.

Third, all the parameters newly declared by the rules should be defined. The properties that
are to be specified for a parameter are its name, scope, type, a brief textual description of the
parameter and a list of domain values (optional). The parameters are stored separately from the
rules themselves so that they may be easily configured separately. More details on parameterization
are presented in the next Section.

Finally, when all the aspects of the policy are defined, they can be “imported” into the policy
repository by running the loader program against the text files containing the above specification.
Once loaded, the policy can now be viewed through the policy-authoring tool by just starting the
application for which the policy was configured. The tool allows complete customization of the
policy as outlined in Section 5.

A key component of customizable policies is that of parameterization: decomposing the policies
into a set of parameters. This parameterization largely controls how verification results are pre-
sented in an intuitive fashion to an expert user, and how much customization is possible. Policy
parameterization is further described below.

5.2 Policy Parameterization

Each policy’s behavior depends on a set of parameters. The parameters vary from a list of files that
can be read/written by an application without raising a security violation to the list of external
programs that it can execute. These parameters also act as exceptions to the general rules that
the policy contains. For example, a policy for an editor may contain a rule that it is prohibited
from reading files not owned by it. However, due to its design, it may have to read one file that it
doesn’t own. Such a case is best handled by combining the ownership rule with an exception for
this file; the alternative of disabling the ownership rule and permitting all files to be read by the
application would be too drastic. Since these exceptions may vary with deployment, it is best to
specify the exception using a parameter whose value can be modified using the policy-authoring
tool provided by the rules panel of MCC wizard.

Again, in order to make the policy-authoring tool operate with newly created policies, the
parameterization has to be done in a certain way. Specifically, each parameter must be associated
with a description that can be displayed. The type of its value needs to be specified. In addition,
we need to specify if the input is free-form or is supposed to take a value for a specified list of
values. We illustrate parameter specification using the default set of policies that we use for all
applications. These policies make use of the following parameters.

• READABLEFILE: Files allowed for reading.

• READABLEDIR: Directories in which files can be read.

• SECURITYLEVEL: The level of security desired with OFF indicating no security and HIGH
indicating maximum security.

• WRITABLEFILE: Files that can be created, renamed and modified.

• WRITABLEDIR: Directories in which files can be modified.

• ALLOWEDMIMETYPE: The mime types of files that can be created, read and modified.

• ACCESSIBLEDEV: Devices allowed for opening, reading and writing.

18



• EXECABLEAPP: Applications allowed for execution.

Note that these parameter values are in addition to the default values that a policy gets through
the rules that it comprises of. For instance, READABLEFILE might not have any value assigned
to it but that does not mean that the policy prohibits the application from reading any file. The
files that the application is allowed to read due to the rules that it contains are still readable by
it. So, if the policy contains the rule that allows it to read owned files, it can read all the files
owned by it. Also note that not all parameters are applicable to each policy. For example, the
EXECABLEAPP parameter will not be present for a policy of an application if the policy does
not specify any kind of restriction on the application with regards to executing other applications.
Finally, these parameters are shared across the rules in a policy. If multiple rules in the policy
make use of the same parameter, the same parameter values will be shared by them as well. This
is reasonable since the meaning of parameter remains the same in different rules.

In the wizard, the parameters and its values for a rule can be viewed by clicking on the ”?”
button next to the rule name in the rules panel. Figure 12 illustrates this.

Figure 12: Viewing the parameters and their values for a rule

The Policy Repository also stores the details of each parameter in addition to the actual policies.
This makes the entire MCC independent of the parameters. Therefore, new parameters can be
added, old parameters can be removed and existing parameters can be modified without affecting
the execution of MCC. Even the GUI adapts itself depending on the type of the parameter. Each
parameter has the following attributes:

• Name: The name of the parameter. For example, ACCESSIBLEDEV.

• Scope: The scope of a parameter can be private or public. Private parameters are not exposed
to the end-user and are used solely for parameterizing the rules. They determine what action
should be taken if a particular rule is violated and are constant for a particular policy. Private
parameters must not be changed. Only public parameters can be viewed and edited using the
Control Center’s policy authoring scheme.

19



• Description: Every parameter has a comprehensive description that is displayed to the user
when she tries to edit it.

• Domain: If a parameter can take values only from a particular domain, then the domain
must be specified for it. For example, SECURITYLEVEL must take any one value of four
possible values: OFF, LOW, MEDIUM, or HIGH. This domain must be stored with the Policy
Repository.

• Type: The type of the parameter is used to determine the type of GUI the tool must present
for a particular parameter. The different values that the type attribute may have are:

– SINGLE: The parameter can only have one unique value which is not restricted to any
domain. There are no such parameters as of now but this type has been included for
extensibility. Therefore, if a new parameter is introduced in the future which can have only
a single value with no restrictions as to what that value may be, it can be incorporated
without any changes in the software.

– MULTIPLE: The parameter is multivalued and it can assume any values. For example,
the WRITABLEFILE parameter can be a list of a number of files whose names are not
restricted by anything but the file naming rules on that operating system.

– SINGLE FROM DOMAIN: The parameter can have exactly one value chosen from a fixed
domain. For instance, the parameter SECURITYLEVEL can only have one unique value
that can only be one of NONE, LOW, MEDIUM, or HIGH.

– MULTIPLE FROM DOMAIN: Parameters with this type can any multiple values that can
be chosen from a fixed domain. Parameters such as ALLOWEDMIMETYPE can have mul-
tiple values but since there are only a fixed number of standard mime types, this parameter
cannot have any arbitrary value. Hence, the values are selected from a particular domain
comprising of the standard mime types.

The tool’s GUI manifests itself in a different strucute depending upon the type of the parame-
ter. For example, if a parameter can assume only one value from a fixed domain, then the GUI
has a selectable drop down list from which only one value can be selected. This allows MCC
to have a dynamic GUI that assumes an interface depending upon the kind of the parameter
that is being edited by the user.

The values of the parameters for a particular policy are stored in the policy repository as part of
the policy. Since the parameter attributes are independent of the policy, they are stored separately
to avoid duplication and redundancy in the repository.

20



A MCC Software Setup

This section describes the steps for for installing and setting up the MCC software. The process
can be broadly classified into the following parts:

• Building the MCC components

• Build the program model generator (optional)

• System Configuration

Below we describe each of these parts in detail.

A.1 Startup Script

The script to control the startup/shutdown/setup of various components of MCC is present in the
scripts directory and is called mcc-ctrl.sh. This has to be copied to the user’s $HOME directory in
order to operate the MCC software. The usage of the script is as follows:

./mcc-ctrl.sh <component> <action> [expert] [chooser]

component is:

ms => modelserver

ps => policyserver

cc => controlcenter

ki => kernel interceptor

all => all the above components

action is:

start

stop

setup

cleanup

- Expert switch applies to control center and starts the Control

Center in Expert Mode.

- Chooser switch applies to control center. It allows user to choose the

Application Class in the Naive user mode. It has no effect in Expert mode.

The “chooser” command line switch allows the user to select the class of the application when MCC
is running in Naive user mode. With this option the MCC Control Center uses the user specified
application class as an additional hint for selecting one or more policies from a set of matching
policies were retrived from the repository.

If the components are started individually, it is recommended to start them in the order as
listed above. Shutting them down has to be done in reverse order. The start order is : ms, ps, cc,
ki and the stop order is: ki, cc, ps, ms.

A.2 Building the MCC components

The MCC codebase consists of source code for all the components that make up the system. The
top-level directory for all the components is called “mcc” and all references to files below are with
respect to this directory. The components have to be built and installed at appropriate locations
for the system to work. This task is automated by the mcc-ctrl.sh script and can be done as follows:

mcc-ctrl.sh all setup

If for any reason, the source has to be re-built, the binaries can be cleaned before doing so by
doing:

21



mcc-ctrl.sh all cleanup

The setup operation performs the following actions:

• builds and installs the Kernel Interceptor module into the system modules directory. The install
requires superuser permission which means that the user should be capable of performing a
“sudo” operation.

• builds and installs the Policy Compiler. The compiler takes the policy written in MSPL as the
input and generates prolog and C code corresponding to the policy. The prolog code is used
for policy verification along with the model (which is also in prolog form). The C code is used
for building the execution monitor.

• builds the MCC Control Center wizard java application.

• builds the Policy Servlet which retrives and returns policies from a Berkeley DB repository.

• populates the Policy Repository. The default set of policies for all the application classes and a
few chosen sample applications are present in the directory bdb in a database-friendly format.
The default database state is initialized by running the script populateBDB.sh in that directory.

• builds and installs the system call tracer. This is the part of the execution monitor that
performs the tracing of all the system calls made by an application running under MCC.
The tracer is installed into /usr/local/bin and the tracer library into /usr/local/lib, which
requires superuser permission (sudo capability).

• builds the Policy Verifier.

Note: Sometimes, /usr/local/lib is not present in the system’s library search path, which can lead
to an error loading the tracer library. If this issue is encountered, the path /usr/local/lib should
be added to the LD LIBRARY PATH system variable.

A.3 Build the program model generator (optional)

Code producers typically distribute the program model along with the application. They will
benefit from the instructions provided in this section. The system call tracer can be configured to
dump the runtime trace of a program. This is utilized to record the actions of a program during a
training phase in a controlled and safe environment.

• Learner. This is a component that learns the relationships between various variables and
function arguments in the runtime trace of a program. These relationships are then referred
to by the model generator. To build this component, change to directory learner and issue a
make command.

• Model generator. This component takes the program traces generated by the system call
tracer as the input and generates either prolog or XML based program model. It is helped
in this task by the learner and the tracer. Hence there is a direct dependency on tracer and
learner. The code for model generator is present in the directory DRIVER. An XML-to-prolog
model converter is also included as a cgi program to be included with the HTTP server so
that models in XML form deployed in the model server can be automatically converted into
the prolog form before being used by the MCC Control Center. Follow these steps to build
the components:

make

sudo make install (installs the cgi program into the HTTP server’s

cgi-bin directory)

22



A.4 System Configuration

Before MCC can be run successfully, the system administrator must configure various parameters
for the system.

A.4.1 configuration Files

The config directory in the MCC codebase consists of a number of configuration files. An overview
of these files follows:

• ownership.lst. As discussed in Section 4.1, there is a notion of owned files for every application
which indicates all the files created by that application and over which the application has
complete control. The ownership.lst is the file that contains the list of owned files for every
application running under MCC. The format of the file is consecutive sequence of lines of the
form:

/path/to/an/owned/file

/path/to/the/application/owning/the/file

At runtime, MCC Execution monitor loads the information contained in this file and constructs
an in-memory data structure called Trie to efficiently operate on the data. Finally when it is
shutting down, the (possibly updated) Trie is serialized back to the file.

• seccritical.lst. This file contains a list of all the directories and files that are considered
security critical. The list is utilized by the MCC Policy verifier and Execution monitor for
making policy related decisions. Note that this list is global in nature, not per-application.
The concept of security critical files was discussed in Section 4.1.

• trusted.lst. This file is consulted by the Kernel Interceptor module whenever it traps an
execve system call. If the execed program is listed in this file or present in one of the listed
directories, it is considered to be trusted and hence will be allowed to run without notifying
the MCC Control Center. All other programs are trapped and made to execute through MCC.

• trap.lst. Any program that has to be executed under the control of MCC software can be
listed here explicitly so that the Kernel Interceptor can straightaway notify the Control Center.

• scmapping.txt. This is a private file used by the Control Center for translating from the
system call number to name

• mccConfig. This is perhaps the most important file that includes various startup parameters
for the various MCC components. The placeholders in this file have to be replaced with appro-
priate values and the file should be copied to the $HOME directory of the user as .mccConfig
so that different users can have different settings. The parameters present in this file are as
follows:

– modelServer: The URL of the model server. The server may be within the local network or
it may be hosted by a third party.

– policyServer: The URL for the Policy Server. Like the model server, the policy server may
be either within the enterprise or outside it.

– installationDir: The directory where the MCC software is installed.

– tracerHome: The directory containing the system call tracer. This is usually <installationDir>/tracer

and does not require to be modified by the user.

– learnerHome: The directory containing the learner component. This is usually <installationDir>/learner

and does not require to be modified by the user.

23



– policyBaseDir: The directory where all the policies that are downloaded from the policy
server are compiled and the execution monitor built.

– ownershipDB: The full path of the ownership.lst file mentioned above.

– secCriticalDB: The full path of the seccritical.lst file mentioned above.

– adminEmail: Email ID of the system administrator. This is required if an email notification
is to be sent whenever a program is aborted at runtime due to security policy violation.

– trustedList: The full path of the trusted.lst file mentioned above.

– trapList: The full path of the trap.lst file mentioned above.

A.4.2 Keys and Certificates

The system must also be configured to provide a keystore to be used by Control Center that
contains the public keys or certificates of the model and the policy servers. The keystore may also
be password protected. The retrieval of program models and policies from the repositories is made
secure by the use of HTTP over SSL. Without the correct certificates, it will not be possible to
make a secure connection with any of the servers. The config directory contains a sample keystore,
certificates and private keys for model and policy servers and work well for ”localhost” hostnames.
These must be replaced by real certificates and keys in the actual environment.

24



B Application Classes

The policies are constructed from a given set of rules by selecting those that are meaningful to the
particular application class. The rules are listed below:

1. Restrict file creation in unowned directory. This rule disallows the program from cre-
ating files and directories in a directory that is not owned by itself. This rule can exist in two
forms:

• Any attempt at violating the rule will result in a hard violation and the program should be
aborted

• An attempt at violating the rule will result in prompting the user for creation. This corre-
sponds to a soft violation.

2. Restrict unowned file overwrite. This rule disallows the program from writing files and
directories in a directory that is not owned by itself. This rule can exist in two forms:

• Any attempt at violating the rule will result in a hard violation and the program should be
aborted

• An attempt at violating the rule will result in prompting the user for writing. This corre-
sponds to a soft violation.

3. Restrict unowned file rename. This rule disallows the program from renaming files and
directories in a directory that is not owned by itself. This rule can exist in two forms:

• Any attempt at violating the rule will result in a hard violation and the program should be
aborted

• An attempt at violating the rule will result in prompting the user for renaming. This
corresponds to a soft violation.

4. Restrict network access. The rule disallows a program from writing to the network after
reading a security sensitive file. Any such attempt will be considered as hard violation.

5. No network write access. The rule disallows a program from writing to the network,
unconditionally. Any such attempt will be considered as a hard violation.

6. Restrict file creation in system directory. File and directory creation in security sensitive
directories is not allowed and is considered as a hard violation.

7. Restrict file overwrite in system directory. Overwriting existing files in security sensitive
directories is not allowed and is considered as a hard violation.

This rule, together with the rules “Restrict file creation in system directory” and “Restrict
unowned file rename” ensures that an untrusted application cannot get write access to any
files owned by security critical programs.

8. Restrict device access. The rule disallows the program from opening, reading or writing to
any device. Any such attempt is considered as a hard violation.

9. Restrict application execution. The application is not allowed to execute other programs.
Any such attempt is considered as a hard violation.

10. Restrict privileged operation execution. This rule disallows the program from executing
certain operations that are considered privileged. For instance, mount, umount, etc. Any
violation is regarded as a hard violation.

11. Restrict invalid operation execution. This rule disallows the program from executing
certain operations that are considered invalid since they are not implemented in the Linux.
For instance, ftime, profil, break, etc. Any violation is regarded as a hard violation.

25



12. Restrict mimetype file overwrite. The application can only write files of specific mime-
types corresponding to it. For example, Gedit can only write files with textual content, like
text/plain, text/html, text/x-c, text/x-c++, etc. This rule can exist in two forms:

• Any attempt at violating the rule will result in a hard violation and the program should be
aborted

• An attempt at violating the rule will result in prompting the user for writing. This corre-
sponds to a soft violation.

13. Restrict mimetype file read. The application can only read files of specific mimetypes
corresponding to it. For example, Gedit can only read files with textual content, like text/plain,
text/html, text/x-c, text/x-c++, etc. This rule can exist in two forms:

• Any attempt at violating the rule will result in a hard violation and the program should be
aborted

• An attempt at violating the rule will result in prompting the user for reading. This corre-
sponds to a soft violation.

14. Restrict unowned file read. This rule disallows the program from reading the files that are
present in directories not owned by itself. Any attempt at violating the rule is a hard violation.

We now define the policies for the six application classes as a combination of these generic rules.
If a particular rule is not included in a policy, it means that the restriction corresponding to that
rule will not be applied. We also indicate whether a rule can tolerate soft violation by mentioning
allowed with prompt alongside the rule name. In the absence of any such mention, violation of rules
are considered hard violation and the program will be terminated.

B.1 Multimedia and Document Viewers

• Restrict file creation in unowned directory - allowed with prompt

• Restrict unowned file overwrite

• Restrict unowned file rename

• Restrict network access

• Restrict file creation in system directory

• Restrict file overwrite in system directory

• Restrict device access

• Restrict application execution

• Restrict privileged operation execution

• Restrict invalid operation execution

• Restrict mimetype file overwrite

• Restrict mimetype file read

B.2 Archive creation and Utilities

• Restrict unowned file overwrite - allowed with prompt

• Restrict unowned file rename

• Restrict network access

• Restrict file creation in system directory

• Restrict file overwrite in system directory

• Restrict device access

26



• Restrict application execution

• Restrict privileged operation execution

• Restrict process interference

• Restrict invalid operation execution

• Restrict mimetype file overwrite

B.3 File Organization and Album Creation

• Restrict unowned file overwrite - allowed with prompt

• Restrict network access

• Restrict file creation in system directory

• Restrict file overwrite in system directory

• Restrict device access

• Restrict application execution

• Restrict privileged operation execution

• Restrict process interference

• Restrict invalid operation execution

B.4 Editors

• Restrict file creation in unowned directory - allowed with prompt

• Restrict unowned file overwrite - allowed with prompt

• Restrict unowned file rename

• Restrict network access

• Restrict file creation in system directory

• Restrict file overwrite in system directory

• Restrict device access

• Restrict application execution

• Restrict privileged operation execution

• Restrict process interference

• Restrict invalid operation execution

• Restrict mimetype file overwrite

• Restrict mimetype file read

B.5 Games, P2P Applications, Web Agents and Screensavers

• Restrict file creation in unowned directory - allowed with prompt

• Restrict unowned file overwrite

• Restrict unowned file rename

• Restrict file creation in system directory

• Restrict file overwrite in system directory

• Restrict network access

• Restrict privileged operation execution

• Restrict invalid operation execution

• Restrict unowned file read

27



B.6 Document Search, Vulnerability Scanners and Network Sniffers

• Restrict file creation in unowned directory - allowed with prompt

• Restrict unowned file overwrite - allowed with prompt

• Restrict unowned file rename - allowed with prompt

• Restrict file creation in system directory

• Restrict file overwrite in system directory

• No network write access

• Restrict privileged operation execution

• Restrict invalid operation execution

28



C Policy Repository Operations

Typically, all interactions with policy repository are handled by the MCC Control Center and the
Policy-Authoring tool. The expert users and sysadmins can modify existing policies, create new
policies from existing generic policies by using the Policy-Authoring tool. However, there is one
scenario where the policy repository needs manual updation.

When Security policies are developed from scratch by hand coding the rules, the rule subsets,
all the associated parameters and the relevant metadata have to be written down in a simple format
in a set of files and imported into the policy repository. The relevant text files are located in the
directory bdb inside the top-level MCC directory. They already contain the textual forms of all
the default policies that come with MCC. Any new content has to be appended to these files and
reloaded into the database. The existing policies codified in these text files also serve as good
examples for the user adding new policies from scratch. Below, we describe each of the component
that has to be updated for adding a new Security policy.

• RuleDesc.txt: This file contains all the rulesets and the following information about each
ruleset:

– RuleName: A simple name of the ruleset.

Example: “RuleName:Restrict mimetype file overwrite”

– Params: A comma-separated list of parameters for this ruleset.

Example: “Params:WRITABLEFILE,WRITABLEDIR”

– EventMap: A ruleset can contain multiple rules in terms of many abstract events. The
EventMap associates each of the parameters in “Params” to one or more abstract events.
This association helps the policy verification process in the following manner. When there
is verification violation for a particular rule on a particular abstract event, the EventMap
relates the violation to the appropriate parameter. This helps the policy-authoring tool to
aid the user in resolving violations by updating specific parameters.For example, consider a
rule that contains a “write” event and makes use of the WRITABLEFILE parameter. When
there is a violation on the “write” event, one way of resolving is to update to WRITABLE-
FILE parameter to allow the specific filename. In order to achieve this, we create an
association between the write event and the WRITABLEFILE parameter.

Every event of the rule that requires a mapping must have a RuleEventMap. One event
could map to multiple parameters if a violation could be removed by updating any of those
parameters. In this case, the parameters are comma separated.

Example: “EventMap:write=WRITABLEDIR,WRITABLEFILE”

– Desc: A short, logical, higher level textual description of the ruleset.

Example: “Desc:Restrict modification of files of particular mime type(s)”.

– Body: This is the actual ruleset consisting of one or more rules written in MSPL language.

– EndRule: After coding the MSPL rule, it is followed by an “EndRule” line to indicate the
end of the specification of this ruleset.

The following example illustrates the complete details.

RuleName:Restrict device access

Params:ACCESSIBLEDEV

EventMap:open=ACCESSIBLEDEV

29



EventMap:read=ACCESSIBLEDEV

EventMap:write=ACCESSIBLEDEV

Desc:Restrict access to devices on the system. The application cannot

arbitrarily access any device on the system.

Body:

/* Restrict access to devices on the system. The application cannot

* arbitrarily access any device on the system

*/

any*. open(num,p,res,nam,op,unqid,flag,ret,arg)

| (res.get() == DEV) && !isaccessibledev(nam.get())

-->

{

abort(’’Opening device ’’, nam.get(), ‘‘ is disallowed’’);

};

any*. read(num,p,res,nam,op,unqid,len,buf,off,flag,ret,arg)

| (res.get() == DEV) && !isaccessibledev(nam.get())

-->

{

abort(’’Reading from device ’’, nam.get(), ‘‘ is disallowed’’);

};

any*. write(num,p,res,nam,op,unqid,len,buf,off,flag,ret,arg)

| (res.get() == DEV) && !isaccessibledev(nam.get())

-->

{

abort(’’Writing to device ’’, nam.get(), ‘‘ is disallowed’’);

};

EndRule

• ParamDesc.txt: If the rulesets coded above introduced any new parameters, they have to be
defined in this file. Section 5.2 details the various attributes that have to be defined for any
new parameters. The following example illustrates the details.

Name:WRITABLEFILE

Scope:public

Type:MULTIPLE

Desc:File exceptions that can be created, renamed and modified. Values can

contain trailing ’*’ to indicate wildcard match.

EndParam

• Policies.txt: This file describes the high-level policy information and lists all the Parameters
and Rulesets pertinent to the policy. The Parameters and Rulesets should have already been
included in the appropriate files as explained before. By maintaining their definitions separate
from their actual usage, we achieve reusability and easier maintainability. For a given policy
search criteria comprising of application name, application class and username (note that ven-
dor name can be supplied in place of the application name), there could be multiple matching
policies. To account for this scenario, we use the notion of PolicyList for each set of search

30



criteria used as an index.

This file consists of the following data about the policy:

– PolicyList: This indicates the search criteria as:

‘‘Application Name|Application Class|User’’

Example:

‘‘PolicyList:gedit|editors|all’’

– PolicyName: User identifiable name for the policy.

– PolicyDesc: A short, textual description of the policy.

– Parameter Specification: This is a list of Name-Value tuples. The entities expressed
here include all the policy parameters applicable to this policy and all the rulesets enabled
for this policy.

The rulesets are expressed as follows. For every ruleset that needs to be enabled for this
policy, a “ParamName” line is added with the RuleName of the ruleset. The “ParamValue”
for this ParamName will be “1” to indicate that this ruleset has been enabled for the policy.
Finally, an “EndParam” line is added to indicate the end of specification for this entity. It
is not necessary to list those rulesets that are disabled for this policy here.

The policy parameters are expressed as follows. For every parameter, a “ParamName” line
is added with the name of the parameter. The values for this policy parameter are specified
using “ParamValue”. A parameter, depending on its type, can have one or more Param-
Values associated with it. Finally, an “EndParam” line indicates the end of specification
for this entity.

After the parameter specification, an “EndPolicy” line is added to indicate the end of
specification for this policy. If we have multiple policies for the current PolicyList, the
next policy specification can be started right after the EndPolicy tag, beginning with the
PolicyName tag.

Finally, the specification of this PolicyList is terminated with an “EndPolicyList” line.

Example:

PolicyList:gedit|editors|all

PolicyName:Gedit

PolicyDesc:The policy restricts access to files that do not belong to the

application. Certain operations deemed as privileged and applications are

not allowed to be executed.

ParamName:READABLEFILE

ParamValue:/proc/meminfo

ParamValue:/etc/localtime

ParamValue:/etc/hosts

ParamValue:/usr/share/locale/*

ParamValue:/etc/gtk/*

ParamValue:/usr/share/themes/*

EndParam

ParamName:WRITABLEFILE

31



ParamValue:/dev/null

ParamValue:/tmp/*

EndParam

...

ParamName:Restrict file creation in unowned directory

ParamValue:1

EndParam

ParamName:Restrict unowned file overwrite

ParamValue:1

EndParam

ParamName:Restrict unowned file rename

ParamValue:1

EndParam

ParamName:Restrict network access

ParamValue:1

EndParam

...

EndPolicy

EndPolicyList

• Import to Repository: Once the three text files RuleDesc.txt, ParamDesc.txt and Poli-
cies.txt are updated with the new policy as described above, the information can be imported
into the Policy Repository by running the script populateBDB.sh present in the bdb directory.
The script gives the option of clearing up the current database before loading the data in the
text files.

32



References

[1] A Language for Specifying MCC Security Policies, Secure Systems Laboratory, SUNY @ Stony Brook,
2005. Report prepared for Computer Associates, Inc.

[2] An OS-Neutral Abstraction of System Call Interface, Secure Systems Laboratory, SUNY @ Stony Brook,
2005. Report prepared for Computer Associates, Inc.

[3] An XACML Representation of MCC Security Policies, Secure Systems Laboratory, SUNY @ Stony
Brook, 2006. Report prepared for Computer Associates, Inc.

33


