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Abstract

Starting from the Melissa email virus of 1999, threats posed by software from untrusted sources have grown
enormously. Untrusted code can install spyware or steal confidential information, including identities and
financial information. Even worse, it can turn an unsuspecting user’s computer into a so-called “zombie” that
can be commandeered by an attacker to carry out criminal activities, including the launching of attacks on
other systems on the Internet. These threats can all be eliminated by simply preventing users from accessing
any untrusted code or data. However, such an approach isn’t practical: users have become accustomed to
a wealth of information as well as software on the Internet that have significantly simplified their day-to-
day activities and enhanced their productivity. Thus, the goal of our model-carrying code (MCC) project
was to develop an infrastructure and software tools that enable users to access benign mobile code, while
bounding their risks due to malicious mobile code. Our approach enables code producers and consumers to
collaborate in order to achieve security, yet it doesn’t impose a significant burden on either one of them. This
paper provides an overview of the MCC approach, surveys the scientific contributions of the project, and
summarizes its practical outcomes.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection, Invasive software
K.6.5 [Computing Milieux]: Management of computing and Information Systems,
Security and Protection,Unauthorized access

General Terms

Security, Verification

Keywords

mobile code security, malicious code, sand-boxing, security policies

1 Introduction

The Model-Carrying Code (MCC) project began in 2001, just as the threat of cyber attacks due to
untrusted content on the Internet began to rise. In the preceding decade, the primary threat to enterprise
networks was perceived to be coming from the Internet. To counter this threat, most research (as well as
products) focused on building a “hard exterior shell” around these networks, using technologies such as
firewalls and intrusion detection systems. Unfortunately, such technologies aren’t effective against cyber
attacks launched from inside an enterprise. While it may be justifiable to assume that insiders weren’t
likely to intentionally attack their own networks, there is a high risk that they may do so unwittingly. The
Melissa email virus of 1999, which took the form of an email attachment, was perhaps the first large-scale
cyber attack that relied on this approach. When the email recipient attempted to view this attachment,
malicious code embedded within the attachment was executed, causing copies of the virus to be sent to
many other users. Several copycat attacks followed, and it soon became clear that mobile code (and content
from untrustworthy sources) posed a real and serious threat to Internet security.
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The rising trend of threats posed by untrustworthy mobile code has accelerated sharply in the last couple
of years. This increase began with attacks embedded in maliciously crafted web pages that compromised
popular browsers such as the Internet Explorer, and made it possible for attackers to execute arbitrary code
on the computers running these browsers. Similar high-profile attacks included malicious code embedded
in different types of image files, multimedia content, word-processing documents, and so on. The rising
popularity of peer-to-peer networks such as KaZaA and instant-messaging software has only compounded
the situation by providing other conduits for spreading cyber-attacks via malicious code.

Some previous efforts in mobile code security have focused on the dangers posed by mobile code, and
developed techniques to prevent damage due to them. Often, these techniques posed undue restrictions
on mobile code and prevented it from providing much useful functionality. In contrast, the MCC project
is based on the observation that the vast majority of code and content downloaded over the Internet is
benign. Thus, MCC’s goal is to ensure that users can benefit from benign mobile code while minimizing
the risks posed by malicious code. Its focus is on practical and usable solutions that are deployable in
the near-term to secure the large base of existing software, while posing minimal burden on mobile code
producers and consumers.

1.1 State of the Art in Mobile Code Security

Current approaches to mobile-code security fall into two categories: content inspection and behavior con-
finement. Content-inspection techniques analyze potentially malicious content (whether it be data or code)
in order to determine if it is indeed malicious. Their key benefit is convenience: little effort is required by
mobile-code producers or consumers to make use of these tools. Their main drawback, which significantly
limits their use, is the difficulty of detecting malicious code. Antivirus technologies [66] rely on detecting
unique bit patterns (“signatures”) that have previously been found only in malicious code. This approach,
however, is ineffective for screening out malicious code that has not been seen before. Even worse, au-
tomated code-morphing tools are now available that can transform malicious code in ways that preserve
their function, but alter the bit-patterns in them. These tools are being improved at a rapid rate, and will
likely make signature-based detection ineffective in the future.

A second approach for content inspection is based on mathematical reasoning about the runtime be-
havior of code. Such reasoning can potentially infer all possible actions of mobile code, and can be used
to discard code that may exhibit unsafe behavior. To be usable, such mathematical reasoning should be
automated into a code-scanning software tool. Although major advances have been made in the area of
automated reasoning and formal verification [13], the problem of verifying nontrivial properties of modern
COTS (commercial, off-the-shelf) software continues to be intractable. The problem is further compounded
by the fact that in the case of mobile code, such reasoning has to be done on binary code, which is much
harder to analyze than source code.

Behavior confinement, otherwise known as sandboxing, is employed in the Java programming language
[26] and several research tools. It is based on limiting the actions of mobile code so that it cannot cause any
harm. Its benefits and drawbacks are complementary to that of content inspection. In particular, behavior
confinement avoids the hard problem of reasoning about all possible behaviors of software. Instead, it
inspects the actions that are actually performed during a particular execution of mobile code, and blocks
any actions deemed risky. Its drawback is that by the time the risky behavior is observed, some damage may
already be done. For instance, consider a file-compression program that replaces a file with a compressed
version of its contents. By the time malicious behavior is detected, the program may have already erased
the original file. Less worrisome, but still problematic, is the fact that the program may have created a
number of intermediate files that need to be cleaned up manually after the risky behavior is detected and
the program has terminated.

In summary, content-inspection approaches are convenient but do not provide a general solution for
malicious software, whereas behavior-confinement approaches are broadly applicable but difficult-to-use.
In contrast, the MCC approach aims to provide a convenient yet broadly applicable solution. A second
drawback of existing approaches, shared by content inspection as well as behavior confinement, is the effort
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needed to characterize “risky behavior,” which differs depending on the functionality of mobile code. For
example, an instant-messaging program needs to communicate with remote hosts on the Internet. On
the other hand, one would not expect an image viewer, operating on a local file, to access the network.
Network communication represents risky behavior for such a program, as it may be used maliciously to
send sensitive documents. The MCC project is the first one to provide practically useful tools to tackle
this security-policy specification problem for untrusted code.

1.2 The MCC Approach

The MCC approach is aimed at combining the benefits of content inspection and behavior confinement
approaches, while mitigating their drawbacks. In the vast majority of cases, MCC blocks the execu-
tion of unsafe mobile code even before it begins, thereby retaining the convenience of content-inspection
approaches. Even when safety cannot be accurately determined before execution, but is observed sub-
sequently at runtime, MCC eliminates the need for manual cleanup actions by incorporating automated
recovery procedures. MCC avoids the computational intractability associated with content-inspection ap-
proaches by employing a judicious combination of runtime-monitoring techniques with automated analysis
and reasoning.

One of the primary innovations in the MCC approach is the introduction of an intermediate level of
abstraction, called a model, to bridge the semantic gap between low-level binary code and high-level security
concerns of code consumers. Such a model captures the security-relevant aspects of code behavior, while
abstracting away most other details that relate to the function of the code. Code consumers download
mobile code together with its behavior model, and hence the term “model-carrying code.” These models
are used by an automated verification procedure to determine if the code satisfies the consumer’s notion of
safety. Since MCC models are hundreds (or thousands) of times smaller than programs, and considerably
simpler, fully automated verification is feasible. Moreover, since models get generated by mobile code
producers, the model generation process can benefit from the availability of source code, as well as the test
suites used by the code producer.

In addition to tackling computational difficulties, the introduction of models in MCC provides another
important benefit: it provides a way for code consumers and producers to collaborate to achieve security,
while at the same time decoupling their concerns. This contrasts with previous approaches such as the
proof-carrying code [41], which placed the responsibility entirely with the code producer, or approaches
such as those used in Java [26], which placed the responsibility entirely on code consumers. In particular,
our approach doesn’t burden producers with issues of “safety.” Indeed, the definition of safety can vary
from one consumer to another, and is best left to the consumer. Similarly, consumers don’t need to
predict the access needs of an application, which is best left to the code producer that wrote the code
and understands its functionality as well as implementation. Producers simply encode this information
about the access requirements of mobile code using a model. Armed with this model, a consumer can
use automated verification tools to check if a piece of mobile code satisfies the specific safety concerns of
interest to him/her.

The definition of safety in MCC is still based on security policies, but unlike previous approaches,
MCC brings a considerable degree of automation to the policy-selection process. Indeed, suitable families
of security policies can be preselected by security administrators so that naive users do not have to make
complex security-related decisions. More sophisticated users are assisted in policy selection by the auto-
mated verification process, which can automatically suggest policy refinements that are consistent with the
behavior of a given piece of mobile code.

The techniques developed in the MCC project are being incorporated into software tools that are placed
at the entry points for mobile code and/or content downloaded over the Internet. Specifically, they are
being incorporated into software installers, through which explicitly downloaded and installed software
enters the system, and email/web browsers, through which implicitly downloaded code and content enter
the system. These tools are being released as open-source software over the Internet. The list of currently
available tools can be found on the project home page at http://seclab.cs.sunysb.edu/mcc/.
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Figure 1: The Model-Carrying Code Framework

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 provides a high-level technical overview of the MCC
approach. The research carried out in the MCC project falls into four main areas: security policies, model
extraction, consistency resolution, and enforcement. These research efforts are summarized in Sections 3,
4, 5 and 6, with pointers to other papers that contain in-depth treatments of these efforts.

Another important outcome of MCC research has been the development of a new generation of tech-
niques to counter buffer overflow attacks, which account for about 75% of security vulnerability advisories
issued by leading organizations such as the US-CERT. A related development is that of automatic gener-
ation of signatures to block fast-spreading, Internet-wide attacks such as Code Red and Slammer. These
research efforts are described in Section 7.

2 Overview of the MCC Approach

Execution of mobile/untrusted code has become an integral part of the everyday Internet experience. It
appears in many forms, such as “active web pages” (e.g. pages with Java, Javascript, VBScript, or ActiveX
content), content viewers and players (e.g., RealPlayer, FlashPlayer, Acrobat, and image viewers), games,
P2P applications, and freeware/shareware or commercial applications that provide utility functions (e.g.,
photo album organizers, file compression and format conversion utilities, instant messengers, document
search tools and related browser plug-ins). Moreover, complex content, such as images and documents,
share some of the properties of code — in particular, maliciously crafted content can exploit vulnerabilities
in the software that operates on this content to execute arbitrary code.

The MCC approach is designed so that users can enjoy all of the functions and benefits provided by
benign mobile code and content, while adequately protecting themselves from the risks posed by malicious
mobile code. The key idea in MCC (see Figure 1) is the introduction of program behavioral models that help
bridge the semantic gap between (very low-level) binary code and high-level security concerns of consumers.
These models successfully capture security-related properties of the code, but do not capture aspects of
the code that pertain only to its functional correctness. The model is stated in terms of security-relevant
operations made by the code and the operands of these operations.

While models can be created manually, doing so would be a time-consuming process. Code producers
are unlikely to spend the additional effort needed to generate models, and requiring them to do so would
hinder the widespread adoption of the MCC approach. To address this problem, we have developed
techniques that can automatically generate the required models during software testing.

A code consumer receives both the model and the program from the producer. The consumer wants
assurance that the code will satisfy a certain security policy. The use of a security behavior model enables
us to decompose this assurance argument into two parts:

• policy satisfaction: check whether the model satisfies the policy, i.e., the behaviors captured by the
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model are a subset of the behaviors allowed by the policy.

• model safety: check whether the model is a safe approximation of program behavior, i.e., the behaviors
of the program are a subset of the behaviors of the model.

Together, policy satisfaction and model safety imply that the behavior exhibited by the program is a subset
of the behavior permitted by the policy.

It should be noted that model safety is a necessary step whenever the code consumer does not trust the
model provided by the code producer. In particular, the model provided by a producer may be incorrect
either due to malice, or unintentional errors.

In principle, policy satisfaction as well as model safety can be established using automated verification
techniques. In practice, however, we resort to runtime enforcement for ensuring model safety due to the
difficulties in verifying properties of low-level (binary) code.

The policy selection component in Figure 1 is concerned with policy satisfaction, whereas the enforce-
ment component is concerned with model safety. Policy selection uses automated verification; since models
are much simpler than programs, complete automation of this verification step is possible. If the model is
not consistent with the policy, the consistency resolver generates a compact and user-friendly summary of
all consistency violations. The consumer can either discard the code at this point, or refine the policy in
such a way that would permit execution of the code without posing undue security risks. Alternatively,
a system administrator may preconfigure acceptable policies (and their refinements) for a given computer
system, so that naive users don’t have to make these decisions.

If the refined policy is consistent with the model, then the model and the code are forwarded to the
enforcement module. Our current implementation of enforcement is based on runtime interception of
security-sensitive operations made by untrusted code, specifically, system calls made by the program to
access resources administered by the underlying operating system. If the enforcement component detects
a deviation from the model, then the execution of the untrusted code is terminated. An alternative to
model enforcement is to directly enforce the consumer’s security policy.

As mentioned earlier, runtime monitoring and behavior enforcement suffers from the drawback that
if a violation occurs at runtime, then the offending code will need to be terminated. Not only has the
user wasted time with the malicious code, but in addition, she may have to manually clean up the “mess”
left behind by the aborted application. This may entail recovering files that may have been deleted by
the application, deleting files created by the application, and so on. To mitigate this problem, we have
developed a new approach in the MCC project called isolated execution (see Section 6.1) that automates
the recovery process, so that runtime aborts don’t inconvenience users.

Although the primary focus of the MCC implementation has been on untrusted programs executing on
the UNIX operating system, techniques from our approach could be easily adapted for different execution
environments such as Java or Microsoft’s Common Language Runtime (CLR). As a first step in this
direction, we have performed some preliminary work in defining security policies in terms of security-
relevant method calls in Java, and in implementing policy enforcement via bytecode rewriting [61].

3 Security Policies

We have developed a language for security policy specification called BMSL. As compared to previous
research in security policy languages [19, 51, 26, 56], BMSL is more expressive and hence allows specification
of a larger class of policies. Specifically, BMSL policies can restrict not only individual security-relevant
operations, but also constrain the sequence in which they can be issued. Moreover, these policies can
express complex constraints regarding the operands to these operations.

We have developed a compilation algorithm for BMSL policies that generates efficient policy-enforcement
engines from high-level policy specifications. The performance of these enforcement engines is largely in-
sensitive to the size or complexity of policies, thereby allowing users to focus on correctness of their
specifications rather than their computational efficiency. Another key feature of BMSL is its mathematical
foundation [59], including a precise semantics, and a formal proof that enforcement engines are faithful to
this semantics. This factor, together with a new type system designed for the language, decreases the like-
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lihood of specification errors in security policies. These results are explained at depth in [59]. Application
of this language to the related problem of intrusion detection (via policy enforcement) can be found in
[60]. Finally, [61] describes the application of BMSL to the definition and enforcement of policies on Java
programs.

We have developed a methodology for classifying applications into categories such that all applications
in a given category can share the same policies. This method is well-integrated into the tools used for
software installation and execution so that policy development and management can be largely automated.
These results are promising in that they make it possible to apply MCC on a large scale, where it can
manage the policies for a large number of diverse applications. This result also lays the foundation for
applying MCC policy development and refinement framework more broadly, for instance, in the context
of security-hardened operating systems such as SELinux [56] that require security policies to be developed
for every application.

4 Model Extraction

We have developed efficient algorithms to generate security behavior models. These algorithms generate
models that are hundreds of times smaller than the programs from which they are derived, a fact that has
been instrumental in making the MCC approach practical for large programs. A high-level overview of our
approach to model extraction can be found in [54], while an in-depth presentation can be found in [11].
The latter paper also discusses the application of these models to the problem of intrusion detection. It
shows that MCC models are richer and more powerful as compared to models of program behavior used in
previous intrusion detection techniques [21, 53, 20, 23, 22]. Whereas the previous approaches were focused
on capturing control-flow behaviors, our approach can capture dataflows as well. This factor enables our
models to detect a range of attacks that were outside the scope of previous approaches.

5 Consistency Resolution

We have developed a number of techniques for verifying that a security behavior model is consistent with
the code consumer’s security policies. We use model checking [12, 47], a technique that explores different
configurations (or states) the model may find itself in during execution. For example, the model may
specify an execution where the contents of an arbitrary file F are read, followed by sending and receiving
data over the network, followed by the writing of F . In this execution, we can identify a number of
configurations: before F is read, after the read but before the network activity, the configurations due to
the individual actions over the network, and the ones before and after F is written. Verification of models
involves inspection of all the configurations (and sequences of configurations) that are possible in the model,
and checking whether the policies are satisfied in these configurations (and configuration sequences).

Although there are many advanced model-checking techniques for the verification of systems of varying
size and complexity [29, 17, 4, 28], MCC models have several characteristics that existing techniques cannot
handle automatically. First, our models (as well as policies) may specify data values over unbounded
domains (e.g., the above model treats arbitrary files). Model-checking techniques typically require that
the set of possible states is finite, and verification techniques that can handle infinite state spaces typically
require assistance from the user to complete the verification. Such restrictions limit the applicability of
existing verification techniques to MCC.

In our research, we made a key observation that made these problems amenable to an elegant solution:
that the behaviors of models do not change drastically when the data values change. In many cases, the
models are in fact data independent, meaning that the control behavior of the model (i.e., its actions)
are independent of the data values themselves. In [50] we described an automatic technique to verify
properties of such models and corresponding policies. Our approach considers a set of configurations at a
time, represented by a single constraint : every solution to the constraint represents a configuration in the
set. For a large class of models, including all data-independent ones, the number of distinct constraints
describing its set of reachable configurations is finite, thereby making complete verification possible. For
a larger class of models, we developed simple approximation techniques where the set of configurations
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represented by a constraint may under- or over-approximate the set of possible configurations, thereby
making it possible to conservatively analyze the models for policy violations in finite time.

Another feature of mobile code models that is not treated by traditional model-checking techniques
is the presence of function calls and recursion. These features also lead to a potentially infinite set of
configurations. In [5] we describe an efficient technique for verifying such models. A key benefit of our
approach is that it provides improved accuracy as compared to previous approaches.

Finally, a policy may be satisfied when only one instance of a mobile code is executed at any time, but
may be violated when two instances are run simultaneously. Model-checking techniques can be used to
verify properties only when the number of simultaneous executions is bounded and very small. In [6] we
describe a technique that overcomes this drawback for certain classes of systems. In fact, our technique can
verify properties of an infinite family of systems, i.e., an unbounded number of simultaneous executions.
The key idea is to compute the condition each instance imposes on the remainder of the system in order to
satisfy a policy. By observing the sequence of such conditions and evaluating how this sequence converges,
we can estimate whether an arbitrary number of instances satisfies the policy.

Policy refinement comes into play when consistency resolution fails, i.e., the model violates some
security policy. In this case, the policy may be more strict than is necessary and it becomes useful to
provide feedback to the user regarding the failure so that the policy can be appropriately refined. Such
feedback is given in terms of counter-examples: execution sequences of the model that demonstrate the
policy violation. Previous verification techniques were geared towards providing one counter-example at a
time. While this is a reasonable approach when verifying correctness properties, it is too cumbersome in
the context of MCC. For instance, users may be told that the program violates a policy because it opens
a file F1, and if they accept this, then they are told that the policy is still violated because a file F2 is
opened, and so on. In contrast, we have developed new approaches [7, 8] that can efficiently compute all
counter examples, and thus present all violations in one shot to the user. This enables users to make more
informed decisions on how to relax their policies, while also reducing the time spent in the refinement
process.

6 Runtime Enforcement

We have developed techniques to enforce compatibility of mobile code with its model, or the consumer’s
security policies. Our original enforcement approach was based entirely on intercepting operating system
requests made by an application, and validating them against the model (or policy). This approach,
however, has its drawbacks, one of which is related to recovery after attacks, and another of which is
related to privacy policies. We subsequently addressed this shortcoming using the concept of isolated
execution described below.

6.1 Isolated Execution

A purely enforcement-based approach causes significant inconvenience to a user if untrusted code is aborted
at runtime. Specifically, we need to restore the system state so that it is as if the aborted execution never
took place. It is cumbersome to manually identify the set of restoration actions to be performed. It is
further complicated in realistic systems where a number of applications are running concurrently with the
untrusted code, since we don’t want to undo the effects of these applications. To address this problem, we
have developed a new approach, called isolated execution, that enables automatic recovery from runtime
aborts. The main idea is to isolate the effects of mobile code, such as the files created or deleted, from the
rest of the system. In effect, untrusted code operates on a “private copy” of the entire file system, allowing
any and all operations on this copy. If this execution is to be aborted, we simply discard the private copy.
If it is successful, then we provide techniques to merge the results of the execution into the host file system.

In addition to permitting automated and painless recovery from program aborts, the approach also
expands the classes of security policies that can be supported within the MCC framework. In particular,
policies are no longer required to be stated in terms of operations made by the mobile code, but can be
given in terms of the system state resulting from these operations. Indeed, a policy can be based entirely
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on the system state at the end of mobile-code execution.
Based on the concept of isolated execution, we have developed a stand-alone tool (independent of MCC)

called Alcatraz for safe execution of potentially malicious applications [38]. An important advantage of
Alcatraz is that most programs can run successfully within Alcatraz. This is in stark contrast with other
behavior confinement approaches [26, 25, 1, 52], which cause most programs with substantive functionality
to fail. Moreover, it permits users to manually inspect the changes made by mobile code before accepting
the changes. This is helpful since our security policies can control only the operations performed on different
files, but not the resulting changes to underlying file data.

Recently, we have shown that isolation can provide the basis for safe execution environments (SEE)
within which users can “try out” operations that can potentially break their computer system. For instance,
they can try out new software patches, new software packages, system configuration changes, vulnerability
testing tools, and so on. If the result is satisfactory, they can continue on. Otherwise, they can recover
back to the original system state at the touch of a button. Additional details on SEE can be found in [58].

6.2 Enforcing Privacy Policies Via Source-Code Rewriting.

It is well known that policies involving dissemination of private data cannot be enforced simply by ex-
amining the operations made by an application [51]. It is necessary to examine the flow of sensitive data
within the application. Work to date in this area has focused primarily on compile-time techniques, called
static analysis, to analyze all possible behaviors of a programs, and reject it if there is a potential for a
leak [16, 2, 64, 40, 49]. Unfortunately, this approach hasn’t proved very practical for all but the simplest
programs due to the fact that the analysis must simultaneously consider all possible execution paths and
data values, and be conservative, reporting an information leak if there is even a single path along which
a leak could occur. At runtime, the leaking path could well be infeasible due to conditions that cannot be
determined at compile-time. As an example, consider a program that incorporates a bug report feedback
to a vendor. If this crash report contains sensitive information (or data derived from sensitive information),
a static analysis based approach would simply reject this program. In contrast, a runtime based approach
can abort execution of the program when it is about to send a bug report. Based on this intuition, we
have developed a source-code transformation to enforce information-flow policies [63]. We have formally
established that the generality offered by our technique can be achieved without having to relax the privacy
guarantees [24] provided by previous approaches based on compile-time analysis techniques.

Recently, we have refined and scaled this technique so that it can be applied to stop “injection attacks”
that have become the biggest source of software vulnerabilities. In these attacks, an attacker “smuggles”
illegal requests to a back-end server (e.g., a database server) past the validation checks performed by a
front-end application by exploiting the software vulnerabilities in the latter. We have shown that this class
of attacks can be accurately and automatically detected using our approach, which tracks information
flow through a web application at very fine granularity. By combining fine-grained information flow with
powerful security policies, we have shown that a wide range of attacks, including buffer overflows, SQL
injection, cross-site scripting, directory traversal, format-string attacks, and command injection can be
stopped. We have shown that such fine-grained information flow tracking can be achieved with very low
overheads for security-critical servers, while experiencing moderate overheads for CPU-intensive programs.
The technique has been applied successfully to stop attacks on large programs written in several languages,
including C, PHP and Bash. Additional details about this technique can be found in [68].

7 Techniques for Preventing Memory Errors

About 75% of all security vulnerabilities reported in recent years by organizations such as US-CERT have
been due to a specific software bug called buffer overflow, or more generally, a memory error. Memory
errors cause the memory space of a program to be corrupted, often in ways that can be controlled by
an attacker. By appropriately manipulating the input to a vulnerable program, attackers can corrupt
its memory in such a manner that malicious code (or data) embedded in the input is copied into the
program’s memory space and executed (or used). In spite of the publicity received by buffer overflows
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and extensive efforts taken by software vendors to fix them, they continue to be discovered at an alarming
rate. Moreover, even when defensive techniques are developed to address specific types of attacks that
exploit buffer overflows [14, 18], newer attack types (that are sometimes even more versatile than the older
attacks) have continued to emerge.

From the perspective of attacker, buffer overflows are very attractive since memory errors are pervasive
in large-scale software, and are very hard to track down and eliminate. Thus, there is an endless supply
of vulnerabilities that can be discovered and exploited. Moreover, when they are exploited, attackers are
able to execute arbitrary code of their choice, thus giving them a great deal of flexibility and power. For
these reasons, memory errors will likely remain the principal source of cyber attacks in the foreseeable
future. Indeed, all of the Internet worms that have been reported in the past few years, including Code
Red and Slammer, have exploited buffer overflows. Moreover, just within the last year, buffer-overflow
vulnerabilities have been revealed in web browsers, image and document viewers, and multimedia players.
These vulnerabilities allow attackers to infiltrate into computers that simply download a web page, image,
document or play a song. These developments highlight the need for comprehensive solutions that can
defeat all types of buffer-overflow attacks, whether they use previously known or novel strategies.

7.1 Program Transformation Techniques to Detect All Memory Errors

Although several techniques have been developed for detecting memory errors [27, 3, 45, 31, 48, 42, 30],
they suffer from one or more of the following problems: inability to detect all memory errors, requiring
extensive modifications to existing C programs, changing the memory management model of C to use
garbage collection, and excessive performance overheads. As a result, these techniques aren’t suitable to
be applied to the vast base of existing software programs. We have therefore developed a new approach
[69] for memory error detection that addresses these drawbacks. Our approach can detect all memory
errors. It makes very conservative assumptions, thereby preserving compatibility with most legacy C code.
It still imposes significant performance overheads, although it represents at least a four-fold improvement
over previous techniques that preserve C’s explicit memory management model [31, 48, 45]. Our ongoing
research is focused on program optimization techniques to further reduce these overheads.

7.2 Randomization Based Techniques for Preventing Buffer Overflow Attacks

Although dynamic detection techniques such as those described above provide the most comprehensive
protection from memory errors, they do impose significant performance overheads. Moreover, they can
impact compatibility with precompiled libraries for which source code is unavailable. These factors have
fueled the development of alternative solutions specialized for security, i.e., techniques for detecting memory
errors that lead to attacks, rather than trying to capture all memory errors. Early work in this direction
was focused on a specific type of attack called stack-smashing [14]. Subsequently, other types of attacks
were discovered that necessitated the development of techniques specialized for those types of attacks
[15]. Clearly, playing catch-up with attackers is not the best way to solve the problem, especially in the
context of attacks with very serious consequences such as memory errors. Therefore, we developed the first
solution, called address obfuscation [9], that offered broad protection against all common types of memory
error attacks1.

Address obfuscation, alternatively called address-space randomization (ASR), operates by randomizing
the locations of objects (such as program variables) within the memory space of an application. As a
result, attackers can no longer predict the memory locations that need to be corrupted for a successful
attack. We provided a comprehensive analysis of the strengths and vulnerabilities of randomization, and
identified new randomization-targeted attacks that can be successful in some cases. Based on this analysis,
we have recently developed a more comprehensive randomization approach [10] that provides probabilistic
protection against all memory error exploits, whether they be known or novel. Our approach is implemented

1The same basic technique was also independently discovered by the PaX project [46], and aspects of this approach have
since become an integral part of some recent distributions of the Linux operating system. Microsoft has also adopted the
technique, incorporating address-space randomization into Windows Vista.
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as a fully automatic source-to-source transformation which is compatible with legacy C code. The address-
space randomizations take place at load-time or runtime, so the same copy of the binaries can be distributed
to everyone; this ensures compatibility with today’s software distribution model. Experimental results
demonstrate that our randomization techniques incur low performance overheads.

Recently, we worked with Global Infotek, a research firm based in Reston, Virginia, in a DARPA-
sponsored project to implement address-space randomization in the context of Microsoft Windows.

7.3 Automated Signature Generation to Counter Automated Attacks

It is widely recognized that large-scale attacks, such as those launched by worms and zombie farms, pose a
grave threat to our network-centric society. Existing approaches such as software patches are simply unable
to cope with the volume and speed with which new vulnerabilities are being discovered. We have recently
developed a new approach that can provide effective protection against a vast majority of these attacks. Our
approach uses a forensic analysis of a victim server memory to correlate attacks to inputs received over the
network, and automatically develop a signature that characterizes inputs that carry attacks. The signatures
tend to capture characteristics of the underlying vulnerability (e.g., a message field being too long) rather
than the characteristics of an attack, thereby making it effective against variants of attacks. Our approach
introduces low overheads (under 10%), does not require access to source code of the protected server, and
has successfully generated signatures for all of the attacks that we studied in our experiments, without
producing false alarms. Signature generation is fast, taking a few milliseconds at most. This enables
such filters to be deployed very quickly, thereby providing protection against fast-spreading worms. The
techniques we have developed in this regard are described in detail in [35] and [36, 37]. As compared with
most recent research in automated generation of attack signatures [55, 44, 33, 70, 65, 67], our approach
can generate generalized signatures from a single attack instance. In experiments, we have shown that it
produces no false positives, and is able to defeat variants of an attack that exploit the same underlying
vulnerability. We have shown that these signatures can be deployed in the Snort intrusion detection system
[57] to filter out attacks in the network.

8 Summary

In this project, we have developed a new approach called model-carrying code for safe use of untrusted
code. Unlike previous approaches that were focused mainly on malicious code containment, MCC makes no
judgment regarding the inherent risks associated with untrusted code. It simply provides the infrastructure
and tools needed by code consumers to make risk versus reward decisions regarding untrusted code.

We have established the practicality of MCC by developing a software prototype. This prototype
has been used on many moderate to large COTS applications in use today, and provides good runtime
performance. More importantly, we have shown that MCC can be incorporated in a seamless fashion
into tools that serve as conduits for untrusted code, including software installers, email handlers, and web
browsers. We have developed an effective and convenient user interface for management and control of
MCC. This management infrastructure can provide a highly simplified user-interface for naive users that
can be tailored by security administrators. At the same time, these tools provide a much richer set of
functionalities to security-savvy users.

In addition to mobile/untrusted code security, we developed solutions to several other important prob-
lems in computer security, including: security policy languages, policy verification and refinement, efficient
policy enforcement, automatic extraction of security behavior models and their use in host-based intrusion
detection, debugging memory errors, buffer-overflow defense, accurate detection of a wide range of attacks,
automated generation of attack signatures, and so on. We have developed and publicly released several
software tools that implement these solutions, including:

• RPMShield for secure software installation,

• Alcatraz for safe execution of untrusted code,

• Tracer, which provides the infrastructure for system-call interception and runtime enforcement in MCC.

• Address-space randomization tools that produce address-space randomized programs from source code
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• Memory-Safe C tool for transforming C programs to detect all memory errors at runtime

In addition, several other tools, including the complete MCC infrastructure and management tools, are
in the final stages of development and are slated for release in the near future. The latest information
related to this project, including publications and software releases, can be found at the project web page
at http://seclab.cs.sunysb.edu/mcc/.
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