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Abstract of the Dissertation

Static Binary Instrumentation with Applications to COTS Software Security

by

Mingwei Zhang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Binary instrumentation has assumed an important role in software security, as

well as related areas such as debugging and monitoring. Binary instrumentation

can be performed statically or dynamically. Static binary instrumentation (SBI)

is attractive because of its simplicity and efficiency. However, none of the previous

SBI systems support secure instrumentation of COTS binaries. This is because

of several challenges including: (a) static binary code disassembly errors, (b) dif-

ficulty of handling indirect control flow transfers, (c) ensuring completeness of

instrumentation, i.e., instrumenting all of the code, including code contained in

system libraries and compiler-generated stubs, and (d) maintaining compatibility

with complex code, i.e., ensuring that the instrumentation does not break any

existing code.

We have developed a new static binary instrumentation approach, and present

a software platform called PSI that implements this approach. PSI integrates a

coarse grained control flow integrity (CFI) property as the basis of secure, non-

bypassable instrumentation. PSI scales to large and complex stripped binaries,

including low-level system libraries. It provides a powerful API that simplifies the

development of custom instrumentations.

We describe our approach, present several interesting security instrumentations,

and analyze the performance of PSI. Our experiments on several real-world ap-

plications demonstrate that PSI’s runtime overheads are about an order of mag-

nitude smaller than that of the most popular platforms available today, such as

iii



DynamoRIO and Pin. (Both these platforms rely on dynamic instrumentation.)

PSI has been tested on over 300 MB of binaries.

In addition to our platform PSI, we describe two novel security applications de-

veloped using PSI. First, we present a comprehensive defense against injected

code attacks that ensures code integrity at all times, even against very power-

ful adversaries. Second, we present a defense against code reuse attacks such as

return-oriented programming (ROP) that is effective against adversaries possess-

ing a wide range of capabilities.
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Chapter 1

Introduction

Program instrumentation refers to insertion of additional code to an application

in order to measure performance, detect or diagnose errors, and collect trace in-

formation [24]. Recently, instrumentation has played a central role in security

defenses such as exploit detection/prevention, security policy enforcement, appli-

cation monitoring and malware analysis.

Security instrumentation may be performed either on source or binary code. Source

code instrumentation can be more easily and extensively optimized by exploiting

higher level language information such as types. However, binary instrumentations

are more widely applicable since end users have ready access to binaries. More-

over, security instrumentation should be applied to all code, including all libraries,

inline assembly code, and any code inserted by the compiler/linker. Here again,

binary based techniques are advantageous.

1.1 Existing binary instrumentation techniques

Binary instrumentation has been the technique of choice for security instrumen-

tation of Commercial Off-The-Shelf (COTS) binaries. Previous works have used

binary based instrumentation for sandboxing [70, 84], taint-tracking [103, 116],

defense from return-oriented programming (ROP) attacks [57, 63], and other tech-

niques for hardening benign code [76, 111].

Binary instrumentation can either be static or dynamic. Static binary instru-

mentation (SBI) is performed off-line on binary files, whereas dynamic binary

1



instrumentation (DBI) operates on code already loaded into main memory. DBI

techniques disassemble and instrument each basic block just before its first exe-

cution. They instrument the original code block and put it into a memory pool

called code cache.

Static binary instrumentation has many advantages over dynamic instrumentation.

Avoiding the use of code cache is one of them. Unlike DBI, SBI instruments

binaries ahead of time, and therefore it has lower overhead on program start.

Since there is no code generation at runtime, SBI usually has a smaller memory

footprint and thus it is lighter-weight. In addition, SBI avoids the insecurity of a

writable and executable code cache. All these benefits contribute to more efficient

and more secure instrumentation.

1.2 Challenges of static binary instrumentation

While static binary instrumentation has the benefits of simplicity and being light-

weight, existing SBI techniques for security instrumentations face several chal-

lenges:

• Disassembly errors. Binary instrumentation requires all the machine

code to be correctly identified. Otherwise, the instrumentation will be in-

correct, and an instrumented program may crash or fail in other ways. Cor-

rectly identifying all machine code is very difficult. The fundamental reason

is that binaries may have data embedded in the middle of code. Linearly

scanning all of the binary will incorrectly disassemble such data as code.

Disassembling the binary following the control flow will avoid this problem.

However, this method may not identify some of code that is reachable only

through indirect control transfers. For these reasons, static binary disassem-

bly remains a challenge. We present a static disassembly algorithm to solve

the binary disassembly problems for benign COTS software. The design of

this algorithm is based on two observations on x86/Linux: (a) it is feasible to

disassemble most part of the binaries using linear disassembler and (b) the

disassembly errors can be identified using code pointer analysis. Observation

(a) indicates that data embedded in code only causes local disassembly er-

rors which do not propagate to the whole binary. Observation (b) describes

a common case that if an instruction sequence is located after a chunk of

2



data and never targeted by direct control flows, it is often incorrectly dis-

assembled due to the misidentification of data-code boundary. In this case,

the misidentified instructions can be reliably recovered if code pointers can

be discovered.

• Difficulties on program analysis. Meaningful binary instrumentation

usually requires program analysis to recover high level program semantics.

This is achieved by static or dynamic analysis on binaries. However, COTS

software are shipped with binaries only without additional information such

as debugging metadata, type, relocation or (static) symbol table. Missing of

these types of information poses challenges on understanding the program.

For instance, identifying code and data, recovering code pointers, function

stack frames, local variables, types and even function boundaries all become

challenges on COTS binaries. To help solving these issues, we use a conserva-

tive static analysis to discover code pointers. A straightforward approach to

discover code pointers is to identify all functions whose addresses are taken.

This is a reasonable option for binaries with additional high level informa-

tion. Unfortunately, high level information such as code (function) pointers

and symbol addresses are not available in COTS binaries. To cope with that,

we presents a conservative static code pointer analysis in Section 2.2. In ad-

dition, it leverages some available low level information to recover function

boundaries.

• Instrumentation bypassability. Instrumentation procedures insert code

snippets called instrumentation code 1 into original binaries. These snippets

should be non-bypassable to ensure correctness of instrumentation. This is

not an issue if only direct control transfers exist in binaries, as their target

can be checked at instrumentation time. However, indirect control targets

are not known until runtime. Such control transfers may “skip” instrumen-

tation code. Moreover, this bypass can lead to the execution of undiscovered

and uninstrumented code, say, by jumping into the middle of a multi-byte

instruction. SBI is required to instrument indirect control flows and ensure

that they never target unintended locations. To safely instrument indirect

control flow transfers, we uses runtime address translation, a concept we

have borrowed from dynamic binary instrumentation techniques. The ba-

sic idea of our instrumentation is to reconstruct the original binary with

1Note that in this dissertation, the term instrumentation code refers to the code inserted
by instrumentation, while instrumented code means code that has been instrumented, i.e., the
combination of instrumentation code and original code.
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instrumentation code inserted, generate a new code segment and put it at

the end of the original binary. Since instrumented code is appended after

original binary, it will not overwrite any existing data section. Moreover,

original code is left unchanged. This is to make sure that data references

targeting original code remain valid. Finally, all direct control flow targets

are changed to corresponding locations in new code.

• Instrumentation transparency. Instrumentation may change the origi-

nal program state and generate additional memory footprint. These changes

can cause programs to crash or behave differently. To avoid this possibility,

instrumentation code should not modify any registers, data or code memory

used by original applications i.e., full transparency should be maintained.

As an example, consider the case where code pointers such as saved return

addresses on the program stack are used by an application. Since the instru-

mentation used by PSI causes instruction locations to change, a straight-

forward implementation would change these saved return addresses on the

stack. Unfortunately, programs use this information in several ways: (a)

position-independent code (PIC) computes the locations of static variables

from return address, (b) C++ exception handler uses return addresses to

identify the function (or more specifically, the try-block within the function)

to which an exception needs to be dispatched and (c) a program may use

the return address (and any other code pointer) to read constant data stored

in the midst of code, or more generally, its own code. Changes to saved re-

turn address would cause these uses to break, thus leading to application

failure. For this reason, the instrumentation presented in this dissertation

is designed to provide full transparency. For instance, the instrumentation

only generates original return addresses on the stack. In addition, PSI leaves

the original code untouched and makes sure that code pointers in the heap,

the stack and the global memory are left untouched as well.

• Dynamic loading. Instrumentation should be applied to all the running

modules of target programs. This is not a problem for statically linked bi-

naries because only one module will be loaded at runtime. However, the

vast majority of deployed software is in the form of dynamically linked bi-

naries. Handling dynamically linked binaries requires SBI to overcome two

challenges: (a) identifying dependencies, and (b) properly connecting in-

strumentations across modules. Looking into the first issue, we observe that

dynamically linked binaries may load a large number of dependent libraries
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at load time and even at runtime. Failing to instrument dependent libraries

may cause the instrumentation to be incomplete, or worse, lead to inconsis-

tencies that cause runtime errors. A straightforward approach is to identify

all dependent libraries statically for a given executable binary. Unfortu-

nately, there are two complications here: (a) some of the dependent libraries

are not explicitly recorded in the executable files and (b) dependent libraries

may be specified by file name but the full directory path is not given. To

handle this problem, we leverage two approaches. The first transforms all

libraries in known locations such as /lib and /usr/lib in advance. For ap-

plications that may use libraries whose locations may be difficult to predict,

on-demand instrumentation is used. The idea is to monitor library loading

and instrument libraries on the fly. Libraries once instrumented do not have

to be instrumented again on the next run.

• Easy-to-use API. Instrumenting an application using DBI tools is as sim-

ple as prefixing its invocation with the name of DBI binary. DBI platforms

such as Pin [90], DynamoRIO [51] and Valgrind [102] provide a convenient

API that greatly simplifies the development of new instrumentations (also

called client tools). However, existing static tools do not provide an easy-

to-use API comparable to mature DBI tools. This limitation impedes the

development of static binary instrumentation. We integrate all the tech-

niques required and provides a generic binary instrumentation platform PSI.

Similar to DBI tools, PSI has both a low level and a high level API. Low

level API allows users to insert inline assembly code, while high level API

allows users to intercept events like system calls and signals.

1.3 Contributions

In this dissertation, we present a generic binary instrumentation platform PSI that

addresses the shortcomings of previous SBI techniques. The following is a list of

contributions of this dissertation.

• A disassembly algorithm for COTS binaries. We present a disas-

sembly algorithm that could reliably discover all data in the middle of code.

This algorithm is robust on large and complex binaries without the need of

symbols, relocations or debugging information.
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• A conservative static code pointer analysis algorithm. We present

a static code pointer analysis algorithm that could discover code pointers

in COTS binaries. Experiments demonstrate that the algorithm works well

even on complex and low level binaries.

• A practical control flow policy for complex binaries. We present

a practical CFI policy that works for complex binaries that contain inline

assembly, or pure assembly code. Our policy effectively constrains the targets

of indirect control flow transfers.

• Sound instrumentation with security guarantee. PSI ensures that its

instrumentation cannot be bypassed when applied to COTS binaries. We

present a proof of the soundness of instrumentation.

• A metric to evaluate the strength of control flow policy. Average

indirect target reduction (AIR) is a metric presented in this dissertation to

quantify the strength of any control flow policy. We demonstrate that the

integrated CFI policy in PSI has almost the same strength as the original

CFI implementation [28].

• An efficient and robust implementation. We show that PSI supports

a robust suite of applications. It provides better performance on real world

programs over existing dynamic tools such as DynamoRIO [51] and Pin [90]

• Security applications to against low level attacks.we have developed

two security applications based on the PSI platform. These applications

could effectively defeat modern code reuse attacks and code injection attacks.

1.4 Dissertation organization

The rest of this dissertation is organized as follows: Chapter 2 focuses on the

discussion of key techniques of static binary instrumentation in PSI. Chapter 3

presents PSI platform with its API, applications and a systematic evaluation.

Chapter 4 and Chapter 5 describes two large applications of PSI. In particular,

Chapter 4 focuses on the discussion of defeating stealthy ROP attacks while Chap-

ter 5 proposes a comprehensive solution to defeat modern code injection attacks.

Chapter 6 presents the related work and Chapter 7 presents the conclusion and

future research direction.
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Chapter 2

Core Static Binary

Instrumentation Techniques

This chapter presents the core technique for realizing secure and scalable static

binary implementation. The content of this chapter is divided into several parts

including binary disassembly, static analysis, instrumentation steps, address trans-

lation as well as a definition of a CFI policy with a metric to evaluate the strength

of CFI.

2.1 Binary disassembly

Binary disassembly is the basis of static binary instrumentation. In the following,

we first discuss the existing disassembly techniques as well as their limitations.

Then, we present a robust binary disassembly algorithm that has been successfully

used on large COTS applications such as Adobe Acrobat, and complex binaries

such as glibc.

2.1.1 Existing disassembly techniques

Disassembly techniques used by previous research can be categorized into two

types: linear disassembly and recursive disassembly. Linear disassembly starts

by disassembling the first instruction in a given segment. Once an instruction

at an address l is disassembled, and is determined to have a length of k bytes,
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disassembly proceeds to the instruction starting at address l + k. This process

continues to the end of the segment.

Linear disassembly can be confused by “gaps” in code that consist of data or

alignment-related padding. These gaps will be interpreted by linear disassembly

as instructions and decoded, resulting erroneous disassembly. With variable-length

instruction sets such as those of x86, incorrect disassembly of one instruction can

cause misidentification of the start of the next instruction; hence these errors can

cascade past the end of gaps.

Recursive disassembly uses a different strategy, one that is similar to a depth-first

construction of program’s control-flow graph (CFG). It starts with a set of code

entry points specified in the binary. For an executable, there may be just one

such entry point specified, but for shared libraries, the beginning of each exported

functions is specified as well. The technique starts by disassembling the instruction

at an entry point. Subsequent instructions are disassembled in a manner similar

to linear disassembly. The difference with linear disassembly occurs when control-

flow transfer instructions are encountered. Specifically, (a) each target identified

by a direct control-flow transfer instruction is added to the list of entry points,

and (b) disassembly stops at unconditional control-flow transfers.

Unlike linear disassembly, recursive disassembly does not get confused by gaps

in code, and hence does not produce incorrect disassembly.1 However, it fails to

disassemble code that is reachable only via indirect control flow transfers (ICF

transfers).

Incompleteness of recursive disassembly can be mitigated with a list of all targets

that are reachable only via ICF transfers. This list can be computed from relo-

cation information. However, in stripped binaries, which typically do not contain

relocation information 2, recursive disassembly can fail to disassemble significant

parts of the code.

1This does rely on some assumptions: (a) calls must return to the instruction following the
call, (b) all conditional branches are followed by valid code, and (c) all targets of (conditional as
well as unconditional) direct control-flow transfers represent legitimate code. These assumptions
are seldom violated, except in case of obfuscated code.

2Relocation information is used for linker to link different object files into an executable and
it is no longer needed when an executable has been generated
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2.1.2 PSI disassembly algorithm

The above discussion on using relocation information to complete recursive disas-

sembly suggests the following strategy for disassembly:

• Develop a static analysis to compute ICF targets.

• Modify recursive disassembly to make use of these as possible entry points.

Unfortunately, the first step will typically result in a superset of ICF targets:

some of these locations do not represent code addresses. Thus, blindly following

ICF targets computed by static analysis can lead to incorrect disassembly. We

therefore uses a different strategy, one that combines linear and recursive disas-

sembly techniques, and uses static analysis results as positive (but not definitive)

evidence about correctness of disassembly. PSI starts by eagerly disassembling

the entire binary using linear disassembly, which is then checked for errors. The

error checking step primarily relies on the steps used in recursive disassembly. Fi-

nally, an error correction step identifies and marks regions of disassembled code

as representing gaps. The error detection step relies on the following checks:

• Invalid opcode: Some byte patterns do not correspond to any instruction, so

attempts to decode them will result in errors. This is relatively rare because

x86 machine code is very dense. But when it occurs, it is a definitive indicator

of a disassembly error.

• Direct control transfers outside the current module. Cross-module transfers

need to use special structures called program-linkage table (PLT) and global

offset table (GOT), and moreover, they need to use ICF transfers. Thus, any

direct control transfer to an address outside the current module indicates

erroneous disassembly.

• Direct control transfer to the middle of an instruction: This can happen

either because of incorrect disassembly of the target, or incorrect disassembly

of the control-flow transfer instruction. Detection of additional errors near

the source or target will increase the confidence regarding which of the two

has been incorrectly disassembled. In the absence of additional information,

PSI approach considers both possibilities.
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Since errors in linear disassembly arise due to gaps, the error correction step relies

on identifying and marking these gaps. An incorrectly disassembled instruction

signifies the presence of a gap, and its beginning and end need to be found. To

find the beginning of the gap, PSI simply walks backward from the erroneously

disassembled instruction to the closest preceding unconditional control-flow trans-

fer. If there are additional errors within a few bytes preceding the gap, the scan

is continued for the next preceding unconditional control-flow transfer. To find

the end of the gap, PSI relies on static analysis results (Section 2.2). Specifically,

the smallest ICF target larger than the address of the erroneously disassembled

instruction is assumed to be the end of the gap. Once again, if there are disas-

sembly errors in the next few bytes, PSI extends the gap to the next larger ICF

target.

After the error correction step, all identified disassembly errors are contained

within gaps. At this point, the binary is disassembled again, this time avoid-

ing the disassembly of the marked gaps. If no errors are detected this time, then

the work is done. Otherwise, the whole process needs to be repeated. While it

may seem that repetition of disassembly is an unnecessarily inefficient step, PSI

has used it because of its simplicity, and because disassembly errors have been

infrequent enough in the implementation that no repetitions are needed for the

vast majority of the benchmarks.

2.1.3 Disassembler implementation

Binaries on Linux (and most other UNIX systems) use the ELF (Executable and

Linkable Format) [137] format. PSI supports binaries that represent executables

and shared libraries. The ELF format divides a binary into several sections, each

of which may contain code, read-only data, initialized data, and so on. While PSI

utilizes the data in read-only data sections, it is mainly concerned with the code

sections.

A typical executable contains the following code sections: .init, .plt, .text and

.fini. However, shared libraries and atypical executables may have a different

set of code sections. Instead of making assumptions about the names of code

segments, this approach obtains the list of all executable segments from the ELF

header, and proceeds to disassemble and instrument each of them.
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PSI implementation utilizes objdump to perform linear disassembly. PSI has built

a disassembly error detection and correction components on top of objdump. In

the experiments, disassembly errors occurred primarily due to insertion of null

padding generated by legacy code or linker script.

In addition, PSI discovers jump table data in the middle of code in libffi.so and

libxul.so

There were also several instances where conditional jumps targeted the middle of

an instruction. Further analysis revealed that these errors occurred with instruc-

tions that had optional prefixes, such as the “lock” prefix. PSI eliminates this

error by treating these prefixes as independent instructions, so that jumps could

target the instruction with or without the prefix.

2.2 Binary analysis

Static binary analysis is an essential technique for binary instrumentation. Binary

analysis could be used for various purposes, including disassembly of binary code

and discovery of high level information such as function boundary, code pointers

as well as local variables and type information.

Static binary analysis on code pointers is a critical technique since it provides (a)

the important information that helps discover code reachable only though indirect

control transfers and (b) an abstract control flow graph that helps analyzers to

better understand program control flow.

This section proposes a static analysis method for discovering possible indirect

control flow (ICF) targets without additional information. The key observation

is that almost all code pointers take the form of a constant whose value points

to a valid instruction boundary. This approach classifies ICF targets into several

categories, and devises distinct analyses to compute them:

• Code pointer constants (CK) consist of code addresses that are constants at

compile-time.

• Computed code addresses (CC) include code addresses that are computed at

runtime.
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• Exception handling addresses (EH) include code addresses that are used by

exception handlers.

• Exported symbol addresses (ES) include export function addresses.

• Return addresses (RA) include the code addresses next of a call.

Static analysis results are filtered to retain only those addresses that represent

valid instruction boundaries in disassembled code. Observation on code pointers

remains true except for the computed code addresses (CC), which will be further

discussed in Section 2.2.2.

2.2.1 Identifying code pointer constants

In general, there is no way to distinguish a code pointer from other types of

constants in code. So, PSI takes a conservative approach. Any constant that

“looks like a code pointer,” as per by the following tests, is included in CK.

• it falls within the range of code addresses in the current module, and

• it points to an instruction boundary in disassembled code.

Note that a module has no compile-time knowledge of addresses in another mod-

ule, and hence it suffices to check for constants that fall within the range of code

addresses in the current module. For shared libraries, absolute addresses are un-

known, so PSI checks if the constant represents a valid offset from the base of the

code segment. It is also possible that the offset may be with respect to the GOT

of the shared library, so the validity check takes that into account as well.

The entire code and data segments are scanned for possible code constants as

determined by the procedure in the preceding paragraph. Since 32-bit values need

not be aligned on 4-byte boundaries on x86, PSI uses a 4-byte sliding window over

the code and data to identify all potential code pointer constants.

2.2.2 Identifying computed code pointers

Whereas the CK analysis was very conservative, it is difficult to bring the same

level of conservativeness to the analysis of computed code pointers. This is be-

cause, in general, arbitrary computations may be performed on a constant before
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it is used as an address, and it would be impossible to estimate the results of such

operations with accuracy. However, these general cases are just a theoretical pos-

sibility. The vast majority of code is generated from high-level languages where

arbitrary pointer arithmetic on code pointers isn’t meaningful.3 Even for hand-

written assembly, considerations such as maintainability, reliability and portabil-

ity lead programmers to avoid arbitrary arithmetic on code pointers. So, rather

than supporting arbitrary code pointer computation, PSI supports computed code

pointers in a limited set of contexts where they seem to arise in practice. Indeed,

the only context in which the author has observed is that of jump tables.4

The most common case of jump tables arises from compiling switch statements in C

and C++ programs. If these were the only sources of CC, then a simple approach

could be developed that is based on typical conventions used by compilers for

translating switch statements. However, jump tables in hand-written assembly

take diverse forms. So, we begin identifying properties that are likely to hold for

most jump tables:

• Jump table targets are intra-procedural: the ICF transfer instruction and

ICF target are in the same function. (function boundaries are not required

— they are estimated conservatively, as described below.)

• The target address is computed using simple arithmetic operations such as

additions and multiplication.

• Other than one quantity that serves as an index, all other quantities involved

in the computation are constants in the code or data segment.

• All of the computation takes place within a fixed size window of instructions,

currently set to 50 instructions in PSI implementation.

Based on these characteristics, PSI uses a static analysis technique to compute

possible CC targets. It uses a three-step process. The first step is the identification

of function boundaries and the construction of a control-flow graph. In the absence

of full symbol table information, it is difficult to identify all function boundaries,

so it falls back to the following approach that uses information about exported

function symbols. PSI treats the region between two successive exported function

3This is true even in languages that are notorious for pointer arithmetic, such as C.
4C++ exception handling also involved address arithmetic on return addresses, but PSI can

rely on exception handler information that must be included in binaries rather than the CC
analysis described in this section
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symbols as an approximation of a function. (Note that this approximation is

conservative, as there may be non-exported functions in between.) Then a control-

flow graph is constructed for each region.

In the second step, PSI identifies instructions that perform an indirect jump. It

performs a backward walk from these instructions using the CFG. All backward

paths are followed, and for each path, PSI traces the chain of data dependences to

compute an expression for the indirect jump target. This expression has the form

∗(CE1 + Ind) + CE2, where CE1 and CE2 denote expressions consisting of only

constants, Ind represents the index variable, and * denotes memory dereferencing.

In some cases, it is possible to extend the static analysis to identify the range

of values that can be taken by Ind. However, PSI has not implemented such

an analysis, especially because the index value may come from other functions.

Instead, this work makes an assumption that valid Ind values will start around 0.

In the third step, PSI enumerates possible values for the index variable, computes

the jump target for each value, and check if it falls within the current region.

Specifically, PSI checks if CE1 + Ind falls within the data or code segment of the

current module, and if so, retrieve the value stored at this location. It is then

added with CE2 and the result checked to determine if it falls within the current

region. If so, the target is added to the set CC. If either of these checks fail, Ind

value is deemed invalid.

The approach starts from Ind value of 1, and explores values on either side until

finding a value for which the computed target is invalid is reached.

Note that the backward walk through the CFG can cross function boundaries,

e.g., traversing into the body of a called function. It may also go backwards

through indirect jumps. To support this case, PSI extends the CFG to capture

indirect jumps discovered by the analysis. The maximum extent of backward pass

is bounded by the window size specified above.

The above procedure may potentially fail in extreme cases, e.g., if CC computa-

tion is dispersed beyond the 50-instruction window used in the analysis, or if the

computation does not have the form ∗(CE1 + Ind) + CE2. In such cases, PSI

can conservatively add every instruction address within the region to CC. In the

experiments, no such exception has been found.
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2.2.3 Identifying other code addresses

Below, we describe the computation of the three remaining types of code pointers:

exception handlers (EH), exported symbols (ES), and return addresses (RA).

In ELF binaries, exception handlers are also valid ICF targets. They are con-

structed by adding a base address with an offset. The base addresses and offsets

are stored in ELF sections .eh frame and .gcc except table respectively. Both

these sections are in DWARF [129] format. PSI uses an existing tool, katana

[107, 118], to parse these DWARF sections and get both base addresses and off-

sets, and thus compute the set EH. (Note that the CC analysis mentioned above

won’t be able to discover these EH targets because DWARF format permits vari-

able length numeric encoding such as LEB128, and hence the simple technique of

scanning for 32-bit constant values won’t work.)

Exported symbol (ES) addresses are listed in the dynamic symbol table, which is

found in the .dynamic section of an ELF file.

Return addresses (RA) are simply the set of locations that follow a call instruction

in the binary. Thus, they can be computed following the disassembly step.

2.3 Binary instrumentation

After disassembly and code pointer analysis, the resulting code is ready to be

instrumented. This section presents the instrumentation steps used by PSI.

2.3.1 Background

Dynamic Binary Instrumentation Binary instrumentation can be static and

dynamic. Dynamic methods instrument binary code at runtime while the static

ones do it before runtime. DBI tool works as follows: it runs as an interpreter by

translating source binary code into new code of target architecture. Instrumenta-

tion is performed in the meantime before the new code is generated. Generated

code is in the granularity of basic blocks which are allocated into a memory region

called code cache used for program execution. DBI executes an application by

executing basic blocks in code cache instead of native application code.
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Basic blocks are connected with direct branches to avoid frequent context switch

between DBI runtime and target application execution. To ensure that DBI never

loses control of program execution, indirect branches must be translated to make

sure their targets point to code cache instead of code in original program. This

is achieved by replacing each indirect branch into a sequence of instructions that

performs a hash lookup. The lookup checks against a hash table where the key is

original address pointing to application code, and the value is the corresponding

address pointing to code cache. Successful lookup diverts control to target code

cache block and program continues, while lookup failures redirects control to DBI

runtime, where a new basic block will be generated and its entry address added

into the hash table before program execution proceeds.

Static Binary Instrumentation Static binary instrumentation inserts instru-

mentation code statically into target binary. This can be realized in several ap-

proaches. One intuitive option is to insert instrumentation code in place between

original code snippets. This approach is used in link time instrumentation efforts

such as PLTO [121] and Abadi CFI [28]. However, symbols and relocations are

essentially needed to relocate original code. Since COTS binaries do not have

such information, this approach becomes less applicable. Another option is to

patch original instructions with direct jump and put instrumentation code in

other locations. Previous work such as detour [77], CCFIR [152], LEEL [145],

binaryRAD [115] adopts this approach. However, this approach may cause issues

because patching instructions may overwrite succeeding instructions that are also

control transfer targets [50]

Similar to DBI, static binary instrumentation can be realized without patching

original code. One of the examples is REINS [141] which targets sandboxing

of untrusted COTS executables on Windows. Different from static tools that

patch original code, it uses out-of-line instrumentation where instrumented code is

generated and appended after original binary, original code is preserved at runtime.

All indirect control targets are changed to valid locations in instrumented code.

Since original code is maintained, any data references to original code and data

are preserved to ensure correctness of execution. By doing so, REINS ensures

that sandboxed code can never escape instrumentation (except to invoke certain

trusted functions). However, ability of instrumenting dependent libraries used by

the application is not clearly mentioned as a supported feature. Moreover, their

evaluation does not consider as many large applications.
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2.3.2 Binary instrumentation in PSI

PSI is a static instrumentation tool but uses out-of-line instrumentation similar to

DBI tools. In addition, PSI supports all shared libraries and works with complex

COTS binaries. The instrumentation steps include: 1) instrumentation, 2) re-

assembling and 3) binary re-generation.

Instrumentation is performed on assembly representation. This simplifies the im-

plementation since it does not need to be concerned with details such as encoding

and decoding of instructions. Moreover, it can use labels instead of addresses. In

particular, for each instruction location A in the disassembler output, PSI asso-

ciates a symbolic label L_A as follows:

L_8040930:movl %ecx, %eax

These symbolic labels are used as targets of direct branch instructions, which

means that the assembler will take care of fixing up the branch offsets. (These

offsets will typically change since PSI is inserting additional code during instru-

mentation.)

After rewriting, the instrumented assembly file is processed using the system as-

sembler (the GNU assembler gas) to produce an object file. PSI then extracts

the code from this object file and then uses the objcopy tool to inject it into the

original ELF file. Note that the original code sections are preserved. This ensures

that any attempt by the instrumented program to read its own code will produce

the same results as the original program.

In the final step, we prepare the ELF file produced by objcopy for execution. This

step requires relocation actions on the newly added segment, and updating the

ELF header to set its entry point to the segment containing instrumented code.

All original code segments are made non-executable. For shared libraries, it is also

necessary to update the dynamic symbol table section.

2.3.3 Address translation for indirect control transfer

As described above, instrumented code resides in a different code segment (and

hence a different memory location) from the original code. This means that func-

tion pointer values, which will typically appear in the code as constants, will have
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incorrect values. Unfortunately, it is not possible to fix them up automatically,

since PSI cannot distinguish constants representing code addresses from other

types of constants. It would obviously be unsound to modify a constant value

that does not represent a code pointer.5

The typical way to deal with this uncertainty, employed in DBI [51], is to wait

until a value is used as the target of an ICF transfer. At that point, this target

value is translated into the corresponding location in the instrumented code. This

translation is performed using a table that consists of pairs of the form

〈original address, new address〉

At runtime, addr trans, a piece of trampoline code, performs address translation.

060c0: call *%ecx

060c2: ......

L_060c0: push $060c2

movl %eax, %gs:0x44

movl %ecx, %eax

jmp addr_trans

L_060c2: ......

Figure 2.1: Original (left) and Instrumented code (right) for ICF transfer

This code saves the register (%eax) used by the instrumentation, and moves the

target address into it.6 Then the original indirect jump (or call) is replaced with

a direct jump to the trampoline routine, addr trans. Note the use of labels such

as L_060c0 that are used to associate locations in the instrumented code with the

corresponding original address, namely, 060c0. As a result, the translation table

can consist of entries of the form

〈A, L A〉

for each valid ICF target A. The details of addr trans are as follows: After saving

registers and flags needed for its operation, addr trans performs an address range

check to determine if the target is within the current module. If not, this represents

a cross-module control transfer that is discussed later in this section. After the

range check, addr trans performs address translation. PSI implementation relies

on open hashing [142] to perform an efficient lookup of the table described above.

5Here again, relocation information can address this uncertainty, but in the case of PSI, this
is unavailable.

6Note that %gs points to the base of thread-local storage, and %gs:0x44 is not used by existing
system software.
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Rather than storing just the target address L A in the table, PSI stores code that

transfers control to L A. For instance, the hash table entry to translate a code

address 0x060c2 looks as follows.

0x060c2 movl %gs:0x44, %eax; jmp L 060c2

If no translation is found for the target address, addr_trans will set an error code

to help in debugging, and terminate the program.

Note that, for shared libraries, the translation table contains only the offsets but

not absolute addresses. Consequently, the base address of the module needs to be

subtracted from the runtime address given to the translation routine. PSI relies

on the dynamic linker to patch the routine with the module’s base address when

the module is loaded.

In order to preserve the functionality of original code, it is necessary to ensure

that the instrumentation does not modify any of the registers or memory used by

the program. It is relatively easy to avoid changes to memory, or registers other

than the program counter (PC). Since instrumentation changes code locations

(as described earlier), it is not possible to preserve the PC register. So, what

PSI needs to do is to add a compensation for any operation that uses the PC

for any purpose other than fetching the next instruction. Fortunately, on 32bit

x86, there are only two instructions that use PC this way: call and return. A

callX is translated into a pushnext; jmpX, where next denotes the address of the

instruction following call in the original program. Similarly, a return is translated

into a pop followed by a direct jump. Note that after this transformation, none

of the instructions in the original program involve movement of data between PC

and other registers or memory, thus ensuring that program behavior is unaffected

by PSI instrumentation. In x86-64 architecture, any PC-relative data addressing 7

needs to be translated too. This can be done by either modifying the offset value

or using a dedicated register. Section 4.5.2.1 conveys some of the details on how

to port the instrumentation to x86-64.

2.3.4 Signal handling

Signals are another mechanism to redirect program control flow. If a program

registers its signal handlers, once again PSI will have the problem that the program

7instructions using RIP register
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will specify the location of the handler in original code, whereas the platform wants

the signal to be delivered to the instrumented code. (This problem arises because

signals are delivered by the kernel, which is unaware of the address translations

used to correctly handle code pointers.)

PSI implementation intercepts sigaction and signal system calls, and stores

the address of the signal handlers specified by these calls in a table. The signal

handler argument is then changed so that control will be transferred to a wrapper

function, which contains code that jumps to the user-specified handler. Since this

wrapper will be instrumented as usual, instrumented version of the user-specified

handler will be invoked.

2.3.5 Modular instrumentation

Software is typically organized into dynamically linked binaries. This means de-

pendent library code address may or may not be known before runtime. This

calls for independent instrumentation for each module as well as handling dy-

namic libraries whose base address may be randomized. This section focuses on

the techniques required for modular instrumentation

Shared Library Support for shared libraries is achieved as follows. PSI rewrites

a single module (an executable or a shared library) at a time. There is exactly

one version of a transformed shared library, regardless of the context (or the exe-

cutable) in which it is used. Note that PSI transforms all shared libraries, including

glibc and ld.so.

As described before, addr_trans already handles intra-module control transfers.

Inter-module transfers rely on a two-stage process. In the first stage, a global

translation table (GTT) is used to map an ICF target to the translation routine

address in the target module. This table is constructed as follows. Since shared

libraries must begin at page boundaries, any two modules have to be apart by

at least 4KB, the page size on 32-bit Linux systems. Thus, it is enough to use

the leading 20 bits of the ICF target in this lookup table. PSI uses a simple

array implementation for GTT since there are only 220 = 1M entries in this table.

This array is made read-only in order to protect it. The second stage performs

a lookup in the destination module, using the address translation table for that
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module. In this dissertation, we use the term module translation table (MTT) for

the translation table that specifies translations for addresses within the module.

Changes to the Loader Note that the GTT needs to be updated as and when

modules are loaded. Naturally, the best place to do this is the dynamic linker.

This is accomplished by modifying the source code of ld.so. The change uniformly

handles the typical case of the loader mapping all of shared libraries referenced by

an executable (or another shared library loaded by the loader), as well as the less

common case of an application using dlopen and dlclose primitives to load and

unload libraries at runtime. PSI changes relate to about 300 lines of the source

code of ld.so.

PSI loader modification also addresses two other idiosyncrasies of ld.so. First,

note that this approach modifies the entry point of a binary. Thus, any program

that uses the entry point for purposes other than jumping to it may not work

any more. As it turns out, ld.so does make use of this information when it is

invoked to load a program, as in ld.so <binary>. The loader is changed so that

it compensates for this change in the entry point, and hence works correctly in all

cases. We defer the description of the 2nd idiosyncrasies into Section 2.5.3

2.4 Optimizations

Runtime performance is a critical metric to evaluate a binary instrumentation

system. In PSI, runtime overhead mainly comes from I-cache pressure, D-cache

pressure and branch prediction errors. The source of I-cache pressure comes from

the additional instructions executed for handling indirect branches, while D-cache

pressure is due to the additional data references to address translation table.

Branch prediction error happens mostly because branch predictors for indirect

branches are simply useless, since all indirect branches of one module in PSI share

one code piece.

We discuss the optimizations performed to address these performance bottlenecks.

In particular, Section 2.4.1 demonstrates how to improve branch prediction despite

the translation. Section 2.4.2 demonstrates how to reduce I-cache and D-cache

pressure by avoiding address translation. Section 2.4.3 shows how to reduce I-

cache pressure by eliminating some instrumentation code for transparency.
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2.4.1 Improving branch prediction

Modern processors use very deep pipelines, so branch prediction misses can greatly

decrease performance. Unfortunately, translation of returns (into a combination

of pop and jmp) in PSI leads to misses. When a return instruction is used, the

processor is able to predict the target by maintaining a stack (Return Stack Buffer)

that keeps track of calls. When it is replaced by an indirect jump, especially one

that is always made from a single trampoline routine, branch prediction for return

is not used..

To address this problem, PSI modifies the transformation of calls and returns as

shown in Figures 2.2 and 2.3. The original call is transformed into another call

into stub code that is part of the instrumentation. There is a unique stub for each

call site. The code in the stub adjusts the return address on the stack so that it

will have the same value as in the untransformed program. This requires addition

of a constant that represents the offset between the call instructions in the original

and transformed code. At the time of return, the return address on the stack is

translated from its original value to the corresponding value in the transformed

program, after which a normal return can be executed.

The key point about this transformation is that the processor sees a return in

Figure 2.3 that returns from the call it executed (Figure 2.2, label L_060b1). Al-

though the address on the program stack was adjusted (Figure 2.2, label S_060b1),

this is reversed by address translation in Figure 2.3. As a result, the processor’s

predicted return matches the actual return address on the stack.

The side effect of this optimization is the introduction of an extra code stub for each

call instruction, which increases pressure on I-cache and introduce an additional

direct jump. Despite that, we will show in Section 3.5.3 that the benefits of correct

branch prediction on return instructions outweighs the side effect.

060b1: call 060c0

.....

L_060b1: call S_060b1

.....

S_060b1: add $offset, (%esp)

jmp L_060c0

Figure 2.2: Optimized instrumentation of calls
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060d1: ret
.... #address transla-
tion
add $4, %esp

mov %edx, (%esp)

ret

Figure 2.3: Optimized instrumentation of returns

2.4.2 Avoiding address translation

In this dissertation, we explored three optimizations aimed at eliminating address

translation (AT) overheads in the following cases:

AT.1 jump tables

AT.2 PIC translation

AT.3 return target speculation

For the first optimization, instead of computing an original code address and then

translating it into new addresses, PSI creates a new table that contains translated

addresses. The content of the table is copied from the original table, and then each

value is translated (at instrumentation time) into the corresponding new address.

A catch here is that the size of the original table is unknown. Note, however,

that a good guess can be made, based on the CC computation technique from

Section 2.2.2. PSI first checks that the index variable is within this range, and if

so, use the new table. Otherwise, the work uses the old table, and translate the

jump address at runtime.

PIC has several code patterns, including a call to get pc thunk and a call to

the next instruction. The basic function of the pattern is getting the current PC

and copying it into a general purpose register. In the translated code, however,

get pc thunk introduces an address lookup for return. This extra translation

could be avoided by translating this version into a call of the next instruction. No

returns are used in this case, thereby avoiding address translation overhead. (It is

worth noting that using a call/pop combination does not affect branch prediction

for return instructions. The processor is able to correct for minor violations of

call/return discipline.

In the third case, if a particular ICF transfer tends to target the same location

most of the time, PSI can speed it up by avoiding address translation for this
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location. Instead, a comparison is introduced to determine if the target is this

location, and if so, introducing a direct jump. In the implementation, we choose

to apply it only to return instruction. PSI used profiling to determine if the return

frequently targets the same location.

2.4.3 Removing transparency

Using static analysis results, PSI can safely avoid some of the overheads associated

with full transparency. We call this removal of transparency as RT. The following

are two optimizations PSI uses:

RT.1 no saving of eflags

RT.2 use non-transparent calls

To achieve, RT.1, we analyze all potential indirect and direct control targets. If

there is no instruction that uses eflags prior to all instructions that define it,

then RT.1 can be safely used. In fact, we discover that eflags is live only in a

few jump tables.

When RT.2 is enabled, all return addresses are within the new code. Note that

RT.2 is always enabled on PIC patterns, i.e., call of get pc thunk and call of next

instruction. This is because it is simple to analyze this pattern and determine

that the non-transparent mode will not lead to any problems, as long as the offset

added to obtain data address is appropriately adjusted.

2.5 Control flow integrity policy

So far, we have discussed all the underlying techniques including binary disassem-

bly, static analysis, instrumentation, address translation as well as optimizations.

With this set of static binary techniques, PSI safely handles large and complex bi-

naries and makes sure indirect control flows are correctly handled. In this section,

we will focus on the discussion of Control flow integrity (CFI).
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2.5.1 Definition of control flow integrity

Control flow integrity (CFI) is a very important low level property that can be

achieved using binary instrumentation. CFI has two level of meanings as following.

The first meaning of Control flow integrity is that CFI is a program state in

which all program control flows follow the semantics of application. The CFI

security policy dictates that software execution must follow a path of a control-

flow graph(CFG) determined ahead of time [28]. The CFG could be generated

from source code analysis and binary analysis. The second meaning of CFI is

that CFI is a low level instrumenation that instruments all indirect control flow

transfers and ensures that they all target locations specified by the CFI policy.

CFI policies serve two purposes on the high level: (a) securing target programs

from exploits and attacks and (b) ensuring that all low level instrumentations

built on top are non-bypassable. In the following subsections, we will discuss

them separately.

2.5.2 CFI policies and strength evaluation

One of the most important goals of PSI is to provide security for target appli-

cations. However, using address translation of indirect control flows is still too

permissive in the sense that the policy allows that any indirect branch could tar-

get all code addresses inside a binary. Tightening the policy definitely can help

reduce the space of attacks, but over constraining control flow may cause programs

to crash due to various corner cases in COTS binaries.

This calls for an effective control flow integrity (CFI) policy which leads to the

following two questions: how to design a CFI policy to cope with complex and large

COTS binaries? how to quantify the strength of CFI properties enforced?.

In the following subsections, we present different types of CFI policy designs with

discussion of their applicability to large COTS binaries. Then, we propose a metric

to evaluate the strength of each design.

Reloc-CFI: CFI was proposed for the first time by Abadi et. al [28]. The

implementation of their CFI policy as well as some of others [47? ] are generally

based on the following model of how ICF transfers are used in source code:
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1. Indirect call (IC): An indirect call can go to any function whose address

is taken, including those addresses that are implicitly taken and stored in

tables, such as virtual function tables in C++.

2. Indirect jump (IJ): Since compiler optimizations8 can replace an indirect call

(IC) with an indirect jump (IJ), the same policy is often applied to indirect

jumps as well.

3. Return (RET): Returns should go back to any return address (RA), i.e., an

instruction following a call.

It is theoretically possible to further constrain each of these sets, and moreover,

use different sets for each ICF transfer. However, implementations typically do not

use this option, as increased precision comes with certain drawbacks. For instance,

the callers of functions in shared libraries (or dynamically linked libraries in the

case of Microsoft Windows) are not known before runtime, and hence it is difficult

to constrain their returns more narrowly than described above. Moreover, some

techniques rely on relocation information, which does not distinguish between

targets reachable by IC from those reachable by indirect jumps, or between the

targets reachable by any two ICs. Hence they do not refine over the above property.

For this reason, we refer to the above CFI property as reloc-CFI.

The description of implementation in Abadi et al [28] indicates their use of relo-

cation information, and confirms the above policy regarding ICs. No specifics are

provided regarding IJs and returns. Note that Li, Wang et. al. [89] use a single

table for ICs and IJs, and another for returns, enforcing reloc-CFI but in a kernel

environment.

One of the critical limitations of Reloc-CFI is that it requires relocation informa-

tion which is not available in COTS binaries.

Strict-CFI: Strict-CFI is derived from reloc-CFI, except that it uses ICF tar-

gets computed by the ICF target analysis in Section 2.2 rather than relocation

information. In addition, strict-CFI incorporates an extension needed to handle

features such as exception handling and multi-threading. Specifically, these fea-

tures are used by a handful of instructions in system libraries, and we simply relax

the above policy for these instructions:

8Specifically, a tail call optimization that replaces a call occurring at the very end of a function
with a jump.
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• Instructions performing exception related stack unwinding are permitted to

go to any exception handler landing pad (EH).

• Instructions performing context switches are permitted to use any type of

ICF transfer to transfer to a function address.

Strict-CFI solves the problems of missing relocation in COTS binaries by using

static analysis. However the limitation of strict-CFI is that it handles exception

cases specifically for special system libraries. Those exception cases may be com-

mon in other COTS binaries where strict-CFI may not handle them in general.

2.5.3 Coarser grained CFIs

Corner cases of control flow transfer in COTS binaries can be handled in general by

using coarser grained CFI policies. For instance, the most basic CFI enforcement

policy is to allow ICF transfers to touch any instruction in the program. It is

regarded as instr-CFI. Obviously, instr-CFI is weak in front of attacks. However,

one important property of instr-CFI is ICF transfers never go to the middle of an

instruction and cannot bypass any checking code.

Native Client [146] and PittSFIeldCISC-SFI use instruction bundling to constrain

targets of ICF transfers. This type of CFI is regarded as bundle-CFI.

BinCFI: Our Proposal Complex binaries can contain exceptions to the simple

model of ICF transfers outlined earlier. To define a suitable CFI property for such

binaries, in this dissertation, we introduce a category of ICF transfer in addition

to RET, IC and IJ described earlier. This category, called PLT, includes all ICF

transfers in the program linkage table, a section of code used in dynamic linking.9

We define BinCFI as shown in Figure 2.4.

It is easy to see that strict-CFI is stricter than BinCFI. The reasons for relaxing

strict-CFI are as follows. In general, there is no easy way to distinguish between

returns used for purposes such as stack unwinding, longjmp, thread context switch,

and function dispatch from (the more common) use of returning from functions.

Therefore returns are permitted to go to any of the valid targets corresponding

to each of these uses. Returns are some times broken up into a pop and jump,

9Specifically, for each function belonging to another module, a stub routine is created by the
compiler in this section.
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Returns (RET), PLT targets,
Indirect Indirect

Jumps (IJ) Calls (IC)

Return addresses (RA) Allow

Exception handling Allow
addresses (EH)

Exported symbol Allow
addresses (ES)

Code pointer Allow Allow
constants (CK)

Computed code Allow Allow
addresses (CC)

Figure 2.4: BinCFI Property Definition

so all possible targets of RET are permissible targets of IJ. This explains the first

column of the table.

Since the purpose of PLT stubs is to dispatch cross-module calls, it would seem that

the targets can only be exported symbols from other modules. However, recent

versions of gcc support a new function type called gnu indirect function, which

allows a function to have many different implementations, with the most suitable

one selected at runtime based on factors such as the CPU type. Currently, many

glibc low level functions such as memcpy, strcmp and strlen use this feature. To

support this feature, a library exports a chooser function that selects at runtime

which of the many implementations is going to be used. These implementation

functions may not be exported at all. To avoid breaking such programs, the policy

for PLT should be relaxed to include code pointers in the target library. This is

what is done on the second column of Figure 2.4.

Indirect calls should go to the targets in one of the sets CC or CK. Since these

two sets are usually much larger than ES, the policy design chose to merge IC and

PLT to use the same table of valid targets.

This relaxed form of CFI policy covers almost all the corner cases except one. The

experiments discover that the use of return instructions for lazy symbol resolving

in dynamic loader violates this policy. Lazy symbol binding is performed by the

dl runtime resolve function (or dl runtime profile if profiling is enabled) in

ld.so. This function computes the target address corresponding to the symbol,

pushes this address on the top of stack, and returns. For this to work correctly,

returns should be permitted to target exported symbols, further decreasing the
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accuracy of the CFI implementation. Instead, the loader is modified to use indirect

jumps instead of returns, and the target of these jumps is restricted with the policy

shown in Figure 2.4 in Page 28 for PLT entries.

AIR: A Metric for Measuring CFI Strength Previous works on CFI have

relied on analysis of higher level code to effectively narrow down ICF targets.

Since binary analysis is generally weaker than analyses on higher-level code, the

CFI enforcement in PSI is likely to be less precise. It is natural to ask how much

protection is lost as a result. To answer this question, we define a simple metric

for representing the quality of protection offered by a CFI technique.

Definition 2.1 (Average Indirect target Reduction (AIR)). Let i1, ..., in be all the

ICF transfers in a program and S be the number of possible ICF targets in an

unprotected program. Suppose that a CFI technique limits possible targets of ICF

transfer ij to the set Tj. In this dissertation, we define AIR of this technique as

the quantity
1

n

n∑
j=1

(
1− |Tj|

S

)
where the notation |T | denotes the size of set T .

On x86, where branches can target any byte offset, S is the same as the size of

code in a binary. In this dissertation, we will measure the strength of CFI in

Section 3.5.2.1.

2.5.4 Non-bypassable instrumentation

In previous subsections, we presented the definition of CFI as well as a practical

CFI policy for COTS binaries. In this subsection, we focus on the other purpose

of CFI, which is instrumentation safety. In fact, CFI implies the property that its

instrumentation code added is non-bypassable. This is enforced by the following

policies:

• All direct and indirect control-flow transfers made from the original code

must target instructions in the original code that were validly disassembled

by the disassembler.

• If a snippet was specified for insertion before an instruction I, then all (direct

or indirect) control-flow transfers targeting I will instead be made to target

the first instruction of the added snippet.
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• Only the added instrumentation code can transfer control to libraries con-

taining instrumentation support functions. (Recall that the high-level in-

strumentation API relies on inserting calls to this library.)

All indirect branches, including jumps, calls and returns, are checked at runtime

to ensure the above properties. Direct branches are checked at the time of gener-

ating the instrumented binary. A modified loader (Section 2.3.5) denies requests

for loading uninstrumented libraries. This ensures that all indirect branches are

checked.

The above properties are ensured by a coarse-granularity CFI policy. Built on

top of that, PSI has leveraged such a CFI property with additional restrictions

intended to ensure the safety of added instrumentation. The following is a non-

exhaustive list of attacks that“escape” instrumentation prevented by PSI:

• Branching to data segments. As described above, the list of valid targets

can only include addresses within validly instrumented code. Thus, data

segments cannot appear in this table of valid targets.

• Branching to code sections that were not recognized and instrumented. If the

disassembler fails to recognize some code fragments, they won’t be instru-

mented. However, since branch targets are restricted to be valid instruction

boundaries in disassembled code, any attempt to execute undiscovered code

will be blocked.

• Branching to middle of instructions. Code reuse attacks are a prime example

here. Since the targets are checked to be valid instruction boundaries, these

attacks are stopped.

• Bypassing the instrumentation code. As noted above, if an instrumentation

snippet was specified for insertion before an instruction, that instruction is

no longer permitted to be a branch target.

• Corrupting the integrity of instrumentation logic by jumping into its middle,

or by accessing functions intended to be used exclusively by instrumentation.

As noted above, branches will be checked to preclude these targets.

Note that checks on indirect branches protect explicit control flows. implicit con-

trol flows are protected by our signal handlers, mentioned in Section 2.3.4
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2.5.5 Formal proof of non-bypassable instrumentation

The previous section discusses that the safety of instrumentation by listing the

properties enforced and potential attacks defeated. This section pursues a formal

proof of instrumentation non-bypassability. At a high level, the properties enforced

by the core techniques in previous sections can be summarized as follows:

• “What You Disassemble Is What You eXecute (WYDIWYX):” An instru-

mented program will only execute code that was successfully disassembled

and instrumented.

• Disassembly errors will not lead to undefined program behavior (although

errors in added instrumentation can).

• Instrumentation cannot be bypassed, nor can the control flow within the

added instrumentation be subverted.

We make these properties more precise and establish them in this section. We

begin by making the following observation about the instrumentation scheme de-

scribed in the preceding section:

Observation 2.2. After the above instrumentation, the only ICF transfers left in the

program are those in the address translation trampoline: rest of them have been

translated into direct control-flow transfers using labels of assembly statements in

the instrumented program. Moreover, the only ICF targets are the entries in the

hash table.

We need a few definitions to formalize the notion of sound policy enforcement.

Definition 2.3 (Code). Code is a sequence of tagged instructions. An instruction

tagged valid contains a valid machine instruction, whereas an instruction tagged

invalid may contain an arbitrary sequence of bytes. An instruction may optionally

be associated with a unique label that can be used as a control-flow target.

An mislabeled instruction can be used to represent any sequence of data bytes. For

instructions produced by a disassembler, we used the location of each instruction

to generate a corresponding unique label as described earlier.

Definition 2.4 (Code Instrumentation). A code instrumentor I takes a piece of

code C and produces another piece of code C ′ = I(C). For each instruction

i ∈ C, the instrumentation code is mapped to a code sequence s consisting of
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three parts: pre(i), i′ and post(i) ∈ C ′. In particular, pre(i) and post(i) represent

the instrumentation code inserted before and after the original instruction. Both

of them can be empty. i′ is the corresponding instruction of i. I-1 generates a

one-to-one mapping of the beginning of s and i, where each s maps to one i′. Note

that any other instruction addresses in s except the beginning will not have such

a mapping to any instruction in C.

Note that an instrumentation should have other important properties, e.g., As for

problem behavior is concerned, C ′ should be semantically equivalent to C on inputs

of interest, while on some invalid or undesired inputs, C ′ may terminate before C.

This divergence of behavior on undesired inputs corresponds to the enforcement

of a security policy by the instrumentor. While these aspects of instrumentation

are helpful in understanding them, we do not formalize them since they are not

needed in the discussion below. In particular, based on the above the following

property is defined:

Definition 2.5 (Instruction-boundary enforcement (instr-CFI)). An instrumenta-

tion I is said to ensure instr-CFI if, for every control flow instruction i′ that

corresponds to an original instruction i ∈ C, the target d is constrained as follows:

1. d is the beginning of a s in I(C)

2. if I-1(i) is defined, then i must be a direct control-flow transfer, and I-1(d)

must also be defined.

The first condition is obvious: it captures the essence of instr-CFI, i.e., the in-

strumented code does not jump to the middle of instrumentation code sequence.

The second condition goes beyond this simple requirement, and is intended to

ensure that newly added instrumentation won’t be compromised by the original

code. Since the ability of original code to subvert newly added instrumentation is

the only concern, the second condition applies only to instructions that are from

the original code. It states that these instructions cannot be used to jump to any

of the instructions newly added by the instrumentation. This ensures that the

original code has no ability to interfere with the logic of the instrumentation. To

illustrate this point, consider an instrumentation that sandboxes a register value

by performing a bitwise-and operation with a constant. The second condition

in the definition rules out the possibility that a control transfer in the original

program can skip over this sandboxing operation by jumping past it.

Lemma 2.6. The instrumentation described in Section 2.3.3 ensures instr-CFI.
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Proof: The first condition holds because, as stated in Observation 2.2, the only

ICF transfers are in the address translation trampoline, and all of these transfer to

legitimate instruction boundaries in the hash table. Moreover, direct flow transfers

cannot jump to the middle of instructions because they use labels, which are

associated only with the beginning of instructions.

With respect to the second condition, from Observation 2.2, the only ICF transfers

are in trampoline code that is newly added by the instrumentation. Being newly

added, I-1 is null for this instruction. This establishes the first part of the second

condition. Moreover, since all direct control flow transfers are transformed to use

labels of the form L A, it goes without saying that the second part of the condition

holds as well.

It is now ready to establish that disassembly errors will not cause execution of

unrecognized or uninstrumented code.

Corollary 2.7. Disassembly errors do not compromise policy enforced by instru-

mentations. In particular, disassembly errors:

• do not lead to execution of unrecognized or uninstrumented code

• do not enable control-flow transfers into the middle of instrumentation code.

The first of these two properties is referred as ”What You Disassemble Is What

You eXecute (WYDIWYX).” It provides a sound basis for static analysis and

instrumentation of binaries: the results computed will remain sound even if there

were errors in disassembly. The second condition is motivated by the fact that

jumps into the middle of instrumentation can defeat or bypass inline checks, and

hence violate the policy intended by the instrumentation.

Proof: Note that all direct control-flow transfers go to legitimate labels (and hence

legitimate instructions) in the instrumented program. From Observation 2.2, it

follows that all ICF transfers go to legitimate code in the hash table. The second

condition follows from the second condition in the instr-CFI property definition.

We now turns the focus on functionality, i.e., the potential for disassembly errors to

break the instrumented program. Disassembly errors can fall into three categories:
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• Failure to disassemble legitimate code: This error isn’t possible with linear

disassembly, since the entirety of all code segments is disassembled.10

• Disassembly of non-code, e.g., disassembling of data stored within code seg-

ment.

• Incorrect disassembly of legitimate code: This can be further subdivided into:

– decoding error, i.e., incorrect decoding of a legitimate instruction.

– instruction boundary error, i.e., an attempt to decode from the middle

of a legitimate instruction.

While decoding errors are possible, they represent simple implementation bugs

that can usually be found and fixed easily. So, henceforth, we only consider disas-

sembly of non-code and instruction boundary errors, and make a few observations

about instrumentation correctness despite these errors.

Observation 2.8. Disassembly of non-code, on its own, does not break the func-

tionality of instrumented application.

Proof: If non-code is disassembled and instrumented, then the result is not mean-

ingful code. However, this does not cause any problems since the program, while

exercising its normal functionality, will never jump into invalid code. However,

program may access this non-code as data. Such accesses go to the original code,

this is because instrumentations ensure transparency, meaning that data address

calculation including those with code pointer involved will result in the same values

as the original program does. This is ensured by the transparent instrumentations

of control flow transfer instructions (Details in Section 2.3.3). Since original code

is left in its place, instrumented code will read the exact same data as the original

program, and hence will function the same as before.

Observation 2.9. Disassembly errors will never lead to undefined behavior: they

can cause premature termination of instrumented program, but this will occur

before any incorrectly disassembled code is executed.

10Strictly speaking, the disassembly approach can mark regions as non-code, and this raises
the possibility of failure to disassemble legitimate code. However, note that regions are marked
as non-code only when disassembly errors are detected, which implies that the region contains
non-code. Moreover, code pointer analysis and data region recognition algorithms designate the
smallest possible region as non-code, thus avoiding the possibility of leaving out legitimate code
from disassembly.
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Proof: We have already shown that disassembly of non-code does not affect cor-

rectness, so only instruction boundary errors need to be considered. Note that

execution starts at the entry point specified in the ELF-header. Since linear disas-

sembly starts from this point, there will be no instruction boundary errors at the

beginning of program execution. Starting from the entry point, it is reasonable

to inductively argue that instruction boundary errors cannot occur in the instruc-

tions that are executed next, until a control-flow transfer is taken. Consider the

first control-flow transfer where an instruction boundary error occurs. Since the

program’s behavior so far has not been affected by errors, the control-flow target

represents valid instruction. An instruction boundary error at this target means

that it falls in the middle of a disassembled instruction. Because of the error

checks performed during disassembly, this is not possible for a direct control-flow

transfer. For an ICF transfer, since the address trampoline code checks that the

target corresponds to the beginning of a disassembled instruction, this control

transfer will be disallowed. Thus, program execution is aborted before executing

any incorrectly disassembled code.

2.6 Summary

In this chapter, we have presented the core techniques of static binary instrumen-

tation used in PSI. In particular, we have discussed static binary disassembly and

code pointer analysis. Based on these techniques, we discussed the instrumentation

techniques using address translation. We further elaborated it with instrumenta-

tion optimizations afterwards. In the following section, we have discussed control

flow integrity that is built on top of address translation. We have showed how to

build a compatible but strong CFI policy on complex COTS binaries. After that,

we prove that our instrumentation incorporated with CFI is non-bypassable.
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Chapter 3

Platform Implementation, API

and Evaluation

The focus of this chapter is to discuss the implementation details of PSI, its in-

strumentation API for arbitrary instrumentation and a systematic evaluation.

The ability to support generic instrumentation is based on two main observations:

(a) PSI avoids inline instrumentation and thus the instrumented code does not

suffer from the size limitation, i.e., the instrumented code could be in any length;

(b) the instrumented code address is mapped to original code address using address

translation, i.e., all indirect control transfers will be correctly handled regardless

of instrumentation.

3.1 System implementation

PSI instruments executables as well as all of the shared libraries used by them.

On each invocation, PSI takes a binary file (executable or library) as input, and

outputs an instrumented version of this binary. This invocation may occur before

execution, or on-the-fly during program execution.

Figure 4.1 shows the architecture of PSI. It consists of three main components:

a binary analyzer, an instrumentor and a binary generator. The core techniques

in binary analyzer have been discussed in Section 2.1 and Section 2.2. It takes a

binary as input, disassembles it, and then constructs a control-flow graph (CFG).

This CFG is then sent as the input for static analysis. The instrumentor mentioned
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Figure 3.1: Architecture Overview of PSI

in Section 2.3 will take the analyzed disassembly, performs instrumentation and

output new assembly code. Note that control flow integrity policy mentioned in

Section 2.5 will be taken as the mandatory instrumentation. Once instrumentor

is done, the binary generator will re-assemble the code into an object file, fixing

all the relocations and inject the new code back into original binary.

The heart of PSI is the instrumentor, which provides an expressive API for static

binary instrumentation. Two levels of API are supported. The low-level API

operates at the instruction level, and supports operations for inserting assembly

language snippets at desired points. The high-level API allows insertion of calls to

instrumentation functions that may be written in a language such as C. This code

is compiled into a shared library, and this platform ensures that these functions

can be called in a secure manner from (and only from) the calls inserted using the

high-level instrumentation API. This API is further described in Section 3.2.

The actual task of instrumentation is performed by instrumentation tools, which

are programs that use the API provided by the platform to instrument applications
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and the libraries used by them.

The API provided by PSI not only allows tools to control the instrumentation

phase, but also other phases such as static analysis, address translation, etc.

3.2 Instrumentation API

Our PSI platform provides a simple API for custom instrumentation of binaries.

Being a static rewriting tool, all instrumentation operations occur in one shot on

PSI: the entire CFG for a binary is presented to the code instrumentor, which

traverses the CFG and adds all the desired instrumentation. This contrasts with

DBI tools where instructions and basic blocks are discovered one by one, just

before their first execution, and the code instrumentor invoked separately on the

newly discovered basic block.

After disassembly, PSI constructs a control-flow graph (CFG) of the program.

The nodes in the CFG are basic blocks, each of which consists of a sequence

of instructions. All incoming control transfers into a basic block go to its first

instruction, while all control transfers out of the block occur on its last statement.

Note that every indirect control flow target computed by the static analysis is

considered in defining these basic blocks. Since this analysis estimates a superset

of possible indirect targets, the basic blocks computed by the instrumentation code

can be smaller than those computed by a compiler.

The entire CFG can be accessed using the API function getCFG, while the list

of all basic blocks and instructions can be obtained using the functions getBBs

and getInsns. The API also provides operations to iterate through instructions

and basic blocks in a CFG, and instructions in a basic block. Also supported are

operations to examine instructions. These operations are based on the Intel’s xed2

instruction encoder/decoder library. Some of the most commonly used operations

are isCall, isRet, isTest, isSysCall, isMemRead, isMemWrite, getTarget, and

getSrc.
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3.2.1 Insertion of assembly code snippets

Instrumentation can be performed at a low or high level. At the low level, an

instrumentation snippet is inserted as follows:

ins snippet(target, location, snippet)

Here, target is a reference to an instruction or a basic block, and is specified using a

reference to the corresponding object, or by using a label. The parameter location

is one of BEFORE or AFTER, and snippet is a string consisting of assembly code that

is to be inserted. For call instructions, one extra location AFTER CALL is defined.

To ensure transparency of return addresses on the stack, a call is translated into

a push instruction that pushes the original return address, followed by a jump

that transfers control to the target function. AFTER CALL corresponds to the point

between push and jump.

Instead of inserting additional instrumentation, some applications may require

replacement of existing instructions. This is done using the following API function:

replace ins(target, new snippet)

Instruction emulation is a purpose for which this API function comes handy: we

replace the original instruction with a snippet that emulates it.

PSI provides a private thread local storage (TLS) area that can be used by as-

sembly snippets to store their data. This private TLS, which is independent of

the one provided by glibc, is organized into two arrays TS and GS that are both

initialized with all zeros. The size of these arrays is configurable, but they default

to one memory page. Snippet code can use the identifiers TS n and GS n to access

the nth word of the arrays TS and GS respectively.

3.2.2 Insertion of calls to instrumentation functions

The benefit of the snippet API is that it can be more efficient since the instrumen-

tation writer can minimize the number of instructions executed. Its downside is

that instrumentation has to be performed in assembly, and that it is more complex.

In contrast, the higher level API simplifies instrumentation but is generally less

efficient. It enables the insertion of calls to handler functions in a shared library
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defined by the instrumentor. Several low level details are handled automatically by

the high-level API. These include saving/restoring of registers and flags, switching

to a different stack, resolving the symbolic name of the user-defined handler func-

tion, making the program state available through a high-level data structure called

Context, and so on. These factors simplify the instrumentation task, and allows

the handler code to be written in higher level languages (currently, C/C++). This

API is accessed using the following function:

ins call(target, location, name, args)

Here, target and location have the same meaning as the snippet API. The name

of the function to be invoked is specified using the string parameter name. This

function should have the following prototype:

void handler(struct Context ∗c, . . .)

It takes a first parameter that represents the runtime context of the instrumented

program, including all of the CPU registers, stack, etc. The subsequent parameters

are exactly those that were included in the args parameter to ins call.

3.2.3 Controlling address translation

As described earlier, address translation instrumentation, which regulates ICF

transfers, is automatically added by PSI. PSI provides some API functions so

that an instrumentation developer can exercise finer control over ICF transfers.

These functions can be used by an instrumentation tool that implements a more

sophisticated ICF target analysis to further restrict indirect branches. Even with-

out performing more static analysis, an instrumentation tool may enforce a more

restrictive policy, e.g.,

• all returns should go to instructions following calls

• (some or all) indirect jumps should not target addresses outside the current

module

These restrictions can be specified using the API function:

rm indirect target(src addrs, target addrs)

40



The argument src addrs is a list of the labels of the ICF transfer instructions

whose targets should be restricted. If it is empty, then the operation is applied to

all ICF transfer instructions in the module. The second argument is also a list of

labels,which represents the list of valid targets.

Custom address translation instrumentation can also be used to relax a previously

specified policy. This is done using the following API function:

add indirect target(src addrs, target addrs)

The platform will keep track of possible targets for each source address, and will

generate a unique address translation trampoline for each set of source addresses

that share the same set of possible targets.

3.2.4 Runtime event handling

Finally, the API supports registration of instrumentation functions that will be

called when certain events occur at runtime, such as program/thread startup or

exit, loading of libraries, and system calls:

• register pre syscall handler()

• register post syscall handler()

• register library load handler()

• register thread start handler()

• register thread terminate handler()

• register program start handler()

• register program terminate handler()

These API calls take a function name as their argument.
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3.2.5 Development of instrumentation tools

To develop an instrumentation tool, user provides the tool code, and optionally,

a client library. The tool code uses the API provided by PSI to realize an instru-

mentation tool. Tools that use the high-level API need a mechanism to provide

the definitions of function calls inserted using that API. This is the role of the

client library.1

The instrumentation tool code is written in perl and should be stored in a source

file, say, bbcount.pl. To instrument a binary file xyz, the tool developer invoke

PSI instrumentor and take the instrumentation tool as a parameter. Specifically,

the following sequence of commands is used for developing an instrumentation tool

using the low-level API:

psi_instrumentor -t bbcount.scpt [-m map] -o instrumented_xyz -- xyz

If a high-level API is used, the client library, say bbcount.c needs to be compiled

first into a shared library bbcount.so. At runtime, calls made by instrumentation

to client library functions in bbcount.so need to be resolved. In principle, re-

solving a client function name is straight-forward: use the standard C-compiler to

produce a shared library from the client library source, and include this library in

the dependency list for the instrumented binary. However, such an approach will

violate the security requirement because client library functions would be callable

by application code. Instead, PSI restricts these functions to be callable only

from the added instrumentation. To ensure the restriction, we have developed a

dedicated symbol resolution technique for resolving function names in the client

library.

To resolve client functions, the basic idea is to create a global address table (GAT)

that contains the memory locations where the client functions have been loaded.

To simplify the look-up process, PSI translates function names in the client library

to integer indices. This enables GAT to be a simple array indexed by these integer

indices. A mapping file specifying a name-to-index mapping is generated during

the compilation of the client library:

psic -o bbcount.so bbcount.c

psic --extract-map -o bbcount.map bbcount.so

1Note that the tool code is used at the time of instrumenting a binary, whereas the client
library functions are used during the execution of the instrumented applications. This is why
tool code is separated from the client library.
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Now, this mapping file will be used by the instrumentor to translate calls to client

library functions made in the instrumentation code. The mapping file is also used

by a modified loader, which uses this mapping to populate the GAT. Specifically, for

each function f defined in the client library, the loader finds its index if from the

mapping file, and stores the location where f is loaded in GAT[if ]. After populating

GAT, it is made read-only. In addition, none of the locations in the client library

are ever added to the translation tables. These two steps ensure that code in the

client libraries can never be invoked by the original code.

Resolution of the variable names could be accomplished in a similar way with the

help of another GAT and a corresponding name-to-index mapping.

Finally, user could launch the translated binary using the following command:

psi_loader -t bbcount.so -- instrumented_xyz

3.3 On-demand instrumentation

One of the drawbacks of a purely static instrumentation approach is that the

user has to compute the list of all shared libraries that may be used when an

instrumented program is run, and create instrumented version of these libraries.

This is a difficult task, since some libraries may be loaded long after program

execution begins. Some of these libraries may reside at user-specified locations

known only at runtime. In order to support seamless instrumentation of such

libraries, our PSI platform provides an option to generate instrumented libraries

on-the-fly. In particular, PSI leverages a modified the loader to support an option

to specify a configuration file that is consulted when an instrumented application

requests to load an uninstrumented library. (If this option is not specified, then any

request to load an uninstrumented library will be denied.) This configuration file

must specify the name of the libraries containing the tool code, client library code,

and the mapping file. The loader will then invoke PSI to create an instrumented

version of the uninstrumented library, and then load this version.

Instrumented libraries are stored in a disk cache for subsequent uses. This cache

can store multiple versions of the same library, each corresponding to a different

tool.

43



In principle, PSI could be deployed on a system-wide basis, and use a shared

cache across all users. However, currently PSI relies on a simpler scheme that

uses a per-user cache. The cache is simply a directory owned by the user, say,

${home psi}/bob/.

When the loader is asked to load a library, say, /usr/lib/abc.so by a process

instrumented with a tool bbcount and owned by bob, the loader concatenates the

library name to the cache location, i.e., looks for the file:

${home psi}/bob/bbcount/usr/lib/abc.so

If found, this file is loaded. If not, the loader invokes psi to instrument /usr/lib/

abc.so with the tool bbcount and stores this result in the cache, and loads the

instrumented version from the cache.

Note that libraries with the same instrumentation but with different compilation

options or client libraries may cause compatibility problems. To avoid these, the

loader checks the library version, compilation options, as well as the client library

version. It also checks the timestamps on the tool code and client library code,

and if they are newer than the cached version, then a new, instrumented version

is generated and the copy in the cache is updated.

On-demand instrumentation can be applied to executables as well, and serve to

support seamless instrumentation of applications that involve running multiple

executables

3.4 Illustrative instrumentation examples

This section illustrates the API described in the preceding section. This section

will use several examples to illustrate the flexibility, versatility and the ease-of-use

benefits of PSI.

3.4.1 Basic block counting

Basic block counting has been used to illustrate previous DBI tools such as Pin

and DynamoRIO. Moreover, an optimized version of this tool is available for these
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platforms, thus providing a good basis for performance comparison. For this rea-

son, we illustrate the platform and API using this example. (See Figure 3.2.) The

core of the instrumentation is to increment a memory location. However, since

this operation affects CPU flags, it is necessary to save and restore them. This is

performed in the snippet unopt.

It would be safe to avoid flag save/restore, and use the optimized snippet opt, if

the flags aren’t live at the snippet insertion point. To simplify the example, we

avoid a general liveness analysis. Instead, it searches two common instances of

instructions that set the flags, namely, test and cmp, and insert the increment

instruction just before them.

For brevity, the author has omitted the code for printing results. This can be

achieved by registering a thread termination handler that will accumulate the

count from thread-local TS 1 into a global location, say, GS 1. Finally, a program

termination handler needs to be registered that prints the value of GS 1.

unopt = “mov%eax, TS 0;

lahf;

incl TS 1;

sahf;

movTS 0, %eax”

opt = “incl TS 1”

foreach bb in getBBs() {
found = false

foreach insn in bb {
if isTest(insn) or isCmp(insn) {
found = true

ins snippet(insn, BEFORE, opt)

break

}
}
if !found

ins snippet(bb, BEGIN, unopt)

}

Figure 3.2: An instrumentation tool for Basic Block Counting
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3.4.2 System call policy enforcement

System call policy enforcement is a well-known protection technique for sand-

boxing. PSI provides a simple API to enforce system call policies. Performance

overheads are minimal, comparable to library interposition. At the same time, it

provides security comparable to ptrace, a much heavier-weight mechanism used in

tools such as strace.

System call policy enforcement is implemented by registering system call event

handlers register pre syscall handler() and register post syscall handler().

This platform is able to identify system calls that use int 0x80 mechanism as well

as the faster method that uses the sysenter instruction. The handler function can

use its Context argument to determine system call arguments, which are stored

in registers. The handler can examine and/or modify these arguments.

3.4.3 Library load policy enforcement

Malicious library loading is a well known strategy employed by security exploits

to circumvent injected code defenses such as those that prevent execution of data.

A library loading policy is implemented using a tool that registers a handler for

the event register library load handler(). The handler can then examine

the name of the library being loaded, and disallow it if need be. In this tool,

rather than enforcing a policy, the developer simply logged a message that can be

processed subsequently to identify how many libraries are loaded by an application,

and what fraction of them are loaded. This tool has been used on a collection of

commonly used command-line and GUI applications and a significant fraction of

libraries (specifically, over 40% in this experiment) have been found loaded after

the commencement of application execution.

3.4.4 Shadow stack

Shadow stack [115] is a well-known technique for defending against return ad-

dress corruption. The idea is to maintain a second copy of return addresses on a

“shadow” stack, and check the two copies for consistency before each return. Suc-

cessful exploits now require both copies of the return address to be compromised,

which is harder than circumventing protection mechanisms such as stack canaries.
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Binary-based return address defender [115] was the first to use binary instrumenta-

tion to implement shadow stacks. It inserts additional code at function prologue

and epilogue to respectively push and check return addresses on shadow stack.

While their approach is useful against buffer overflow attacks on return addresses,

they are not effective against ROP attacks that mainly use unintended return in-

structions, as there will be no shadow stack checks preceding such “instructions.”

Note that the initial exploit can be triggered without compromising a return ad-

dress, e.g., by corrupting a function pointer.

ROPdefender [63] addresses this weakness using DBI. As DBI techniques ensure

instrumentation of all code before execution, their approach will instrument un-

intended returns as well, and hence prevent ROP attacks. We compare the per-

formance of their implementation, which was based on Pin, with PSI. For this

purpose, a shadow stack instrumentation tool is developed as shown in Figure 3.3.

Its implementation emphasizes ease of development and compatibility with legacy

software, and there is no significant effort done to optimize it. Thus, the perfor-

mance results reflect the performance strengths of PSI, rather than the efficiency

of the instrumentation tool.

Note that being a static instrumentation technique, PSI will not instrument un-

intended return instructions. However, the runtime checks on indirect targets will

stop any attempts to jump to such instructions. Moreover, attacks aimed at evad-

ing shadow stack checks, such as those based on jumping into the middle of (or

past the end of) checking code will be defeated as well.

In Figure 3.3, the shadow stack could be initialized at the time a new thread is

spawned. However, we opted for a simpler (but less efficient) approach where the

validity of shadow stack is checked on each call instruction, using chk init shadowstk.

This snippet uses another support function to allocate a shadow stack if it is not

already set up. Once the shadow stack is in place, push shadowstk is used to push

a copy of the return address to the shadow stack.

Checking the integrity of returns is more complex, so we use a high-level function

to perform this action. Note that uses of longjmp can cause a mismatch between

shadow and main stack. This occurs because stack frames have been popped off

the main stack. The solution to this problem, used in previous works [63, 115], is to

successively pop off entries from the shadow stack until the two match. However,

if the bottom of shadow stack is reached, that implies an attack, and the program

is aborted.
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/* shadow stack pointer is stored in TS 2 */
chk init shadowstk= “

cmp $0x0, TS 2;
jnz L001;
call $alloc stack;

L001: ”;

push shadowstk = “
mov %eax, TS 0; mov %ebx, TS 1;
subl $4, TS 2;
mov TS 2, %eax;
mov (%esp), %ebx; mov %ebx, (%eax)
mov TS 0, %eax; mov TS 1, %ebx;”

check return(Context∗ctxt) {
shadow sp = ctxt−>TS[2]
ret = getmem(ctxt−>ESP )
while !empty(shadow sp)
if (pop(shadow sp) == ret) {
ctxt−>TS[2] = shadow sp
return
}

abort()
}
foreach insn in getInsns()

if isCall(insn) {
ins snippet(insn, BEFORE, chk init shadowstk)
ins snippet(insn, BEFORE, push shadowstk)
}
else if isRet(insn)
ins call(insn, AFTER CALL, check return)

Figure 3.3: Shadow Stack Defense

As noted by the authors of ROPdefender, real-world programs introduce a few be-

nign violations of shadow stack checks, and these need to be handled. We already

described how violations due to longjmp are handled. Other violations occur due

to lazy binding used by the dynamic loader, the occurrence of C++ exceptions,

UNIX signals, and System V thread context switches due to functions such as

setcontext and getcontext. The core idea used in ROPdefender is that of rec-

ognizing which return instructions in the binary cause these exceptions (each of

them occur within a specific routine in the loader or libc), and modifying the in-

strumentation of those instructions. We used the same idea in the implementation,

but have omitted the details to conserve space.
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3.5 System Evaluation

In this section, we present a comprehensive evaluation of PSI for the purpose of

answering the following questions:

• Does PSI work on COTS binaries?

• How does PSI compare with defenses against control flow hijacking attacks?

• How efficient PSI is compared with DBI systems?

The evaluation in this chapter targets the following aspects: (a) functionality,

(b) security, (c) runtime performance and (d) comparative analysis with dynamic

binary instrumentation tools.

Functionality evaluation is focused on two aspects: (a) consistency of program

semantics between instrumented application and original application and (b) cor-

rectness of binary disassembly. To evaluate semantic consistency, we tested our

instrumented programs including the SPEC 2006 benchmark and several real world

applications most frequently used on Linux. No runtime error was found in the

testing evaluation illustrated in Section 3.5.1.1. Since testing explores only a frac-

tion of program paths, we undertook a more complete evaluation of disassembly

correctness as described in Section 3.5.1.2.

In terms of security, we first evaluate the strength of its CFI with previous work

using the AIR metric proposed in Section 2.5.3. In addition, we evaluate PSI’s

ability of security defense in Section 3.5.2.1. Overall, the results in Section 3.5.2

illustrate that PSI is capable of defeating vast majority of control flow hijacking

attacks and mitigating code reuse attacks. In particular, 93% of ROP gadgets 2

have been eliminated.

Performance of PSI is evaluated in Section 3.5.3. In this chapter, we evaluate

both runtime overhead and space overhead. The results demonstrate that PSI

has comparable baseline performance with DBI tools such as DynamoRIO and

Pin. For some instrumentations such as shadow stack, PSI achieves much better

performance.

Finally, a comparative analysis is performed over DBI tools such as DynamoRIO

and Pin. In particular, four aspects have been extensively evaluated including:

2A gadget refers to a sequence of instruction ending in an indirect branch.
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Application Name Experiment
Wireshark v1.6.2 capture packets on LAN for 20 minutes
gedit v3.2.3 open multiple files; edit; print; save
lyx v2.0.0 open a large report; edit; convert to pdf/dvi/ps
acroread9 open 20 pdf files; scroll;print;zoom in/out
mplayer 4.6.1 play an mp3 file
firefox 5 (no JIT) open web pages
perl execute a complex script, compare the output
vim open file, copy/paste, search, edit
gimp-2.6 load jpg picture, crop, blur, sharpen, etc.
lynx 2.8.8dev open web pages
ssh 5.8p1 login to a remote server
evince 3.2.1 open a large pdf file

Figure 3.4: Functionality Tests

baseline performance, instrumentation application performance, micro-benchmark

performance and performance on real world program benchmarks. Evaluation of

this part is thoroughly discussed in Section 3.5.4

3.5.1 Functionality

3.5.1.1 Testing transformed code

We verified the runtime correctness of SPEC CPU2006 programs as illustrated in

Figure 3.6. Note that this benchmark comes with scripts to verify outputs, thus

simplifying functionality testing.

In this work, we also tested many real world programs including coreutils-8.16

and binutils-2.22, and medium to large programs such ssh, scp, wireshark, gedit,

mplayer, perl, gimp, firefox, acroread, lyx as well as all the shared libraries used by

them including libc.so.6, libpthread.so.0, libQtGui.so.4, libQtCore.so.4.

The experiment results are shown in Figure 3.4.

Altogether, 786 shared libraries were transformed during the experiments. The

total size of code transformed was over 300 MB, of which size of the libraries

was about 240MB. We tested each of these programs to check that they worked

correctly. A subset of these tests is shown in Figure 3.4.
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3.5.1.2 Correctness of disassembly

Since testing explores only a fraction of program paths, we undertook a complete

evaluation of disassembly correctness, i.e., verifying consistency of disassembly

and compiler generated assembly. To obtain the assembly code generated by the

compiler, we recompiled several large programs, including Firefox 5, GIMP-2.6

and glibc-2.13. Specifically, the option --listing-lhs-width=4 -alcdn of GNU

assembler was turned on to generate listing files containing both machine code

and assembly. The content of these files was then compared with disassembly.

Note that multiple object files are combined by the linker to produce an executable

or a library. We intercepted the linker ld to associate instruction locations in the

binary with those in each object file. This information was then used to generate

a mapping between compiler-produced assembly snippets in each object file and

the corresponding parts of the disassembly code..

Module Package Size # of Ins- # of
tructions Errors

libxul.so firefox-5.0 26M 4.3M 0
gimp-console-2.6 gimp-2.6.5 7.7M 385K 0
libc.so glibc-2.13 8.1M 301K 0
libnss3.so firefox-5.0 4.1M 235K 0
libmozsqlite3.so firefox-5.0 1.8M 128K 0
libfreebl3.so firefox-5.0 876K 66K 0
libsoftokn3.so firefox-5.0 756K 50K 0
libnspr4.so firefox-5.0 776K 41K 0
libssl3.so firefox-5.0 864K 40K 0
libm.so glibc-2.13 620K 35K 0
libnssdbm3.so firefox-5.0 570K 34K 0
libsmime3.so firefox-5.0 746K 30K 0
ld.so glibc-2.13 694K 28K 0
gimpressionist gimp-2.6.5 403K 21K 0
script-fu gimp-2.6.5 410K 21K 0
libnssckbi.so firefox-5.0 733K 19K 0
libtestcrasher.so firefox-5.0 676K 17K 0
gfig gimp-2.6.5 442K 17K 0
libpthread.so glibc-2.13 666K 15K 0
libnsl.so glibc-2.13 448K 15K 0
map-object gimp-2.6.5 257K 15K 0
libresolv.so glibc-2.13 275K 13K 0
libnssutil3.so firefox-5.0 311K 13K 0
Total 58M 5.84M 0

Figure 3.5: Disassembly Correctness

Figure 3.5 illustrates results of the disassembly testing. About 58MB of executable

files including code and data, corresponding to a total of about 6M instructions,

have been tested, with no error reported.
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3.5.1.3 Testing code generated by alternative compilers

We also applied the instrumentation to two programs compiled using LLVM. In

particular, we use Clang 2.9 to compile two programs in the OpenSSH project, ssh

and scp. Experiments illustrate that LLVM generated binaries function correctly

when they are used to login to a remote server and copy a large file to/from the

server.

We noticed that the padding used by LLVM compiler was quite different from that

of gcc, but the implementation was able to handle it without any changes.

In the experiments, we discovered that padding style is a very obvious difference

between LLVM generated binary and gcc and generated binary. LLVM choose to

use some undocumented x86 instructions to perform a padding that requires size

over 8. In contrast, gcc uses several shorter instructions to perform the padding.

3.5.2 Security evaluation

PSI has integrated a coarse grained CFI policy, BinCFI. The strength and effec-

tiveness of this CFI design is important for instrumentation tools built on top of

it. This section will focus on security evaluation of the CFI property that PSI has

integrated.

3.5.2.1 CFI effectiveness evaluation

To evaluate the effectiveness of this CFI property, we proposes a metric called

Average Indirect target Reduction (AIR) defined in Section 2.5.3.

Figure 3.6 compares the AIR metric of BinCFI with that of strict-CFI, reloc-CFI,

bundle-CFI and instr-CFI proposed in Section 5.3.3. To calculate AIR metric

of reloc-CFI, we recompiled SPEC2006 programs using “-g” and a linker option

“-Wl,-emit-relocs” to retain all the relocations in executables.

To calculate AIR of bundle-CFI, SPEC2006 is recompiled using Google native

client provided gcc and g++ compilers. Since bundle-CFI restricts ICF targets

to 32-byte boundaries, 31/32 of the compiled binary code is eliminated as ICF

targets. However, the value of AIR is smaller because the base is the original

program size; programs compiled using Native Client tool-chain are larger in size
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due to reasons such as the need to introduce padding to align indirect targets at

32-byte boundaries.

Name Reloc Strict Bin Bundle Instr
CFI CFI CFI CFI CFI

perlbench 98.49% 98.44% 97.89% 95.41% 67.33%
bzip2 99.55% 99.49% 99.37% 95.65% 78.59%
gcc 98.73% 98.71% 98.34% 95.86% 80.63%
mcf 99.47% 99.37% 99.25% 95.91% 79.35%
gobmk 99.40% 99.40% 99.20% 97.75% 89.08%
hmmer 98.90% 98.87% 98.61% 95.85% 79.01%
sjeng 99.32% 99.30% 99.10% 96.22% 83.18%
libquantum 99.14% 99.07% 98.89% 95.96% 76.53%
h264ref 99.64% 99.60% 99.52% 96.25% 80.71%
omnetpp 98.26% 98.08% 97.68% 95.72% 82.03%
astar 99.18% 99.13% 98.95% 96.02% 78.00%
milc 98.89% 98.86% 98.65% 96.03% 79.74%
namd 99.65% 99.64% 99.59% 95.81% 76.37%
soplex 99.19% 99.10% 98.86% 95.50% 77.37%
povray 99.01% 98.99% 98.67% 95.87% 78.03%
lbm 99.60% 99.50% 99.46% 96.79% 80.92%
sphinx3 98.83% 98.80% 98.64% 96.06% 80.75%
average 99.13% 99.08% 98.86% 96.04% 79.27%

Figure 3.6: AIR metrics for SPEC CPU 2006.

The results in Figure 3.6 demonstrate that BinCFI maintains a good strength

compared with reloc-CFI and strict-CFI. However, neither reloc-CFI or strict-CFI

support large and complex COTS binaries.

3.5.2.2 Control-Flow hijack attacks

To evaluate the effectiveness of BinCFI against control flow hijack defense, we used

RIPE [143] exploit suite. RIPE is a benchmark consisting of 850 distinct exploits

including code injection, return-to-libc and ROP attacks. RIPE illustrated these

attacks by building vulnerabilities into a small program. Exploit code is also built

into this program, so some of the challenges of developing exploits, e.g., knowing

the right jump addresses, are not present. As such, techniques such as ASLR have

no impact on RIPE. So, the only change that can be experimented with is enabling

or disabling data execution prevention (DEP)3.

3DEP is a security feature that supported by modern CPUs to prevent execution of data as
code.
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DEP disabled DEP enabled

Original 520 140

CFI 90 90

Figure 3.7: Security Evaluation using RIPE

Originally, on Ubuntu 11.10 platform, 520 attacks survived with DEP disabled.

With DEP enabled, 140 attacks survived. All of these attacks are return-to-libc

attacks.

The 2nd row in Figure 3.7 shows BinCFI defeated 430 attacks including 380 code

injection attacks and 50 return-to-libc attacks, even when DEP is disabled. In

both scenarios, when DEP was enabled or disabled, there were 90 function pointer

overwrite attacks that survived in CFI.

Code injection attacks were defeated by CFI because global data, stack and heap

are prohibited targets of ICF transfers. 50 out of 140 return-to-libc attacks were

defeated because they overflowed return addresses and tried to redirect control

flow to the libc functions and thus violate the policy of BinCFI.

The success of these attacks is some what of an artifact of RIPE design that

includes exploit code within the victim program. Since pointers to exploit code

are already taken in the program, they are identified as legitimate targets and

permitted by the approach. If the same attacks were to be carried out against

real programs, only a subset of them will succeed: those that overwrite function

pointers with pointers to other local functions. In this subset of cases, previous

CFI implementations (although not necessarily their formulations) would fail too,

as they too permit any indirect call to reach all functions whose address are taken.

3.5.2.3 ROP attacks

The experimental evaluation was performed using ROPGadget-v3.3 [23], an ROP

gadget generator/compiler, as the testing tool. It scans binaries to find useful

gadgets for ROP attacks.

Figure 3.8 shows that CFI enforcement is quite effective, resulting in the elimi-

nation of the vast majority (93%) of gadgets discovered by this tool. Moreover,

there is little diversity in the gadgets found — the tool was able to find only the

following gadgets:
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Name Reloc Strict Bin Instr
CFI CFI CFI CFI

perlbench 96.62% 96.24% 93.23% 58.65%
bzip2 97.78% 95.56% 93.33% 44.44%
gcc 97.69% 97.69% 91.42% 66.67%
mcf 95.45% 90.91% 90.91% 36.36%
gobmk 98.84% 98.27% 97.69% 70.52%
hmmer 97.00% 96.00% 96.00% 58.00%
sjeng 92.75% 92.75% 91.30% 47.83%
libquantum 93.18% 90.91% 86.36% 40.91%
h264ref 98.26% 97.39% 96.52% 60.87%
omnetpp 97.12% 97.12% 93.42% 74.07%
astar 95.35% 93.02% 93.02% 46.51%
milc 95.77% 94.37% 90.14% 57.75%
namd 94.87% 92.31% 92.31% 53.85%
soplex 94.64% 93.75% 93.75% 54.46%
povray 96.75% 96.75% 95.45% 61.69%
lbm 94.12% 88.24% 88.24% 23.53%
sphinx3 95.00% 93.75% 92.50% 52.50%
average 95.95% 94.41% 92.68% 53.45%

Figure 3.8: Gadget elimination in different CFI implementation

• mov constant, %eax; ret (32.26%)

• add offset, %esp; pop %ebx; ret (27.42%)

• add offset, %esp; ret (19.35%)

• mov (%esp), %ebx; ret (14.52%)

• xor %eax, %eax; ret (5.65%)

• pop %edx; pop %ecx; pop %ebx; ret (0.81%)

Among other missing features, note the complete lack of useful arithmetic oper-

ations in the identified gadgets. As a result, the tool is unable to build even a

single exploit using these gadgets

3.5.3 Performance evaluation on baseline system

We evaluate the baseline performance of PSI compared with two DBI tools: Dy-

namoRIO and Pin. We evaluate runtime performance of the SPEC 2006 bench-

marks, including CPU, memory and space overhead. In addition, we also compare

micro-benchmark result using lmbench. Finally, we evaluate the runtime perfor-

mance using several benchmarks of well used programs.
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Our testbed consists of an Intel core-i5 2410m CPU (Sandybridge) with 4GB

memory, running Ubuntu 11.10 (32-bit version), with glibc version 2.13.

3.5.3.1 CPU intensive benchmarks

We used the SPEC 2006 CPU benchmark to evaluate both the runtime overhead

and space overhead.
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Figure 3.9: SPEC CPU2006 Performance with Optimizations

Runtime Overhead In the experiment, we tested different optimizations and

their impact. Notations of optimizations in Figure 3.10 follow Section 2.4. The

average overhead with all optimizations turned on is 4.29%. In full transparency

mode, (ie. with VT turned off), the overhead on average is 11.77%. The overhead

goes up to 18.18% if AT.3 is turned off, and 23.2% if all AT options (AT.1, AT.2

and AT.3) are turned off. Finally, the average performance overhead goes to

34.33%, if transparent call and ret (BP) are not used.

In non-transparent mode, C++ programs such as 471.omnetpp, 450.soplex, 453.povray

do not work, due to C++ exception handling. Although the issue could be solved

by patching DWARF meta data in ELF binaries, it hasn’t been implemented yet.

Among C++ programs, the worst performance observed is the 453.povray. This

is because this program contains a significant number of indirect branches that

need translation at runtime. Overall, the best runtime performance on SPEC

CPU 2006 benchmarks achieved is shown in Figure 3.10. The average overhead

for C programs is 4.29%. Due to C++ exception handling, VT.2 (Section 2.4.3)
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cannot be applied to C++ programs. As a result, the overhead for C++ programs

increases to an average of 8.54%.

Note that this final result may not be accurate on all CPU models. This is because

some of the optimizations are CPU dependent. For instance, the effect of branch

prediction improvement (BP) is not quite visible on Intel Haswell CPU series. In

compare, when testing on AMD Opteron 62xx and Intel core-i5 2400m (Sandy-

bridge), we find that the effect of branch prediction optimization is instead visible.

This is mainly because of the difference on the branch prediction ability among dif-

ferent CPU models. Generally, a CPU that has a better branch prediction ability

for indirect jump will minimize the effect of BP.
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Figure 3.10: SPEC CPU2006 Benchmark Performance

Space and Memory Overhead We also measured the space overhead of Dy-

namoRIO and Pin. We found that their address space overhead is 272% and 72%.

This is mainly because the DBI tools need to reserve address space for code cache

allocation. The physical memory overhead is 7.5% and 34%, higher than PSI.

Evaluation of System Call Policy On the SPEC 2006 benchmark, the base-

line system call policy enforcement introduced an average of 1.6% overhead. This

is performed with a policy function registered for each system call, but the function

body being empty.
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Figure 3.11: Space overhead of PSI on SPEC 2006

3.5.3.2 Microbenchmarks

Although DynamoRIO performs well on CPU-intensive SPEC2006, real world pro-

grams often exhibit different characteristics. To compare PSI with DynamoRIO

and Pin for workloads that are system-call intensive, we used the lmbench [17]

benchmark. Since lmbench (as well as the real-world evaluation in the next sec-

tion) caused some DBI platforms to slow to the point where experiments took

far too long to complete, null instrumentation in these experiments is used to

minimize their runtime.

Figure 3.12 shows the lmbench performance numbers. Note that the histogram is

drawn to logarithmic scale on Y axis. The average system call overhead for PSI

is 16.9%, whereas for DynamoRIO it is 312%, and for Pin it is 3300%. On system

calls related to communication, PSI achieves almost native performance, whereas

DynamoRIO has 36.1% overhead, and Pin has 378%. System calls related to signal

handling and process spawning slow down PSI by 43.3% and 79.7% respectively,

while the corresponding number is 222% and 948% for DynamoRIO, and 104x and

198x for Pin.

To summarize, the average overhead across the tests shown in Figure 3.12, while

counting only one of the select operations (for 10 fds), is 33% for PSI (geometric

mean: 30%), while for DynamoRIO it is 413% (geometric mean: 309%) and for

Pin it is 7873% (geometric mean: 4083%).

DBI platforms are complex, and hence the reasons for their high overheads on

lmbench (and the real-world applications discussed in the next section) aren’t
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all obvious. But there are several factors that contribute to the high overhead.

First, and most obvious, is that runtime disassembly and instrumentation incurs

nontrivial overheads, unless this cost is amortized across many executions of in-

strumented code. Such amortization occurs on CPU-intensive benchmarks, but

the real-world applications discussed in the next section tend to load much more

code, and execute it far fewer times, thus causing the overheads of runtime in-

strumentation to rise significantly. This is one of the main reasons for the high

overhead of applications that make frequent calls to execve.

A second factor that contributes to the overhead is the increased memory footprint

of dynamically instrumented programs. Experiment shows that DynamoRIO can

frequently use a code cache that is over a 100MB in size. Moreover, such increased

use of data memory can significantly slow down fork due to factors such as the

increased time for copying page tables.

A third factor relates to threads and locking that is needed to ensure that accesses

to data used by the DBI platform (including the code cache) are free of concurrency

errors.

3.5.3.3 Commonly used applications

In this section, we performed a comparative evaluation on the performance of PSI

with that of Pin and DynamoRIO using a collection of commonly used applica-

tions. Once again the null instrumentation is used to minimize the runtime for

the experiments.
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Program PSI Dynamo- Pin Description
(%) RIO (%) (%)

coreutils 97% 1922% 3509% Coreutils testsuite

gcc 63% 1376% 10250% Compile openssh.

apt− get 2% 326% 411% Run command 5
update times.

enscript 211% 5292% 15153% Convert text and
source code files
to ps and pdf. a

postmark 2% 22% 64% Run benchmark.

gpg 24% 382% 5994% Operate on pdfs
with an avg size
of 500KB.

tar 19% 79% 1107% Tar /usr/include.

find 21% 34% 38% Find a file in /.

scp -1% 18% 31% Copy 10 mp3s,
with an avg size
of 5MB.

mplayer 32% 67% 211% Play 10 mp3s.

vim 56% 92% 615% Search and replace
strings in 18MB
text file.

latex 51% 185% 1806% Compile tex files
with an avg size
of 17KB to dvi.

readelf 62% 71% 197% Parse the DWARF
sections of glibc.

python 33% 85% 96% Run pystone 1.1
benchmark.

Average 53% 887% 3421%

aa bunch of text files are used such that the their file sizes average to 8K. In the experiment,
two types of source files are used for the purpose: C programs and Python programs. We
averaged C file sizes from Openssl source package and used the same average of 18K for the test
purpose. For Python, we averaged sizes of Python scripts found on a typical Ubuntu machine
as 8K and used a file in the same size for the test purpose.

Figure 3.13: Real World Program Performance

We first measured the performance for two tasks that are commonly undertaken

by typical Unix users: compilation of software, and running scripts that invoke

other programs. Specifically, we compiled OpenSSH with GNU make and gcc tool

chain, and used the built-in testsuite of coreutils.

When testing gcc compilation with PSI, we instrumented all the executables in

the gcc toolchain, including gcc, g++, cc1, cc1plus, f951, lto, ar, ranlib, as,

ld.bfd, and collect2. The work also instrumented make and all external tools
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used in makefile such as echo, sed, cat, perl, and gawk. Note that all libraries

used by these programs were transformed too. The overhead incurred by PSI

was 63%, while DynamoRIO and Pin incurred overheads of 1376% and 10250%

respectively.

In the case of coreutils, for PSI, we transformed all coreutils binaries as well as

other programs used in the coreutils test suite. But due to difficulties in invoking

DynamoRIO on each coreutils program inside the test script, the experiment

used DynamoRIO to run make so that it will subsequently instrument all programs

invoked from there. DynamoRIO incurred a 19.2x slowdown, as compared to 97%

for PSI. When Pin tested , unfortunately, the testsuite did not stop after running

for over an hour. We stopped the experiment at this point, and used that figure

as the lower bound on runtime of Pin, which worked out to be 3509%.

In addition to the above tests, we measured the overhead for several commonly

used programs. The results are shown in Figure 3.13. It is worth mentioning

that apt-get update invoked several executables including http, gpgv, dpkg and

touch. All of the executables as well as libraries used were transformed in the

tests.

Note that for about half the applications, there is more than 10x difference between

PSI and DynamoRIO. The difference drops down to 3x to 5x for about a quarter of

the applications, and for the remaining, the overhead difference is within a factor

of two. When averaged across all of the applications, PSI’s overhead is 53% (45%

geometric mean), DynamoRIO’s overhead is 887% (322% geometric mean), and

Pin’s overhead is 3421% (924% geometric mean).

In addition to the runtime overhead on the SPEC 2006 benchmark, we also mea-

sured space overhead of the platform. Figure 3.11 describes the space overhead

of the platform on the SPEC 2006 benchmark. From the figure, the virtual mem-

ory overhead of the platform is 19.79%, while the physical memory overhead is

merely 1.68%. In addition to the space overhead for physical and virtual memory,

we also measured that the platform increased the on-disk size of the executables

and shared libraries by around 139%. This is because PSI instruments a copy of

original code, leaving the original code in place. However, this original copy is

seldom accessed, which explains why the resident memory overhead is very small,

at around 2%.
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Figure 3.14: Overhead of basic block counting application of PSI, Dy-
namoRIO, and Pin on SPEC 2006.

3.5.4 Performance evaluation on sample instrumentations

This section focuses on comparative evaluation on the performance of PSI and

DBI tools running with sample instrumentations. The experiments illustrate the

runtime overhead of two instrumentations: basic block counting and shadow stack.

3.5.4.1 Basic-block counting

The instrumentation tool developed incorporates a simple optimization to skip

flag saving in some common cases, but lacks a systematic liveness analysis. In

spite of lacking this optimization, performance of PSI (average overhead of 69%)

is only slightly worse than DynamoRIO (53%), and better than Pin (97%). The

result is shown in Figure 3.14. For this experiment, we used the most optimized

version of basic-block counting applications distributed with Pin and DynamoRIO

platforms.

Although PSI is designed for offline instrumentation, we turned on the on-demand

instrumentation feature, emptied the library cache and reran the benchmark. In

addition, we added back the time for instrumenting the executables to the totals.

In this way, we measured the total runtime that includes instrumentation time.

This change causes the overhead to increase by another 3%.
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of ROPdefender on SPEC 2006

3.5.4.2 Shadow stack

Figure 3.15 depicts the overhead of the shadow stack implementation using the

platform in comparison to that of ROPdefender, which is based on Pin. While

ROPdefender reports an overhead of 74%, PSI incurs just one-fourth of this over-

head (18%).

Prasad et al [115] report lower overheads, as low as a few percent. But as men-

tioned earlier, their technique does not defend against ROP attacks.

3.6 Summary

In this chapter, we have presented a general static binary instrumentation plat-

form, PSI. We have elaborated its internal design and its API. In addition, we

highlighted on-demand instrumentation as an important feature. Then, we have

demonstrated that PSI could be used with various instrumentation.

Finally, we have presented an extensive evaluation of our system PSI. We evaluated

our static instrumentation system functionality using static checking and dynamic

checking. We then presented our security evaluation. And we further compared

our system with modern binary instrumentation systems such as DynamoRIO and

Pin. We compared with them on both the baseline instrumentation and several

instrumentation applications. The results demonstrated that PSI achieves almost
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the same result on SPEC benchmark and much better performance on commonly

used applications.
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Chapter 4

Application: Practical Protection

From Code Reuse Attacks

Previous chapters are focused on discussion of essential elements of the binary

instrumentation platform PSI. Those techniques form the foundation that allows

complex security instrumentation and extensions to be realized. We includes two

significant applications built with PSI platform in this chapter and the next chap-

ter. In this chapter, we focus our discussion on code reuse attacks.

In this chapter, we propose a practical defense against advanced code reuse attacks

by introducing several hardening methods. For instance, we tighten PSI policy by

eliminating targets used by jump tables from the allowed set of return. In addition,

we use code pointer remapping (details in Section 4.4) to defeat attacker that

leverage their prior knowledge of code layout to construct gadgets. In addition, we

achieves the “executable-but-not-readable” security property without additional

support from OS or hardware. This is achieved using a novel technique called code

space isolation (details in Section 4.5). We implement these features in a system

called SECRET. SECRET is built on top of PSI and offers a strong protection

against ROP attacks on COTS binaries.

4.1 Motivation

The deployment of non-executable page protections in recent operating systems

prompted a shift to code reuse attacks [65, 85, 126]. After hijacking the control
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flow, execution can be diverted to code that already exists in the address space of

the vulnerable process. Return-oriented programming (ROP) [126] has become the

de facto code reuse technique, as the stitching of short instruction sequences (called

“gadgets”) allows for increased flexibility in achieving arbitrary code execution.

Recent research illustrates an intensive arm race on code reuse attacks [46, 48,

55, 56, 62, 68, 73, 74, 120, 126, 130] and defenses [28, 36, 37, 61, 63, 71, 86, 97,

105, 110, 136]. Control flow integrity is regarded as a principled approach against

control flow hijacking attacks including code reuse. However, recent research has

shown that practical coarse grained CFI cannot defeat them [55, 62, 72, 73]. This

is because ROP attackers could still use allowed targets to construct gadgets and

successfully launch ROP attacks. Researchers have proposed their work to improve

the strength of CFI policy [94, 105, 106]. However, it is known that improving the

policy is at the cost of compatibility loss. For instance, MCFI [105] tightens CFI

policies using type based checking and suffers from false positives [136].

Despite the fact that there are still gadgets when CFI is applied, to find them,

attackers usually need knowledge of location and structure of existing code. Code

randomization [44, 45, 64, 75, 83, 109, 140] is an orthogonal research direction

that helps randomizing the load address of binaries and the structure of the code

itself, so that even if the location of some piece of code is known, the rest of the

code functionality remains unknown. However, these approaches in principle suffer

from memory disclosure bugs. Attackers could leverage this type of vulnerabilities

to adjust gadget addresses in a ROP payload to achieve reliable execution [27, 43,

88, 125]. Going one step further, malicious script code can leverage a memory

leak to dynamically scan the code segments of a process, pinpoint valid gadgets

allowed by CFI, and synthesize them into a functional ROP payload. Such “just-

in-time” ROP (JIT-ROP) attacks [130] can also be used to bypass fine grained

code diversification protections. Therefore, code randomization alone cannot help

strengthening CFI policy. On the other hand, recent research illustrates that

instead of relying on memory disclosure, attackers could use the crash-restart

property of some server programs to enumerate all possible targets [46].

In sum, the key point in advanced code reuse attack is the way to construct a

gadget chain. Attacker may choose various methods to construct such a chain:

(a) use prior knowledge on the binary layout; (b) blindly enumerate and try using

existing gadgets; (c) dynamically read code pages, or even (d) harvesting code

pointers.
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In this dissertation, we propose an alternative approach on top of BinCFI to pre-

vent modern code reused attacks that is guided by memory disclosure or blinding

probe capability. Our system is called SECRET which improves our baseline sys-

tem in three aspects: (a) tightening baseline CFI policy without sacrificing com-

patibility, (b) introducing code pointer diversity and (c) removing code reading

capability from attackers.

Our approach tightens the BinCFI policy by eliminating jump table targets from

the valid target set for all return instructions. In addition, our approach uses

code pointer remapping (CPR) as a practical defense against conditions that may

allow for inferring the functionality or probabilistically pinpointing the location

of gadgets, e.g., through leaked return addresses from the stack. In other words,

code pointer remapping aims to mitigate code pointer harvesting attacks. This is

achieved by mapping the values of code pointers into another randomly selected

address space that only instrumented code can translate. Code pointers such as

return addresses are randomly mapped into this address space, making inference

of valid code locations from leaked code pointer value challenging. In addition,

the projected address space is much larger than the original code segment, thus

making the number for tries required by blind ROP several orders of magnitude

higher.

In addition to code pointer remapping, our approach eliminates code reading ca-

pability from ROP attackers. This is achieved by Code space isolation (CSI). It

prevents code reading accesses to both original code and instrumented code. Ac-

cesses to original code are prevented by eliminating machine code in original code

segment. The scope of original code is identified using our static analysis. On

the other hand, preventing read accesses to instrumented code is achieved using

segmentation in x86 systems. In x86-64 systems, it is achieved using probabilistic

protection through randomized placement in the vast address space.

SECRET is built on top of PSI. To make deployment easier, SECRET does not

require modification on original binary. Instead, instrumented code is indepen-

dently loaded at runtime and the original binary remains the same on disk until

load time, when it is changed by our dynamic loader. The results of experimental

evaluation with the SPEC benchmarks and real-world applications demonstrate

that this protection introduces only up to less than 2% additional runtime over-

head on top of PSI, bringing the overall average overhead to 14.5%.
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4.2 Threat model

We consider a powerful remote attacker who has the ability to execute arbitrary

script code that can exercise memory disclosure or corruption vulnerabilities in a

victim application. We assume that the attacker has no physical access or native

code execution capability on the victim system. We also assume that victim system

has deployed ASLR and DEP and thus direct code injecting does not work, and

hence the attacker’s goal is to carry out a ROP attack.

We further assume that using the memory disclosure capability, the attacker can

systematically de-randomize the locations of data and code that is accessible by

following pointers stored on the stack, the heap, and global data in ELF images.

The ROP attacker can choose several ways to succeed. The simplest one is to use

memory disclosure to harvest code pointers and use existing leaked code pointers

to infer the layout of binary and finally construct ROP attack at runtime. This

attack is straightforward but may not be robust, since binary code layout may vary

across different distributions. Alternatively, the attacker can also launch JIT ROP

attack which constructs ROP payload just in time. By following direct branches

or other leaked pointers (e.g., from vtable pointers to virtual function pointers

and finally to code pages), she could harvest sufficient code pages to gather ROP

payload and launch attacks.

In typical ROP scenarios, victim crashes (caused by invalid memory accesses) lead

to attack failure. We consider a more powerful threat model that attacker could

repeatedly cause crashes and regain control, similar to blind ROP attack [46].

Finally, we assume that the attacker is aware that a coarse-grained CFI has been

applied to all code modules in the target system.

4.3 System design overview

In this section, we demonstrate the design of SECRET against code reuse attacks.

We have developed our approach to disrupt the process of constructing gadget

chain. Specifically, we have developed the following techniques:

• Code pointer remapping (CPR): We develop CPR that replaces the code

pointers including return addresses, exception handlers, exported functions
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with encrypted values that scatter in a very large address space. By doing so,

attackers won’t be able to infer valid indirect branch locations from leaked

code pointers in the stack or heap. In addition, encrypted code pointers live

in a large per-module address space so that blind ROP attacks will suffer

from significant number of tries. The detailed design is in Section 4.4.

• Code space isolation (CSI): We eliminate attackers’ capability of code read-

ing by using code space isolation. In particular, we first use static analysis

to figure out original code and wipe it out. In addition, we present tech-

niques to isolate and protect our instrumented code from being revealed.

Read access to the instrumented code version is prevented on x86-32 using

segmentation features. On x86-64, we exploit the available address space

entropy to achieve probabilistic protection. The design of CSI is detailed in

Section 4.5. In addition to protecting instrumented code, CSI ensures that

instrumented code cannot be discovered by following pointers on the stack,

static, or heap memory.

4.4 Code pointer remapping

In order to launch code reuse attacks, ROP attackers need to find useful gadgets

to construct a ROP chain. However, in the context of a coarse grained CFI,

only valid indirect targets can be used for gadgets. This does not stop them

because if attacker has prior knowledge of original binary, he could use gadgets

that live in valid targets permitted by BinCFI. For non position independent

executables, attackers have no problem figuring out locations of those gadgets

using prior knowledge. To gather gadgets in position independent code, all they

need to do is to bypass ASLR, i.e., once any code pointer is leaked, attackers may

use their knowledge to infer all other code pointers that reside the same module.

In this section, we focus on solving this important issue and convey a defense

against ROP attacks that bypass ASLR. Our approach is called code pointer

remapping (CPR). The key point in CPR is that it aims to prevent attackers’

prior knowledge on original binary from being useful. This is achieved by the

following countermeasure steps:

• Preventing usage of invalid pointers: PSI already enforces a coarse-grained

CFI policy that prevents control transfers to most invalid targets. The vast
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majority of the allowed targets are the instructions following a call instruc-

tion. The remaining are code pointers discovered by a conservative static

analysis. Control transfers to any other location (98%) are blocked.

• Tightening BinCFI policy: We use static analysis to tighten BinCFI so that

its strength can be stronger without sacrificing compatibility. On implemen-

tation, we could use multiple address translation tables for different indirect

branches., For instance, indirect jumps using only jump tables could check a

separate table, so that those code pointers in jump tables can be eliminated

from the address translation table for return instruction.

• Remapping code pointers: Since instructions after call sites constitute the

majority of allowed targets, they are the most attractive targets for attackers.

We present a technique that replaces return addresses in each module into

values in a new code address space (address range). Each code pointer is

encrypted using a strong hash function such as SHA-2. The encrypted value

in each module is then mapped into one address space so that attackers

cannot infer additional pointers from leaked ones.1 In addition, the new

address space is randomly selected and reserved by ld.so and its size is several

orders of magnitude larger than original code segment. Thus, exhaustively

probing memory for callsite gadgets won’t work.

Since the first step has already been covered by the underlying system. We focus

our discussion on the rest of them.

4.4.1 Tightening baseline policy

We discover that part of BinCFI policy is overly permissive. In particular, return

instructions does not need to use jump table targets. However, elimination of

these addresses from address translation table cause some indirect jumps that use

jump tables not working, since they share the same table. To overcome this, we

change the transformation of those indirect jumps. In particular, we transform

code pointers used by jump tables and put them into a new table along with

instrumented code. In addition, we change indirect jumps that look up old jump

1By masking the encrypted value, we could control the range of encrypted pointer values for
each module. In some scenarios, such as handling exceptions, this range will have to include
several smaller ranges, each of which corresponds to one region specified by DWARF information
and all return addresses in the same range will have to preserve order. This can be easily achieved
by tweaking the mask values.
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tables to ensure that they check the corresponding new tables in instrumented

code. By doing so, jump tables will enjoy better performance since no translation is

needed. In addition, jump table targets are eliminated from the address translation

table to improve the strength of CFI policy.

4.4.2 Remapping code pointers

To prevent attacker from using leaked code pointers to infer the code layout,

SECRET remaps original code pointers of ELF binaries including return addresses

on the stack as well as other types of pointers such as exported functions, and

discovered jump tables, as this provides the following benefits:

• Remapping code pointers can prevent attackers from being able to easily

target the most powerful class of gadgets left on systems that enforce coarse-

grained CFI. (On such systems, code pointers such as return address can

target far more gadgets than other types of code pointers. Moreover, gadgets

reachable using returns can be assembled into non-trivial ROP payloads.)

• Attackers may be able to launch an ROP attack if they could systematically

enumerate the space of valid code pointer values, and then probe them all.

By remapping the RA as well as other code pointers, we force the attacker

towards exhaustive enumeration: return addresses and other code pointers

that are next to each other in the original code address space are now scat-

tered across a much larger and randomized address range, forcing attackers

to brute-force the entire address range rather than being able to use an

intelligent search that probes only a small fraction of the address space.

Remapping code pointers in the following means that we use a strong hash method

such as SHA-2 to encrypt the target code pointer and use a mask to map them

into a certain address range.

To figure out a new code space for each module, we leverage the dynamic loader

to reserve an address range. The base address of this address range is decided at

runtime, but on instrumentation time, there is always a predetermined base which

is the next page address after the current code segment. Since code pointers

are modified at instrumentation time, these pointers are mapped into this pre-

determined address range and then they are rebased further at runtime through
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relocations. Relocations are contained in a file loaded along with instrumented

code. For simplicity, each module owns an address space of 4 Gigabytes.

Within the address range, we generate a random number for each code pointer

to be modified. Since our address space is 4 Gigabytes on default, all we need is

a set of 32-bit random numbers.2 Instrumented programs will have to use these

random number instead of original code pointers. LTT is also modified to make

sure those randomized addresses will be found in the key set at runtime. All

of these randomized code pointers will be translated at runtime into addresses

within instrumented code. Attackers won’t be able to reverse engineer the address

translation since the location of LTT and instrumented code are hided within the

large address space.

Remapping return addresses Changing return address (RA) values has two

potential implications. First, existing code may rely on RA values, e.g., exception

handling code. The experiments have shown that the use of RAs is limited to the

following cases on GNU/Linux:

• C++ exception handling, where the return address is used to identify whether

the caller of the current function has a handler for the current exception,

• Location Checking, where the return address is used to check where the caller

comes from. This type of checks happen in dynamic loader.

• PIC code data access, there are two cases: (a) jump tables, where the return

address is popped off the stack and used to compute the base address of a

jump table, and (b) static data accesses where the return address is popped

off the stack and an offset added to find the base address for static data

access.

For cases where return addresses are used for C++ exception handling, we update

the DWARF metadata information. This is to ensure that the stack unwinding

mechanism can work correctly with randomized return addresses. In particular,

we update the DWARF for each function by changing the function boundaries. The

randomized function boundaries are equally distributed in the large random region

for the whole module. Since C++ exception handling only checks return address

with its own function boundaries, the order of function ranges does not have to

2Note that this address space can be configured to increase randomness
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be preserved. To make sure each return address is mapped to its corresponding

function, we tweak the mast value to achieve that. This sacrifices the randomness

of return addresses from arbitrary value within a whole module (4Gigabtes) to

those within the range of its function (4 Gigabytes divided by number of functions

in this module). We argue that this can be solved by enlarging the address range

of the whole module.

The second case that we observe occurs in the dynamic loader, where some internal

functions check the location of caller. In particular, they require that callers

could only come from libc.so or libpthread.so.3 In particular, the code will

check against the loader’s internal data structure link map, which contains the

information about all modules. In order to cope with this, we change the linkmap

data structures. In particular, the base address to that of the randomized address

space. By doing so, the remapped return addresses could be correctly identified.

In addition, to make sure all metadata could be accessed, we also change related

related fields in link map such as offsets to metadata segments of the module

accordingly. This is to ensure that our modifications is transparent in front of

accesses towards ELF metadata sections

For the other two cases, we rely on a static analysis to detect that the RA is being

used as a data pointer, and avoid remapping the RA in those cases. Moreover, it is

possible to recognize that those addresses will not be used for return (as they are

popped off the stack), and hence avoid including them in the list of valid targets

for return instructions.

Another challenge in remapping RA is that of handling special cases of instruc-

tions: instructions that use an RA that wasn’t pushed by a call instruction. A

typical example is that of explicitly storing a code address at the top of the stack,

and returning to it. The return address in such case will not be remapped, which

can cause incompatibility, since the instrumentation now requires remapped RAs.

We point out that any such code address that is explicitly stored on the stack will

be identified as a code pointer by the static analysis used in PSI. Moreover, we

point out that the coarse-grained CFI policy in PSI permits return instructions

to return to locations identified by the code pointer analysis. In terms of imple-

mentation, this policy is implemented using two address translation tables: one

for translating return addresses, and another for translating other code pointers.

3Somehow, this is regarded as a security feature, which is obviously useless. Attackers could
bypass the checks by getting into the middle of those functions directly, or carefully crafting the
payload to bypass the checks.
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(The LTT components of these two tables, called RA LTT and FP LTT, are il-

lustrated in Figure 4.1.) The approach is to make the return address translation

operate on remapped RAs, while letting the code pointer translation operate on

non-remapped pointer values. This approach provides an elegant solution to the

compatibility problem posed by special cases of return instructions.

Remapping exported functions Remapping exported functions is necessary,

since these pointers will be propagated by the dynamic loader into GOT tables

in dependent code module. Attacker may use this information to infer other code

module base addresses. Remapping these code pointers can be done by updating

the dynamic symbol table in each ELF image at runtime.

Handling function pointers Note that function pointers remain unchanged

in the ELF binary file. This is because our technique targets COTS binaries that

do not contain additional information such as relocation information or static

symbol table. Without the additional information, it is challenging to identify

whether a constant value is a code pointer or an integer. Therefore, we leave them

unchanged. However, an on-going work is being developed to identifying vtables

and transformed code pointers in vtable. This analysis has also been attempted

by previous work [114].

4.5 Code space isolation

Code pointer remapping prevents code pointer harvesting attacks, i.e., attacks that

infer other pointers from leaked ones. However, bypassing code pointer remapping

is easy, since attackers could simply read original code as well as artifacts specific to

PSI such as instrumented code and LTT to figure out valid indirect branch targets.

For instance, discovering original code allows attackers to find all useful gadgets

and discovering LTT allows attackers to find out all indirect targets permitted by

BinCFI. Thus any effect of code pointer remapping will be useless.

To make code pointer remapping robust against memory leakage, the first thing we

can do is to eliminate original code, since it is not useful anymore in PSI. In addi-

tion, we need to ensure that those encrypted pointers remain secret. This requires

hiding both the LTT and encrypted return addresses in the callsites. An easy way

to achieve the latter is to use a table containing all encrypted return addresses and
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ensure that instrumented code for call uses its index instead of encrypted value

to push return addresses. (e.g., push $encrypt ptr should be rewritten to push

array[index i]). However, the first one requires randomizing LTT without direct

memory access. Hiding LTT in this way unfortunately puts further constrains on

our address translation trampolines. Since the address translation routine needs

several indirections to get the base address of LTT, the extra runtime overhead

will be significant.
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Figure 4.1: Architecture of code space isolation. Memory accesses towards ad-
dress translation table are performed through our private TLS to avoid memory

leak.

To protect code pointer remapping from memory disclosure with a good trade-

off between performance and effectiveness, we propose code space isolation (CSI).

Figure 4.1 illustrates the overall approach for protecting the original and the in-

strumented code, which relies on the following techniques. First, we develop a

static analysis pass to identify data embedded within the original code, and zero

out the remaining code bytes. Note that this approach is able to do this at a fine

granularity compared to some of the previous approaches, such as XnR [36] and

HideM [71], which offer protection only at the granularity of memory pages. For

instance, with these approaches, if there are just a few bytes of data in every 4K

of code, they can cause all of the code to remain readable. In contrast, with our

approach, will all but few data bytes are erased, thus allowing attackers to read

just these few bytes.
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After erasing code bytes in the original data, we develop techniques to separate

instrumented code as well as LTT into a memory region that is unrelated to that

of the original code.

4.5.1 Static analysis for identifying data

We have developed a static analysis to identify data embedded within code regions.

The goal of this analysis is to be conservative: when in doubt, bytes should be

marked as data and preserved, rather than being erased.

There are two types of embedded data: (a) data in the middle of a function and (b)

data between functions. The first type of data is usually jump table data. We reuse

the underlying PSI jump table discovery code to discover the CFG of a function,

and mark the gap inside the function as data. For the second type of data, we

leverage the information in two sections in COTS ELF binaries: .eh frame and

.eh frame header. These two sections are generated in the DWARF format used

for C++ exception handling at runtime. These sections tell the C++ runtime

how to unwind function frames. Basically, the information is per function based.

They include information such as function boundaries, the position of saved frame

pointer in a stack frame (or stack height if frame pointer is not available), and the

positions of callee-saved registers saved in the frame.

We find that even non-C++ binaries contain these two sections. This is because

C++ code may call non-C++ code and vice-versa. In order to properly handle

exceptions, all function frames between the exception thrower and catcher must

be available. This is the main reason why non-C++ code also includes frame

information by default. Although DWARF information may be missing in some

cases, in the experiments, we find that it is available on COTS Linux binaries. It

is included even in low level code such as glibc, including even the hand-written

assembly code contained therein.

The disassembler implemented is based on the original design in Section 2.1, but

we add some tweaks that leverage the DWARF information to improve disassembly

result. In particular, we first leverage the DWARF information to accumulate all the

available function boundaries. Then, we start disassembling the code from those

known code locations and follow direct control transfers to discover code that may

live in the gap between two known functions.
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Once this process is over, we consider the rest of the original code as embedded

data.

4.5.2 Separating instrumented code from original code

Since static binary instrumentation approach updates binary files and generates

a new code segment, it is natural to extend the existing binary by putting the

instrumented code right after the original code segment. However, this is not

good for protecting the instrumented code regardless of the method used: efficient

protection mechanisms may require protected regions to be located within specific

ranges of addresses, or at random locations. We therefore redesigned the format

of instrumented binaries to decouple instrumented code as well as the address

translation tables from the original code.

To protect instrumented code in x86-32 architectures, we use segmentation to

ensure that instrumented code is not accessible by the program. Note that the

technique is to put the instrumented code as well as its LTT outside of a mem-

ory sandbox enforced by segmentation. The details of this technique has been

discussed in Section 5.3.6. We omit repetitive discussion here.4

On architectures such as x86-64 where hardware segmentation is missing, software

fault isolation (SFI) [138] can be used to protect the instrumented code, but the

associated overheads can be significant. Moreover, instrumenting all memory ac-

cesses can be an engineering challenge due to the complexity of the x86 instruction

set. We therefore take the alternative of base address randomization to protect

the instrumented code. There are two key benefits in using randomization for this

purpose:

• High randomization entropy: x86-64 architecture supports a 48-bit address

space, of which 47 bits are usable in user mode. The larger address space in-

creases the potential entropy of ASLR that operating systems could achieve.

For instance, from Windows 7 to Windows 8, the entropy of DLL images

increases from 8 to 19 and the entropy of executables goes from 8 to 17 [79].

Linux has also improved the entropy of ASLR for mmap(2) from 8 bits in

32-bit systems to 28 bits in 64bit systems [93, 144].

4Note that since LTTs are outside of sandbox, memory accesses towards LTTs are required
to bypass memory sandbox, this is achieved by using our private segment register
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• Protection from indirect memory disclosure: Even if code base is randomized,

an attacker that can read data memory such as heap or stack may gather

harvest code pointers. These pointers still allow the attacker to reach code

pages by dereferencing those pointers. We eliminate this attack avenue since

code pointers such as return addresses and exported functions are protected

by CSI. The rest of the code pointers, including function pointers , only

target the wiped out original code segment. Thus, instrumented code is

never targeted by any part of the memory, except in our own data structures

that are maintained as secret.

4.5.2.1 Protecting instrumented code

In our implementation, instrumented code of each module is located in random

distance from its original code. The random number is independently generated for

each module. Note that code allocation is performed in loader instead of libc.so,

this dedicated code allocation site gives us an option to control the allocation

function and ensure a higher entropy of ASLR than OS without affecting allocation

of data or other objects.

Despite the fact that most of the instrumented code is position independent, chang-

ing the base location of instrumented code requires adjustment on its data refer-

ences towards the original data section and references to original code even (in case

of data embedded in the code). Data references are realized in x86 with either a

position independent code (PIC) sequence (get pc thunk) or with an instruction

that uses %rip with a constant offset. For data accesses through PIC code pattern,

we solve it by identifying those patterns and make sure return addresses remain

unchanged (pointing to original code). For data references using %rip in none

position independent executables, a straightforward idea is to change the usage of

%rip into absolute addresses, since absolute address is known at instrumenation

time. For %rip usage in shared libraries and position independent executables

(PIE), a natural solution is to adjust the offset value in those instructions using

%rip. Unfortunately, according to Intel manual on x86 ISA, the offset value of

%rip has only 4 bytes in length, thus adjusting offset value will constrain the

range of instrumented code to 4 gigabytes around the original data segment. This

solution brings about least code instrumentation but downgrades the entropy of

instrumented code location. An alternative solution is to use a register to replace
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the usage of %rip. The content of this register is the base address of that mod-

ule. By doing that, a data reference of %rip plus a constant A, can be statically

replaced by the register with constant B, where B equals to %rip − base + A.5

Note that the dedicated register is reloaded each time it enters a new module.

An instruction that uses the dedicated register need to be replaced by either an

instruction using another register or an instruction sequence with store and reload

dedicated register. Since PIC code pattern requires patching the instrumented

code, our loader does that before loading it into memory.

4.5.2.2 Protecting global address translation table

Note that in addition to protecting instrumented code, the locations of GTT and

LTTs need to be randomized as well. Since LTTs occur together with instru-

mented code, the entropy in their addresses is the same as that of instrumented

code. GTT, on the other hand, is implemented using an one-level array, in which

each entry represent one page in the whole 47-bit address. Since the entry size

is 16 Bytes, the total size of GTT will be half of one TB. Despite the fact that

GTT is still a small data chunk compared with the large address space in x86-64

architecture, the entropy goes down to 9 bits and suffers from memory disclosure,

as shown in recent research [68]. Using different table structures such as two-

level lookup table or hash table will increase the entropy but definitely will cause

performance issues. To avoid extra performance overhead and maintain a high

entropy of our secret, we choose an alternative approach, i.e., exposing GTT to

both application code and attackers. The point of our design is that GTT does

not contain any secret. Note that GTT is a hash table that is looked up by a

target page address. Its output is a trampoline address for the target module. Al-

though this trampoline helps completing the address translation for inter-module

control flow, it leaks the location of instrumented code of target module. This

is because the trampoline code is appended after instrumented code. Decoupling

this trampoline from an instrumented code module would be impractical since all

indirect branches will have to check against it. To solve this issue, we choose to

use index to represent the address of trampoline in the GTT. This index is used

for checking against an internal data structure called trampoline table. This table

contains the trampoline addresses of all code modules loaded and its base address.

The index is incremented each time a new module is loaded. Given the fact that

each module contains two trampolines, according to BinCFI design, each of which

5Note that %rip− base is always a constant
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requires 8 bytes, we further assume that an application will not load more than

500 libraries. Under this assumption, two consecutive pages will be sufficient to

the trampoline table and the size of the table could be further configured. Base

address of trampoline table is kept in our private TLS whose base is stored in

kernel. By doing that, both the GTT table and its lookup code are safe to be

allocated at fixed location which is visible and accessible to application code and

ROP attackers.

4.5.2.3 Protecting internal data structures

The internal data structures that should remain secret are our private TLS and the

trampoline table. Our private TLS is initialized in the loader at program launch

time and each time a new thread is created. It uses the TLS segment register that

is not used by glibc, which is %gs in x86-64 in Linux. The purpose of this TLS is

to store pointers that benefit instrumented code execution. Therefore, its content

has to remain secret.

4.5.3 Randomization

As mentioned, the trampoline table contains critical information and thus should

be protected. We ensure that this table has a randomized base address and is

read-only in the program execution, except in a small window when the program

is initializing a library. To summarize, the total number of secret are the following

data elements:

• Instrumented code and LTT: Instrumented code needs to remain as secret

to prevent disclosure of encrypted code pointers.

• Trampoline table: This per-process table contains all the address translation

trampolines and base address of instrumented code.

• Private TLS: Private TLS contains pointers to trampoline table and thus

needs to be protected.

We now describe our critical data randomization implementation. Note that Linux

implements its own ASLR, which offers 28 bits of entropy [93, 144]. However,

bugs [91, 92] and weakness of its implementation plague around the production

80



systems. Even to date, current 64bit Linux system still has a vulnerability in ASLR

that PIE is always allocated at the same distance from its loader and libc [93].

For this reason, we decide to develop our own randomization module to allocate

instrumented code, the trampoline table and our own dedicated TLS. For simplic-

ity of implementation, we use the assembly instruction rdrand available in Intel

CPU Ivy bridge models to generate random numbers. rdrand is compliant with

security and cryptographic standards such as NIST SP 800-90A [40]. This instruc-

tions could generate 64bit random number each time it is invoked. Since our code

and data have to be page aligned, the number of randomized bits needed in 47 bit

of user address space is 35, which we use.6 By doing so, the instrumented code as

well as our critical data structures could enjoy the full user address space.

In our implementation, we add our own code logic in the dynamic loader just

after the library loading code. So, whenever an original code module is loaded,

it immediately triggers our own code to load its corresponding instrumented code

at random base location. Note that by doing so, we do not change the entropy of

original code. This is reasonable since increasing the entropy of original code does

not help because of the leaked pointers.

4.6 Implementation

Since the base platform PSI works only on x86-32 Linux, we also implemented

SECRET on the same platform. It implemented both segmentation-based and

randomization-based protection for instrumented code and other memory regions

that critically rely on protection. Most of the main steps and issues in the im-

plementation have been discussed in the previous section, so in this section we

focus on some lower level issues that are nevertheless critical for ensuring overall

security and correctness of SECRET.

Protecting the Dynamic Loader Shadow code loading is performed by a

custom version of the dynamic loader (ld.so), which is a shared library responsible

for loading dependent library modules. However, since the loader is responsible

for loading the instrumented code of other modules, a challenge that must be

6If target CPU does not support this instruction, we could use /dev/random to get random
numbers.
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Figure 4.2: Shadow Code randomization for the dynamic loader.

addressed is how instrumented code randomization can be applied to the loader

itself.

SECRET addresses this issue with the process illustrated in Figure 4.2. When the

program starts, the loader runs first, and at this point, its instrumented code and

LTT are by default appended after its original data segment, as up to that point the

code is just a traditional PSI transformed binary. Immediately after the loader is

initialized, it begins to randomize itself. First, a pre-generated instrumented code

image is loaded from disk and mapped into a randomly selected address picked

by the OS.7 Similarly, a new instrumented code as well as its LTT data file is

loaded afterwards, and then the loader begins to update the GTT. In particular,

all entries corresponding to the original code of the loader are changed to point

to the new instrumented code. After this step is finished, the loader continues

its execution using the original instrumented code until the next indirect control

flow is encountered. Once an indirect branch is encountered, the loader “enters”

the randomized instrumented code and runs with that code. The final step is to

7In case when the entropy provided by the OS is insufficient, this design allows for additional
randomization using a custom allocator.
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unmap all the old instrumented code and LTT. This is safe since the program is

still in its startup phase, and no other threads will be executing the loader’s code.

Protecting the vDSO The virtual dynamic shared object (vDSO) is a small

shared library automatically mapped by the kernel into all user-space processes.

As such, it does not have a file on disk. If left unprotected, however, several critical

functions in vDSO could be abused for the construction of ROP code.

SECRET instruments all dependent libraries, including vDSO. This is achieved by

dumping its memory image and generating the corresponding instrumented code

offline. At runtime, SECRET loads the instrumented code for vDSO at a random

location, following a process similar to the one for the dynamic loader, described

earlier. This ensures that forward edge control flow transfers will never target the

original code of vDSO, and will always be redirected to its instrumented code.

The instrumented code of vDSO also benefits from the underlying PSI protection.

Moreover, additional security policies could be added to prevent attacks that abuse

sigreturn in vDSO.

Another complication for vDSO’s instrumented code is that vDSO contains a fast

system call invocation function. Due to the kernel design, when a system call

finishes, the control flow always goes back to the original vDSO code even if the

call site was in its instrumented code. If not handled properly, this could lead

to the execution of an unprotected return instruction. SECRET deals with this

issue by dynamically patching this function and making sure it complies with the

underlying CFI policy.

Signal Delivery Signal delivery causes the program context (a signal frame)

to be dumped in to the user stack. Since the program is executing in its instru-

mented code, any signal delivery will cause information leakage that will expose

the location of the instrumented code. SECRET avoids this issue by transpar-

ently intercepting the sigalt function and registering its own signal stack. All

signal frames are initially placed in a randomized signal stack whose location is

never leaked. Then, the transformed signal frame is copied into the user stack (or

user-assigned signal frame). The transformation changes the PC address inside

the signal frame into the original code address before copying it to the user stack.
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4.7 Evaluation

We perform an extensive evaluation on the system using the SPEC benchmarks

and real world applications, including GUI applications such as Open Office. All

experiments were performed on a 32-bit Ubuntu 12.04 with a 2-core Core i5 CPU

and 4 GB RAM.

4.7.1 Code pointer remapping

Figure 4.3 shows the fraction of code pointers that have been remapped when code

pointer remapping is applied. Our analysis illustrates that the majority of code

pointers are return addresses. To our surprise, our experiments find that almost

half of the code pointers in libc.so are used for jump tables. For this library,

we almost remapped all the code pointers. Remapped pointers are hided inside

instrumented code which is not accessible by attackers.

4.7.2 Static analysis

We evaluate our static analysis technique on code identification. As described,

the .eh frame section provides information on how to unwind stack frames. The

covered region is consisted of a list of debugging unit, each of which is usually a

function or code snippet. The Frame Description Entry (FDE) structure includes

the range of the code in each case. Figure 4.4 shows the exception handling

information coverage for a set of SPEC binaries and Linux libraries. We summed

up the ranges of all entries and showed them in the 2nd column how much code

was covered by the DWARF information. On average, 97.17% of the code segments

is covered, which means that function boundaries are available in almost all of

these binaries.

With those boundaries as starting points, SECRET’s static analysis pass can follow

control flows within the already known regions and discover any missing code, as

well as data in between and in the middle of functions. After analyzing 491 ELF

binaries, we have found a few cases of data embedded in code. However, in most

of these cases, the gap region indicated in the .eh frame section was simply the

padding data in between function or section boundaries. There were only a few
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name total return jump exception exported percentage
code ptr ptr table ptr handler function remapped

400.perlbench 17548 14101 1542 0 3 89%
401.bzip2 512 365 48 0 2 80%
403.gcc 58264 47847 6496 0 7 93%
429.mcf 146 94 0 0 2 66%
445.gobmk 12220 9245 266 0 3 78%
456.hmmer 4426 3624 223 0 2 87%
458.sjeng 1436 1124 140 0 3 88%
462.libquantum 585 448 1 0 2 77%
464.h264ref 3738 3059 89 0 3 84%
471.omnetpp 21116 16700 956 3708 23 94%
473.astar 535 411 3 0 2 78%
433.milc 1881 1561 38 0 2 85%
435.gromacs 8491 6936 321 0 19 86%
437.leslie3d 693 631 0 0 2 91%
444.namd 1343 1157 8 16 3 87%
447.dealII 48927 37679 2801 6632 10 89%
450.soplex 6668 5237 570 493 5 91%
453.povray 13887 10559 1702 103 26 89%
454.calculix 19318 17699 206 0 2 92%
470.lbm 126 79 0 0 2 64%
482.sphinx3 2930 2530 5 0 2 87%
libc.so.6 26719 12117 12432 0 2163 98%

Figure 4.3: Percentage of Randomized Pointers in SPEC Benchmark

Name .eh frame Coverage
spec2006 97.54%
libc.so.6 97.87%
libm.so.6 96.16%
libgfortran.so.3 98.58%
libquadmath.so.0 99.63%
libstdc++.so.6 95.44%
libcrypto.so.1.0.0 87.23%
average 97.17%

Figure 4.4: Coverage of exception handling information on the original code.

.

cases in which data was embedded in the code as part of jump tables. Figure 4.5

provides details about these cases.

We has found 40 locations in total 390 bytes where there is data in libc.so.6,

all of them used as padding. Since the value of the padding is zero, they can
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Name
Invalid
Region

Valid
Region

Reason

libc.so.6 40 0 alignment padding
libffi.so.6 0 1 ffi call SYSV

libcrypto.so.1.0.0 0 16
lookup table for
crypto algorithms

Figure 4.5: Embedded data regions identified by static analysis results

cause disassembly errors if not handled properly. In libffi.so.6 on x86, we

found a jump table in the middle of code inside the ffi call SYSV function. The

same library on x86-64 has two jump tables identified by this algorithm. Finally,

libcrypto.so.1.0.0 contains 16 data regions in the middle of code in both 32-bit

and 64-bit versions. In particular, we further looked into the binary and retained

20377 Bytes of data in the code segment. All the data regions are located after

function return.

4.7.3 Strength of randomization

To evaluate our randomization protection on instrumented code, we port our code

into a dynamic loader8 running in 64 bit Ubuntu 14.04. In this experiment, we

tested chrome 43.02 by forcing our modified loader to load the browser code as

well as its dependent libraries. In the experiment, we used instrumented code of

the same size as the code in an original binary,9 i.e., when a module is loaded, our

loader immediately load a instrumented code piece whose size is the same as the

text segment of the module. In our experiment, all 24 processes of chrome has

been tested.

Our experiments illustrate that the size of instrumented code used by chrome

is 514 Megabytes. The instrumented code pages allocated are scattered in the

whole user address space. The address range is different on each process, but the

length of address space that instrumented code occupied across different processes

is between 953 and 1021 Tera-bytes. Since instrumented code is not targeted by

any code pointers, the probability of memory leak is calculated by size of code

divided by the address space used, which is between 5.3e-7 and 5.68e-7.

8This dynamic loader belongs to glibc 2.19
9This might introduce a tiny inaccuracy since instrumented code size is slightly larger than

original code. However, given the fact that the address space is several order of magnitude larger,
this variance could be ignored.
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Figure 4.6: Runtime overhead of SECRET on the SPEC benchmarks.

4.7.4 Runtime performance

We have evaluated SECRET’s runtime overhead using the SPEC2006 bench-

mark. Since code space isolation does not introduce extra overhead, we include

this feature on default except in baseline system PSI. In our experiments, three

modes of our prototype has been tested in three modes: 1) PSI: baseline pro-

tection; 2) SECRET.seg: instrumented code protected by memory segmentation;

3) SECRET.rand: instrumented code protected by randomized base address. In

all cases, SECRET transforms the main executable and all 6 dependent libraries.

The results of each of the SPECINT benchmarks are shown in Figure 4.6, while

Figure 4.7 shows the average overhead for SPECINT and the total for all 21 SPEC

CPU benchmarks.

In the SECRET.seg mode, the average runtime overhead for SPECINT is 14.41%

(the total SPEC CPU overhead is 15.64%). In this mode, both the instrumented

code and its LTT are located outside of the memory sandbox. The overhead in

this mode mostly comes from memory access through a segment register when

performing address translation. In the SECRET.rand mode, the average runtime

overhead for SPECINT is 13.54% (the total SPEC CPU overhead is 14.48%). The

protection added in this mode is the base address randomization of instrumented

code. Compared with SECRET.rand, there two differences in this mode: (a) the ad-

dress translation trampolines are required to do two range checks (one for original

code space and the other for randomized code address space) instead of one, this
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PSI SECRET.seg SECRET.rand
SPECINT 12.84% 14.41% 13.54%
TOTAL 14.20% 15.64% 14.48%

Figure 4.7: Summary of SPEC2006 Runtime Overhead

Test suite Base SECRET.rand Description
python 4.709 5.022 run bincfi script

to transform /bin/ls
dd 99.46 99.6 copy a 1GB file
md5sum 2.44 2.45 checksum of a 1GB file
apt-get 1.54 3.6 update source list
scp 2.78 2.96 copy a 100MB file to server

Figure 4.8: Completion time (sec) for real-world programs.

will add a little overhead and (b) SECRET.rand does not require intensive memory

access through our TLS. Our experiments illustrate that the average overhead of

SECRET.rand is slightly lower than SECRET.seg. Compared with the baseline sys-

tem PSI, the average runtime overhead added by SECRET.rand is less than 2% and

SECRET.rand less than 1%.

In addition to the SPEC benchmarks, we also evaluate SECRET with several

real world programs. As the SECRET.rand mode includes all features and rep-

resents programs in current architecture (x86-64), we use this mode to compare

with the performance of the original programs. The results of Figure 4.8 show

that SECRET is practical for real world usage. This experiment includes script

interpreters such as python and perl, disk I/O tools such as dd, as well as network

related tools such as apt− get and scp. In all experiments, the code of all main

executables and libraries was transformed to instrumented code.

4.7.5 GUI program startup overhead

One of the important overheads covered in the SPEC benchmark is the startup

overhead. SECRET has noticeable startup overhead because of our modified

loader needs to do the following things for each code module: (a) loading in-

strumented code as well as LTT; (b) initializing the entries in GTT, for code

pointer remapping to work properly and (c) wiping out original code immediately

after load time.
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Name Base (sec) PSI SECRET.rand
evince 0.34 135% 168%
gcalctool 0.62 110% 161%
gedit 0.6 120% 165%
vim 0.6 60% 67%
lynx 0.02 100% 100%
LibreOffice 1.4 51% 200%

Figure 4.9: SECRET’s startup overhead on GUI programs.

To accurate evaluate this overhead, we intentionally use GUI programs since they

will load much more library code than benchmark programs. This helps improving

the accuracy of startup overhead evaluation. As in the previous experiment, we use

the SECRET.rand mode to compare with the original program and the baseline

(PSI).

Figure 4.9 illustrates the startup overhead of several well-known Linux applica-

tions, including three GTK and two text user interface programs. The results

show that SECRET’s overhead is slightly higher on GTK programs than text user

interface programs, because more libraries are loaded at program start up.

4.8 Discussion

4.8.1 Harvesting return addresses

In many scenarios such as JIT environments, attackers may have crash-restart

ability to perform repeated testing. In these cases, attackers may intentionally

launch native functions to harvesting return addresses (return addresses will be

generated by the caller of the native functions and themselves due to invocation of

subroutines. Note that code space isolation randomizes useful code pointers from

attackers that try to recover other code pointers. These encrypted code pointers

are further protected by code space isolation. However, function pointers remain

unchanged, i.e., they stay in the form of original code. When any of these functions

are invoked, the memory footprint that this function left remains on top of stack.

The footprint may include some of the return addresses when subroutines of this

function are invoked.
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Despite that those return addresses are still encrypted, knowledgeable attackers

may take advantage of them. Since attacker is knowledgeable on the original

binary, she knows which function she invokes and she could fully understand the

function internal structure by looking at original code. Then she could gather all

the callsite gadgets by invoking those functions on which she has prior knowledge.

Even if the return addresses are randomized, attackers could easily use them.

We argue that to prevent this memory disclosure, SECRET could take a simple

approach: eliminating all used return addresses. In particular, we could eliminate

the return address left on the stack immediately after we start translating the

return address. This method will not cause compatibility issue because when a

return address is used by an return instruction, its location is already on top of

stack. Note that this location won’t be used by programs, since any value on top

of stack may be overridden due to signal delivery at any time. By doing so, no

function gadgets can be used to infer additional callsite gadgets.

4.8.2 Call-oriented programming

As described in Section 4.4, our system does not change function pointers. This is

reasonable because in static binary instrumentation, changing constants that look

like function pointers is unsafe because those values could be used as integers.

Unfortunately, this allows attackers to use all original function pointers to launch

a call oriented programming (COP) attack such as recent work COOP [120] does.

We admit that this is the limitation of our current prototype. However, we argue

that this limitation could be minimized once we start doing static analysis focused

on C++ programs such as vtable analysis. Besides, in order to to successfully

launch a COOP attack, the attacker has to fulfill lots of requirements. For instance,

COOP requires a certain code piece that is a for loop containing a virtual function

call. In addition, the pointer to traverse the object list is required to be corrupted.

Blindingly looking for such a code piece without reading code pages is expected

to be challenging.
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4.9 Summary

Defending against advanced code reuse attacks that take advantage of memory

disclosure vulnerabilities is becoming increasingly important. To that end, break-

ing the ability of attackers to read the executable memory segments of a process,

or even to infer the location of potential gadgets, can be a significant roadblock

for attackers.

In this chapter, we have achieved the above goal by implementing our system SE-

CRET. SECRET combines two novel code transformation techniques, code space

isolation and code pointer remapping. The former prevents read accesses to the ex-

ecutable memory of the instrumented code, a protected version of an application’s

original code, while the latter decouples its required code pointers from that of the

original code. We have demonstrated that SECRET, the prototype implementa-

tion of the proposed concept, can offer practical and comprehensive protection for

real-world COTS applications, by combining disclosure-resistant code and coarse-

grained CFI with reasonable performance overhead.
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Chapter 5

Application: Comprehensive

Protection From Code Injection

Attacks

In previous chapter, we have discussed our practical defense against code reuse

attacks. However, in principle, it is unclear whether code reuse attacks could be

fully defeated on COTS binaries due to more advanced attack styles such as call

oriented programming (COP) in COTS binaries.

To remedy that, in this chapter, we extend PSI with an additional security prop-

erty: code integrity to defend against native code injection, attacks that in-

troduce malicious code into vulnerable applications. We argue that native code

injection is the ultimate goal of all these advanced code use attacks. Preventing

native code injection will effectively mitigate these attacks.

We will demonstrate that code integrity when combined with control flow integrity,

is an effective approach against modern code injection attacks. The following

discussion will illustrate how this security property is enforced and implemented.

5.1 Motivation

Despite decades of sustained effort, memory corruption attacks continue to be one

of the most serious security threats faced today. Memory corruptions are sought
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after by attackers as they provide ultimate control — the ability to execute low-

level code of attacker’s choice. This factor makes them popular in targeted as well

as indiscriminate attack campaigns.

The popularity of data execution prevention (DEP) stems from its ability to block

the highly sought-after arbitrary code execution capability. This is one of the rea-

sons why it became popular despite its well-known weakness against code reuse at-

tacks such as return-to-libc [101] and Return-Oriented Programming (ROP) [126].

Subsequent to its deployment, attackers have become increasingly skilled at craft-

ing ROP attacks that string together small snippets of existing code (called “gad-

gets”) into something like a virtual instruction set. Although researchers have

achieved Turing-completeness with ROP attacks, real-world ROP exploits face

many serious limitations, including:

• Limited variety of gadgets. Due to defenses such as ALSR, frequent soft-

ware updates, customized compiler optimizations, version changes and oth-

ers, some gadgets are eliminated, while the location of others is unknown,

and requires significant effort to locate. This limits the range of attacks

possible.

• Payload sizes are typically limited. The payload size that attackers can use

to put their ROP chain is usually decided by specific exploit context. Re-

cent research [69] shows the payload size limit imposed by vulnerabilities

in Metasploit Framework [117], one of the best security testing tool that

provides various exploit samples and payloads. This framework contains

The average of maximum payload among 946 vulnerabilities covered in the

framework is only 1332 bytes. This poses constraints on the length of ROP

chain.

For this reason, real-world ROP attacks have been relatively short, and have tar-

geted executing just enough code to disable DEP, i.e., change permissions on mem-

ory pages, or loading their own code pages or libraries. Such a transition from code

reuse to code injection (CRCI) has become a common feature of today’s exploits.

Base on the above analysis, it is believable that in the foreseeable future, attack-

ers will continue to be constrained in their ability to craft pure ROP exploits.

Even as attackers make advances in ROP attacks in the future, platform vendors

are bolstering defenses, e.g., by increasing ASLR entropy using 64-bit address
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spaces, while processor and/or OS vendors consider including ROP-oriented de-

fenses [78, 96]. On the other hand, launching a small ROP that disables DEP is

considerably simpler than a pure ROP exploit. Moreover, once DEP is disabled,

injected payload can start execution, and it is no longer constrained by ASLR. In

contrast, for a pure ROP attack, its susceptibility to ASLR increases with each

additional gadget it needs to use. For this reason, native code injection attacks

will continue to be the target of attackers for the foreseeable future. Consequently,

systematic defenses against code injection attacks can greatly degrade the capa-

bilities of attackers. This is the goal of this chapter. Specifically, we propose a

strong code integrity approach that ensures that:

• a process can only execute native code that it is explicitly authorized to

execute, and

• even an adversary that hijacks all executing threads of a victim process

cannot defeat this property.

This strong defense against injected code attacks is achieved without sacrificing

compatibility with existing software, the need to replace system programs such as

the dynamic loader, and without significant performance penalty.

5.1.1 Property and Approach

Existing code integrity mechanism realized by DEP and write protection on code

is targeted at native code injection attacks, but is secure only against a weak

attacker model. Attackers may introduce new code by injecting their own malicious

modules or changing page permissions to mark their payload executable, or even

hijacking the loader. These could be easily achieved by a code reuse attack, which

is quite mature as shown in recent research [62, 74] as well as real world exploits

and vulnerabilities [18–22]

The fundamental reason is however, not the power of code reuse attack, but instead

the missing security mechanism that ensures code integrity. Code signing is one

of the techniques that protects code at launch time. Unfortunately, once code is

loaded, it may still be modified after passing the code signing check.

To solve the issue, we therefore propose a practical but strong code integrity.

Specifically, this approach enforces the following:
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• Any given program (binary) can load only a specified set of files containing

executable code.

• Only instructions legitimately contained in these files can ever be executed.

• No unauthorized changes can be made to any of the instructions during

runtime.

Together, these properties make native code injection impossible. Note that tech-

niques such as write-protecting binary files (or code-signing) serve to preserve the

integrity of code on the disk, but don’t address the protection of code integrity in

main memory. This approach thus provides an important missing piece to ensure

end-to-end code integrity.

This approach is called as Strong Code Integrity (SCInt), highlighting the fact that

it ensures the integrity of all code, together with control-flows within the code.

This contrasts with existing CFI techniques that do not consider most attacks on

code integrity:

• CRCI attacks can modify memory protection to either overwrite existing

code or make non-code 1 executable.

• Loader subversion attacks can load malicious code by exploiting vulnerabil-

ities in the dynamic loader.

A more complete list of possible attacks thwarted by SCInt appears in Section 5.2.

While SCInt aims to ensure code integrity, control flow integrity as a underlying

feature ensures that none of the policies enforced by SCInt can be bypassed. Code

integrity property, in turn, protects control-flow integrity by preventing CFI checks

from being bypassed by newly introduced native code.

5.1.2 Key features

The implementation achieves code as well as control-flow integrity without re-

stricting applications, or requiring the replacement of system software such as the

system loader or the standard libraries. Specifically, the contributions are:

1i.e., data pages containing attacker-provided payload
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• Describe many possible ways to inject native code despite modern protections

such as DEP and ASLR. Attackers may introduce new code by injecting her

own library or changing existing code by hijacking the dynamic loader. Many

of these attacks have not been discussed in previous work, while others have

been known and reported in CVE reports. However, defense to them has

not been discussed.

• A secure library loading/unloading state model that ensures that every code

segment is correctly identified and mapped for execution, and that these

code segments are never writable. An important aspect of this design is the

simplicity of this model, which increases confidence that it correctly enforces

policies to ensure secure loading.

• Defense against native code injection attacks by a powerful adversary. This

defense is secure against attackers that have defeated ASLR, and are able to

compromise one, two, or all execution threads using code-reuse attacks.

• No need to trust the loader. Defense against code injection attacks is achieved

without assuming that the loader itself is secure, or that it can’t be exploited.

As with any large and complex piece of software, it is unrealistic to expect

all vulnerabilities to be eliminated from the dynamic loader. The novelty

of this design is its ability to protect against loader exploits and subversion

attacks using a simple state model.

• Efficient policy implementation. We present techniques to speed up policy

enforcement. Overall, this approach adds a small overhead over the base

platform (BinCFI) for application start-up, and very low overheads at run-

time.

5.2 Possible code injection vectors

The threat model considers remote attackers that are able to interact with network-

facing running application programs. We assume that such attackers can exploits

vulnerabilities in the applications to:

• using information leakage (or other) attacks to defeat ASLR,

• hijack the control flow of more than one thread in the victim process, and
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• read/write/execute arbitrary memory of the victim process, subject to page

protection settings by using code reuse attacks to load new code, e.g., mali-

cious or vulnerable libraries.

Below, we describe concrete or possible instances of attacks that may be carried

out by such attackers.

5.2.1 Direct attacks

In this case, the exploit code (typically an ROP payload) directly invokes the

necessary system calls such as mmap to map new code into memory, mprotect to

change execute permissions and exec to launch executables. Since most operating

systems do not block these system calls, (legitimate programs use them to load

libraries), many current exploits rely on this approach.

5.2.2 Loader subversion attacks

Successful code injection attacks can be launched even if countermeasures are

deployed against direct attacks: even if privileges relating to code loading are taken

away from the application code, the loader code that is part of the process needs

to be able to exercise these privileges. Attackers can thus gain these privileges by

subverting the loader.

5.2.2.1 Control hijacking attacks

These are the most direct form of loader subversion: simply invoking functions

within the loader for mapping memory pages for execution, or making executable

memory writable.

Loading malicious libraries If an attacker has previously stored a malicious

library on the victim system, then she can use a code reuse attack to load this

library.

There is a common misconception that statically linked binaries are immune to

such attacks. In reality, even statically linked code on Linux needs some dynamic
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loading capabilities to perform start-up initialization such as TLS (thread-local

storage) setup, stack cookies, and parsing vDSO2. Hence they contain some inter-

nal functions such as dl map object, dl open and dl open worker that can

be utilized by an attacker to load malicious libraries.

Turning on stack executability A common assumption for many security

defenses is the existence of DEP, which is also the first obstacle for attackers.

However, on Linux, this assumption can be invalidated by invoking a function

dl make stack executable in the loader3.

5.2.2.2 Data corruption attacks

Library hijacking attacks Executable files specify the libraries they depend

on, but not the search path used to locate these libraries. Recent vulnerability

reports [7–9] indicate that by subverting the search path, attackers can load ma-

licious libraries. Search path can also be controlled using environment variables

such as LD PRELOAD, LD AUDIT, LD LIBRARY PATH, or search path features like:

$ORIGIN, and RPATH. Equally important, memory corruption attacks can modify

search path related data structures, thus overriding the original path setting.

Leveraging these attack vectors, attackers can load unexpected libraries in place of

original libraries [2, 12]. This may lead to privilege escalation attacks [5, 6, 10, 11].

On Windows, FireEye reports [134] an increasing use of the WinSxS side-by-

side assembly feature [25] to load malicious libraries, bypassing normal search for

libraries in typical directories containing DLLs.

Malformed ELF binaries Like any complex piece of software, the dynamic

loader is bound to contain vulnerabilities [3]. Malformed binaries are one of the

best ways to trigger them [4, 13]. It has been reported that malformed relocation

data can be used to circumvent code-signing on certain Apple iOS versions [15].

Researchers have also documented more general attacks, showing how malformed

relocation information can be utilized to perform arbitrary operations [128].

2vDSO is a dynamic library exported by the Linux kernel to support fast system calls.
3Stack executability is a “feature” that is available to support GCC nested functions, a legacy

feature.
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Corrupting loader data Some binaries require the loader to perform reloca-

tion. It is possible to exploit this capability to modify existing code. In particular,

the author found an attack that first corrupts the relocation flag, then replaces

the relocation table and symbol table with forged versions by overwriting loader

data structures in memory. A subsequent code reuse attack, involving a call to

the loader function for performing relocation, resulted in a successful modification

of existing code.

Note that this attack is available not only on glibc, but also other loader im-

plementations such as those packaged with bionic libc for Android (before 4.3),

uClibc for embedded systems and other POSIX-compliant libc such as musl-libc.

5.2.2.3 Attacks based on data races

Several potential opportunities exist through which an attacker-controlled thread

can modify loader data while it is being used and/or modified by the loader. We

have identified three attractive avenues in this regard:

• File descriptor race: In order to load a library, the loader first performs

an open on the file to obtain a file descriptor fd, and then uses fd in an

mmap operation to map the code and data pages into program memory. An

attacker’s thread can race with the loader to change the file pointed by fd.

This can be accomplished using system calls such as dup2.

• Racing to corrupt data segments used during loading: Data segments in the

library are loaded with write-permission enabled. An attacker’s thread can

race with the loader to corrupt parts of this data that contain ELF segment

information. When this corrupted data is used by the loader to load code

segments, the loader may end up doing the attacker’s bidding.

• Racing during relocation: Binaries that rely on text relocation provide an-

other opportunity. Specifically, during the time of relocation, the loader

maps the executable pages for writing. An attacker’s thread can now over-

write the code being patched by the loader.
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5.2.3 Case study: code injection using text relocation

This section describes an interesting attack that allows code injection by leveraging

the loader code and data using text relocation.4

Note that code sections are normally write protected in ELF executables, thus

preventing attacks that overwrite them. Text relocation is a convenient key to

open the “door.” Although text relocation is discouraged since it makes it difficult

to share code memory across processes, it is still used in some libraries and its code

is available in all versions of glibc loader.

The attack is launched simply in the following steps:

• Bypass ASLR and figure out loader data structure

• Corrupt loader data structure

• Transfer control to loader function

5.2.3.1 Bypassing ASLR

The first step is to by pass ASLR and figure out loader data structure and text

relocation function inside loader. Dynamic loader contains a data structure called

link map for each code module. This data structure stores the metadata informa-

tion such as the address of symbol table, address of relocation table and whether

the module has been processed, as shown in Figure 5.1.

There are several methods to figure out the memory location of link map. The

first one is to check the Global Offset Table (GOT). In fact the 2nd element of

GOT (GOT[1]) contains the address of link map in most of binaries compiled

with partial RELRO. In case for binaries that are compiled with full RELRO or

binaries launched with eager binding (with parameter LD BIND NOW, GOT[1] is not

initialized.

However, none of these counter measures stop an attacker. The experiment shows

that in program binary, there is an special memory segment called .dynamic, which

contains information of the binary at runtime. In particular, there is an entry

4text relocation is used by dynamic loader to patch code pointers in code segment at runtime
to cope with ASLR.
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called DT DEBUG. This entry points to a data structure that contains a pointer to

the address of link map.

Although it is easy for dynamic loader to disable DT DEBUG by simply eliminating

2 lines of its source code, such code modification will be unlikely, since it poses

inconvenience for program debugging.

Once link map address is known, it is easy to figure out text relocation function

address. This is because link map is stored as an array, while the 1st one is for

the executable and one after is for the dynamic loader. From the 2nd link map

data structure, the base address of loader is known. Then attackers can simply

use binary scanning to find out the function address.

5.2.3.2 Corrupting loader data structure

When the memory address of link map is leaked, this work leverages a memory

corruption attack to corrupt data pointers of relocation table and symbol table to

point to attacker’s payload. In addition, this work modifies a flag in link map for

text relocation patching. Specifically, this flags indicates loader to unprotect write

protected code pages. and this flag is corrupted into value DT TEXTREL as shown

in Figure 5.1. The the memory address specified by the crafted relocation will be

updated and by the value specified by the crafted symbol table. This way attack

could write to arbitrary code location with any value.

The link map data structure shown in figure 5.1 contains related metadata for

this attack, such as pointers for relocation table (l info[DT REL]), string table

(l info[DT STR]), symbol table (l info[DT SYMBL]). These pointers do not directly

point to their data but all point to the locations inside the read-only dynamic

section (when RELRO is applied). This does not prevent attacker, since they could

corrupt the data pointer to attackers’ payload. In addition, to launch a successful

attack, l relocated is a flag that should be flipped, since it indicates whether the

object has been relocated. Finally, GOT needs to be taken over too, because, the

function used will initialize GOT table. However, after relocation patching, the

.got section in ELF file become read-only, this will trigger a segmentation fault.

Changing the GOT to any arbitrary location that contains twelve bytes of writable

memory should work (3 GOT entries).
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struct link_map

{

ElfW(Addr) l_addr; /* Base address */

ElfW(Dyn) *l_ld; /* Dynamic section */

ElfW(Dyn) *l_info[DT_NUM];

/* l_info[DT_TEXTREL] = 1

* l_info[DT_REL] = attacker_rel;

* l_info[DT_SYMBL] = attacker_sym;

* l_info[DT_GOTPLT] = attacker_got;

*/

const ElfW(Phdr) *l_phdr; /* program header*/

unsigned int l_relocated:1;

};

Figure 5.1: Dynamic Loader Internal Data Structure

5.2.3.3 Invoke text relocation function

When the link map data structure is corrupted, code injection attack can be

launched by invoking an internal function ( dl relocate object).

( dl relocate object) takes 4 parameters, the first parameter is the address of

link map. The 2nd one is not used. The third one is the relocation mode, here,

the value can be simply 0x1 (representing RTLD LAZY). And the last one indicates

whether doing profiling or not. Again, pass an integer 0 is fine.

To simplify the prototype, the author uses a simple program that contains a buffer

overflow which allows attacker to change the content of stack including return

addresses. Using this exploit, the author launches the text relocation function in

one shot. Further, the author modify the stack frame pointer to make sure when

function returns, it goes to the injected payload.

This runtime relocation attack used in above case can only corrupt the current

module of the link map data structure. However, it can be generalized to corrupt-

ing all memory region in the runtime. This is true if attackers work harder to

corrupt one more pointer, l phdr. l phdr points to the ELF program header table

located in the write protected ELF image. Corrupting this data pointer allows

attacker to fool dynamic loader to unprotect and corrupt arbitrary code or data.
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5.3 System design

To defeat the kind of attacks described in the previous section, we propose a

security primitive for code loading which ensures that a process executes only the

native code that it is explicitly authorized to execute. The design ensures the

integrity of all code from the binary file to its execution.

Note that the design of SCInt is independent of underlying CFI. However, for the

purpose of explanation and demonstration, the implementation is based on PSI

[1, 153].

SCInt secures all operations related to loading and manipulation of code. It is

able to do this without requiring changes to the loader. Instead, it relies on a small

reference monitor that intercepts key operations relating to code loading, and

ensures their safety. This reference monitor is based on a state model described

below.

5.3.1 State model

The state model captures the essential steps involved in loading a binary and set-

ting up various code sections contained in it. It does not rely on non-essential

characteristics that may differ across loaders, and hence is compatible with differ-

ent dynamic loaders, including eglibc, uClibc, musl-libc and bionic-libc. The key

operations performed by most dynamic loaders on UNIX are:

• Step 1: Open a library file for read.

• Step 2: Read ELF metadata. (This metadata governs the rest of the loading

process.)

• Step 3: Memory-map the whole ELF file as a read-only memory region.

• Step 4: Remap each segment of the ELF file with the correct offset and

permission.

• Step 5: Close the library file.

Calls to system functions used by the loader to perform these operations are rewrit-

ten by SCInt so that they are forwarded to the state model, which checks these
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operations against a policy, and if permitted by the policy, forwards them to the

original system functions. All checks are performed using binary instrumentation.

Note that the underlying CFI enforcement ensures that none of these checks can

be bypassed.

Note also that the policies need to maintain some state, and this state needs to be

protected from attacks by compromised execution threads within the vulnerable

process. We describe in Section 5.3.6 the design of this protected memory.

Figure 5.2 illustrates the state model and summarizes the enforcement actions in

each step of the model. This state model ensures the following properties:

• Only allowed libraries can be loaded into memory address space. These

libraries may be specified using their full path names. Alternatively, the

policy could permit loads from specified directories.

• Each segment in the module must be loaded in the correct location as spec-

ified in the ELF metadata. (Thus, the policy enforcement must be capable

of reading and interpreting the ELF header.)

• An executable segment is never mapped with write permissions. Moreover,

any memory page that was ever writable will never be made executable.

• No two segments can overlap, nor can there be an overlap between a segment

and any previously mapped (and still active) memory page.

5.3.2 State model enforcement

SCInt maintains the current state of an ongoing load. A loading related operation

is allowed only if the state model is in the state where that operation is legal. For

simplicity, the state model serializes file loading, i.e., one library cannot be loaded

until the completion of loading of a previous library. The state model handles

some common errors that can occur during a file load, such as errors in opening

of files, obtaining enough memory and/or address space for mapping, etc.

5.3.2.1 Operation to open a library

SCInt intercepts calls made by the loader to open files for the purpose of loading

libraries. It first copies the file name into protected memory, and this copy is
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ELF Library Loading Procedure State Model for Library Loading

copy name to safe mem

Figure 5.2: State Model for Module Loading

passed onto the system call to preclude TOCTTOU attacks. The actual check on

file name validity is deferred until the file open operation returns with success. At

this point, the file descriptor value is also copied into protected memory for use in

subsequent stages of the state model.

Ideally, library policy checking should ensure that all libraries loaded are from

a predefined set. However, in practice, it is not always easy to determine the

exact set of libraries needed by an application in advance, as libraries may rely on

runtime information in deciding which libraries to load. This is particularly true for

many graphical programs and plugins. To simplify policies for such applications,

SCInt can be configured to permit loading of any library from a set of specified

directories such as /lib and /usr/lib/∗. It is also possible to tighten the policy

for specific libraries, such as libc.so, so that they are loaded from a specific file,

or a specific directory.

The underlying platform enforces a policy that all loaded libraries be transformed

for CFI. It provides an on-demand transformation of binaries when a loading of

untransformed binary is attempted.
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5.3.2.2 Operations to map file into memory

Note that mmap operations that load libraries into memory are based on file descrip-

tors rather than file names. A table in protected memory is used to maintain these

associations, and is populated by the state model at the end of Step 1. Any attack

that invalidates this association can compromise the library loading policy, and

hence SCInt guards against such invalidation. Note that a valid file-descriptor-to-

file association can be changed as a result of the operations close, dup2 or dup3.

In fact, the dup operations have the effect of closing a file descriptor too, so this

work effectively needs to handle just the case of closing of a file descriptor. The

state model deletes filename/file-descriptor pairs on such close operations. Any

future uses of that descriptor by the loader in mmap operations will be denied by

the state model.

5.3.2.3 Segment boundaries

Segment boundary checking ensures that library code is loaded into memory as

intended. Segment information is parsed in Step 2 of the state model. The read

operation made by the loader to input this information is intercepted and modified

so that its results will be stored into protected memory. SCInt then parses this

ELF metadata to obtain information about segments and where they should be

loaded. At this point, the header is copied back into the read buffer provided by

the loader so that the loader may continue with subsequent steps in loading.

In Step 4, the information saved about segment offsets will be used to validate

requests to map segments of the library into memory. In particular, SCInt ensures

that each code segment is mapped at the offset specified in the ELF header, it is

never mapped with write permissions, and that the segment does not overlap any

other segment. As a result, even if attackers corrupt the loader’s in-memory data

structures holding ELF metadata, they will not be able to circumvent SCInt. In

particular, they may fool the loader to request mapping with incorrect permissions

(e.g., code segment with write permissions), but this request will be denied by the

state model because it is inconsistent with the metadata read earlier by SCInt and

stored in protected memory. Thus, such attacks will be detected and stopped by

SCInt.
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Figure 5.3: Layout of Memory Map Table

5.3.3 Code integrity enforcement

While the state model ensures that code is safely loaded from disk to memory,

additional steps need to be taken to ensure continued code integrity throughout

the execution of a process. SCInt achieves this by maintaining information about

memory segments, and enforcing policies on operations that attempt to change

these mappings or their associated permissions.

In particular, SCInt put the list of memory segments that belong to code modules

into a memory map table. Each memory segment in this memory map table will

be labeled with the following tags:

• Tags to indicates different segments such as the original code,5 data, and

transformed code. One tag is added for each segment. For convenience,

address space that does not belong to any module will have a tag with value

MEM EMPTY.

• Feature flag or state flag which is included in some of the segments to indi-

cates whether there is code relocation, etc.

5Recall that BinCFI and many other binary transformation/translation systems such as Pin
[90], DynamoRIO [51] and Reins [141] keep the original version of the code as is, while the
instrumentation is performed on a copy. Specifically, CFI instrumentation is inserted by BinCFI
into the transformed code, while the original code is preserved as is, and made readable but not
executable.
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Figure 5.3 demonstrates the case of a SCInt transformed executable file image.

It consists of several segments, including the original code, and the original data.

Transformed code and data is appended at the end of the file. Note that only

transformed code is executable. SCInt enforces a consistent segment permission

with the specification in the ELF metadata.

It is worth mentioning that “relro” is a special data region that is first made

writable by the loader. It is then “patched” by the loader and then its permissions

changed to read-only. This section usually contains important code pointers and

data pointers that the loader wants to provide an extra level of protection by

making it read-only. SCInt tracks this information and protects the segment as

described below. To prevent attackers from corrupting running code, data or

introducing executable code, SCInt uses a policy to constrain system operations

by checking against the memory map table in Figure 5.3. The following shows the

policy on memory operations.

• Original Code (OC): No operations are allowed.

• Original Code with Text relocation (OCT): Original code with text

relocation can be unprotected once, followed by one-time mprotect with read

and execute permission. No further operations are allowed afterwards. Note

that this means that there is a window of time during which original code

may be modified by an attack, but this does not affect the security of the

scheme because the underlying CFI (here, BinCFI) ensures that control flow

never goes to the original coded.

• Relro Data (RO): relro data can be memory protected so that it is read-

only. No other operations are allowed.

• Original Data (OD): No operations are allowed to make the target re-

gion executable, unless a special variable is setup (details in Section 5.3.7).

Everything else is allowed.

• New Code and Data (CD): No operations are allowed on transformed

code or transformed data.

• Virtual DSO (VD): Virtual DSO is used to support fast system calls. No

operations are allowed on this segment.

• Empty Space (ES): No operations are allowed to make target region exe-

cutable.
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OC OCT OD CD RO VD G ES

None Y
R Allow Allow Allow Allow
RW Allow a Allow a Allow
W Allow a Allow a Allow
WX Allow a Deny b

a permission can be used for only one operation on this segment.
b request denied if not configured for unsafe JIT code

Figure 5.4: Permitted protection settings for memory segments

• Memory Map Data (G): No operations are allowed on memory map data.

The above list shows the policy on different memory regions. Figure 5.4 illustrates

the policy for mprotect system call in a tabular form.

5.3.4 Library loading policy

Library loading policy ensures that each executable can only load a set of depen-

dent libraries. This dependent library set is decided ahead of time. Enforcing this

library loading policy may cause two kinds of usability issues:

• Identifying the set of all required libraries can be difficult, both due to the

large number of libraries loaded by many applications, and because this list

can vary across localities and configurations.

• Tasks such as debugging require a different set of libraries to be loaded.

To figure out potential dependencies, this work expects the constraint to be that

applications can load libraries only from certain standard locations. Heuristics to

get those locations could either come from the initial set of explicit dependencies

(obtained using a binary tool call ldd), or by profiling. Further tightening to

specific libraries may be useful for some high-value targets such as browsers and

pdf readers, where a higher level of effort to list libraries would be justified.

To support tasks such as debugging, it is often necessary to use environmental

variables such as LD LIBRARY PATH and LD PRELOAD to change the loading path or

add additional dependencies. The policy is flexible enough to handle these needs,

since different policies can be applied to the same application run by different

users and/or in different running environments. It is practically achieved by in-

tercepting code loading operation in ld.so. LD LIBRARY PATH and LD PRELOAD are
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Original Code :

mov $const,%eax

/ ∗ REL : 0x8048346 : R 386 32 ∗ /
......

Transformed Code :

8048345 :

call next

next :

pop%eax

add$offset,%eax

movl(%eax),%eax

Figure 5.5: Transformation for Text Relocation based Code Patching

fully supported in SCInt. However, only valid values of LD LIBRARY PATH should

be allowed by administrators who design the policy, since LD LIBRARY PATH itself

could cause security issues (CVE-2012-0883).

5.3.5 Compatibility with code patching

There are legitimate reasons to modify code after it is loaded, e.g., text relocation.

Text relocation allows programs to run in any memory location by updating the

code pointers at runtime. This code patching does not violate the policy since only

(non-executable) original code will be patched. However, due to incorrect patching

location, transformed binaries won’t be correctly executed. To cope with it, this

work use a special code transformation for all instructions that use text relocation,

as shown in Figure 5.5. In particular, this work uses position independent code

pattern to fetch the address of the constant in original code. When text relocation

is patched at runtime, transformed code uses this code pattern to get the “patched”

value. By doing so, transformed code with text relocation could be correctly

executed.

5.3.6 Protected memory

Our protected memory on x86-32 is realized using the hardware segmentation

mechanism supported on this architecture. Several static instrumentation ap-

proaches have been developed for accomplishing this on the x86 architecture

[95, 146, 148], but all of them have required some level of compiler support. In
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contrast, we present a compiler-independent solution that works on COTS bina-

ries. Another key benefit of the solution is its support for thread-local storage

(TLS). TLS support is either lacking in previous implementations [70], or requires

compiler support [146].

At the time of loading an executable, SCInt reserves a region of memory that is

to be protected by memory segmentation. Specifically, we set aside the top 128

MB of the lower 3GB of the address space for memory segmentation protection.6

Reserving the highest part of user-mode accessible address space for protected

memory means that we can use a base address of 0 for segments such as ds, es

and ss, while the limit will be 0xb8000000. Using a base address of zero provides

maximum compatibility with existing code, as it avoids any need to adjust any

pointers in memory, or when passing data to the kernel. Note that the code

segment register is not limited in any way, thus permitting shadow code in the

protected memory region to be executed.

By default, the OS maps the program stack at a high address, and often, this

may overlap with the region that is needed to set aside. To resolve this conflict,

SCInt relocates the stack at process start up time, and then sets aside the high

memory region for memory segmentation protection. Next, SCInt initializes the

segments. Note that segment descriptors are maintained in two tables in kernel

space, LDT and GDT. Since GDT is a per-thread resource, we maintain the seg-

ment descriptors there. Specifically, the implementation uses index 7, which is

currently unused, to set up protected thread-local storage that can be used by

instrumentation, and index 8 to access unprotected memory. A system call policy

is put in place to prevent any modifications to these entries. Protected thread

local storage (also called “dedicated TLS”) will be the only one that is permitted

to access protected memory regions.

We now describe the instrumentation performed to enforce memory protection.

First, all loads of data segment registers such as ds, es and ss are overridden to

use the descriptor set up above for unprotected memory. Unfortunately, it is not

possible to use a similar option for TLS segment registers such as gs and fs. This

is because the current implementation of TLS on Linux requires access to memory

with negative offsets, which will cause a segmentation violation unless the segment

covers the entire 4GB address space. (This is the reason for the above-mentioned

6This limitation of the top 128MB is due to the fact that by default, the loader is mapped
just below this 128MB address range. This range can be expanded by changing the default in
the OS, or by changing the loader, but we have left these as future work.
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problems with TLS support in existing memory segmentation implementations.)

To deal with this, we use instrumentation to emulate the correct behavior of

instructions that use these two segment registers. Of these two registers, fs is

almost never used in 32-bit Linux, while gs experiences much more frequent use.

Consequently, we use different strategies for emulation. In particular, we set aside

fs so that it always points to the thread-local storage within the protected memory

area. Any original uses of fs are always emulated. For gs, we emulate instructions

that use offsets that cannot be statically verified to be within the unprotected

region. For instance, an instruction mov %eax, %gs : (%ebx) will be replaced

with the following snippet:

mov %edx,%fs : SPILL DX

mov %fs : usr gs base,%edx

lea (%ebx,%edx, 1),%edx

mov %eax, (%edx)

mov %fs : SPILL DX,%edx

Note that instructions in the program that load gs and fs will have to be sand-

boxed. Only the instrumentation code (and not the original program code) can

load the fs register (or other segment registers) to point to memory range that

includes the protected area.

In the x86-64 architecture, segmentation enforcement is not available. This lack of

hardware support poses inconvenience to SFI implementations. An alternative ap-

proach is to transform all memory write instructions, this approach unfortunately

incurs relatively high performance overhead. In avoid that, this work uses data

randomization instead. The large address space of x86-64 architecture provides

high entropy to hide the data. Moreover, SCInt ensures that memory accesses to

protected memory could only be done through the unused TLS register (%gs)7

with offset. Since segment base address is stored in kernel, any memory leak

won’t tell attacker the location of protected memory This gives attackers no clue

to discover the data even they are able to read memory.

5.3.7 Support for dynamic code

Runtime changes to code may take place either due to the loading/unloading of

libraries, or due to the use of just-in-time (JIT) compilation. The design described

7In x86-64, %gs register is not used by the glibc
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so far already supports the first case of dynamic code. The second case, namely

JIT code, poses some difficulties, and the following discussion explains below how

compatibility with JIT can be obtained.

For best performance, many existing JIT compilers generate executable binary

code in writable memory. This enables code to be updated very quickly. However,

such an approach is inherently insecure under the threat model that this work

considers, as an attacker that can corrupt memory can simply overwrite this code

with her own code. For this reason, use of such JIT compilers is not advisable in

this threat environment. Nevertheless, if compatibility with such JIT environment

is desired, it can be supported by SCInt. Naturally, code pages generated by such a

JIT compiler cannot be protected from modifications, but the design can continue

to offer full protection for the rest of the code. This is achieved by marking JIT

code region in a table and transforming JIT code at runtime. All control flows

targeting JIT code will be redirected to its corresponding instrumented code where

all indirect control transfers in JIT code will be checked.

A more secure approach for JIT support is one that avoids the use of writable

code pages. Recent research work [131] have proposed a practical and efficient JIT

code generation approach that eliminates writable code pages. This is achieved

by sharing the memory that holds JIT code across two distinct address spaces

(i.e., processes). Code generation happens in one of these address spaces,

called software dynamic translator (SDT), where the page remains writable but

not executable. JIT code execution happens in the second address space, regarded

as the untrusted process, where the page is just readable and executable.

SCInt is compatible with this secure JIT code generator design as well. Each time

new code is generated, it is instrumented by SCInt (and the underlying platform

BinCFI). This instrumentation happens within the SDT process. The design of

SCInt remains unchanged as far as the untrusted process process is concerned.

JIT code tends to change frequently, and the changes are typically small and

localized. To obtain full benefits of JIT code, instrumentation efforts also needs

to be localized, and performed in an incremental fashion. This requires some

fine-tuning in the software dynamic translator to ensure SCInt works correcty.

However, due to the fact that source code of secure dynamic code generator [131]

is not available, the prototype does not implement incremental instrumentation

for dynamic code.
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5.4 Implementation

The state model and library loading policy are implemented by code instrumen-

tation on the dynamic loader (ld.so). This work has instrumented code logic

in ld.so that is used for code loading. In addition, this work has instrumented

all the system calls that are located in loader, libc.so and libpthread .so. All

the checks added by instrumentation will redirect control to a specially designed

library loaded ahead of time. To ensure this library is loaded ahead of all other

dependent libraries, this work uses environment variable LD PRELOAD. Note that

this library is independent of any modules including even the loader or libc. This

ensures that the state model, library loading policy and system call monitor work

immediately when the library is loaded.

To protect the special library from control flow and data attacks, the design of

this work marks the entries in memory map table that corresponds to location

of the special library as empty. Thus any subverted code pointers targeting the

library will crash the program once used. To further protect this library from

data attacks, the checks only use protected memory mentioned in Section 5.3.6.

Finally, the special library uses its own stack in protected memory.

5.5 Evaluation

We implemented the application system SCInt on top of PSI. The test environment

is Ubuntu 12.04 LTS 32bit, with Intel i5 CPU and 4GB memory.

5.5.1 Micro-benchmark for program loading

Runtime overheads arise chiefly from the following: (1) larger size of the binary

to be loaded, (2) checks performed in the context of the state model, (3) checking

of library policies. Almost all of these overheads occur at the time of loading

a library, so this work focuses on the increase in runtime for performing library

loads. To measure this overhead, the author wrote a small program that loads

a number of automatically generated libraries. This work measured the runtime

needed to load the original version and compared it with that for loading the
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Figure 5.6: Micro Benchmark Evaluation of SCInt

transformed versions.8 Figure 5.6 demonstrates that the overhead grows linearly

with the number of libraries loaded. On average, the overhead of SCInt on a

library load is 150%.

While this overhead may seem considerable, it should be kept in mind that this

is a microbenchmark, and the actual overheads on loading and running entire

application is much smaller.

5.5.2 CPU intensive benchmark

Since SCInt does not introduce significant additional operations at runtime, one

would expect that it does not introduce significant overhead. Specifically, the only

additional overhead of SCInt is due to policies on operations for memory mapping

or protection, and file-related operations such as open, close and read. Since these

operations are relatively infrequent in comparison with the number of instructions

executed, and since the policy checks themselves are quite simple, it is expected

that the overhead should be small.

To validate this assessment, the author evaluated SCInt with SPEC 2006 using

reference dataset. The overall overhead of SCInt observed is 14.37%, which has

0.17% higher than that obtained with just BinCFI. The source of the overhead

comes from system call interception. Figure 5.7 shows the details of the experi-

ment.

8Note that this work transformed all libraries for when testing transformed binary.
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Figure 5.7: Performance of SCInt on SPEC2006
Program Base BinCFI Added SCInt # of
Name load overhead overhead loaded

time (over base, %) (over base, %) libraries

vim 0.140 34 8 96
evince 0.336 222 8 103
lyx 0.484 89 10 152
lynx 0.052 38 2 15
wireshark 0.684 224 18 114
nautilus 0.080 900 16 178
acroread 0.972 280 7 82

Figure 5.8: Startup Overhead on Real World Programs

5.5.3 Commonly used Linux applications

In addition to the above tests involving the SPEC benchmarks, this work also

selected several real world applications widely used on Linux. Since only code

allocation and deallocation will generate performance overhead, the focus of the

evaluation turns to program startup when large number of modules get loaded.

The results are shown in Figure 5.8, where the base load time is in seconds.

From Figure 5.8, it is clear that BinCFI has observable startup overhead, 147% on

average, while the overhead generated by SCInt on top of BinCFI is small, 8% on

average. The loading phase in BinCFI is not optimized as their focus was on the

execution phase performance rather than loading performance. The additional

overhead of SCInt ranges from a low of 2% for programs that load just a few

libraries, to a high of 18% for programs that load a large number of libraries.

Note that many of these programs load more than 100 shared libraries each, and

hence the average overhead reported is likely to be a conservative estimate.
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5.5.4 Running with dynamic code

To demonstrate compatibility with dynamic code, the author used LibJIT [16], an

actively maintained JIT engine similar to the LLVM backend. To make LibJIT

compatible with SCInt, the author forced LibJIT to generate only non-writable

code. To evaluate the performance overhead for LibJIT, the author reuses an

open source benchmark tool [42]. The benchmark tool is a simple program that

computes the greatest common denominator (GCD). It generates the GCD func-

tion code dynamically at runtime. LibJIT allows dynamic functions to be invoked

directly (LibJIT-fast). The evaluation shows that SCInt overhead is 14.6%. This

overhead includes 10% overhead incurred for runtime code transformation.

Note that the prototype does not currently support JIT code update. This limi-

tation is reasonable because (a) if JIT code update is allowed, the whole security

property enforced by SCInt may be invalidated unless a safe update of dynamic

code design is applied.9 and (b) there will be no visible difference on performance

if a safe JIT code generator is used, since code update requires the same amount

of time by the helper process and the only overhead is the IPC communication

between target application and helper process. Because of that, the evaluation

does not includes overhead for JIT code update.

5.5.5 Effectiveness evaluation

Although CFI bypass techniques are emerging as shown in recent research work [62,

74], real-world exploits have not been designed with CFI in mind. Therefore,

running those exploits won’t show the benefits of SCInt. For this reason, the

effectiveness evaluation uses a combination of manual analysis based on studying

the relevant CVE reports, and proof-of-concept exploits that is created by the

author. This evaluation is summarized in Figure 5.9.

According to the threat model in Section 5.2, the author classifies all attacks into

direct attacks (direct), loader data corruption attacks (ldr.data), and loader

code reuse attacks (ldr.cr). From Table 5.9, it is clear that all types of attacks

are defeated. In particular, system call policy prevents all direct attacks that try

to manipulate code permission or launch malicious binaries. For loader subversion

attacks such as search path corruption, library loading policy properly defeats all

9However, safe JIT code generator is currently not available. The work proposed by recent
research [131] is based on Strata. Its source code in unavailable.
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Attack Type Detail Blocked? Reason of Rejection
ROP-CVE-2014-1776 direct alloc executable area and jump Y syscall policy
ROP-CVE-2014-1761 direct launch malicious executable Y syscall policy
ROP-CVE-2014-0497 direct change page permission, download exe and launch it Y syscall policy
ROP-CVE-2012-1875 direct make heap executable Y syscall policy
CVE-2013-3906 direct alloc executable data and jump Y syscall policy
CVE-2013-0977 ldr.data malformed binary with overlapping segments Y state model
CVE-2014-1273 ldr.data malformed binary with text relocation Y state model
CVE-2010-3847 ldr.data library hijacking using $ORIGIN in LD AUDIT Y library loading policy
CVE-2010-3856 ldr.data library hijacking on LD AUDIT Y library loading policy
CVE-2011-1658 ldr.data library hijacking using $ORIGIN in RPATH Y library loading policy
CVE-2011-0570 ldr.data Untrusted search path vulnerability in Adobe Reader Y library loading policy
ROP-CVE-2013-3906 ldr.cr load malicious library Y library loading policy
PoC: attack-lder-1 ldr.cr code injection via corrupted reloc table and sym table Y state model
PoC: attack-lder-2 ldr.cr code injection via making stack executable Y syscall policy
PoC: attack-lder-3 ldr.cr loading malicious library by calling d lopen Y library loading policy

Figure 5.9: Effectiveness Evaluation of SCInt

Policy for Adobe Reader:

ALLOW libc.so.6 /lib/i386-linux-gnu/

REJECT libc.so.6 *

ALLOW libpthread.so.0 /lib/i386-linux-gnu/

REJECT libpthread.so.0 *

ALLOW libselinux.so.1 /lib/i386-linux-gnu/

REJECT libselinux.so.1 *

ALLOW * /lib/i386-linux-gnu/

/usr/lib/*

/opt/Adobe/Reader9/Reader/

intellinux/lib

/usr/lib/i386-linux-gnu/*

/usr/lib

REJECT * *

Figure 5.10: Library Loading Policy for Adobe Reader

unallowed module being loaded from unintended path. Moreover, more advanced

attacks such as code reuse attacks targeting the loader are stopped by the code

loading state model. To provide more insight in this regard, this work considers

the following case studies.

Case study: library policy for Adobe Reader As described in Section 5.2,

an attacker may attempt to load a malicious library by specifying it by name,

or by corrupting the load path (“library hijacking”). SCInt blocks these attacks

using policies to limit the load path, as well as the specific libraries that may be

loaded by an application. To illustrate these policies, consider Figure 5.10 which

shows the policy for Adobe Reader, a favorite target for library loading attacks

[7–9].

In addition, the example also illustrates the flexibility provided in the policy lan-

guage. It is possible to allow or deny loads of specific libraries, or permission
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can be granted based on the directory from which a library is loaded. Moreover,

policies can be stricter for some libraries. Figure 5.10 uses a stricter policy for

low-level libraries libc.so, libpthread.so and libselinux.so, forcing them to

be loaded from a specific file in a specific directory.

Case study: library policy for static binary It is a common misconcep-

tion that static binaries won’t have any ability to load libraries. Experiments

prove otherwise. The author wrote a small, statically-linked program that con-

tains a traditional buffer overflow vulnerability, and crafted an exploit for this

vulnerability. Instead of calling dlopen, a function that is unavailable in statically

linked binaries, the exploit redirected control to dl open, an internal function

statically linked from loader. This function was passed the name of a library in

/tmp. The exploit resulted in a successful load of this library. Along with the

library, dependent libraries such as libc.so and ld.so were also loaded! Finally,

the initialization function of the malicious library was executed.

The default policy for library loading stopped this attack, as it prevents loads of

libraries outside standard directories for libraries.

Case study: Text relocation attack In order to evaluate code-reuse and

data corruption attacks on the loader, implemented a proof-of-concept exploit

that leverages text relocations.

The exploit code is implemented as a piece of native code. This helps us avoid the

complications of crafting valid ROP attacks in the presence of CFI. Full details of

the attack can be found in Appendix 5.2.3, but it suffices for the purposes of this

paper to outline the general idea, which is to corrupt the loader’s data structures

and launch code injection by reusing code patching ability in the loader. The

experiments shows that this exploit is very robust and works on any dynamically

linked ELF programs.

The author then attempted the exploit in the presence of SCInt. The attack was

detected and blocked by the policies shown in Figure 5.4.

Case study: Making stack executable Similar to relocation attack, the au-

thor wrote a simple proof-of-concept exploit that makes the stack executable, and

then jumps to the stack. In glibc 2.15, the loader function for making the stack
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executable makes two sanity checks. The first one checks that the caller’s address

is within the loader, while the second one checks the consistency of libc stack

end. Bypassing the first check is easy — simply using a return address in loader

would suffice; when the function is finished, it will go back to a gadget inside the

loader and can be arranged to jump back to the call site. Bypassing the second

check requires the attacker to corrupt a global variable in ld.so, which is easy

once ASLR is bypassed. In summary, the exploit code bypassed these two checks

and made the stack executable.

When run in the presence of SCInt, this exploit is blocked by the policies shown

in Figure 5.4. Specifically, the attempt made by the exploit to make an empty

region (ES) executable was denied by this policy.

Defeating this attack is important despite the fact that BinCFI alone could already

defeat it. This is because, other underlying CFI implementation may rely on DEP.

For instance, Abadi CFI [28] requires stack to be non-executable to prevent jump-

to-stack attack that has valid ID in payload.

5.6 Summary

In this chapter, we presented an effective countermeasure against the threat of

ROP attacks. The approach is based on the observation that the goal of real-

world code-reuse attacks is to disable DEP and launch a native code injection

attack. The defense combines coarse-grained control-flow integrity with a compre-

hensive defense against native code injection in order to defeat these attacks. This

approach tracks the code loading process through every step, and ensures that

code integrity is preserved at every step. Consequently, it can ensure a strong

property that only authorized (native) code can ever be executed by any process

protected by this system, SCInt. A key benefit of this approach is that its secu-

rity relies on a relatively simple state model for loading, and a few simple system

call policies. It is fully compatible with existing applications as well libraries and

loaders, and does not require any modifications at all. SCInt introduces almost

no additional overheads at runtime over CFI, making it a promising candidate for

deployment.
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Chapter 6

Related Work

6.1 Static binary disassembly

Many efforts in exploit protection and hardening of binaries have been made us-

ing static binary instrumentation. However, supporting large and complex COTS

binaries has proved elusive due to the twin challenges of accurate disassembly,

and safe instrumentation in the presence of embedded code pointers within bina-

ries. To overcome the disassembly problem, most previous binary instrumentation

efforts have relied on a cooperative compiler [146], or worked on assembly code

[28, 95, 108], or binary code containing symbol table [87, 119], debugging [29, 67],

or relocation information [151]. CCFIR [152] uses the runtime rebasing informa-

tion in Microsoft dynamic-link library (DLL). Due to ASLR, this information is

mandatory even in stripped DLLs.

SecondWrite [33] uses static binary instrumentation to harden binaries. It disas-

sembles the binaries speculatively, lifts them up into LLVM internal representation

(IR) and uses LLVM backend to regenerate binaries. They have shown that their

platform handles moderately large applications [32]. Their focus is on powerful

analysis and optimization techniques that provide excellent performance. How-

ever, support of reliable disassembly for shared libraries or low level library code

such as glibc remains as an open problem.

Several earlier works such as BIRD [99] and Dyninst [53] used a combination of
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static analysis, compiler idioms and heuristics to disassemble binaries. BIRD fur-

ther improves results by incorporating a runtime disassembly component. How-

ever, use of heuristics means that there could be disassembly errors, and these

can lead to instrumentation subversion, e.g., by jumping to the middle of an in-

struction. Other research efforts based of IDA-pro such as in-place-randomization

(IPR) [109] share the same issue because the purpose of IDA-pro is to maximize

the code disassembly in the context of use for malware analysis or other analysis

by human analyst. Zero disassembly error is not the goal. On the other hand,

both BIRD and IPR target binaries on Windows, where disassembly can be more

complex.

REINS [141] targets sandboxing of untrusted COTS executables on Windows.

REINS uses IDA-pro as its baseline disassembler and uses IDApython to correct

disassembly errors and harvest high level information such as function boundaries

and etc for static analysis. Similar to PSI, REINS can also ensure that sandboxed

code can never escape instrumentation (except to invoke certain trusted functions),

but unlike techniques in PSI, their approach does not target instrumentation of

all libraries used by the application. Moreover, their evaluation does not consider

as many or as large applications as PSI.

In contrast, our platform PSI provides a robust binary disassembly algorithm that

could handle large and complex COTS binaries without disassembly errors.

6.2 Static binary analysis

Previous research demonstrates that static binary analysis is essential for secur-

ing COTS binaries [76, 141, 152, 153]. Bao et. al. [39] demonstrate that higher

level information such as function boundaries could be discovered with high accu-

racy. They use binary code pattern as heuristics to identify function boundaries.

Furthermore, several efforts [66, 81] have been made to recover variable and type

information from COTS binary code.

The focus of the static analysis in PSI and others mentioned are to use a conser-

vative analysis that for securing code. Binary analysis could also be speculatively

performed to do malware analysis and exploit generation. Binary analysis plat-

form (BAP) [52] is a platform that targets COTS binaries. They have developed

interesting applications such as automatic exploit generation [35]. BitBlaze [133]
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also targeted powerful static and dynamic analysis of binary code, including mal-

ware. Similarly, Codesurfer [38] targets malware analysis. In particular, it uses

a static analysis algorithm call value-set analysis (VSA) to recover intermediate

representations that represent high level semantics of target binaries.

6.3 Binary instrumentation

Dynamic binary instrumentation Dynamic binary instrumentation systems

can be categorized into: (a) whole system DBI and (b) application-level DBI.

Whole system DBI tools take care of every instruction execution and emulate

some of those that require privileges, while application level DBI only handles

user level instructions of one target application process. Tools such as QEMU [41]

and Bochs [26] and others [54, 147, 150] fall into whole system DBI. We do not

focus on the discussion of whole system DBI since it is less relevant to our work.

Application-level DBI tools only handle instructions in the user level. Valgrind [102]

allows programs compiled in one architecture to run in another architecture. It

works by translating every instruction into its internal representation and thus

suffers from large runtime overhead. Most of application level DBI tools work on

the same architecture as the target programs. Therefore, instruction translation

in these tools can be avoided. Tools such as DynamoRIO [51], Pin [90], Strata

[122], StarDBT [49] work in the user level by injecting themselves into address

space of the target program.

Since application-level DBI works in the same address space of the target appli-

cation, one of the key requirements is that the impact of the tool should be kept

invisible to target program. DBI tools achieve this by using their own stack and

heap and keep away from memory and system resource used by target programs.

Comparative analysis of SBI and DBI Although application-level DBI tools

are relatively more efficient, the cost of using code cache is significant. First of all,

usage of code cache requires a “cold start” of each program execution since code

cache is built at runtime on each execution. This poses a substantial overhead at

program startup, limiting its usage in certain scenarios. Another practical limita-

tion of DBI is the security compromise that comes with writable and executable

code cache. For performance reasons, code cache is configured to be writable and
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executable to cope with frequent updates. This gives attackers an opportunity to

corrupt code cache and bypass instrumentation. Song et. al. [132] present their

prototype that retrofits existing DBI system Strata by using non-writable code

cache. They use double processes where code cache is shared across two processes,

but is writable only in the helper process. Modern DBI tools are not yet to adopt

such techniques to protect code cache.

Static binary instrumentation avoids using code cache in principle because instru-

mentation is performed ahead of time. In addition, the performance on program

startup will be better.

6.4 Control flow integrity

Control-flow integrity (CFI) was introduced by Abadi et al [28]. The basic idea was

to use a static analysis to compute a control-flow graph, and enforce it at runtime.

Enforcement was based on matching constants (called IDs) between the source and

target of each ICF transfer. However, due to difficulties in performing accurate

points-to analysis, and because of so-called destination equivalence problem, their

implementation resorts to coarse granularity enforcement, wherein any indirect

call is permitted to target any function whose address is taken. Li and Wang et.

al. [89] and HyperSafe [139] implement a compiler based CFI that uses a similar

policy for coarse-grained CFI. While they can also support finer-granularity CFI,

this requires runtime profiling to compute possible targets of indirect calls, and

can hence be prone to false positives.

Control-flow locking (CFL) [47] improves significantly on the performance of orig-

inal CFI [28], while simultaneously tightening the policy, especially for returns.

But this tighter policy poses challenges in the presence of indirect tail calls. An-

other difference between their work and ours is that they operate on assembly code

generated by the compiler, whereas our work targets binaries.

MoCFI [59] presents a design and implementation of CFI for mobile platforms. The

mobile environment presents a unique set of challenges, including an instruction

set that does not have explicit returns, a closed platform (iOS), and so on. An

important characteristic of their approach is that they aggressively prune possible

targets of each ICF transfer. While this can provide better protection, it leads

to false positives in some cases (e.g., when large jump tables are involved). In
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contrast, we emphasize handling of large binaries, including shared libraries, that

are not handled by their approach. We discussed how this requirement dictates

the use of coarser granularity CFI in PSI.

CCFIR [152], like the work presented in this dissertation, targets binaries. The

main insight in their work is that most binaries on Windows support ASLR, which

requires relocation information to be included in the binary. They leverage this

information for accurate disassembly and static instrumentation. Moreover, since

relocation information effectively identifies all code pointers, they can avoid run-

time address translation, which enables them to achieve better performance. The

flip side of this performance improvement is that the technique can’t be used on

most UNIX systems, as UNIX binaries rarely contain the requisite relocations.

CFI has been used as the basis for untrusted code sandboxing. PittSFIeld [95]

implements SFI on top of instruction bundling, a weaker CFI model. XFI [67]

presents techniques that are based on CFI and SFI to confine untrusted code in

shared-memory environments. Zeng et al [149] improve the performance of SFI

using CFI and static analysis. Native Client [146] is aimed at running native bina-

ries securely in a browser context, and relies on instruction bundling. PittSFIeld,

Native Client, and many other works [30, 34, 82, 84, 89, 113, 123, 139] that en-

force CFI rely on compiler-provided information and even hardware support. In

contrast, BinCFI operates on COTS binaries without support from compiler, OS

or hardware. In addition, it could be applied to all binaries including executable

and their dependent libraries.

Recent research has shown that coarse grained CFI approaches such as BinCFI,

CCFIR allow for enough CFI-permitted gadgets to construct functional ROP pay-

loads [55, 62, 72, 73]. Fine-grained CFI [60, 105, 106, 136] can mitigate some of

these attacks, but it is unlikely to provide a fool-proof defense. Moreover, as dis-

cussed earlier, finer-grained CFI enforcement comes with compatibility problems.

Instead of improving granularity, Opaque CFI (O-CFI) [97] adopts randomization

to hide the applied policy. In particular, it constrains the target range of indirect

control transfer instructions to a destination set expressible as a bounds check.

The bounds lookup table is protected using memory segmentation and informa-

tion hiding. There are several limitations in O-CFI: (a) Deriving a precise set of

allowed targets, however, is challenging even if source code is available for static

analysis [61], (b) randomized bounds are still located in the target code address

space and thus it suffers from blind ROP attacks and (c) O-CFI still leaves code
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readable, and thus it is unclear how difficult it is for attacker reverse engineer their

policy back.

In contrast, our instrumentation application, SECRET, does not suffer any for

these limitations. In particular it uses code pointer remapping to overcome the

first two limitations of O-CFI and uses code space isolation to overcome the third

limitation.

6.5 Code randomization

Code randomization can be applied by leveraging the randomness of instruction

semantics [? ] or machine code layout [45]. The former approaches including

ISR [? ] aim to defeat native code injection attacks. However, they cannot defeat

code reuse attacks and suffer from high overhead. Code layout randomization

offers an additional layer of protection over ASLR and its shortcomings [127].

They can be applied at varying levels of granularity, e.g., at the function [44, 45,

83], basic block [140], or instruction level [64, 75, 109]. The deployment time

spans across compile time [76] , load time [140]. G-Free [108] is a compiler-level

instruction transformation technique against ROP. The applied transformations

remove gadgets within unintended code, but the adopted strategy for intended

gadgets is weak.

None of the code randomization defenses defeat code reuse attacks that harvesting

code or code pointers. Thus, attacks such as JIT ROP [130] bypass them in general.

6.6 Code disclosure attacks and countermeasures

Control flow integrity and code randomization protections are challenged by ad-

vanced attacks that leverage memory disclosure vulnerabilities to dynamically con-

struct ROP payloads [46, 130]. JIT-ROP [130] repeatedly uses a memory disclosure

to read executable memory and chain discovered gadgets to launch a ROP attack.

Blind ROP [46] leverages a stack buffer overflow in forking servers to repeatedly

overwrite the stack until the write function is located, which then is used to leak

executable process memory to the client. Under certain circumstances, even if a

memory disclosure bug is not available, gadget locations can be inferred through

side channels [124]. The same technique can be used to infer other critical data,
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as was recently demonstrated in a bypass attack against CPI in certain configura-

tion [68].

As a step towards protecting against memory disclosure vulnerabilities, recent re-

search efforts attempt to make code executable but not readable, by relying on

page table manipulation [36], split TLBs [71]. However, neither of these could

defeat JIT ROP attacks that havest code pointers only. Recent efforts on code

randomization have shown that JIT-ROP [130] attacks can be mitigated. Oxy-

moron [37] applies fine grained code randomization that is compatible with code

sharing. It offers some resistance to memory leakage attacks by replacing direct

branches with indirect branches. This makes it harder for attackers to harvesting

code pages by following control flows.

The authors of Isomeron [61] propose a JIT ROP attack that bypasses Oxymoron

by harvesting code pointers in the user memory such as the stack. Those code

pointers are then dereferenced to read code. In the work of Isomeron [61], they

further propose a JIT ROP defense that combines execution path and code ran-

domization. The purpose of the approach is to reduce the probability of correctly

predicting the runtime addresses of gadgets. Isomeron maintains two copies of

a program’s code in the same address space, and at runtime program execution

may switch from one version to another or stay unchanged. Switches are decided

on call and ret instructions. Decision information is hidden within the large

address space to prevent attackers from reading it. A ROP payload assembled

during a JIT-ROP attack is likely to divert control to the wrong code version

and suffer from unpredictable gadgets. While Isomeron provides additional strong

randomization, its feasibility relies on the pairing of call and ret instructions,

and thus it shares the same compatibility issues with well-known techniques such

as shadow stacks [63]. In comparison, SECRET does not suffer from compatibility

issue since return addresses could be used for purposes other than function return.

In addition, SECRET achieves the same level of strength as Isomeron since it

defeats both JIT ROP attacks that read code directly and indirectly through the

usage of pointers while maintains compatibility with real world programs.

Readactor [58]is a very recent effort to defeat JIT ROP attacks. Readactor uses

extended page table (EPT) to ensure that all code pages are not readable to

prevent JIT ROP attacks that directly read code. In addition, it changes all code

pointers pointing to “proxy” pages that contains trampoline code stubs. By doing

so, JIT ROP attacks that harvest code pointers are defeated because leaked code

pointers all point to “proxy” pages that leak no information to attackers. Since
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no code pointers are leaked pointing to code pages, Readactor could use a simple

randomization to make sure attackers have no idea of hidden code layout.

For defeating JIT ROP attacks that aim at code reading, SECRET and Readactor

achieve the same effect. SECRET defeats JIT ROP attacks by hiding the code

and ensure that no pointer pointing to it, while Readactor leverages EPT and

compiler support respectively. For hiding code pointers, readactor randomizes all

code pointers since it operates on source code, while SECRET can safely change

the majority of code pointers including return addresses and exported functions.1

The strength of SECRET over Readactor is that it defeats Blind ROP attacks.

However, it may suffers from call oriented programming attacks.

6.7 Code injection prevention

MIP [104] and MCFI [105] incorporate some code integrity features other than

ensuring control flow integrity. Their policies are implemented using checks on

mmap and mprotect. However, the policy only aims to ensure existing code is

never writable and executable. Moreover, the policy does not constrains the code

loading/patching privileges of dynamic loader. Attackers can divert control flow

to dynamic loader code and leverage its privileges to bypass their policy.

Nanda et. al. [100] proposes an approach to detect foreign code in Windows.

Similar to our approach, they enforces a code loading policy to prevent malicious

library loading. In addition, they prevent malicious operations that change code

permission. However, their approach suffers from several limitations: (a) text

relocation is not protected and potentially suffer from the attack mentioned in

Section 5.2.3,2 and (b) their work is built on top of BIRD [99], a dynamic binary

translator that uses JIT code, which by itself suffers from low level code corruption

attack.

Realizing the importance of preventing abuse of code loading privileges, Payers

et.al. [112] developed TRuE, a system that replaces the standard loader with

their secure version. The need to replace the system loader poses challenges for

1SECRET does not change all code pointers. This is due to the general limitation of COTS
binary analysis that identifying code pointers and integers in COTS software is undecidable in
general.

2Note that all Windows binaries on x86 requires text relocations to support ASLR
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real-world deployment, as OS vendors are reluctant to change core platform com-

ponents. There is a strong interdependence between the loader and glibc, and as

a result, a replacement of the loader also requires changes to the glibc package.

Another difficulty with their approach is that the secure loader achieves security in

part by restricting the functionality of the loader. Our approach avoids these draw-

backs by permitting continued use of the standard loader. Security is achieved by

a small and independent policy enforcement layer that operates outside the loader,

and simply checks the security-relevant operations made by the loader.

Writing secure loaders is a very difficult task, as demonstrated by the numerous

vulnerabilities reported in production loaders [4–6, 10, 13–15]. Thus, trusting the

complete loader code for code integrity leads to a large trusted computing base

(TCB). In contrast, SCInt implementation is a very small reference monitor on

top of existing system. The code size is no more than 300 LoC including C and

x86 assembly code. In comparison, a dynamic loader is 28K LoC.

Some efforts have been made toward code injection defense in OS level. iOS and

OS X are using XNU kernel which leverages code signing to secure code loading.

In addition, the kernel enforces that all code pages that are signed/verified cannot

be modified at runtime. This approach makes their genuine systems safe from code

injection. However, the continuing success of jailbreaks proves that code signing

could be bypassed by using kernel vulnerabilities. In all these scenarios, SCInt is

the complement approach for code injection attacks.

PaX team provides security patches for Linux kernel. Their project grsecurity

provides several kernel security enhancements. One of them is the restricted

mprotect [135]. The basic idea is similar to SCInt that provides code integrity.

Their enhanced kernel will check the parameters of mprotect and deny any re-

quest to make code pages writable except once for those ELF images that contain

text relocations. The limitation of restricted mprotect is that it does not ensure

code integrity protection when an ELF image has text relocations. By contrast,

SCInt is able to achieve that.

In Windows, binary loading primitive is implemented by the kernel. Therefore,

applications in Windows do not suffer from attacks at loading time. This makes

it easier for SCInt. However, the vulnerability of windows binary loading lies

in the heavy usage of text relocations due to dynamic linking and ASLR. Text

relocations could be crafted by attackers to modify existing code as mentioned in

Section 5.2.3.. SCInt could prevent those attacks, since none of the original code
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could be executable.

Compared with code injection defense on OS level, SCInt shines in these aspects:

(a) it can be securely implemented entirely at the user level, (b) its security relies

on a small piece of code (state model), and (c) it can handle complications such

as text relocation.

6.8 Defenses against memory corruption

Several comprehensive bounds-checking techniques have been proposed for C/C++

programs [31, 80, 98]. They operate by maintaining additional metadata about

pointers, and checking this metadata to detect attacks. Unfortunately, they im-

pose significant overheads, and moreover, lead to compatibility problems with large

and complex applications. Code pointer integrity (CPI) [86] significantly reduces

both the compatibility and performance problems by applying bounds-checking

selectively to those pointers whose corruption can lead to control-flow hijacks.

However, since the underlying techniques are similar to SoftBounds, compatibility

problems cannot be totally eliminated.

Source-code based techniques such as CPI [86], Baggy [31], and MCFI [105] can

only be applied to C/C++ source code. In particular, low-level code that relies

on inline assembly will not be protected. Similarly, code compiled from higher

level languages other than C/C++ are left out. Finally, any code that is available

only in binary form cannot be protected. Unfortunately, even if a single module is

not compiled for bounds-checking, no security guarantees can be provided for any

code. Thus, the “weakest link” can potentially derail the entire the application.

It is in this context that purely binary-based approaches such as SCInt shine:

SCInt’s protection extends to all code, regardless of the language in which it is

written, or the compiler used to compile it.
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Chapter 7

Conclusions and Future Work

Securing COTS software is a challenging task. In this dissertation, we showed that

static binary instrumentation can be effectively used to work with complex COTS

binaries and secure their execution. We hence developed our system PSI. By using

this instrumentation system, we next explored defenses against advanced code

reuse attacks and developed a complex application system called SECRET. For

those ROP attacks that in principle still exist despite of SECRET, we developed

a systematic approach called Strong Code Integrity (SCInt) to further mitigate

them and ensure that they cannot launch code injection attacks.

Our platform, called PSI, uses a practical disassembly algorithm as well as a con-

servative static analysis to recover the control flow graph of a target binary. Then

it uses instrumentation with address translation to support arbitrary instrumenta-

tion. PSI incorporates BinCFI, a practical CFI policy that works for complex and

large COTS binaries. The instrumentation developed is modular and complete

since it can be applied to executables and all their dependent libraries. We have

made an extensive evaluation on both the SPEC 2006 benchmarks as well as sev-

eral commonly used Linux applications. We also compared the performance of our

system compared with that of state-of-art DBI systems such as DynamoRIO and

Pin. The result shows that on the SPEC 2006 benchmarks, PSI achieves compara-

ble performance with DBI tools, while on commonly used application benchmarks,

PSI is 7 and 13 times faster.

We presented two significant security applications on top of PSI: SECRET and

SCInt. In particular, SECRET aims to defeat advanced code reuse attacks such

as ROP. SECRET is supported by two techniques: code pointer remapping and
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code space isolation. Code pointer remapping is used to defeat code reuse attacks

that leverage prior knowledge of binary contents, while code space isolation defeats

code reuse attacks that harvesting code pages or code pointers at runtime.

The purpose of SCInt is to ensure executable code integrity even if code reuse

attack are not fully defeated. We proposed a systematic approach against code

injection attacks to make sure that (a) only permitted module can be loaded

and executed in memory and (b) only legitimate instructions in these modules

can be executed. Unlike Code signing which only ensures code integrity at load

time, SCInt ensures code integrity for the whole runtime. It effectively mitigates

advanced code reuse attacks and naturally complements all existing code reuse

defenses.

Together, PSI, SECRET and SCInt present an integrated framework for securing

COTS binary execution against advanced stealthy attacks such as return oriented

programming and code injection. Meanwhile, they also suggest many interesting

research problems. Below, we briefly conclude this dissertation with an open

problem in the research direction:

Protecting COTS Just-in-time compiler: Just-in-time (JIT) compiler is a special

piece of software that generates code dynamically. Secure execution of dynamic

code is an important missing part and remains an open research question. Despite

the fact that there are several efforts having been made to protect dynamic code.

None of them could work on COTS JIT compiler, i.e. they all require modifications

on source code. This would pose limitation on protecting software such as Internet

explorer, adobe flash player and etc.
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