User-Level Infrastructure for System Call Interposition:
A Platform for Intrusion Detection and Confinement*

K. Jain
Iowa State University
Ames, 1A 50014
kapil@cs.iastate.edu

Abstract

Several new approaches for detecting malicious attacks
on computer systems and/or confining untrusted or ma-
licious applications have emerged over the past several
years. These techniques often rely on the fact that when
a system is attacked from a remote location over a network,
damage can ultimately be inflicted only via system calls
made by processes running on the target system. This factor
has lead to a surge of interest in developing infrastructures
that enable secure interception and modification of system
calls made by processes running on the target system. Most
known approaches for solving this problem have relied on
an in-kernel approach, where the interception mechanisms
as well as the intrusion detection/confinement systems are
implemented within the operating system kernel. We ex-
plore an alternative approach that uses mechanisms pro-
vided by most variants of the UNIX operating system to im-
plement system call interposition at user level, where the
system calls made by one process are monitored by another
process. Some of the key problems that need to solved in de-
veloping such an approach are: providing adequate set of
capabilities in the infrastructure, portability of the security
enhancements and the infrastructure itself across different
operating systems, and minimizing performance overheads
associated with interception for a wide range of applica-
tions. We present a solution that satisfactorily addresses
these issues, and can thus lead to a platform for rapid devel-
opment and deployment of robust intrusion detectors, con-
finement systems and other application-specific security en-
hancements.

1 Introduction

One of the biggest problems faced by businesses, in-
dividuals and organizations is the protection of their net-
worked computing systems from damage due to malicious

*This research is supported in part by Defense Advanced Research
Agency’s Information Technology Office (DARPA-ITO) under the Infor-
mation System Survivability program, under contract number F30602-97-
C-0244.

R. Sekar
State University of New York
Stony Brook, NY 11794
sekar@cs.sunysb.edu

attacks launched remotely via the Internet. Such attacks
may utilize a variety of techniques, e.g., exploit software er-
rors in privileged programs to gain root privilege, exploit
vulnerabilities in system configuration to access confiden-
tial data, or rely on a legitimate system user to download
and run a legitimate-looking Trojan Horse program that in-
flicts damage. Intrusion detection refers to a broad range of
techniques that have been developed over the past several
years to protect against malicious attacks. A majority of
these techniques take the passive approach of offline moni-
toring of system (or user) activities to identify those activ-
ities that deviate from the norm [1, 26, 10, 12, 17, 21] or
are otherwise indicative of attacks [14, 18, 22]. More re-
cently, several proactive approaches have emerged. These
approaches can prevent or isolate attacks before any dam-
age is caused [9, 13, 20, 28].

Most approaches aimed at preventing intrusions [9, 13,
20, 28] are based on the following observation about at-
tacks: regardless of the nature of an attack, damage can ulti-
mately be effected only via system calls made by processes
running on the target system. It is thus possible to iden-
tify (and prevent) damage if we can monitor every system
call made by every process, and launch actions to preempt
any damage, e.g., abort the system call, change its operands
(e.g., open a different file from one that is specified) or even
terminate the process.

In addition to the preventive approaches, system call in-
terception can significantly enhance the power and effec-
tiveness of most offline intrusion detection techniques that
make use of system audit data. This is because system audit
logs often do not provide all of the information needed for
intrusion detection. For instance, we may need to know the
value of a string that was read from a network connection,
the target of a symbolic link or contents of a file. While
it may be possible to identify and record all such poten-
tially useful information in the audit log, such an approach
is likely to be impractical due to excessive overheads in-
volved. Consequently, even offline techniques can benefit
from active system call interception, as it enables them to
access all the data needed for identifying intrusions, without
incurring the overhead for accessing irrelevant information.

For reasons mentioned above, the problem of develop-

ing infrastructures for active interception and modification
of system calls has attracted a lot of research attention
[9, 11, 13, 20]. Modification is effected by user-specified
code fragments (sometimes referred to as wrappers or ex-
tensions) that are interposed at the system call entry and
exit points. These research efforts have demonstrated that
such extensions can be used to enhance application func-
tionality in a variety of ways, e.g., application-specific ac-
cess control, intrusion detection, transparent enhancements
for security (e.g., data encryption) or fault-tolerance (e.g.,
data replication). It is important to note that all of these en-
hancements can be obtained using system call interposition
without making any changes to the applications themselves.

This paper presents a new approach for implementation
of a system call extension infrastructure. Our approach
is characterized by a user-level implementation like [13],
where the system calls performed by one process are inter-
cepted (and possibly modified) by another process. This ap-
proach contrasts with a majority of approaches in this area
that employ an in-kernel implementation of system-call in-
terposition. Our work improves upon [13] by (a) providing
a more extensive set of capabilities for extension code, (b)
developing an architecture and implementation that is eas-
ily ported to different versions of the UNIX operating sys-
tem, and (c) presenting a comprehensive evaluation of the
performance overheads associated with extensions. Below,
we describe previous work in system call interposition and
summarize the main benefits of our approach.

1.1 Previous Work in System-Call Interposition

In this section we review prior research in system call in-
terposition, motivate user-level implementations of system
call interception, and summarize the research problems that
have not yet been addressed in this context. A more ex-
tended treatment of related work can be found in Section 8.

Some of the earlier research efforts in system call inter-
position such as [16, 15] were implemented within libraries.
For instance, system calls are accessed via a wrapper func-
tion within the 1ibc library on most UNIX systems. By
linking to a different library that contained modified ver-
sions of these wrapper functions, one could effect system
call interposition. This approach has the benefit that it is
easy to implement and very efficient. An important draw-
back of this approach is that these wrapper functions can
be bypassed; for instance, it is possible for a program to
directly invoke the system call using a lower level mecha-
nism such as execution of a software interrupt. Thus this ap-
proach is not suitable for security-related applications such
as intrusion detection and confinement.

An alternative approach that does not suffer from the
above drawback is a kernel-based implementation. In par-
ticular, the system call interception is implemented within

the operating system kernel, and all of the extension code
(for all processes being monitored) runs in the kernel mode.
This approach has been adopted by most researchers in this
area [9, 11, 20, 28]. One of the primary advantages of a
kernel-based approach is low interception overhead. The
overheads for system call interposition are determined al-
most entirely by the extension code. Moreover, a kernel-
based implementation offers more power in terms of what
can be done within extension code, e.g., extensions can be
executed with same process context as the process being
monitored. However, the power afforded by kernel-mode
operation brings some serious drawbacks as well:

e normal protection mechanisms that guard against er-
rors in one process from damaging another process do
not apply for code executed in kernel-mode. Hence
it is possible for errors in the extension code for one
process to corrupt the memory or files used by another
process, or even worse, bring down the entire system.
Unless we are extremely careful, there is thus a poten-
tial for making the system less secure by adding exten-
sions!

e state-of-the-art in kernel-resident software develop-
ment lags user-level software development signifi-
cantly. This makes it much more cumbersome and
error-prone to write the extension code.

¢ addition of code at the kernel-level will require supe-
ruser privileges. Thus, it is difficult in a kernel-based
approach for normal users to develop or deploy their
own extensions.

e kernel-based implementations require kernel modifica-
tions, which may be viewed as too risky and hence not
widely accepted.

These factors motivated [13] to develop a user-level imple-
mentation of an infrastructure for confining the actions of
helper applications launched from a web-browser or a mail
reader. Specifically, they used the capabilities provided by
the Solaris operating system to intercept the system calls
made by a helper application (i.e., a monitored process)
within a monitoring process. Typically, the monitoring pro-
cess runs with the same privileges as the monitored process.
However, due to their focus on helper applications on the
Solaris operating system, several important problems such
as the portability, expressive power and performance of
user-level system call interposition were not explored. For
instance, they study performance of CPU-intensive code
that makes few system calls, e.g., ghostscript and
mpeg_play. Overheads for system-call intensive appli-
cations such as network and file servers was not studied.
In addition, their focus on application-specific access con-
trol requires only limited capabilities for the extension code,

Application Real time Real time

(Low load) | (High load)
gzip <2% <2%
ghostscript <5% <10%
tar 5% 10%
cp -r 5% 10%
ftpd <2% 30%
httpd <5% 35%

Figure 1. Overhead for system call intercep-
tion for different applications.

e.g., no attempt was made to modify system call data or re-
turn code. Finally, they did not address portability of their
system to other popular variants of UNIX such as Linux.
Consequently, a comprehensive treatment of the issues in
user-level implementation of system call extension infras-
tructures has remained open. We address this problem in
this paper and show that we can in fact build powerful and
efficient infrastructures at the user level. The key contribu-
tions of this paper are summarized below.

1.2 Summary of Results

In this paper, we present an approach for implementing
a system-call interposition infrastructure at the user level.
The key issues addressed in this paper are:

e Portability of extension code: Clearly, an extension
cannot be used across different UNIX variants if it
makes use of features unique to one of these variants.
One approach to make extensions portable is to restrict
the interface provided by the interposition infrastruc-
ture so that it only exposes features common to all
UNIX variants. However, such an approach is unnec-
essarily restrictive. A better alternative is to permit ex-
tensions to access system-specific features, yet assure
that those extensions that operate using only those fea-
tures common across UNIX variants can be used “as
is” on these variants.

We tackle this problem by designing an object-oriented
interface that encapsulates OS-dependencies (in terms
of system call names as well arguments) so that they
are hidden from extension code. Moreover, our ap-
proach enables similar system calls (e.g., the many
different system calls for reading from a file) to be
grouped together so that they can be handled in the
same way. By varying the grouping as needed for dif-
ferent UNIX variants, it is possible to write extension
code that can be used without any modifications across
these variants. A detailed description of our approach
in this context can be found in Section 3.

e Portability of the interception infrastructure: Most

modern versions of the UNIX operating system such
as Solaris, Linux, IRIX and OSF/1 provide a mech-
anism for one user process to trace another process
with the same userid, or if the first process has the
permissions of the superuser. An user-level infrastruc-
ture can be implemented using this mechanism. How-
ever, since this mechanism is intended primarily for
debugging, it does not operate in the same way on
different UNIX variants, thus posing a challenge in
terms of portability of the infrastructure. We tackle
the portability problem by partitioning the infrastruc-
ture into an OS/architecture-dependent component and
a second component that is independent of them.
The OS-independent component comprises the bulk
of the functionality of our infrastructure. It uses the
primitive capabilities provided by the OS/architecture-
dependent component that may have to be imple-
mented differently on different OS’s and processor ar-
chitectures. Our approach for making infrastructure
portability is detailed further in Section 4.

Capabilities of extension code: even though most op-
erating systems provide an ability to intercept system
calls, they do not always provide adequate or conve-
nient mechanisms for accessing or modifying the sys-
tem call data. For instance:

— Some UNIX variants such as Linux do not pro-
vide a way to abort system calls, yet we need
these capabilities to confine applications or to
prevent intrusions.

— Modification of variable-size data such as strings
poses a problem, as the new value may occupy
more space than what was originally available.
Thus, the obvious approach of overwriting the
data will not work.

— Malicious applications may attempt to modify
system call arguments between the time they
are checked by the monitoring program and the
time the system call is executed. (Such changes
are possible if the malicious program is multi-
threaded.)

— Since the monitoring process and monitored pro-
cess typically run with the same privileges, we
need to guard against a monitored process from
interfering with the operation of a monitoring
process, e.g., by attempting to kill the monitor-
ing process or reduce its priority.

Our approach for addressing these problem is also de-
scribed in Section 4.

e Efficiency: As compared to a kernel implementation, a

user-level implementation of system call interception

R Kernel P
Stap P2, awake R1 e”tfy\open: r,// open(...)
Pl'e-fyscall ;, int 0x80
extensions vy Await Y
next syscall Normal
syscall
processing libe
awake P1 Y
Post-syscall
extensions y Await -
next syscall | exit plocessing

Figure 2. System call execution sequence when a process is monitored.

incurs the following additional costs. First, two addi-
tional context switches are introduced for each system
call in a user-level implementation. Second, the opera-
tions to access or modify the memory of the monitored
process are generally less efficient than those available
to a kernel implementation. To obtain acceptable per-
formance, we adopt the following techniques. First,
we employ the fastest mechanism available under each
OS for implementing the memory access operations.
Second, we make use of selective interception capa-
bility (where a selected subset of the system calls are
intercepted) to minimize context switches on OS’s that
provide this capability. Finally, we use lazy derefer-
encing of accesses to the monitored process memory,
i.e., operations to access system call arguments are de-
ferred until their values are really needed. Using these
techniques, we have been able to obtain good perfor-
mance for user-level system call interception, as de-
scribed further below.

Performance analysis: For applications such as in-
trusion detection and confinement, the overhead due
to context switch (typically in the range of the time
needed to execute thousands of instructions) far out-
weighs the overhead of memory access operations or
executing the extension code [25]. (See Section 5 for
details.) Thus our performance analysis in Section 6
focuses primarily on the overhead due to interception
alone, while leaving out the overheads due to execu-
tion of extension code. (Measuring the overhead due
to extension code execution is not useful for a com-
parison of in-kernel versus user-level implementation
of system call interposition.) Figure 1 summarizes our
performance results on a 350MHz Pentium II PC run-

ning RedHat 5.2 Linux. The table shows the overhead
in terms of increase in perceived execution time (also
known as real time). For measuring real time, light
load corresponded to one instance of a process in the
case of gzip, ghostscript, tarandcp -r,
and a throughput of 20Mb/s for httpd and ftpd.
A high load corresponds to ten instances of the pro-
cesses (for gzip, ghostscript, tar, cp -
r) and over 100Mb/s throughput for the servers. Our
results show that for CPU and disk-intensive applica-
tions, the overheads due to system call interception are
very small. Even for servers, where the overhead is
moderate under high loads, we believe that the over-
heads are well-worth the increase in security that can
be obtained using system call interposition.

We note that our approach for tackling the first two issues
are largely applicable to kernel-based implementations as
well.

2 System Overview

Almost all versions of UNIX provide a mechanism for
one process to trace and control the execution of another
process and/or access its memory using the system call
ptrace. The primary use of this mechanism has been
in implementing debuggers. Some UNIX variants such as
Linux provide an enhancement to this mechanism that en-
able one process to trace the system calls made by another.
System V Release 4 (SVR4) compatible versions of UNIX
support a more powerful and convenient mechanism for sys-
tem call interception via the /proc interface.

The sequence of actions involved in system call tracing
is shown in Figure 2. A user process P, invokes a sys-

M onitoring process
N\

Supervisor objects

_ I

J]

Supervisor Interface

(Mostly) Arch/OS Independent Functions

-1— Runtime System

OS/Architecture Dependent Functions

Kernd]

Figure 3. Components of the system

tem call such as open, which refers to an entry point in
libc. After setting up the arguments and the system call
number in appropriate registers, this code transfers control
into the kernel by using a processor trap or software inter-
rupt (e.g., int 0x80 in Linux/i386). In the kernel mode,
the entry processing code wakes up the monitoring process
P, which can now examine or modify the registers or the
memory of P,. After whatever processing desired by P,
it transfers control back to kernel, where the actual system
call functionality is performed. Before exiting the system
call, control is transferred back into P;, where additional
actions such as examination/modification of the system call
return parameters and return code may be performed. Fi-
nally, control is returned back to P.

In order for P; to trace P,, the effective userid of P;
must be root, or the same as the effective userid of P;.
One of the primary benefits of a user-level interception ap-
proach is that the monitoring process does not need the priv-
ileges of superuser. This means that ordinary users can de-
velop and use system call extensions in ways they choose.
Equally important, the potential damage caused by the mon-
itoring process can be no more than what can be caused
by the monitored process. Note that this is not the case
with a kernel-based implementation of interposition, where
(faulty) extension code can cause damage that is beyond the
damage that can be caused even by a root-owned process.

Our system call interception/extension infrastructure is
built on top of the system call tracing facilities provided by
the different UNIX variants. The overall architecture of our
system is shown in Figure 3. An instance of the infrastruc-
ture resides within a single user process that we call moni-
toring process. A single process may monitor (and control
the behavior of) one or more processes. The actual code for
monitoring a process resides in a supervisor object, which
in our implementation is a C++ object. There will be several
monitoring processes running on a system, each monitor-

ing one or more processes. (There will likely be at least as
many monitoring processes as the number of distinct users
that have processes running on the system.)

All supervisor classes are derived from the base class
SupIfec. Communication between the runtime system and
supervisor object happens via method invocations on this
interface. The supervisor classes are dynamically loaded
into the monitoring process as new processes are identified
for monitoring. A mapping file maps a fully-qualified exe-
cutable name into a shared library containing the code for
a supervisor class. This provides a (static) mechanism to
identify which supervisor class will be used to monitor a
process. A second (and more dynamic) mechanism pro-
vides for a parent process to determine which supervisor
object will be used for monitoring its child.

The supervisor objects reside on top of a runtime support
infrastructure which consists of two parts. Lower part of
the runtime system consists of code that is largely specific
to different operating systems and architectures. The differ-
ences here arise not only due to the differences in system
call interception mechanisms (i.e., variations of pt race or
/proc interface), but also because these interfaces do not
typically provide all of the capabilities needed for modify-
ing the behavior of system calls. As such, our implemen-
tation has to access registers and other architecture-specific
aspects of the system. The rest of the runtime system con-
sists of code that makes use of the OS/architecture-specific
functions. This code remains the same across different ar-
chitectures and operating systems, except for minor varia-
tions due to the fact that the system call names and argu-
ments vary slightly across different UNIX variants.

3 Supervisor Interface

The supervisor interface is designed so that supervisor
classes can be written without having intimate knowledge

of
1. how system call interception is performed
2. internal codes used to identify different system calls

3. architecture/OS-specific ways to access system call ar-
guments or return value

4. OS-specific mechanisms to read or modify monitored
process data

In addition, the interface should provide:

5. support functions to control execution of the monitored
process

6. abstraction mechanisms for writing a supervisor class
without having to hard-code system call names or ar-
gument types specific to one or more variants of UNIX

Our first step is to define a base class called SupIfc
from which all supervisor classes are derived. For each sys-
tem call there are two methods in the interface correspond-
ing to the entry and exit for the system call. For instance,
corresponding to the read system call, the following meth-
ods are defined in SupIfc:

void read_entry (Integer& fd, CharPtré& buf,
Integer& count)

void read_exit (Integer& fd, CharPtr& buf,
Integer& count, Integer& rv)

Whenever a monitored process P enters or exits a system
call (say, read) the runtime system identifies the supervi-
sor object Sp monitoring P and invokes the corresponding
entry or exit (i.e.,, read_entry or read_exit) method
on it. This approach addresses issues (1) and (2) mentioned
above. To address issue (3), the system call arguments and
return value are passed explicitly as arguments to the entry
or exit methods.

Issue (4) is addressed by encapsulating the value of each
system call argument in an object. This frees the supervi-
sor object from having to deal with the details of layouts of
system call arguments data on a particular OS/architecture,
or the mechanisms to be used to read the memory of the
monitored process. Instead, it relies on methods provided
by the objects to conveniently examine or modify the fields
of system call arguments. Finally, encapsulation of system
call arguments in class objects enables lazy dereferencing
of arguments. For instance, an Integer object can be
constructed with a field recording the register in which the
argument is located. If the value of the register is needed,
the supervisor method will invoke a get operation on it, at
which point the register contents can be fetched. As shown
in Section 6, this lazy dereferencing will enhance system
performance on some operating systems.

To illustrate system call argument classes, we give an
example of the CharPtr class below:

class CharPtr {
int get (char *buf, int len);
int put (char *buf, int len);
int lockVal(); /* ensure that value can’t
be modified by a thread of the monitored
process before syscall completion */

The get and put have obvious meanings. To under-
stand the 1ockVal operation, note that if the system call
argument is from a region of memory shared by multiple
threads or processes, it may be possible for one of the
threads/processes (other than the one making the system
call) to modify the contents referenced by a pointer argu-
ment between the time it is examined by the supervisor and
the time it is fetched by the kernel when the system call is
executed. The 1ockVal method is used to indicate to the
runtime system that this must not happen. The implemen-
tations of these system call argument classes is provided by
the runtime system, as described in the next section.

Issue (5) is addressed by defining a symmetric interface
to SupIfc called Rt I fc that defines several support func-
tions such as:

e kill sends the specified signal to the monitored pro-
cess.

e abort, which can be invoked only from within a
method invoked on system call entry, prevents the sys-
tem call from completing. An argument to abort will
specify the value to which the return code should be set
to before returning control to the calling program.

e switch action replaces the current supervisor object
with a new object belonging to the class specified as
the argument. This ability to dynamically change the
supervisor object is particularly useful when we sus-
pect (or know for a fact) that a monitored process is
misbehaving, and we wish to monitor the process more
closely (or even better, confine its actions). More-
over, the switch capability is useful to implement so-
phisticated policies regarding which supervisor object
should monitor a process after it execve’s another
program.

The approach presented so far has not addressed issue (6),
since it requires the supervisor class to support methods
with names that exactly match the system call names in
a particular (version of an) operating system. To over-
come this problem, we have developed a higher level lan-
guage that provides an abstraction by which groups of re-
lated system calls can be abstracted into a higher level
event. This abstraction mechanism is one of the features

of our behavioral specification language for intrusion de-
tection/prevention described in [26]. The basic form of an
abstract event definition is:

eventName(X) ::= B
(s1(Y1)|Condi)|| -~ - ||(sn(Yn)|Condn)

We have used the shorthand X to denote a list z1, ..., T
of arguments, and s1, ..., s, denote either a system call or
another abstract event. (But cyclic definitions are not per-
mitted.) Each Cond; provides a binding for each of the
variables in X in terms of the values of one or more vari-
ables in Y;. Additionally, Cond; may consist of conditions
on the variables in Y. The condition and expression syntax
are similar to that of C++.

An abstract event that denotes operations to read a file
using a file descriptor operand can be defined as follows for
Linux:

readFd (Integer fd) ::=
read(fd,_,_)| |readdir(fd,_,_) ||
getdents (fd, _,_) | |readv (fd, _, _)

Here, “_” denotes an argument whose value is not of
interest for defining the abstract event. The same abstract
event may be defined differently for OSF/1:

readFd (Integer fd) ::=
read (fd,_,_) | |pread(fd, _,) ||
getdirentries(fd, _,_,_) | |readv(fd,_,_)

Predefined collections of such abstract events can be
specified in interface definitions, which serve a purpose
similar to OS-specific header files. The supervisor class can
now be defined in an operating system independent fashion
by providing a method for each of the abstract events in the
interface definition, e.g., readFd.

A compiler for the interface definitions is responsible
for arranging to call the code corresponding to the abstract
event eventName whenever any of sq1,...,s, are called,
and moreover, the corresponding condition is satisfied. The
code for event Name is invoked with parameter bindings
as given by the condition. In effect, the compiler gener-
ates a stub routine for each system call that in turn ends up
calling an operation in the supervisor class with the name
corresponding to the abstract event!.

We note that [9] uses a related approach for making their
wrappers portable. Our interface definition files are similar
to their characterization files. They make use of a notion
of tagging system calls, and use the tags in a way similar
to our abstract event names. An advantage of our approach
is that event abstractions can be composed, while tagging is
not.

1If multiple abstract events match the same system call, all of them are
invoked in some order. Undesirable interactions may arise due to interfer-
ence among actions for these different abstract events — this is an area of
current research.

3.1 Example Supervisor Class

We provide an example of a supervisor class Unt rust—
edUtility to illustrate the API described so far. We de-
scribe a simple class which restricts the monitored process
from performing many damaging system calls, and also re-
stricts the files that can be opened by the application. We
begin by defining abstract events of interest:

deniedCalls ::= fork]| |execve| |connect| |bind
| |1listen| |chmod| |chown| |chgrp| |kill| |ptrace
| |sendto| |mkdir| |utimes| | rename]| | ...
/* other disallowed calls omitted */
wrOpen (f) ::= (open(f,md) |isWrite (md))
| |lcreat (f) | |[truncate (f)

We have omitted some or all of the trailing arguments of
some system calls in the above definition for conciseness.
After defining the abstract events, we can then provide the
implementation of just two methods, deniedCalls and
wrOpen. Any system call that does not match one of these
abstract event definitions will be given the default treatment,
which for most system calls is to continue. (The runtime
will include certain protection mechanisms that ensure that
the monitored process cannot make system calls such as
kill on the monitoring process.) The implementations of
these two methods may be as follows:

void UntrustedUtility::deniedCalls_entry () {
abort (EPERM) ;

}

void UntrustedUtility::wrOpen (CharPtr f) {
char *fv = f.get();
/* we may want to lockVval(), first */
if (!isInDir(fv, "/tmp") && (exists(fv)))

abort (EPERM) ;

The code for wrOpen uses support functions to deter-
mine whether the file being opened for write is inside the
/tmp directory, and if not, whether it will end up creating
a new file or modifying an existing one.

4 Runtime system

A monitoring process is started with the name of an ex-
ecutable to be monitored. Optionally, the name of the su-
pervisor class to be used for monitoring the executable and
the name of the file containing the object code for this class
may be specified. Otherwise an appropriate supervisor class
is identified from the mapping file. The monitoring process
then loads the supervisor class and then forks and uses the
attach primitive provided by OS-specific module to at-
tach to the child process. Following this, the child process
exec’s the executable, and now the process is set up to be

while there exist processes to be monitored {

pid = waitForCall(); /* wait for a monitored process to enter/exit sys call*/

call = getscno(pid);
if (isEntry(call)) {
/* Pre—entry processing, details omitted */
switch (call) {/* get system call identifier */
case OPEN_ENTRY:
supObj[id] .open_entry(scInfo [OPEN_ENTRY] [0],
scInfo[OPEN_ENTRY] [1], scInfo[OPEN_ENTRY] [2]); break;
/* cases for other system calls not shown */

}

/* Post—-entry processing (omitted)

}
else if (isExit (call)) {
/* Pre—-exit processing (omitted) */

switch (call) {/* get system call identifier */

case OPEN_ _EXIT:

supObj[id] .open_exit (scInfo[OPEN_EXIT][0], scInfo[OPEN_EXIT][1],
scInfo[OPEN_EXIT] [2], scInfo[OPEN_EXIT][3]); break;
/* cases for other system calls not shown */

}

/* Post—-exit processing (omitted) */

}
else if (isSignal(call)) {

/* signal related processing (omitted)

Figure 4. Main loop of the runtime system

monitored by an object of the specified supervisor class.
When the runtime system is monitoring one or more pro-
cesses, it is executing within a loop shown in Figure 4.

The functions waitForCall and getscno are pro-
vided by the architecture/OS-specific component of the run-
time system. This component also includes the definition of
the array scInfo which specifies the registers (or offsets
into the kernel-maintained user structure for the monitored
process) that contain the system call arguments. System call
argument class objects such as Integer and CharPtr
are constructed from these register numbers. (This step hap-
pens implicitly, thanks to the type conversion rules of C++.)
Finally, the runtime looks up its association table to iden-
tify the supervisor object corresponding to the process that
made the system call, and the corresponding entry or exit
method is invoked on this class. On return from this call,
the monitoring process goes back into waitForCall.

While the action of the runtime system to most system
call entry and exit operations are similar to that for open,
some operations require special treatment:

e fork: the runtime system needs to identify the pid of
the child process, and be ready to monitor it. More-
over, the supervisor object itself is cloned, with one
copy monitoring the parent process and another moni-

toring the child.

execve: no special processing is required on the part
of the runtime system. If the current supervisor object
requires the new process to be monitored by a different
supervisor object, it explicitly invokes switch opera-
tion from its execve_ent ry method with the appro-
priate shared library name and class name for the new
supervisor class. Alternatively, the switch operation
may specify a mapping file that is looked up to de-
termine the supervisor based on the executable name.
Switching to a new object will be done as part of post-
supervisor processing.

kil1l: since the runtime system typically runs with the
same userid as the process being monitored, we have
to be careful to ensure that the monitored process can-
not kill the monitoring process or otherwise damage
its ability to monitor it. This is ensured by intercept-
ing every “potentially dangerous” system call such as
kill, and permitting it to go through only if it will
not affect this or other monitoring processes. A simi-
lar remark applies to several other system calls that can
interfere with the monitoring process.

e exit: on completion of the entry function, the super-
visor object for the monitored process is destroyed by
the runtime system.

4.1 Implementation of System Call
ment Classes

Argu-

The runtime system also provides the implementation of
the system call argument classes. These implementations
are made independent of the OS and machine architecture
by using the functions provided by the architecture-specific
module. The implementation of these classes is mostly rou-
tine, except for the way in which we deal with modifications
to the memory referenced by pointer arguments, which we
discuss further below.

For instance, if we have a filename argument, and would
like to modify it, this can be done in place if the new name
is smaller than the old one. Otherwise, we need to allocate
new storage, and change the system call argument value to
point to this new location. The catch is that this new loca-
tion must be within the address space of the monitored pro-
cess, and it is difficult to identify unused sections of mem-
ory from the monitoring process. Our approach is to allo-
cate new storage on the stack beyond the top of stack. We
find that normally, the allowable stack size is much larger
(by several MBs) than the value of stack pointer, so all of
this space can be used.

Regardless of whether the new value requires more stor-
age space than old value, we may choose to store the new
value at a random location on the stack. The motivation for
this is as follows. There is a window of time between the
assignment of a new value to a system call argument and
the time when these arguments are actually fetched from
user memory for system call execution by the kernel. In
a multithreaded environment, one of the threads can make
a system call, while the other tries to locate and modify
the system call argument back to its original value. Even
worse, the first thread may provide a valid-looking argu-
ment (e.g., a file name) which is permitted by the supervi-
sor object, while the second thread changes the file name
to an unacceptable value. Putting the modified value at a
random location on the stack implies that the rogue thread
has to search through the entire stack to identify where the
value is stored. If there is sufficient stack space, say IMB,
this may take millions of instructions to complete. Com-
pared with this, the time window being exploited is prob-
ably much smaller, say, several hundred instructions. This
implies that the probability of the rogue thread succeeding
in its effort is very small?,

2 A rogue program may try to circumvent this approach by leaving very
little room on the stack where the runtime system may store arguments.
Since typical programs execute with several MBs of available stack space
at all times, we may simply terminate the process when insufficient stack
space (say, less than 1MB) is detected.

The race condition with respect to checking of system
call parameter values stored within user memory was first
addressed in [11]. They identified their ability to deal with
the race conditions reliably as one of the benefits of an in-
kernel implementation. While a similar guarantee can prob-
ably never be provided in a user-level implementation, we
believe that approaches such as ours that exploit some sort
of randomization can reduce the success probability of such
race attacks to a negligible value. Nevertheless, it must be
noted that successful attacks can go undetected, in the ab-
sence of kernel support.

4.2 Architecture dependent primitives

This module contains the lowest level functions whose
implementations will vary significantly across different op-
erating systems and/or processor architectures. The func-
tions provided by this module include:

e getScNum, isEntry, isExit, isSignal:
get the system call number (or signal received by
the monitored process) as an OS-independent value,
identify if we intercepted a system call entry, exit or a
signal. This module also needs to identify the register
numbers where the system call arguments are stored.

e getReg, setReg: get or set the values of regis-
ters. We note that register numbers do not neces-
sarily correspond to the processor hardware registers.
They are simply handles created by the architecture-
dependent module to refer to some location within the
user structure (or anywhere else within the process
control block) that can be read or modified by the ar-
chitecture dependent module.

e getData, setData, getText: Read or mod-
ify the memory of the monitored process. Its imple-
mentation is different for ptrace and SVR4 based
OSes. For ptrace-based interface, reading or writ-
ing bulk data can be inefficient, so we employ any OS
or architecture specific enhancements to these capabil-
ities, e.g., we use the /mem facility in Linux which
permits efficient reads but not writes.

e attachProcess, waitForCall: Again, the
implementations of these operations are different
across ptrace and /proc interfaces.

e abort: SVR4-compatible UNIX versions provide a
special operation for aborting system calls. Still, we
needed to develop a way to modify the return code so
that any value chosen by the supervisor object can be
provided to the monitored program, rather than the de-
fault value in SVR4 which indicates an error EINTR

TestCase | Normal Time Overhead
execution | spentin
time extension
ftpd 2.2s 0.03s 1.5%
telnetd 3.1s 0.04s 1.3%
httpd 5.8 0.09s 1.5%

Figure 5. System call interposition overhead.

(system call interrupted). The ptrace implementa-
tion in Linux provides no way to abort system calls.
Our approach is to modify the system call argument to
a value that would cause the call to fail. We then inter-
cept the system call exit and set the return values and
parameters as appropriate. Identifying such argument
values (that cause system calls to fail) is fairly simple
in most cases, e.g., null pointer value for file names.
However, some calls do not take arguments, so this ap-
proach fails. Fortunately, most such system calls either
do not change system state (so no harm in letting them
complete, plus we can modify the return values), or are
not permitted to be executed even by superuser-owned
processes (e.g., setup and idle in Linux). Notable
exceptions are fork and exit. With fork, our ap-
proach is to kill the child before it completes its first
system call. With exit, it is arguable whether there is
any merit in aborting it, so we simply let it complete.

5 An Application in Intrusion Detection and
Confinement

We have built a system for intrusion detection, appli-
cation confinement and application-specific access control
based on system call interposition [25, 26]. Our approach
is based on specifying security-relevant properties of pro-
grams as patterns over sequences of system calls executed
by processes. Our specification language enables us to cap-
ture conditions on system call names as well as their argu-
ments. Response actions can be associated with each secu-
rity property, and these responses will be triggered when-
ever the property is violated. These actions may be used for
a variety of purposes such as disallowing the violating sys-
tem call, modifying its argument so that a different resource
from the one specified in the system call is manipulated, or
terminate the process. A compiler for this language trans-
lates these specifications into C++ code for a supervisor ob-
ject. This code is compiled with the C++ compiler and then
linked with the system call interposition infrastructure to
provide intrusion detection and confinement.

The results shown in Figure 5 were obtained with a run-
time system that uses in-kernel system call interposition [4].
Thus any overhead measurements relating to system call in-
terception or data access cannot be extrapolated to the user-

10

level interposition approach. However, the results do es-
tablish that our approach of achieving portability of system
call extensions (using the SupI fc interface and the system
call argument classes, which are implemented in the same
way in both runtime systems) is effective. They also show
that the overhead due to the execution of extension code
is very small — in fact, it is negligible as compared to the
overheads for system call interception and argument access.
Consequently, in a user-level approach such as ours, over-
all performance for applications such as intrusion detection,
confinement and access control can be measured purely in
terms of the overheads for system call interception and data
access. (This is precisely how we analyze performance in
the next section.)

The results shown in Figure 5 were taken on 350MHz
Pentium II Linux PC with 128MB memory and 8GB EIDE
disk. They include only the time spent within the exten-
sion code. Sample specification for the ftpd server can
be found in [25]. This specification consists of approxi-
mately 15 properties that restrict the operations of the FTP
server so that it (a) accesses only certain files before user lo-
gin, and certain other files after user login, (b) executes only
certain files, (c) performs host and user authentication, (d)
allows connections back to the FTP client, but not arbitrary
hosts, (e) does not use privileged system calls or system
calls except for binding to a privileged TCP port, and (f) en-
forces additional restrictions for certain users, e.g., anony-
mous users and super user. The specifications for telnetd
and httpd were similar.

6 Performance Results

The primary goal of our performance experiments is to
assess the impact of additional overheads introduced by
user-level system call interposition as compared to kernel
based interposition. As mentioned earlier, the time spent
inside the extension code remains the same for both ap-
proaches, but additional overheads are incurred in the user-
level approach due to context switches and relatively inef-
ficient operations to access the memory of monitored pro-
cess. Therefore our experiments were designed with null
extension bodies, or extensions that simply access (and pos-
sibly modify) system call arguments. For kernel-based im-
plementations, the overheads due to such extensions will be
negligible as compared to the overheads for a user-level im-
plementation.

Measuring the overhead due to execution of extension
code will serve to measure whether computationally inten-
sive tasks were performed within extension code. Such
measurements would be useful for determining the suitabil-
ity of system call interposition for accomplishing a partic-
ular task. Prior research in [9, 20], as well our results [25]
summarized in the previous section, provide adequate evi-

Application | CPU time Real time Real time

(Low load) | (High load)
gzip <2% <2% <2%
ghostscript 10% <5% <10%
tar 30% 5% 10%
cp-r 50% 5% 10%
ftpd 70% <2% 30%
httpd 65% <5% 35%

Figure 6. Overhead for system call intercep-
tion for different applications.

dence to the efficiency and effectiveness of the system call
interposition approach for applications such as intrusion de-
tection, confinement and access control. However, measur-
ing the execution time within extension code will not in any
way help assess the performance of the infrastructure devel-
oped in this paper. This is another reason for our focus on
very simple extensions in our performance study.

Most of the results presented in this section were ob-
tained for Linux running on a 350MHz Pentium II with
128MB memory and 8 GB EIDE disk, while the others were
obtained on IRIX running on SGI R10000 150MHz 128MB
4GB SCSI, and OSF/1 running on DEC alpha SO0MHz with
1GB memory. Whenever the measurements pertain to IRTX
or OSF/1, we indicate this explicitly; otherwise the mea-
surements pertain to Linux.

6.1 Overhead for System Call Interception

For performance analysis, we consider three categories
of applications to monitor: CPU-intensive, disk I/O inten-
sive, and network-intensive applications. The overhead is
measured in terms of increase in CPU time, as given by the
formula:

CPU time for monitored app AND monitoring process

CPU time for unmonitored app

CPU time is taken to be the sum of the times spent in
user and system mode by the system on behalf of a pro-
cess. We also measure the perceived degradation in perfor-
mance, which is computed using real time (otherwise called
elapsed time) instead of CPU time. The perceived degrada-
tion is shown under lightly loaded and heavily loaded con-
ditions in Table 6. In the table, lightly loaded conditions
refer to a single instance of a running application for gz ip,
ghostscript,tarandcp -r,and adelivered through-
put less than 20Mb/s for ftpd and httpd. Heavy load
corresponds to running ten instances of an application for
gzip, ghostscript, tar and cp -r, and a delivered
throughput of 100Mb/s or higher for ftpd and httpd.
The graph in Figure 7 shows the increase in CPU time
as a function of the number of system calls made by dif-
ferent applications. We expect the overhead to be mainly

11

4
35} .
n ’gzip’ v .
g % s -
@ 25| far -
%] Cp o o
c 2 vﬁpy
®
g15; .°
e 1t x
o) W
o5 -
P

O L L L L L
0 20000 40000 60000 80000 100000
Number of system calls

Figure 7. Increase in overhead with increase
in number of system calls.

due to context switches, whose cost should be independent
of the cost of the system call itself. Thus we expect a lin-
ear relationship between the overhead and the number of
system calls made. The graph shows that this overhead is
between 26 and 38 microseconds per system call, with most
points concentrated around 34 microseconds. The variation
is a result of time measurement errors which get amplified
since we are taking the difference between CPU times with
and without monitoring. Moreover, when a process is mon-
itored, we need additional processes for monitoring, which
can in turn lead to poorer virtual memory and cache perfor-
mance. The impact of this is hard to predict, and may vary
from application to application.

6.1.1 CPU-intensive applications

This category is meant to represent typical CPU-intensive
applications that are used frequently. Users are typically
sensitive to additional overheads for such applications,
since their running time is long enough to be perceived.
We consider gzip and ghostscript in this category.
While gz ip makes very few system calls, ghostscript
makes a moderate number due to the socket-related opera-
tions needed for displaying on X-windows.

Our overhead results confirm the results of [13] for
SVR4 compatible operating systems such as IRIX, while
establishing that similar overheads (almost immeasurable)
hold for Linux implementation that uses the pt race facil-

1ty.

6.1.2 Disk I/O-intensive applications

In this category, we studied tar and cp -r (i.e., recursive
copy of directories). This category of applications tends
to make a very large number of system calls. Since our
main overhead is due to context switching for every sys-
tem call, higher overheads are to be expected for these pro-
grams. However, due to a large amount of I/O operations

400

"normal’ ——
350 | ‘'monitoring’ - S |
‘localnormal’ -
300 L "localmonitoring’ =
o 250 | .
[} ks
@ X
B 200 .
3 5
= 150} ° °
100
e
50
0 L L L L
0 5 20 25

10 15
Number of clients

Figure 8. FTP server throughput

to the disk, the elapsed time is much larger than CPU time,
thus the perceived increase in overhead is typically small
for these applications. Due to opportunities for multiplex-
ing in I/O, the perceived overhead increases when multiple
concurrent instances of these applications are run.

6.1.3 Network Servers

Network servers such as ftpd and httpd are among the
most important applications that need the increased secu-
rity offered by system call monitoring. Consequently, our
performance analysis on these applications is more com-
prehensive. Rather than measuring just the increase in CPU
time due to system call interception, our experiments were
geared more towards evaluating the degradation in through-
put and latency experienced by clients of these services.

The test suite for ftpd consisted of several files whose
sizes were uniformly distributed over the range of 0.5 to
SMB. First, we ran the server and client on different ma-
chines.We ensured that all of the requested files would to-
gether fit within the in-memory file cache for the server, so
the effect of disk access was completely eliminated in these
tests. Figure 8 shows how the throughput varies as a func-
tion of the number of clients. The graph shows that the
throughput is limited by network bandwidth, as the curve
flattens out around 80Mb/s, which is probably close to the
best that can be achieved on a 100Mb/s Ethernet, when all
of the protocol overheads are considered. Since the CPU
utilization remains fairly low at this point (around 20%),
the overheads of monitoring do not affect the throughput at
all; thus the throughput with monitoring coincides with the
throughput without monitoring.

To simulate what happens under higher CPU loads (or
faster networks), we then ran the client and server on the
same machine. Moreover, we specified the local file name
on the client to be /dev/null so as to eliminate the ef-
fect of disk access. In this case, the throughput is limited by
CPU usage, so there is a significant degradation in through-

12

140 | 'normal’ —— |
‘monitoring’ - o
'localnormal’ =
120 ‘localmonitoring’ = il
100 b
&
3 80 1
=
b 60 1
w0 1
20 b
0 L L L L L
0 20 40 60 80 100
Number of clients
Figure 9. HTTP server throughput
put.

Figures 9 shows throughput results for ht t pd. The tests
were performed using WebStone, which is one of the widely
used benchmarks for web server performance. We used
WebStone with the standard fileset included in the bench-
mark. We used two client machines and one server machine.
We tested starting with 10 clients going to 100 clients in in-
crements of 10. The time per run was set to 10 minutes
and we took 3 iterations. On the server, httpd was run with
and without monitoring. WebStone provided us with the re-
sults for the throughput and the response times. When the
client and server are run on different machines, the through-
put saturates at about 75Mb/s when no monitoring is per-
formed. (This number is lower than that for £tpd, reflect-
ing a higher overhead for HTTP due to the protocol itself,
and due to a different distribution of file sizes.) At the sat-
uration point, the CPU utilization is sufficiently high to re-
sult in measurable drop in throughput of about 15%. When
the experiments are performed with the client and server on
the same machine, the overhead is even more pronounced
(about 30 to 35%). WebStone also provides response times
for ht t pd, which are shown in Figure 10. (Response times
are not very meaningful in our £t pd experiments since the
large file sizes meant that the time to receive a file was al-
most completely due to the time for transferring the files.)

350 T ‘
‘normal’ ——
‘monitoring’ -
300 ¢ ‘localnormal’ x|
m ‘localmonitoring’ a
2 250 - T
<
3
o 200 1
E
= 150 ¢ 1
o
g
< 100 r 1
-
50 1
0 L L L L L
0 20 40 60 80 100

Number of clients

Figure 10. HTTP response time.

Operating | Intercept | Access arguments | Access filenames | Follow all pointers

System only (read-mostly) (read-mostly) | (read) | (read/write)
IRIX 55% 55% 75% | 330% 400%
Linux 27% 34% 39% | 60% 2000%

Figure 11. Overhead for reading and writing system call arguments.

Operating | Overhead
System

Linux 37%
IRIX 60%
OSF/1 35%

Figure 12. Interception overhead on IRIX,
OSF/1 and Linux.

6.2 Interception Overheads on Other UNIX Vari-
ants

Table 12 shows the overheads for system call intercep-
tion on two variants of System V Release 4 compatible op-
erating systems, namely, Irix and OSF/1. We only show the
average of the overheads among the six applications shown
in previous tables. These operating systems provide a finer
granularity of control over what system calls are to be mon-
itored. We used this capability so that we ignored “uninter-
esting” system calls like read and write. In addition, for
most system calls, we intercepted only the entry and not the
exit. The overheads for interception under these conditions
are shown in the table and compared against the times ob-
tained for Linux. Although Linux does not permit selective
monitoring of a subset of system calls, this factor does not
necessarily translate into a higher overhead for monitoring.

6.3 Overhead for Fetching Arguments

Table 11 shows the overheads for accessing and/or mod-
ifying system call arguments. The overhead shown is the
average taken across ghostscript, tar and ftpd. In
Linux, accessing each system call argument requires a sin-
gle system call in the monitoring process, so there is a mod-
est overhead for getting these values. In IRIX, no system
calls need be made to access the arguments, so there is no
additional overhead. When we follow pointer arguments
and access the monitored process memory, we have addi-
tional overheads. In most cases, we are interested in access-
ing arguments that are strings of relatively small size such as
file names, and the overhead increase is small. But when we
follow all pointer arguments, we end up reading the buffers
used for file read and write operations, and this leads to a
substantial overhead. In the case of Linux, there is an ef-
ficient way to perform bulk reads using the mem file in the

13

/proc directory. But writing bulk data is very inefficient,
as it requires one ptrace system call per 4 bytes of data
to be written. Thus the overheads for modifying all argu-
ments shoots up dramatically. This problem does not apply
to IRIX since it provides efficient bulk read and write opera-
tions. Still, the overhead is high when we follow all pointer
arguments, since this also implies that all system call entries
and exits (including those for read and write) are being
intercepted.

We conclude that the overheads are low when we limit
ourselves to accesses to arguments such as file names. Intru-
sion detection, access control and confinement applications
require accesses only to this kind of data, and hence the
performance degradation introduced by these applications
is low. Extensive access to data may be needed in some ap-
plications such as those for transparent data encryption or
file replication. User-level interception introduces signifi-
cant overheads for such applications.

7 Discussion

The runtime system described can be used for real-time
monitoring of any application, in the absence of source code
and without the need for changing or even recompiling any
system software. Since our monitoring program resides in
a separate address space, it is essentially nonbypassable.
Having a user level approach provides us the ability to se-
lectively monitor certain system calls, or monitor every call,
thus controlling the granularity of control. These features,
and a reasonable performance overhead give our system the
power to add and enforce a variety of security policies, and
we discuss some of the possible applications of our system
below:

e Policy-based Auditing: In its simplest form, our sys-
tem can record information about system calls and sig-
nals in a log file that can be used for archival purposes
or as a source of information to investigate attacks.
The information to be recorded can include system call
arguments as well as system state related information,
and can be customized on a per-process basis.

o Intrusion detection: As described earlier, a majority
of intrusion detection techniques make use of system
call information to perform their task. System call in-

terception can enable them to obtain additional infor-
mation that may not be available from audit logs, and
thereby improve their ability to detect attacks. The
ability to modify or abort system calls will enable in-
trusion detectors to take a more proactive role wherein
they can prevent attacks from succeeding.

e Access Control: Fine-grained access control that is
based on users as well as applications can be easily
implemented using our infrastructure. Our user level
approach has a distinct advantage in that users can de-
ploy (or experiment with) new access control policies
without any help from system administrators.

e Confining uncooperative and malicious applications:
Since our interception and extension mechanisms can-
not be bypassed, we can use them to confine uncooper-
ative applications. Together with this factor, the mech-
anisms we provide for aborting system calls, modify-
ing their arguments, and “locking” argument values (so
that they cannot be changed with the intention of ex-
ploiting race conditions) give us the ability to confine
malicious applications as well. Our ability to dynami-
cally change the supervisor object (and hence the con-
finement policy) provides increased flexibility in con-
fining malicious applications.

o Other applications: System call interposition has been
used for other applications such as transparent encryp-
tion, data replication, etc. While our system can also
support these applications, the performance overhead
is higher. More efficient implementations, such as
those based on shared wrapper libraries, offer a better
alternative.

7.1 Drawbacks

One of the advantages of a kernel-based approach is that
the extension code can perform operations in the context of
the monitored program. In a user-level approach, we have
to perform these operations in the context of the monitoring
process, which is distinct from the monitoring process. For
instance, operations such as changing the userid or file sys-
tem root of the monitored process is not possible with our
approach. Nevertheless, it is possible to constrain the mon-
itored process to only files accessible to new userid or new
file system root.

In a user-level implementation such as ours, the OS ker-
nel treats the monitoring and monitored processes the same,
and it is really up to the monitoring process to defend itself
against a malicious monitored process. There are a num-
ber of ways in which the monitored process can try to crip-
ple a monitored program. Not all of these may have been
thought through completely by an implementor of the run-
time system. Any “holes in the armor” resulting due to such

14

oversight can be exploited by a malicious program to es-
cape. Kernel-based implementations are harder to circum-
vent. The downside, however, is that errors in kernel-based
implementations can cause significantly more damage than
errors in the extension code executing at the user level.

Our implementation adds moderate overheads for moni-
toring, and this overhead is higher than that for kernel-based
implementations. The silver lining is that most of the appli-
cations where the user is sensitive to performance are CPU-
intensive, and for such programs, the overhead of our inter-
ception mechanisms are not even noticeable.

Our approach is implemented on top of the interfaces
provided by the operating system features intended for de-
bugging. Limitations in these mechanisms directly impact
our infrastructure. For instance, in the current implemen-
tation of the pt race mechanism in Linux, there is a race
condition regarding the fork system call. In particular, the
child process does not inherit the tracing flag, so it can run
free until the monitoring process attaches to it. During this
window of time, we do not have any ability to monitor or
confine the child process. However, it appears that this race
condition only arises in multiprocessor architectures. (This
problem does not arise in SVR4 compatible systems, as they
provide mechanisms that enable the monitoring program to
arrange for the tracing flags to be inherited after a fork.)
It appears possible to develop a work around by dynamic
modification of code in the text segment, or better, mod-
ifying the instruction pointer to point back to a specially
constructed sequence of instructions on the stack. The best
solution, however, is to eliminate this “bug” from the OS
implementation itself.

One of the assumptions of our approach is that the policy
incorporated in the supervisor code is a “good” one, and will
not itself cause damage or otherwise modify the capabilities
of the monitored process in undesirable ways. The upside
is that the scope of damage that can arise due to such errors
is minimized by using appropriate high-level language for
specifying the supervisor functionality, and also by having
the supervisors run at user-level.

8 Related Work

There has been a lot of research done on improving
the access control techniques available in operating system
such as UNIX. Many of the works focussed on improving
the filesystem protection model in UNIX [8, 19, 2]. Their
implementation approach is based on modifying the operat-
ing system kernel to provide an enhanced protection model
that can operate at a per-process and per-user level. The
work of [28] develops a more powerful and flexible access
control method called domain type enforcement (DTE). Us-
ing DTE, system administrators can specify fine-grained
mandatory access controls over the interaction between pro-

cesses and the objects accessed by them. This work is more
closely related to ours in that their implementation is based
on intercepting and checking system calls within the OS
kernel.

Several research efforts have developed interception
techniques that are implemented in libraries [16, 15]. While
this approach leads to low overheads, they can be easily by-
passed by code that directly invokes the system call without
using the library, and are thus not appropriate for intrusion
detection and confinement applications.

Interception of system calls within the kernel, coupled
with the ability to add extension code that can be exe-
cuted at this point, has been proposed by several researchers
[9, 11, 20]. The approaches in [9, 20] use similar techniques
for system call interception: they overwrite the system call
table in the kernel (Linux or FreeBSD) to point to modules
that will route the system calls through the extensions prior
to and after the execution of normal system call function-
ality. Being kernel-based, these approaches generally have
more flexibility and power in terms of what actions can be
performed within the extension code.

A more comprehensive set of capabilities for extending
operating system functionality was proposed in [11]. They
allow for extensions to operate in user mode as well, but
they run on top of the kernel level primitives developed by
them, as opposed to making use of the features of commod-
ity operating systems. Their work also deals with some is-
sues not addressed by the works mentioned above, such as
handling race conditions that might arise when a malicious
multithreaded program attempts to change an argument of
a system call (such as a filename) between the time it is
checked by the extension code and the time the argument
is actually used in a system call. Although it is difficult
to provide absolute protection against such attacks using
our approach, our technique of copying such arguments to
a random location on the stack (beyond the stack pointer)
provides a good solution. It would be very difficult for the
malicious thread to search the entire stack (usually a few
MB in size) to identify the location(s) into which the moni-
toring program may have copied the arguments.

The key distinction between our approach and that of the
above works is that we aim for a user-level implementa-
tion of the system call interception infrastructure, similar to
[13]. Their system is aimed at confining helper applications
(such as those launched by web-browsers) to restrict their
use of system calls. Due to their focus on “sand-boxing” of
helper applications, their system provides abilities to only
allow or deny a particular system call. Modifying system
call arguments or the data referenced by them, or changes
to the system call return code were not considered. More-
over, their work was based on Solaris and did not address
Linux (which is our main interest) or issues of portability
across other UNIX variants.

15

Several languages have been proposed to simplify writ-
ing system call extensions [9, 13, 26, 25]. Some approaches,
such as [13] use a very simple, high-level language. Other
approaches such as [9] are geared to maximize the capabil-
ities that can be programmed into the extensions, and thus
they use a superset of the C-language for writing extensions.
Yet other approaches [26, 25] strive for a balance between
expressive power, robustness of extensions and ease of writ-
ing extensions geared for a specific purpose such as intru-
sion detection/prevention.

9 Conclusions

In this paper we presented a new approach for develop-
ing a user-level infrastructure for system call interception
and extension. Our work addresses several important issues
not addressed by previous research. Even though we have
a user-level implementation, it offers similar level of secu-
rity and comparable level of capabilities as kernel-based im-
plementations of system call extensions. This is achieved
without the main drawbacks of the kernel-based approach,
namely, normal users can develop and deploy their own ex-
tensions; moreover, damage due to errors in the extension
code is limited, and does not bring down the entire sys-
tem. As a result of this, our infrastructure can be used to
develop extensions that accomplish a variety of security-
related tasks such as custom auditing and logging, fine-
grained access control, intrusion detection, confinement of
uncooperative and malicious applications. Other applica-
tions such as fault-tolerance or encryption are also possi-
ble, but the performance degradation become significant for
these applications.

Another important distinction of the research presented
in this paper is that we have developed techniques to make
our infrastructure portable across many versions of UNIX.
More importantly, the extension code itself can be easily
ported. Many of these techniques can be applied to in-
kernel implementations of extension infrastructures as well.

We presented a comprehensive analysis of the perfor-
mance impact due to user-level interception of system calls.
The overheads are moderate in the worst case, and almost
imperceptible under typical conditions. From a perfor-
mance point of view, we believe that our results establish
the practicality of user-level monitoring of system calls as a
way to improve system security.

Our performance analysis, as well as the discussion in
Section 7, indicate that the approach is well-suited for appli-
cations such as intrusion detection, access control and con-
finement of applications. Moreover, due to the limitations
in OS-provided mechanisms for user-level interception of
system calls, these techniques are currently better suited for
confining uncooperative applications than malicious ones.
It is also less suited for applications such as transparent data

encryption or file replication that require extensive accesses
to the memory of the monitored process.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A.
Valdes, Next-generation Intrusion Detection Expert System
(NIDES): A Summary, SRI-CSL-95-07, SRI International,
1995.

A. Berman, V. Bourassa and E. Selberg, TRON: Process-
specific file protection for the UNIX operating system,
USENIX Winter Technical Conference, 1995.

M. Bishop, M. Dilger , Checking for Race Conditions in File
Access. Computing Systems 9(2), 1996, pp. 131-152.

T. Bowen et al, Operating System Support for Application-
Specific Security, Personal communication, 1999.

W.R. Cheswick, An evening with berferd, in which a cracker
is lured, endured and studied, Winter USENIX Conference,
1992.

Fred Cohen and Associates, The Deception Toolkit Home
Page, http://www.all.net/dtk/dtk.html.

D. Engler, M. Kaashoek and Jr J. O’Toole, Exokernel: An
Operating System Architecture for Application-Level Re-
source Management, 15th ACM Symposium on Operating
Systems Principles, December 1995.

G. Fernandez and L. Allen, Extending the UNIX protection
model with access control lists, USENIX Summer Confer-
ence, 1988.

T. Fraser, L. Badger, M. Feldman Hardening, COTS soft-
ware with Generic Software Wrappers, Symposium on Se-
curity and Privacy, 1999.

S. Forrest, S. Hofmeyr and A. Somayaji, Computer Im-
munology, Comm. of ACM 40(10), 1997.

D. Ghormley, D. Petrou, S. Rodrigues, and T. Anderson,
SLIC: An Extensibility System for Commodity Operating
Systems, USENIX Annual Technical Conference, 1998.

A K. Ghosh, A. Schwartzbard and M. Schatz, Learning Pro-
gram Behavior Profiles for Intrusion Detection, 1st USENIX
Workshop on Intrusion Detection and Network Monitoring,
1999.

L. Goldberg, D. Wagner, R. Thomas, and E. Brewer, A
Secure Environment for Untrusted Helper Applications,
USENIX Security Symposium, 1996.

K. Ilgun, R. Kemmerer, and P. Porras, State Transition Anal-
ysis: A Rule-Based Intrusion Detection Approach, IEEE
Transactions on Software Engineering, March 1995.

16

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

M. Jones, Interposition Agents: Transparently Interposing
User Code at the System Interface, 14th ACM Symposium
on Operating Systems Principles, December 1993

E. Krell and B. Krishnamurthy, COLA: Customized over-
laying, USENIX Winter Conference, January 1992.

C.Ko, M. Ruschitzka and K. Levitt, Execution Monitoring
of Security-Critical Programs in Distributed Systems: A
Specification-Based Approach, IEEE Symposium on Secu-
rity and Privacy, 1997.

S. Kumar and E. Spafford, A Pattern-Matching Model for
Intrusion Detection, Nat’l Computer Security Conference,
1994.

N. Lai and T. Gray, Strengthening discretionary access con-
trols to inhibit Trojan horses and computer viruses, USENIX
Summer Conference, 1988.

T. Mitchem, R. Lu, R. O’Brien, Using Kernel Hypervisors
to Secure Applications, Annual Computer Security Applica-
tion Conference, December 1997.

T. Lunt et al, A Real-Time Intrusion Detection Expert Sys-
tem (IDES) - Final Report, SRI-CSL-92-05, SRI Interna-
tional, 1992.

P. Porras and R. Kemmerer, Penetration State Transition
Analysis: A Rule based Intrusion Detection Approach,
Eighth Annual Computer Security Applications Conference,
1992.

M. Russinovich and Z. Segall, Fault-Tolerance for Off-The-
Shelf Applications and Hardware, Proceedings of the 25th
International symposium on Fault-Tolerant computing, 1995

R. Sekar, Y. Guang, T. Shanbhag and S. Verma, A High-
Performance Network Intrusion Detection System, ACM
Computer and Communication Security Conference, 1999.

R. Sekar and P.Uppuluri, Synthesizing Fast Intrusion Pre-
vention/Detection Systems from High-Level Specifications,
To appear in USENIX Security Symposium, 1999.

R. Sekar, T. Bowen and M. Segal, On Preventing Intrusions
by Process Behavior Monitoring, USENIX Intrusion Detec-
tion Workshop, 1999.

R. Wahbe, S. Lucco, T. Anderson and S. Graham, Efficient
Software-Based Fault Isolation, 14th ACM Symposium on
Operating Systems Principles, December 1993.

Confining Root Programs with Domain Type Enforcement
(DTE), K. Walker, D. Sterne, L. Badger, M. Petkac, D. Sher-
mann and K. Ostendorp, USENIX UNIX Security Sympo-
sium, July 1996.

