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Abstract

Over the past few years, injection vulnerabilities have
become the primary target for remote exploits. SQL in-
jection, command injection, and cross-site scripting are
some of the popular attacks that exploit these vulnerabili-
ties. Taint-tracking has emerged as one of the most promis-
ing approaches for defending against these exploits, as it
supports accurate detection (and prevention) of popular in-
jection attacks. However, practical deployment of taint-
tracking defenses has been hampered by a number of fac-
tors, including: (a) high performance overheads (often over
100%), (b) the need for deep instrumentation, which has
the potential to impact application robustness and stabil-
ity, and (c) specificity to the language in which an appli-
cation is written. In order to overcome these limitations,
we present a new technique in this paper called taint infer-
ence. This technique does not require any source-code or
binary instrumentation of the application to be protected;
instead, it operates by intercepting requests and responses
from this application. For most web applications, this inter-
ception may be achieved using network layer interposition
or library interposition. We then develop a class of policies
called syntax- and taint-aware policies that can accurately
detect and/or block most injection attacks. An experimental
evaluation shows that our techniques are effective in detect-
ing a broad range of attacks on applications written in mul-
tiple languages (including PHP, Java and C), and impose
low performance overheads (below 5%).

1 Introduction

The past few years have witnessed a significant shift in
terms of software vulnerabilities: while buffer overflows in
C/C++ programs were dominant earlier, CVE reports indi-
cate that the vast majority of today’s vulnerabilities are in
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Figure 1. CVE vulnerabilities over 2006-07.

web applications. So-called injection vulnerabilities dom-
inate, including SQL injection, command injection, path
traversals, cross-site scripting (XSS), and so on. As shown
in Figure 1, more than half the CVE reports in 2006-071

correspond to these injection vulnerabilities. If we omit the
“other” category, which includes very general vulnerability
categories such as configuration and design errors, and fo-
cus on well-defined vulnerabilities, about 85% of these are
injection vulnerabilities2. The techniques developed in this
paper target this large fraction of current software vulnera-
bilities.

Figure 2 illustrates the general context for injection at-
tacks. The attack target (henceforth called a target appli-
cation, or simply as “application”) is a program that ac-
cepts requests (inputs) from an untrusted source. It car-
ries out these requests using operations (henceforth called
“sensitive operations” or “outgoing requests”) on back-end
“resources” such as databases, back-end servers, files, and
other applications (including command interpreters) run-
ning on the target machine. Finally, it outputs a response
back to the client. The target application decides which sen-
sitive operations to make, as well as the parameters to these
operations.

1Specifically, the chart captures CVE candidates and vulnerabilities
from January 2006 to July 2007.

2We are including format string vulnerabilities among injection vulner-
abilities but not buffer overflows.



Figure 2. SquirrelMail Command Injection.

To ensure that untrusted users cannot exert undue control
over these decisions, the target application should incorpo-
rate input validation checks on untrusted inputs. However,
due to software bugs, these checks may be incomplete, or
may be missed on some program paths between the input
and output operations. This leads to vulnerabilities that al-
low an attacker to modify the output operations by “inject-
ing” malicious data at the input. The left-hand side of Fig-
ure 2 shows the key statements responsible for a command
injection vulnerability in version 1.4.0 of SquirrelMail (a
popular web application for email access) with GPG plug-
in version 1.1. (These statements are written in the PHP
language, and have been abstracted to improve readability.)
The right-hand side of the figure shows the input provided
by the attacker, and the result of executing the statements on
this input. In particular, SquirrelMail uses the program gpg

to encrypt email body. The gpg program needs to access
the public key of the recipient, so the recipient name should
be provided as a command-line argument. SquirrelMail re-
trieves the name of the recipient from the “to” field on the
email composition form, and constructs a shell command to
launch gpg. By providing an unexpected value in the “to”
field, the attacker is able to execute arbitrary commands on
the target machine. The ability to carry out an injection at-
tack hinges on these questions:

1. Is the attacker able to exert control over a sensitive
operation performed by an application?

2. Is this degree of control intended by the programmer
(or the administrator) of the target application?

Fine-grained taint-tracking has been proposed as an effec-
tive technique for answering the first question. It involves
marking untrusted inputs as “tainted,” and as the program
uses this data, copying the taint labels together with data
values. Taint is tracked at fine granularity, i.e., each byte

of data has its own taint bit. As a result, we can determine
whether an individual byte within a security-sensitive ar-
gument is derived from attacker-furnished data, and hence
can be “attacker-controlled.” In Figure 2, tainted data bytes
are shown using red color and in italics. A number of re-
searchers have developed techniques for fine-grained taint-
tracking. Some of these techniques rely on processor-
support for taint-tracking [27, 5], while others rely on auto-
mated program transformations on source code [28, 13, 10]
or binary code [16, 22, 23].

To answer the second question, we need policies to cap-
ture the degree of control that is intended. For instance, in
Figure 2, the SquirrelMail developers intended that the un-
trusted user be able to control the values of some command-
line arguments to gpg, but not the introduction of shell
metacharacters (such as semicolons) or additional shell
commands. Attacks such as command injection, which pro-
vide the ability to introduce “commands” rather than “data,”
can be detected using very general policies that are inde-
pendent of the web application [4, 21, 26, 28, 10, 25]. For
attacks that involve injection of data, (e.g., use of unin-
tended data values in SQL queries, path traversals, etc.)
application-specific policies are usually needed.

Drawbacks of Taint-Tracking Techniques. Since taint-
based techniques were introduced, they have become the
de-facto standard for detecting injection attacks. They
have been shown to be very effective and accurate, pro-
viding essentially zero false positives and false negatives
[10, 28, 21, 17]. However, taint-based techniques suffer
from one of more drawbacks that make them difficult to use
on production systems:

• Intrusive instrumentation. Taint-tracking requires a
fine-grained transformation of the target application.
Every statement in the application needs to be trans-
formed to introduce additional statements that propa-
gate taint. Such instrumentation can affect the stability
and robustness of the target application, making ad-
ministrators reluctant to use these techniques on pro-
duction systems.

• High performance overheads. Taint-tracking tech-
niques, especially those operating on C [28, 13] or
binary code [16, 22, 23], have high overheads, often
slowing down programs by a factor of two or more.

• Language dependence. Source-code based techniques
[21, 17, 10, 28] are language-specific, and need to
be redesigned and reimplemented for each language.
Even for binary-based techniques, it is not straight-
forward to apply them across all languages — for in-
stance, applying a machine-code based taint-tracking
to Java requires the JVM to be taint-tracked, which can



pose challenges in terms of false positives and false
negatives. As a result, previous techniques have either
been applicable to Java [10, 25] or to C/C++/compiled
binaries, but not both.

Our Approach. In this paper, we overcome the above
drawbacks by developing a new, low-overhead, non-
intrusive and language-independent approach for detect-
ing injection attacks. This approach features:

• an efficient, black-box taint-inference technique, and

• a flexible and powerful policy framework called
syntax- and taint-aware policies.

Our approach infers taint by observing data at the input and
output interfaces shown in Figure 2. These observations
could be made on the network in most cases, but our imple-
mentation relies primarily on library interposition. Taint is
inferred if the data at the output interface is obtained from
the data at the input interface using predefined “transforma-
tions.” We point out that web applications frequently trans-
form their inputs, e.g., to decode form data and parameters,
remove white space, convert upper-case characters to lower-
case, etc. Our technique is designed to accommodate such
transformations.

Inferring taint from input/output observations may ap-
pear to be a hard problem, but we have been able to exploit
the characteristics of web applications to make this prob-
lem tractable. Incoming requests to web applications use
the HTTP protocol, with standardized ways of encoding pa-
rameter names and values. Web applications typically re-
trieve these parameter values, apply simple sanitization or
normalization operations on them, and finally use their val-
ues within an outgoing request sent to a back-end system.
As a result, data flows can be identified by comparing input
parameter values against (all possible) substrings of outgo-
ing requests. Our technique relies on approximate (rather
than exact) string match so as to be able to identify taint in
the presence of simple sanitization or normalization opera-
tions used by a web application.

As observed by previous works [17, 21, 9, 26, 28], SQL
injection attacks are characterized by the fact that tainted
data modifies the lexical and/or syntactic structure of an out-
going SQL query. Other attacks, such as cross-site scripting
(XSS), may not change the output structure, but are charac-
terized by certain sensitive components (e.g., a script name
or a script body) becoming tainted. Finally, format string
and path traversal attacks are characterized by the fact that
tainted parameters have impermissible values. In order to
detect all these attacks within a uniform framework, we
have developed a class of policies that we call as syntax-
and taint-aware policies. Our policy framework is able
to support different languages at the output interface, such

as shell, SQL and HTML. Equally important, variations
in these languages are handled without having to rewrite
code, e.g., our implementation supports variations in SQL
across different servers, as well as variations among com-
mon shell-scripting languages.

2 Overview of Approach

Figure 3 illustrates the architecture of our system. It
“hooks” into existing web server/web application architec-
tures using network-layer or library interposition in order
to observe incoming and outgoing requests. These “events”
are captured by an event collector that feeds into a syntax
analyzer, which in turn feeds into the taint inference and
attack detection components.

The event collector is responsible for intercepting incom-
ing as well as outgoing requests. On the input side, our
system takes advantage of the plug-in architecture provided
by web servers such as Apache and IIS. Specifically, it is
possible to register plug-ins that get invoked at key points
during the processing of every HTTP request. This plug-in
can then examine the data associated with the request, as
well as the response. The event collector uses this frame-
work to keep track of “sessions,” which are used to limit
the scope over which taint inference algorithms are applied.
Each session begins when the web server receives a request,
and ends when a response is sent back. Whenever the web
server invokes the plug-in, it provides information that iden-
tifies the session. When intercepting library functions, the
event collector uses information such as the thread identifier
to keep track of sessions.

The event interceptor incorporates a pluggable architec-
ture for syntax analysis. In particular, each intercepted op-
eration can be associated with a syntax analyzer plug-in.
We have currently implemented six plug-ins: two on the in-
put side (for HTTP and XML RPC requests), and four on
the output side (HTML, SQL, shell-scripts, and HTTP re-
sponses).

The primary goal of syntax analyzers on the input side is
to decompose the input into multiple components in such a
way as to simplify taint inference. Our syntax analyzer for
HTTP performs all the normalization and decoding opera-
tions that are necessary on the request, and parses its con-
tents into an URI, form fields, cookies, HTTP header fields,
etc. The XML RPC parser carries out a similar function,
parsing the request to extract RPC parameters. All this in-
formation is captured uniformly as 〈name, value〉 pairs so
as to simplify the design of the rest of the components. Fur-
ther details about event collection and syntax analysis are
provided in Section 3.

Our taint inference algorithm is best understood as op-
erating on a single pair of data items at a time, and identi-
fying whether there is a flow of information from the first



Figure 3. System Architecture.

item to the second. Specifically, given a name-value pair
(N, I) from the input syntax analyzer and an output O, the
goal of taint inference is to determine if any substring of O
contains data from I . In principle, different taint inference
algorithms could be applied for different types of data, but
in practice, we rely on a single inference algorithm that is
motivated by the way most web applications operate: they
retrieve cookies and form fields from an input request, and
use them (after possibly some simple sanitizations and/or
edits) to construct an outgoing request. Thus, the value I
would likely appear within the outgoing request O, possi-
bly after some slight modifications. Hence our technique
infers a taint on a substring o of O if there is an approxi-
mate string match between I and o, or equivalently, if the
edit-distance between I and o is less than a given thresh-
old. The taint-inference algorithm is further described in
Section 4.

The goal of output syntax analyzers is to provide support
for syntax-aware policies. Our syntax analyzers implement
“rough parsers3” that recognize key elements of the syntax
of the language in question, but are not meant to be full
parsers. We rely on rough parsing for several reasons. First,
implementing full parsers can be a significant amount of ef-
fort for most languages. Second, a rough parser can accom-
modate variations in the language across different vendor
implementations of the same language, for example, vari-
ations in SQL syntax across MySQL, Postgres, etc. Simi-
larly, a rough parser can be written that recognizes syntactic
components that remain the same across various flavors of
shells4. The syntax analyzers must also be robust in the face
of syntax errors, as they are relatively common in some lan-
guages, e.g., HTML. We have designed our parsers with an
eye toward error-recovery so as to make them more robust
in the face of syntax errors. (This task is also simplified by

3An exception is the HTTP parser, where we have relied on readily
available parsers to accurately parse HTTP requests.

4Actually, in the case of shell languages, variable substitution, evalu-
ation and parsing are intertwined, so it is not possible to construct a full
parser without also implementing a shell interpreter.

our decision to rely on rough rather than full parsing.)
An output syntax analyzer constructs an abstract syntax

tree (AST), which is a data-structure that is common to all
output languages. As described in Section 5, syntax and
taint-aware policies are applied against this AST. If there is
a policy violation, the output request is blocked by the event
interceptor and an error code returned to the caller.

Implementation, optimization and evaluation of our
techniques are described in Sections 6 and 7, followed by
related work in Section 8 and concluding remarks in Sec-
tion 9.

3 Event Collection & Syntax Analysis

Our event interceptor for HTTP requests and responses
is based on ModSecurity [3], which is a open-source web
application firewall. ModSecurity operates as an Apache
module, and uses the Apache plug-in infrastructure to in-
tercept every request received by the web server and the
response sent back. It can then apply user-specified regular-
expression based filters against HTTP requests, cookies,
parameters, responses, etc. In order to do this, ModSecu-
rity incorporates code for handling various HTTP requests
(GET, PUT, POST, etc.), handling multi-part requests, ex-
tracting form parameters and cookies, and so on. In addi-
tion, in order to ensure accurate matching against filtering
rules, ModSecurity handles various encodings that are com-
monly used with HTTP (e.g., base64 encoding), and ensures
that all elements of HTTP request and response are appro-
priately normalized. By relying on ModSecurity to handle
these tasks, which can be complex and error-prune, we have
been able to build a robust implementation of event inter-
ception for HTTP requests and responses.5

5Note that weaknesses in parsing, decoding and normalization HTTP
requests and responses can be exploited by an attacker to mount evasion
attacks to get past our defenses. Such evasion attacks are a significant
threat in the context of HTTP requests, which are entirely under the control
of an attacker. By relying on ModSecurity, which has been developed
(and tested over many years) with an eye towards evasive techniques, our



The input event interceptor extracts various HTTP
header fields, URL name, parameters, cookies, etc. It then
makes them available to the rest of our system in a stan-
dardized format, namely, a pair of strings 〈name, value〉.
In addition, for complex data that need additional parsing,
it can invoke additional parser plug-ins. Currently, we do
this primarily for extracting parameters from XML RPC re-
quests.

On the output side, we have currently implemented
parsers for SQL, shell-scripts and HTML. Both SQL and
shell are “command languages” and hence have some com-
monality, thus leading us to employ similar approaches for
implementing parsers for the two languages. Our imple-
mentation uses standard parser generator tools Flex and Bi-
son, and required about one week for initial implementation
and testing. Our SQL and shell-scripts parsers are quite ac-
curate in terms of recognizing the lexical structure of these
languages — we chose to do this because (a) the lexical
structure of these languages is significantly simpler (and
much less variable across language variants) than the syn-
tactic structure, so accurate lexical analysis is feasible with
modest efforts, and (b) injection attacks typically involve
changes to the lexical structure (due to the introduction of
characters such as quotes, spaces or comment characters),
and hence inaccuracies in lexical analysis can lead to false
positives and false negatives.

As mentioned before, there is a trade-off between com-
pleteness of the parser for a language and other factors such
as implementation effort, generality, robustness and perfor-
mance of the parser. There may be several ways to balance
these conflicting concerns. Here, we describe some of the
specific choices made in our implementation. Our shell-
script parser is capable of parsing nested structures such as
if-then-else, loops, parenthesized expressions, and so on,
but does not know the interpretation of most operators, or
information such as their precedence. Instead, it treats a
nested structure as a sequence of elements. At the highest
level, the parser assumes that shell commands will consist
of a sequence of statements that are separated by characters
such as semicolons, newlines, ampersands, pipe characters,
etc. The first word in a statement is recognized as a com-
mand name, and the others as parameters. The resulting
parser is capable of parsing multiple shell languages, and
has been tested on several bash and C-shell scripts that con-
tain tens of thousands of lines of code.

A similar approach is used in our SQL parser. It recog-
nizes keywords such as select and union, as well as opera-
tors, comments, literals, numbers, etc. It can also recognize
nested structures such as expressions within nested paren-
theses. It does not currently incorporate knowledge about
specifics of each operator or keyword, such as the number
of required operands or operator precedence. (However, un-

implementation reduces the likelihood of such attacks.

like shell languages, this knowledge could be incorporated
into our SQL parser with modest additional efforts.) The re-
sulting parser has been tested against a large number (many
thousands) of SQL queries generated by several web appli-
cations.

HTML parsing is simplified by the fact that it does not
use any infix operators. The goal of the parser is to iden-
tify tag names and parameters so that they may be matched
against policies for attack detection; the parser is otherwise
unconcerned with the significance of tags. The main com-
plexity in the HTML parser arises from the fact that HTML
frequently contains syntactic errors, e.g., missing closing
tags6. A related complication is that closing tags are op-
tional in some cases. To cope with both complications, our
parser uses a stack to keep track of currently open tags.
When a closing tag does not match the open tag at the stack
top, it can skip the top few tags to find a matching tag fur-
ther down. The parser pretends as if these missing close
tags were present, so as to produce a valid parse. But if the
matching open tag is not found among the top few, then the
closing tag is considered an error, and is discarded. When
the end-of-file is encountered, the parser pretends that clos-
ing tags corresponding to all open tags on the stack have
been seen, thus producing a valid parse tree. The result-
ing parser has been tested on thousands of web pages. Es-
sentially the same parser was used for parsing XML in the
context of XML/RPC.

The output of the parser is an abstract syntax tree (AST).
The AST consists of nodes that are linked to substrings of
the parsed text. Each node is annotated with a tag that
indicates the type of the node, such as a command name,
parameter name, parameter value, command separator, etc.
Additional details about the AST structure are provided in
Section 5.

Our design choice to implement rough parsers led to sig-
nificant reductions in implementation efforts: the actual im-
plementation of all of the above-mentioned parsers took just
over two weeks of a single developer’s time.

4 Taint Inference

Our taint inference algorithm is based on the following
observations about many web applications:

• Web applications perform sanitization operations on
their input parameters. These operations involve dele-
tion (e.g., white-space removal), insertion (e.g., es-

6While errors are possible in SQL and shell-commands, they usually
occur in the context of attacks. This is because syntax errors in web-
application generated SQL and shell commands lead to application fail-
ures, and hence are promptly corrected. In contrast, many HTML errors
go unnoticed because browsers typically employ robust error-handling and
recovery, and can often cope with many syntax errors without visibly al-
tering outputs.



caping special characters or introducing quotes), or
substitution (e.g., replacing lower-case characters with
upper-case and replacing spaces with underscore).
However, a majority of characters are usually left un-
touched by sanitization.

• A web application assembles an outgoing request from
input parameters. Some parts of these requests are
statically specified in the web application code, while
other parts are derived from inputs.

The first observation suggests that taint inference should
be based on approximate string-matching rather than ex-
act string matching. The second observation suggests that
it should be based on finding substrings rather than com-
plete matches. To illustrate these choices, consider the
SquirrelMail command injection example again. The vul-
nerable URL is /squirrelmail-1.4.0/plugins/gpg/
gpg encrypt.php. In the exploit we studied, there were
about dozen parameters, all of which were parsed and ex-
tracted. The one that is of interest is the “send to” parame-
ter, which had the value

alice, bob; touch /tmp/GotYou

Based on these input values, SquirrelMail generated the fol-
lowing shell-command:

echo ’· · ·’ | /usr/bin/gpg · · · -r

alice@ -r bob;touch /tmp/GotYou@ 2>&1

Some parts of the command that are irrelevant for the at-
tack have been replaced with “· · ·”. In addition, charac-
ters copied from the send to parameter have been high-
lighted in italics. Note that the input text has gone through
a few changes before use: in particular, the recipient list
has been separated into its component names, and each of
these names prefixed by a “-r” and postfixed with an “@”
symbol. As a result, an exact substring matching algorithm
will not identify that the send to parameter appears in the
shell-command, but an approximate substring matching al-
gorithm can detect this with a high degree of confidence.

4.1 Taint Inference and Approximate Substring
Matching

We start by recalling the notion of edit distance on
strings. Edit distance is given by three cost functions D,
I , and S. D(c) denotes the cost of deleting the character
c, I(c) denotes the cost of inserting c, and S(c, d) denotes
the cost of substituting a character c by another character d.
The following conditions apply for all characters c and d:

• I(c) ≥ 0 and D(c) ≥ 0

• S(c, d) ≤ D(c) + I(d)

Let {e1, ..., ek} be a sequence of edit operations (insertion,
deletion or substitution) that yield a string t from another
string s. The cost of this sequence is defined to be the sum
of costs of the individual edit operations. The weighted edit
distance ED(s, t) is defined to be the lowest cost among
all edit sequences that transform s into t. Next, we define
normalized weighted substring edit distance between s and
t, which, for simplicity, we refer to as taint distance (TD).
Let D(s) denote the cost of deleting all characters in s:

TD(s, t) = min
u a substring of t

ED(s, u)/D(s)

Note that TD(s, ε) = 1.0, where ε denotes the empty string.

Definition 1 (Taint Inference Criteria) Given an input s
and output t and a threshold 0 ≤ d ≤ 1, taint is inferred if
TD(s, t) ≤ d.

The problem of selecting thresholds is discussed in Sec-
tion 7.3.

Edit distance can be computed using a dynamic pro-
gramming technique in O(nm) time [14, 7] and using
O(nm) storage, where n = |s| and m = |t| represent
the lengths of the strings involved in the computation. Be-
low, we review this dynamic programming algorithm. Let
s = s1s2 · · · sn and t = t1t2 · · · tm, where si and tj denote
the ith and jth characters in s and t respectively. Let Mk,l

denote the weighted edit distance between s1s2 · · · sk and
t1t2 · · · tl.

Mi,j = min(Mi−1,j−1 + S(si, tj),

Mi−1,j +D(si),

Mi,j−1 + I(tj))

This same recurrence can be used to handle approximate
matching of whole strings as well as substrings — the dif-
ference arises only in the base case for M . To support ap-
proximate substring matching, M0,j is set to zero, which
captures the fact that a match for s may be tried within t
starting from any position j + 1, i.e., there is no “cost”
for skipping the first j characters of t. However, there
is a penalty for skipping characters in s: it corresponds
to the cost of deleting these characters, so Mi,0 is set to
D(s1s2 · · · si). (For matching whole strings (rather than
substrings), M0,j will be set to I(t1t2 · · · tj))

Based on the definition of M above, we can define TD
as follows:

TD(s, t) = min
0<l≤m

Mn,l/D(s)

This equation captures the intuition that we are willing to
skip a prefix of t (since M0,j = 0) as well as a suffix
tl+1tl+2 · · · tm without incurring any penalty. (However,



skipping a prefix or suffix of s will incur a penalty). Thus,
this equation computes the lowest weighted edit distance
between s and a substring of t.

Using standard dynamic programming techniques, the
above recurrence can be computed in O(mn) time using
O(mn) storage — the details can be found in standard al-
gorithm textbooks. (The algorithm remains essentially the
same for computing edit-distance, longest common subse-
quence and global alignment problems.) However, O(mn)
storage can be too large, as some of the outputs (e.g.,
HTML) can be as large as 103 to 105, while inputs are fre-
quently larger than 102. This also means that O(mn) time
complexity will be unacceptable in practice. We therefore
develop optimization techniques below to speed up taint in-
ference.

4.2 Speeding Up Taint Inference

We present a “coarse filtering” algorithm that, in O(m)
time (assuming n < m), identifies all possible positions
where the slower (edit-distance) algorithm can succeed.
The slower algorithm is then invoked only at these posi-
tions. Our coarse filtering algorithm is selective enough that
in practice, more time is spent in the coarse-filtering algo-
rithm than the slower edit-distance algorithm. In effect, this
means that the combined algorithm operates in O(n + m)
in practice.

Coarse-filtering algorithms have been proposed in the
context of biological computing, and implemented in tools
such as BLAST [6] and FASTA [18]. They work well in
the context of genomic data, where they tend to identify the
best matches. However, their heuristic techniques cannot
provide any guarantee that the best matches will always be
found; or more generally, that all matches within a certain
distance threshold will be found. In our application, the in-
ability to provide such guarantees means that some attacks
may be missed. Moreover, given the adversarial context of
our problem, there is a danger than an attacker may be able
to craft inputs that can reliably evade such heuristics. These
factors motivated us to develop new techniques for coarse-
filtering that can indeed provide such guarantees.

The basic idea behind our technique is to map a string s
over an alphabet Σ into a multiset7 of characters occurring
in it. For instance, if Σ = {0, 1, 2}, then a string 021121
will map to the set {0, 1, 1, 1, 2, 2}.8 The multiset represen-
tation ignores the relative ordering of characters in s, while
preserving the number of occurrences of each character.

For the rest of this section we assume n ≤ m. (If this is
not the case, the “sliding window” aspect of the algorithm

7A multiset differs from a set in that elements could occur multiple
times, and the number of occurrences is significant.

8Note that this multiset may also be viewed as a |Σ|-dimensional vector
whose magnitude in the ith dimension is given by the number of times the
character i occurs in s.

becomes unnecessary.) We also make the simplifying as-
sumption that S(c, d) = D(c) + I(d) if c 6= d.9 For any
string u, let U denote the multiset of characters occurring
in it. A natural way to define distances on multisets is as
follows:

ED′(u, v) = D(U − V) + I(V − U)

where “−” stands for the (multi)set difference operator. We
have extended D and I in the natural way to multisets,
i.e., D({x1, . . . , xk}) = D(x1) + · · · + D(xk). Note that
ED(u, v) ≥ ED′(u, v).

Based on the distance metric ED′, our coarse-filtering
technique is as follows. It uses a sliding window of length n
to mark off a substring u of t, and computes ED′(s, u). Let
ti denote the substring of t that begins at position i and has
length n, i.e., ti = titi+1 · · · ti+n−1. From the above defini-
tion of ED′, ED′(s, t1) can be computed in O(n) time. As
the window is slid to the right by one position, note that t2
differs from t1 in that t1 is being removed and tn+1 is being
added. This change can be factored into ED′ computation
easily, and so we can compute ED′(s, t2) from ED′(s, t1)
inO(1) time. Thus,ED′ for all n-length substrings of t can
be computed in O(m) time.

Based on ED′ values, we invoke the more expensive al-
gorithm for computing ED under the following condition.
Let [i, j] define a maximal range such that ED′(s, tk) ≤ d
for i ≤ k ≤ j, where d is the distance threshold (not nor-
malized). Then we invoke ED(s, titi+1 · · · tj+n−1). We
would like to show that this is sufficient to obtain all ap-
proximate substring matches between s and t that are within
a distance of d. However, with ED′ defined as above, this
is not true. Consider the example shown in Figure 4, where
D(c) = I(c) = 1 for all characters, q > r, and cq denotes
that a character c is repeated q times (consecutively) in a
string.

Note that t can be obtained from s by inserting r-
occurrences of b into it. Thus,ED(s, t) = I(br) = r. How-
ever, we show that ED′(s, ti) is twice that of ED(s, t). To
understand why, note that when q > r, every ti’s will con-
tain r occurrences of b. Moreover, it will contain fewer (or
the same) occurrences of a’s and c’s as compared to s. Thus,
to obtain Ti from S, we need to insert r-occurrences of b
into s, and then delete a total of r occurrences of a’s and
c’s. Thus, ED′(ti) = 2r.

The example illustrates that we need an alternative met-
ric in place of ED′ in order to ensure that all potential ti
are identified, and the full dynamic programing algorithm

9Often, there is no better way to define S(c, d) than that of D(c) +
I(d). Exceptions to this occur primarily in the context of upper-case to
lower-case (or one white-space to another white-space) character. These
can be handled by first mapping such “equivalent” characters into the same
character, and then applying the coarse-filtering algorithm — this is what
we do in our implementation.



s t ED(s, t) ti D(S − Ti) I(Ti − S) ED′(s, ti)

aqcq aqbrcq r aq−(i−1)brcq−r+(i−1) r r 2r

Figure 4. Example to illustrate ED and ED′.

applied on it. We therefore define an alternative distance
measure ED#:

ED#(u, v) = min(D(U − V), I(V − U))

The intuitive reason for having to choose min is as follows.
In order to reduce the number of substrings considered by
the filtering technique, we constrain ourselves to n-length
substrings of t. Due to this constraint on length, it may
seem that a large number of insertion or deletion operations
are needed to obtain u from s. However, the closest match
v found by the edit-distance algorithm may be a substring
of u or, u may be a substring of v. In the former case, the
insertion operations may no longer be needed, while in the
latter case, none of the deletion operations may be needed.
Since we cannot predict which of these two case will be
applicable, we need to take the minimum of deletion and
insertion costs as an upper bound for edit-distance.

By replacingED′ withED# we obtain a correct and ef-
ficient coarse-filtering algorithm. In particular, the follow-
ing theorem guarantees that this coarse-filtering technique
will identify every approximate substring match between s
and t that are within the distance threshold d. In addition,
the example in Figure 4 shows that setting a threshold lower
thanED# will miss matches in some cases. Together, these
two results indicate that ED# provides a tight characteri-
zation of all the instances where the dynamic programming
algorithm needs to be tried.

Theorem 2 (Soundness of Filtering Technique) If there
is a substring u = titi+1 · · · tj of t such that
ED(s, u) ≤ d then ED#(s, ti) ≤ d, and ED#(s, tk) ≤ d
for all i < k ≤ j − n+ 1.

Proof: There are two cases to consider: one in which |u| ≥
n and another in which |u| < n. (Recall that n denotes the
length of s.)

Case 1 (|u| < n): Let u begin at the ith position in t. Let
Di denote S − Ti. Note that Di represents an “excess” of
characters in s that are not present in ti. Clearly, all these
characters would need to be deleted from s in any edit se-
quence that yields ti from s. Since u is a substring of ti, all
these deletions (and possibly more) must be included in any
edit sequence that obtains u from s. Thus, the edit distance
between s and u must be greater than the deletion cost of
Di, thus yielding the inequality:

d ≥ ED(s, u) ≥ D(Di) = D(S − T i)

Clearly, D(S − T i) is greater than or equal to ED# =
min(I(T i − S), D(S − T i)). This completes the proof
for Case 1. (Note that the second part of the theorem
ED#(s, tk) ≤ d for all i < k ≤ j − n + 1 holds vacu-
ously in this case, since j − n+ 1 < i.)

Case 2 (|u| ≥ n): For i ≤ k ≤ j − n + 1, let Ik denote
T k−S. Note that Ik represents an “excess” of characters in
tk that are not present in s. These would have to be inserted
into s in order to obtain tk. Moreover, since tk is a substring
of u, obtaining u from s would require the addition of all
these characters, and possibly more. Thus, the edit distance
between s and u must be greater than the insertion cost of
Ik, thus yielding the inequality:

d ≥ ED(s, u) ≥ I(Ik) = I(T k − S)

Clearly, I(T k−S) is greater than or equal toED#(s, tk) =
min(I(T k − S), D(S − T k)). Thus, we have established
the theorem in both cases.

5 Syntax and Taint Aware Policies for Attack
Detection

As described earlier, attacks are detected using policies
that govern the use of tainted data at an output point. It is
well-established now [21, 28, 26, 10] that the most effec-
tive policy frameworks are those that leverage knowledge
about the output language syntax, e.g., SQL syntax in the
case of an output parameter that specifies a query to be sent
to a database. This is because many types of injection at-
tacks (e.g., command injection and SQL injection) mani-
fest structural changes to outgoing requests as a result of
tainted data, as illustrated by an example in Figure 5. The
left-hand side of this figure shows the AST constructed by
our parser for a shell command executed by SquirrelMail
in the absence of attacks, while the right-hand side shows
the AST for the shell command executed when Squirrel-
Mail is subjected to the gpg-based command injection at-
tack. While the specifics regarding the AST structure will
be described later, it is clear that the structure of the AST
is significantly altered by the attack. (In this figure, tainted
nodes are in darker (red) color, while untainted nodes are
shown in lighter (green) color.)

Some of the previous works [28] have suggested a lexi-
cal confinement policy to detect SQL and command injec-
tion attacks. This policy requires that tainted data should



Figure 5. Examples of a benign shell-command (left) and a command involved in an injection attack.

not span multiple tokens. In Figure 5, note that in the be-
nign case, tainted data is confined to a single token that
corresponds to a shell parameter. However, in the attack
case, tainted data overflows beyond this token — in fact,
it creates four additional tokens. A more general criteria
was proposed by Su et al [26], which was called syntactic
confinement. They use an augmented context-free grammar
to specify such policies. In particular, their policy identi-
fies grammar symbols (in the grammar of the output lan-
guage) that can correspond to tainted data. Attacks are de-
tected whenever tainted data is found under parse tree nodes
that don’t correspond to these grammar symbols. Syntac-
tic confinement is more general than lexical confinement:
it can express lexical confinement, but not vice-versa. For
instance, a syntactic confinement policy can allow multi-
ple consecutive shell arguments to be tainted, while still
preventing command names or command separators from
becoming tainted. For most applications, such a policy
would block command injection attacks while providing
more flexibility in terms of how external input is used in
crafting shell command parameters. But this policy cannot
be expressed using lexical confinement.

Benefits of Our Policy Framework. The focus of Su and
Wasserman’s work [26] was to provide a precise character-
ization of SQL injection and related attacks, so their work
does not address many of the practical difficulties in apply-
ing their policy framework on a large scale:

• First, their policies are expressed as a modification to a
context-free grammar for a particular output language.
This means that the policy writer needs to understand
the details of the grammar used in the parser for each
of these output languages. Not only does this make it
difficult to specify policies for a single language, but
it also means that there is no uniform way to specify
policies across different languages such as SQL, vari-
ous flavors of shells, HTML, etc.

• Second, their approach assumes the availability of a
full parser for these languages. (Indeed, the selectivity

of their policies, in specifying which components of an
output can be tainted, relies on being able to syntacti-
cally identify those components using a unique gram-
mar symbol.) As mentioned earlier, development of
complete parsers for each of these languages requires
a lot of effort, and moreover, such parsers will likely
need to be modified in order to support variations in
the language across different platforms and products.

To overcome the above drawbacks, we have developed a
new policy framework that decouples parsers from policy
specifications, while still supporting syntax- and taint-aware
policies. This is accomplished by defining a simple and
generic AST structure as the intermediate representation. In
particular, all parsers map their inputs into this AST struc-
ture, and policies are specified in terms of ASTs. A second
benefit of our policy language is that it can cope with rough
parsers. For instance, our HTML parser does not syntacti-
cally distinguish between many HTML constructs, yet the
policies can apply selectively to some of these constructs
(e.g., scripts) by using regular expressions to match against
the tag names and values.

The practical benefits of our policy framework are illus-
trated by Figure 6, which shows the complete set of policies
used to detect a wide range of attacks across multiple lan-
guages.

Abstract Syntax Tree (AST). The AST is designed to
capture the structure of typical languages used at the output,
including SQL, shell languages, and HTML. It has a tree
structure, where the nodes are tagged with a node type that
(roughly) identifies the corresponding language construct,
and a value that captures the string value associated with
this node. The list of possible node types is meant to be
extensible, and it now includes:

root: Corresponds to the root of the parse tree; represents
the entire output that was parsed.

cmd: Represents a simple command, such as a shell com-
mand, SQL query, or a HTML tag.



Name Policy Comments

TaintedCmd Deny {cmdName|cmdSep}T Command/SQL injection

TaintedScriptName Deny {cmd}[{cmdName="script"}T , . . . ,

{cmdParam}[{paramName="src"}T , {paramVal}T ], . . .] XSS attack

TaintedScriptBody Deny {cmd}[{cmdName="script"}T , . . . , {cmd|grp}T ] XSS attack

SpanNodeSQL AllowSpan NONE SQL injection

SpanNodeShell AllowSpan {cmd}[. . . ,{operator|cmdParam}, {operator|cmdParam}, . . . ] Shell command injection

StraddleTreesSQLShell AllowStraddle NONE Most injection attacks

Figure 6. List of Policies Enforced for Attack Detection

cmdName: Corresponds to the name of a command, typi-
cally the first word within a command.

cmdParam: Corresponds to a command parameter, usu-
ally the words following a command name.

cmdSep: Correspond to constructs that separate com-
mands within a command sequence.

paramName, paramVal: Used to represent parameter
names and values in languages that have named pa-
rameters, e.g., to represent arguments within a HTML
tag.

operator: Represents a unary or binary operator other than
any of the above.

grp: Represents a nesting construct such as open and close
braces or a begin/end pair.

The parser for a language is responsible for mapping the
language constructs into appropriate node types in the AST.
This enables a policy writer to formulate policies in terms of
these node types, instead of having to understand the details
of the underlying grammar which can be much larger. After
taint inference, the AST nodes are marked to indicate if they
are tainted or not.

Figure 5 shows two examples of ASTs constructed by
our shell-language parser. The nodes of the AST in this
figure are annotated with the node type. Values, if present,
are enclosed within double quotes. Finally, tainted nodes
are identified in red color (and italic font).

Policy Language. The policy language is designed to
specify constraints on taintedness of AST components and
associated values. Our policies have the form:

Policy ::= Directive Pattern

Pattern ::= “{”NodeConstraint“}”[TaintConstraint]

“[”ChildConstraints“]”

The Directive component indicates what is to be done
when the Pattern component of the policy matches a given
AST or one of its subtrees. Based on observations made
earlier about injection attacks, we designed three direc-
tives in our policy language. The simplest one is “Deny”
which states that any AST that matches the policy specifi-
cation should be rejected, i.e., the output operation should
be blocked. The other two directives relate to our ob-
servation about lexical and syntactic confinement policies.
By default, our framework enforces both confinement poli-
cies, but this can be disabled for specific languages (e.g.,
HTML) if desired. Exceptions to this default behavior can
be specified using the “AllowSpan” and “AllowStraddle” di-
rectives. In particular, if tainted data spans two leaves in
the AST (thus violating lexical confinement), or two sub-
trees (thus violating syntactic confinement), that would be
considered an attack unless the structure of the AST at that
point matches one of the “AllowSpan”-policies.

The “AllowStraddle” directive is used to permit certain
kinds of overflows that are almost always indicative of at-
tacks. These involve situations where a subtree of the AST
is partially tainted, with tainted data overflowing beyond the
right end of this subtree into the subtree that is to the imme-
diate right. This indicates that tainted data completed some
syntactic construct, and was responsible for the creation of
the syntactic construct that is to the immediate right. In the
context of command languages such as SQL and shell, we
cannot think of any situation where this should be permit-
ted. Thus, although the directive is supported, we did not
specify any exceptions to this policy for SQL and shell lan-
guages.

Within a Pattern, NodeConstraint is a “|”-separated
list of constraints of the form nodetype or nodetype =
RegExpr, where nodetype is one of the node types in
the AST, and RegExpr specifies a regular expression. In
order for NodeConstraint to match an AST node, the
AST node’s type must match one of those specified in
the NodeConstraint, and the associated regular expres-
sion must match the value associated with the AST node.



TaintConstraint, if present, it is simply the letter T ,
which indicates that a matching AST node must be tainted.
Finally, ChildConstraints is a comma-separated list of
constraints on children, each of which has the same struc-
ture as Pattern. While specifying constraints on the chil-
dren, “. . .” may be used to skip zero or more of the children
of the AST node during the match phase.

A pattern may match at multiple nodes within an AST. In
addition, due to the presence of “. . .”, there may be multiple
ways of matching at the same AST node. The semantics of
our policy is that the directive will be applied for each one
of the matches.

Figure 6 shows the actual policies enforced in our sys-
tem. We have not omitted any policies, nor have we ab-
stracted them in any way. These policies were able to detect
all of the attacks described in Section 7. The compactness
and simplicity of the policies illustrates the benefits of our
syntax and taint-aware policy framework. Note that the at-
tack example in Figure 5 violates the TaintedCmd policy,
as well as the SpanNodesSQL and StraddleTreesShellSQL
policies. The benign example does not violate any of the
policies.

6 Pruning Policies: Omitting Taint Inference
and Policy Enforcement for Benign Inputs

This optimization is based on the observation that for a
vast majority of inputs, we can determine, based on their
structure, that they are “benign” and cannot contribute to
attacks. We have developed policies on inputs for this pur-
pose. These policies are called pruning policies because
they have the effect of pruning away the more expensive
taint-inference and output policy enforcement operations.
These pruning policies are designed to be conservative, i.e.,
when they deem an input to be benign, it must never lead
to the violation of one of the policies shown in Figure 6.
When we cannot rule out the possibility that an input could
lead to the violation of these policies, then the taint infer-
ence and syntax and taint-aware policy enforcement will be
performed for such inputs.

Specifically, note that an attack is detected when one
of the policies shown in Figure 6 is matched at an output
point. Since the portions involved in the match need to be
tainted (at least for the policies shown in Figure 6), such a
match can occur only if the input satisfies certain charac-
teristics. Ideally, there would be an automated procedure
that can derive a necessary set of constraints on the input
(but may not be sufficient) for any given output policy to
be satisfied. Rather than exploring the development of such
an automated approach, we took the more expedient step of
manually specifying these input constraints. Development
of such pruning policies poses only a minimal additional
burden on the policy writer when the number of policies is

small, as is the case in our approach. For the policies shown
in Figure 6, only two pruning policies are needed:

• All of the SQL and command injection related poli-
cies require tainted data to span multiple output tokens.
Hence, a suitable pruning policy is that an input con-
tain at least one of the lexical separators in the output
language, such as space, punctuation, etc.

• Cross-site scripting policy requires a tainted “script”
tag. Thus, a pruning policy would check for the pres-
ence of this string in the input. Alternatively, a policy
that checks for the presence of “<” and “>” in the input
may be used.

Since taint inference is based on edit distance, pruning poli-
cies should also rely on edit distance with the same thresh-
olds. (As discussed in Section 7.3, the threshold will auto-
matically be set to zero for very small strings. This means
that an exact match would be used for the shell and com-
mand injection pruning policies.)

Note that the pruning policies are determined by the out-
put operation rather than the input. Thus, different prun-
ing policies may be applied on the same input, depending
on whether it is being compared with an SQL output, shell
output or HTML output.

As shown in the next section, pruning policies are highly
effective in practice. Even though they still involve the use
of edit-distance algorithms, the lengths of input parameters
(as well as the strings they are matched against) are small
and hence lead to performance gains.

7 Evaluation

7.1 Attack Detection

Applications. Figure 7 shows the applications we studied
in our experimental evaluation. These applications spanned
multiple languages (Java, PHP, and C), and multiple plat-
forms (Apache/modPHP, Apache/Tomcat, Microsoft IIS),
and ranged in size from a few to several tens of KLoCs.
Some of these applications are popular web applications
used by millions of users, such as phpBB and SquirrelMail.
Although most applications were tested (for attack detec-
tion) with Apache as well as IIS, our discussion here is fo-
cused on Apache-based tests.

Figure 7 also shows the attacks used in our experiments.
Where possible, we selected attacks on widely-used appli-
cations, since it is likely that obvious security vulnerabilities
in such applications would have been fixed, and hence we
are more likely to detect more complex attacks. However,
the effort involved in installing and recreating these “real-
world” exploits is significant, which limits the number of
attacks that can be used in our evaluation. To mitigate this



Application Langu- Size Environment Attacks Comments Detec- False
age (lines) tion Positives

phpBB 2.0.5 PHP/C 34K IIS, Apache SQL injection CAN-2003-0486 Yes None
SquirrelMail 1.4.0 PHP/C 42K IIS, Apache Shell command injection CAN-2003-0990 Yes None
SquirrelMail 1.2.10 PHP/C 35K IIS, Apache XSS CAN-2002-1341 Yes None
PHP/XMLRPC PHP/C 2K IIS, Apache PHP command injection CAN-2005-1921 Yes None
AMNESIA [8] Java/C 30K Apache/Tomcat SQL injection 21K attacks, 100% 0%
(5 apps) (total) 3.8K legitimate
WebGoat [20] Java Tomcat HTTP response splitting Yes None

Shell command injection Yes None

Figure 7. Applications used in experimental evaluation

problem, we augmented our testing with WebGoat [20], a
J2EE application that was designed to illustrate common
web application vulnerabilities, and the AMNESIA dataset
[8] that has been used for evaluating several previous SQL
injection defenses [9, 10, 25, 26]. It consists of five10 Java
applications that implement a bookstore, an employee di-
rectory, an intranet portal, a classified advertisement ser-
vice, and an event listing service. A suite consisting of sev-
eral tens of thousands of legitimate requests and SQL injec-
tion attacks on these application is provided with the data
set. Some of these attacks were designed to evade detection
techniques, while the others were designed to comprehen-
sively test them.

Policies. For attack detection, we used the policies shown
in Figure 6. Command injection, SQL injection, and
HTTP Response-splitting attacks are detected by Tainted-
Cmd, SpanNodes and StraddleTrees policies, so we could
have done with just one of them. Nevertheless, we listed
them all to illustrate our policy language, and to show that
there are multiple ways to detect these attacks.

The two XSS policies are designed to capture the two
most common forms of XSS attacks. The TaintedScript-
Body policy captures so-called reflected XSS attacks, where
the script body is provided by an attacker using a form pa-
rameter (including those that may be included in a POST
body) or a cookie, and is unwittingly inserted by the server
into its HTML output. The TaintedScriptName captures a
variant of this attack, where the attacker injects the name
of a malicious script rather than its body. Note that the
XSS policies given above can be further improved by care-
fully considering all possible ways of injecting scripts, and
blocking all those avenues. This is a nontrivial task, as there
are many ways of introducing script content into a HTML
page. Nevertheless, our policy framework does provide the
mechanisms needed to for this purpose.

Note that in order to block the PHP command injection
attack, we needed a PHP parser. However, since our shell

10In reality, the dataset contains seven applications, but two of them
could not be successfully installed in our environment. However, these
two applications are qualitatively no different from the other five, so this
omission does not invalidate our results.

parser is quite generic, we were able to reuse it for parsing
PHP in this case.

HTTP response splitting [19] involves injection of addi-
tional HTTP headers, which may in turn enable other at-
tacks such as XSS. A vulnerable HTTP server inserts user-
provided data as the value for a HTTP header without first
checking that this insertion does not end up creating new
headers. Our HTTP parser identifies each HTTP header as
a cmd node, and hence a HTTP response splitting results in
the violation of TaintedCmd, SpanNode and StraddleTrees
policies.

Finally, our policy framework is powerful enough to de-
tect several other types of attacks such as XPath injection
and path traversals, although we did not include them in our
experiments.

Detection Summary. All of the attacks were detected
without generating any false positives. For all attacks
except those involving AMNESIA dataset, we manually
launched the attack and verified the results.

In the case of AMNESIA, the dataset consisted of 36,753
attacks. Of these, 15,337 attacks resulted in errors that were
caught by the application, and hence the application itself
did not issue a malicious query to the database. The re-
maining 21,416 attacks resulted in a malicious query being
sent to the database. Of these, 21,106 were recognized by
our technique as an injection attack and hence blocked. The
remaining 310 were blocked because they caused parse er-
rors in our SQL parser11. In summary, our technique was
able to block every malicious query sent to the database.

7.2 False Negatives

False negatives may arise due to weaknesses in taint in-
ference, input and output parsing, or policies. Our taint
inference techniques can lead to false negatives for appli-
cations that perform complex transformations on inputs. It
should be noted that the most common transformations arise

11In reality, many more attacks result in SQL queries with syntax errors.
Because ours is a “rough parser,” and because of its focus on graceful error
recovery, it is able to construct a meaningful AST in spite of those errors,
and discover policy violations.
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Figure 8. Match confidence.

due to various encodings used in HTTP, but these are al-
ready handled by our approach. Other than these, the most
common transformations performed by web applications re-
sult in small changes to the input, and are hence detected by
our approximate matching technique. However, if a web
application makes extensive use of application-specific en-
codings or input-to-output transformations, taint inference
may lead to significant false negatives and hence should not
be applied to such applications.

False negatives will also occur with second-order injec-
tion attacks where the attackers first inject their malicious
data into persistent storage (e.g., files or databases), and
this data is subsequently retrieved by the server and inserted
into its output. These second order attacks can escape taint-
based techniques unless taint information is also stored and
retrieved from persistent store.

Input and output parsing errors can also lead to false neg-
atives. This can happen in two ways. First, attackers could
send erroneous or very complex inputs, hoping to cause a
failure in the parsing code used by defensive mechanisms.
We mitigate this threat by (a) using rough parsers that parse
a superset of the input language, and (b) focusing on er-
ror recovery in our parsers. The resulting parsers are suffi-
ciently robust that we are able to simply block inputs that
lead to unrecoverable parsing errors in our code.

A second evasion strategy that can lead to false negatives
is to exploit the differences between how data is interpreted
by the defensive mechanisms versus the actual target of the
data. For instance, the well-known MySpace worm (aka
Samy worm) exploited the fact that a syntactically incorrect
HTML fragment, which contained a newline character in
the middle of the string “javascript”, was “corrected” by a
browser that removed the newline. Unless this (odd) behav-
ior was known and incorporated into our HTML parser, this
kind of attack would go undetected. There does not seem
to be a general solution to this class of evasions, except to
move the policy enforcement to the browser [11].

Finally, false negatives may occur due to policy errors or
incompleteness. We remark that the simplicity and gener-
ality of the SpanNodes and StraddleTrees policies make it
difficult to carry out evasion attacks that lead to false nega-
tives. However, with the XSS attack, there are many ways
to inject scripts into web pages. False negatives can occur
when the policy misses out some of these ways. This source
of false negatives is shared generally by policy-based de-
fenses.

Although the potential for false negatives exist, we re-
mark that many web applications only rely on simple input
transformation that are easily handled by our taint inference
approach. As a result, no false negatives were observed
in our experiments, in spite of the fact that the AMNESIA
dataset consists of many thousands of attacks.

7.3 False Positives

False Positives in Taint-Inference. False positives occur
when an input and output are within an edit-distance of d
without any actual information flow taking place, i.e., as a
result of coincidence. To control them, we need to select
d such that the probability of coincidental matches is very
low, e.g., pick d such that P (TD(s, t) < d) is less than a
desired false positive rate, say, 10−7. (Recall that we use s
to denote an input parameter and t to denote an output.)

In order to arrive at such probabilities, we need to make
assumptions regarding the distribution of characters in s and
t. An analysis of typical inputs and outputs of an application
may be used to arrive at these distributions, but the difficulty
with this approach is that it will differ from one application
to another, and moreover, require “training data” for each
application. We therefore made the simplifying assumption
of uniform distribution, and studied match probabilities in
terms of four parameters:

• n, the length of s,



• m, the length of t,

• d, the distance threshold, and

• a, the size of the alphabet.

Analytical derivation of match probabilities is known to be
a hard problem in the context of approximate string match-
ing. Therefore our approach was to generate strings using a
uniform pseudorandom number generator, and experimen-
tally determine the distribution of TD on such strings. Note
that with increases inm, the number of substrings that could
be matched against s increase linearly, so the match proba-
bility can be expected to increase roughly linearly with m.
Thus, in our experiments, we did not vary m, but used a
fixed value of m = n. We used two different alphabet
sizes, a = 40 (which would correspond roughly to appli-
cations that use alphanumeric strings without distinguish-
ing between cases) and a = 70. The results are shown in
Figure 8.

From the type of results shown in Figure 8, we derived
a table of n versus d. This table is used to select a value of
d at runtime based on the value of n and m. For instance,
if n = 8 and m = 8, a distance of d = 0.33 will result
in a false positive rate of about 10−7. If m = 80, then the
false positive rate increases correspondingly, to about 10−6.
(Recall our observation that the probability of coincidental
match increases roughly linearly withm.) We limited d to a
maximum of 0.3, and the false positive rate to a maximum
of 10−4. (This rate of false positive occurs for very short
strings (n = 3), while the rate can be kept to 10−6 or less
when n > 6.)

False Positives in Attack Detection. In order to have a
false positive in attack detection, note that we need to have
a false positive in taint inference, and in addition, a policy
violation needs to occur. Thus, false positives in attack de-
tection can be expected to be significantly less than those of
taint inference.

In our experiments, we did not encounter any false pos-
itives. While the thoroughness of false positive testing on
applications such as phpBB could be questioned, the false

Application # of Response Overhead
requests time

bookstore 605 20.67 1.7%
empldir 660 17.33 3.4%
portal 1080 31.67 5.1%
classifieds 576 18.00 4.3%
events 900 23.10 3.1%
Total 3821 110.77 3.5%

Figure 9. End-to-end Performance Overhead.

positive results on AMNESIA dataset is quite meaningful.
The creators of this dataset crafted a set of about 3.8K legit-
imate queries, many of which were intended to “look like”
attacks. Our technique did not flag an attack on any of these.

7.4 Runtime Overhead

Performance-related experiments were carried out on a
laptop with dual-core 2GHz processor with 2GB memory
running Ubuntu (version 6.10) Linux. Our goal was to
measure the performance overhead introduced by benign re-
quests.

First, we investigated the performance gains obtained as
a result of using our coarse-filtering algorithm described in
Section 4.2. These measurements were carried out across
the applications shown in Figure 7 across several runs that
contained a combination of attacks and benign requests. For
this comparison, the CPU time spent within the taint infer-
ence algorithm was compared, without considering the time
for I/O, parsing, policy enforcement, etc. We observed that

• taint inference was speeded up by a factor of 10 to 20,
with the average of about 14,

• taint inference memory requirements were reduced by
a factor of 50 to 1000, and

• the time spent in the coarse-filtering algorithm far ex-
ceeded the time spent in the edit-distance algorithm.

Next, we investigated the relative contribution of differ-
ent components of our implementation (excluding the time
spent within event interceptors) to the overall performance.
We found that

• about 60% of the time was spent in taint inference al-
gorithms,

• about 20% of the time was spent in the parser, and an-
other 20% in policy checking.

These numbers were obtained using profiling tools. These
results validate the efforts put into improving the perfor-
mance of taint inference.

Overall Performance overhead. Finally, we measured
the total performance overhead introduced by our approach,
after all optimizations (including pruning policies) were
factored in. Our focus in this context was on benign re-
quests, the assumption being that the vast majority of re-
quests received by a protected server would likely be be-
nign, and hence the overhead due to benign requests will
dominate over those of attacks. For this measurement, we
used the AMNESIA dataset because the requests can be
launched from a script. (In contrast, user interaction is re-
quired for other applications, thus making it hard to make



meaningful performance measurements.) All of the policies
shown in Figure 6 were enforced.

Figure 9 shows the results. The “response time” column
shows the total time taken (in seconds) to carry out all of
the requests in the absence of our defenses. (Not even the
event interceptors are in place.) It measures the wall-clock
time for sending all the requests and receiving responses.
The “overhead” column shows the increase in response time
when our defenses are enabled.

These performance numbers reflect the effect of the opti-
mization described in Section 6. This optimization is excep-
tionally effective: when an input parameter does not match
our attack filtering criteria, then it is not processed by taint
inference algorithm. Moreover, output parsing and policy
enforcement are skipped if none of the parameters in a ses-
sion match attack-filtering criteria. As a result, this opti-
mization improves performance by an average factor of 5
for these applications.

8 Related Work

Model-carrying code [24] and Dataflow anomaly detec-
tion [1] developed techniques for discovering information
flows by using runtime comparison of parameter values to
different function calls. The focus of these works was to dis-
cover equality relationships among relatively short strings
(mainly, file names), which is much easier than the taint in-
ference problem described in this paper. Moreover, those
works were concerned with building an automata model of
program behavior, which is quite different from our goals
in this paper of defining policies and detecting injection at-
tacks.

A number of techniques have been developed that rely
on taint-tracking for detecting memory corruption attacks
[27, 5, 16] and script injection attacks [21, 17, 10]. This
prompted much research into efficient techniques for auto-
mated taint-tracking [28, 13, 22, 23]. Nevertheless, taint-
tracking remains quite expensive, at least in the context of C
and binary code, incurring high overheads of 50% or more.
More importantly, it requires extensive instrumentation of
protected application, which may impact its stability, and/or
may need source code access. We have therefore developed
a complementary approach that avoids such instrumenta-
tion.

Several researchers have made the observation that in-
jection attacks are characterized by changes to the struc-
ture of commands. AMNESIA [9] relied on a static anal-
ysis to detect the intended structure of SQL queries. Static
analysis, since it must operate without knowing runtime in-
puts, must make some approximations that decrease its ac-
curacy. Candid [25] therefore uses a dynamic analysis to
discover intended query structure. Recently, this technique
was extended to address XSS attacks [2]. These dynamic

approaches, although different from taint-tracking, never-
theless rely on deep instrumentation of protected applica-
tions, and hence have drawbacks similar to those of taint-
tracking approaches.

Our approach, in many ways, is similar to traditional
intrusion detection techniques. These techniques can op-
erate non-intrusively, based on observations that could be
made without deep instrumentation, or otherwise adversely
affecting the application operation. At the same time, our
approach is able to offer greatly improved accuracy over
intrusion detection techniques, which have historically suf-
fered from high false positive (or in false negative) rates.
Indeed, our approach is able to offer about the same level of
accuracy as taint-tracking and related techniques, but with-
out the need for deep instrumentation.

It may appear that taint-tracking techniques have an ad-
vantage in terms of being able to reason about information
flows in the presence of complex transformations, but this
is arguable. Most practical taint-tracking techniques track
only data dependence, and ignore control-dependence and
implicit flows. This results in missing flows when complex
transformations take place. Moreover, when tainted and un-
tainted data are stored and retrieved from the same aggre-
gate data structure, taint-tracking techniques can introduce a
number of false positives. In contrast, none of these aspects
lead to problems with our approach, but it faces a different
set of problems, such as the application of simple functions
on input data. Thus, in terms of their ability to handle com-
plex transformations, the strengths and weaknesses of the
two approaches complement each other. Moreover, since
web applications do not seem to use many complex trans-
formations (except the standard encodings that are already
handled by our approach), our taint inference approach is
robust enough to reliably detect attacks on them.

The focus of Su et al [26] was on developing a for-
mal characterization SQL injection and related attacks. Our
work improves on theirs by providing a policy framework
that is language-neutral, and moreover, is decoupled from
parser implementations.

The implementation of Su et al [26] does not require ap-
plication instrumentation. However, it relies on modifying
inputs to add “bracketing” characters around each input. It
assumes that these characters would propagate unchanged
to the output, where they can be stripped away. This tech-
nique is fragile and can break many real applications. For
instance, in the case of SquirrelMail and phpBB, a num-
ber of input parameters are not used in SQL queries, so the
technique may have no opportunity to remove the brackets
before the parameter value is used. In other cases, the pa-
rameter may be used in SQL queries as well as for other pur-
poses, e.g., generating a URL, setting a cookie value, gen-
erating a file name, etc. Moreover, applications may make
assumptions about the length of their inputs, or may per-



form computations that depend on their value. Finally, even
if the bracketing approach could be used, it requires man-
ual assistance to identify the set of characters that could be
used for bracketing. In contrast, our approach does not re-
quire any modification of inputs or outputs, and is truly a
black-box technique.

Microsoft has recently incorporated a defense for com-
mon forms of reflected XSS attacks in IE 8 [15]. It shares
some similarities with our approach: it is also based on
comparing inputs and outputs, and it detects attacks when
the HTTP request data matches some of the characteris-
tics of an XSS attack. But there are several differences as
well. Whereas our defense is implemented on the server
side, their defense is more accessible to an end-user since
it resides on the client side. More importantly, the techni-
cal approach for recognizing reflection is quite different in
the two approaches. Whereas we rely on rough parsing and
approximate substring matching, their approach is based on
regular expression matching. Specifically, they match out-
going HTTP requests against regular expressions crafted to
identify those requests that may be involved in XSS attacks.
If there is a match, their approach generates another regular
expression that captures the characteristics of a response (to
this request) that contains an attack. If the response matches
this regular expression, an XSS attack is detected. The reg-
ular expression used to match against requests differs from
that for responses in order to allow for small changes (such
as character removal, insertion or translation) that may oc-
cur on the server. Whereas we rely on approximate string
matching to handle this problem, their approach seems to
rely on the developers to encode possible differences ex-
plicitly in terms of the differences between the regular ex-
pressions for matching requests and responses.

Privacy Oracle [12] is a recently developed black box
approach for discovering information leaks by applications.
Although information leaks are often modeled in terms of
information flows, this is not the approach taken in Privacy
Oracle. Instead, they infer possible flows based on differen-
tial testing, i.e., by observing differences in the application
output when the input is changed. Their approach has some
superficial similarities to our approach in that they make use
of sequence alignment algorithms, which are closely related
to approximate matching. However, in contrast with our ap-
proach where we match inputs with outputs, their approach
applies sequence alignment algorithms to compare different
outputs so as to discover what portions of the output remain
constant and what portions change.

9 Conclusions

In this paper, we presented a new approach for accu-
rate detection of common types of attacks launched on web
applications. Our approach relies on a new technique for

inferring taint propagation by passively observing inputs
and outputs of a protected application. We then presented
a new policy framework that enables policies to be speci-
fied in a language-neutral manner. As compared to previ-
ous works, our approach does not require extensive instru-
mentation of the applications to be protected. It is robust,
and can easily support applications written in many differ-
ent languages (Java/C/C++/PHP), and on many platforms
(Apache/IIS/Tomcat). It is able to detect many types of
command injection attacks, as well as cross-site scripting
within a single framework, and using very few policies. It
introduces significantly lower overheads (typically less than
5%) as compared to previous approaches.
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