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Abstract of the Dissertation

Automatic Synthesis of Instruction Set Semantics and its Applications

by

Niranjan Sudhir Hasabnis

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Binary analysis, translation and instrumentation tools play an important role in software
security. To support binaries for different processors, it is necessary to incorporate the
semantics of every processor’s instruction set into the tool. Unfortunately, the complexity
of modern instruction sets makes the common approach of manual semantics modeling
cumbersome and error-prone. Furthermore, it limits the number of processors as well as
the fraction of the instruction set that is supported.

In this dissertation, we propose novel architecture-neutral techniques for automatically
synthesizing the semantics of instruction sets. Our approach relies on the observation that
modern compilers such as GCC and LLVM already contain detailed knowledge about the
semantics of many instruction sets. We therefore develop two techniques for extracting
this knowledge. Our first technique relies on a learning process: observing examples of
translation between a compiler’s architecture-neutral internal representation and machine
instructions, and inferring the mapping from these examples. We then develop a second
(and complementary) method that develops symbolic execution techniques to extract this
mapping from the code generator source. Unlike previous symbolic execution systems that
specialize in generating a single solution to a set of constraints, our problem requires a
compact representation of all possible solutions. We describe the development of such a
system, based on source-to-source transformation of C-code and a runtime system that is
implemented in C and Prolog with a finite-domain constraint solver (CLP-FD).

To demonstrate the applicability of synthesized instruction-set semantics, we develop
two applications. In the first application, we use synthesized semantics to test correctness
of code generators. Specifically, we develop a new testing approach that generates and
executes test cases based on the derived semantic model for each instruction. We uncovered
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nontrivial bugs in the GCC code generator using this technique. As a second application,
we have used these models to lift binaries for x86, ARM and AVR (used in Arduino and
other microcontroller) architectures to intermediate code, which can then be analyzed or
instrumented in an architecture-independent manner.
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1 INTRODUCTION

Binary analysis, translation, and instrumentation techniques have been phenomenal in solv-
ing a number of important problems in software engineering. Binary translation is the fun-
damental technique in dynamic malware analysis tools that are used by the anti-malware
industry daily. Dynamic malware analysis requires malware execution in a controlled en-
vironment, so that effects of the execution are confined, and they do not spread into the
underlying system. System emulators (such as QEMU [15]) and virtual machines (such
as VMware [93]), which provide such controlled environment use binary translation as
the underlying technology. In the past, binary translators have also been used to solve the
problem of cross-platform portability and rapid deployment of software [22]. Binary in-
strumentation has been a popular technique with a number of important applications such
as program debugging and program analysis. Dynamic binary instrumentation systems
such as Pin [55], Valgrind [67], and DynamoRio [17] are popular among programmers for
debugging and analyzing their programs.

A number of popular software systems that exist in the world today need to deal with the
architecture-level (also called processor-level or low-level) details routinely. Technically,
we can say that these systems need to model the semantics of target architectures that
they want to support. Compilers are a good and well-known example of such systems.
To be precise, many modern compilers support a number of target architectures, and their
backends contain some architecture-specific components such as code generators. Binary
analysis, translation, and instrumentation systems are another example of such software
systems.

Modeling low-level architecture details in software is a very tedious task. Moreover,
this task is made complicated by the fact that modern instruction sets are complex. For in-
stance, Intel’s instruction set manual (v52) [47] consists of around 2000 pages split across
3 volumes. To add to the complexity, new specialized instruction set extensions are pro-
posed each year. To complicate the problem further, the systems described earlier usu-
ally rely on manual modeling of architecture semantics. Specifically, these systems often
target architecture-neutrality — which is one of the desired properties of these systems
— by translating low-level machine instructions from input binaries into higher-level in-
termediate representation (IR) instructions. Working at the IR level makes analysis and
instrumentation architecture-neutral and hence applicable to all supported architectures.
Unfortunately, most of these systems build the assembly-to-IR translators manually. Man-
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ual development of assembly-to-IR translators translate to a number of limitations for these
systems. First, considerable effort is needed to port these systems to new architectures, and
as a result, most of these systems support a limited number of architectures. For instance,
QEMU, a popular system emulator, supports 17 target architectures. Second, most of these
systems do not support many instructions from the recently added instruction set exten-
sions even for popular architectures such as x86. For instance, Valgrind1, one of the most
popular dynamic binary instrumentation tools, still lacks support for several classes of x86
instruction sets such as AVX, FMA4, and SSE4.1, even after being in development for 10
years.

1.1 Overview of Approaches and Dissertation Organization

In this dissertation, we address the problem of modeling the semantics of modern and com-
plex architectures by developing two novel architecture-neutral approaches for automatic

semantics extraction. Our approaches start with the goal of eliminating manual modeling
effort completely. When this objective cannot be achieved, then they answer the question
of how much manual effort can be reduced.

Automatic extraction of instruction set semantics is a very challenging problem given
that the common approach for extraction is to rely on actual hardware. Tendency to rely
on hardware stems from (a) the desire make the models correct and accurate, and (b) the
fact that hardware is the best source of accurate and correct semantic information (Though
hardware manuals may also serve as a good source of correct and accurate information,
generally, it is easier to automate the extraction process with hardware than the manuals.)
Unfortunately, synthesizing instruction semantics using hardware demands execution of
every machine instruction under every possible machine state, which requires one to ex-
plore the huge input space of every target instruction. This challenge has prevented the
development of systems for automatic semantics extraction for complex architectures such
as the x86. Nonetheless, research works have attempted to address this problem by using
manual effort to make traversal of the input space practically feasible. We will talk about
these research efforts in Section 2.

Given that automatic extraction by using hardware is infeasible without manual effort,
in this dissertation, we do not use hardware. Instead, we hypothesize that we can use
modern compilers for such extraction. Modern compilers such as GCC [3] and LLVM [8]

1v3.10.0, 2014
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already contain detailed knowledge about the semantics of many architectures. Specifically,
architecture-set specifications used by the code generators of these compilers contain a
mapping between target assembly instructions and their semantics in IR. These mapping
tables are used by the code generators to translate IR instructions into target assembly
instructions. We hypothesize that the knowledge encoded in compilers can be extracted
automatically and develop a white-box and a black-box approach for the extraction. We
chose compilers for such extraction because they support a number of architectures, and
their extensive testing minimizes the chances of semantic modeling errors in them. For
instance, GCC and LLVM both support more than 40 target architectures — considerably
more than those supported by QEMU. Moreover, being actively developed, these compilers
are tested by large test suites.

One approach to extract instruction-set semantics from code generators is to use their
architecture specifications directly. As we will see in Section 2, the existing approaches for
writing these specifications are such that their direct use is complicated. The problem is
that the compilers encode a lot of architecture-specific knowledge in their source code in
addition to their specifications. Since direct use of specifications is complicated, a feasible
approach would be to use the code generators in their common usage scenario of compiling
source programs. Our black-box approach, called LISC (Section 3), relies on the observa-
tion that, while compiling source programs, modern compilers can output IR-to-assembly
mapping rules used by their code generators. IR instructions in these rules specify the
semantics of the corresponding assembly instructions. LISC learns the instruction-set se-
mantic model encoded in the code generators by referring to their compilation logs.

LISC faces two interesting challenges in using compilation logs for model extraction.
First, modern compilers may not support all of the target assembly instructions. For exam-
ple privileged instructions are generally not supported by the compilers. Moreover, privi-
leged instructions may not be the only instructions that are not supported. Because of this,
models extracted from compilers will be incomplete. Second, even if compilers supported
all of the target assembly instructions, the extraction process would need to ensure that all
of the code generator mapping pairs are covered. It is likely that, for a typical compilation,
a code generator may not refer to all of the target assembly instructions. For instance, GCC
does not use instructions from most of the advanced x86 instruction set extensions unless
a programmer directs otherwise. Both of these coverage challenges need to be addressed,
because the extracted semantic models should contain all of the target assembly instruc-
tions. Unsupported instructions may be covered by using other compilers for extraction,
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but achieving complete coverage of complex software such as code generators has been
one of the challenging problems in software testing. We will address these challenges in
Section 3.

As an alternative to LISC, we develop a white-box approach, called EISSEC, to extract
semantic model through symbolic execution of the code generators. Symbolic execution is
a technique in the software testing domain to improve program coverage. Unfortunately, it
suffers from the “explosion” problem, where the exponentially increasing number of pro-
gram paths make symbolic execution of complex programs infeasible. Recent research
[19, 24, 21] addresses this challenge, but, unfortunately, we have not come across cases
of symbolic execution being applied to complex source programs such as code generators.
In EISSEC, we try to assess how we can scale symbolic execution to code generators. We
believe that the solutions which we propose in EISSEC will make important contributions
towards improving applicability of symbolic execution to complex programs. We will de-
scribe EISSEC in Section 4.

Correctness and completeness are the two desired properties of the models extracted
using LISC and EISSEC. This is because the correct results from the applications built us-
ing these models depend upon the correctness of these models. Completeness, on the other
hand, is a nice-to-have but not necessary property because its absence results in missing
assembly instructions in the models. We develop two approaches to ensure correctness and
completeness of the models. First, we empirically evaluate these properties in Section 3.
Second, we develop an approach, called ArCheck, to check the correctness of extracted
models. ArCheck formalizes the correctness checking problem as the problem of checking
the semantic equivalence of every assembly and its corresponding IR instruction from the
extracted models. Since the semantics of an assembly instruction can only be obtained by
concretely evaluating that instruction (unless we want to manually model the semantics,
which we want to avoid), approaches such as symbolic equivalence checking (a fundamen-
tal approach used in software verification) cannot be used for our purpose. Our semantic
equivalence test thus involves comparison of IR and assembly semantics obtained by their
concrete evaluation. But for concrete evaluation, instead of employing a random testing
approach, ArCheck develops a systematic coverage testing strategy to produce test cases
and to maximize confidence in the correctness of results. Solutions proposed by ArCheck

make two important contributions to the compiler testing problem. First, ArCheck solves
the problem of checking the correctness of code generators (for which, to the best of our
knowledge, no verification work exists). Second, it provides a practical approach that can
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be applied to the code generator of any compiler. We will describe ArCheck in Section 5.
Once the extracted semantic models are checked for correctness, we demonstrate their

applicability to developing assembly-to-IR translators. By building these translators auto-
matically, we demonstrate that these systems can quickly support new architectures as well
as new instructions from already supported architectures.

This dissertation is organized as follows. Section 2 discusses various approaches for
automatic synthesis of instruction-set semantics and compares them with our proposed
approach. Section 2.3.1 provides background on modern compilers relevant to this disser-
tation. Section 3 and Section 4 discuss our approaches for automatic instruction-set se-
mantics extraction. Section 5 discusses our approach to check the correctness of extracted
semantic models and code generators. Section 6 discusses an application of extracted mod-
els in building assembly-to-IR translators. Lastly, Section 7 concludes this dissertation and
discusses future extensions of this work.

1.2 High-Level Overview of Contributions

One of the important contributions of this dissertation is to approach the problem of au-

tomatic instruction-set semantic extraction by developing two novel architecture-neutral

approaches. The solutions proposed in this dissertation have a number of important ap-
plications such as building binary analysis, instrumentation and translation systems, code
generators, and CPU emulators. Furthermore, since these systems are expected to model
the low-level semantics faithfully, the extracted semantic models can be used to test these
systems and check if this expectation is valid.

In addition to developing approaches for automatic extraction of semantics, in this dis-
sertation, we demonstrate two applications of the extracted models. In the first application,
we use the models to check the correctness of compiler code generators. Although compil-
ers are tested extensively, they are known to contain bugs. We observed that code generators
of modern compilers contained semantic modeling bugs. Given the critical role played by
the compilers, it is necessary that such modeling bugs are caught in the development. Our
solution thus contributes to the important problem of testing compilers.

In the second application, we use the extracted models to build assembly-to-IR trans-

lators used by the architecture-neutral binary analysis, translation and instrumentation

systems automatically. A common approach to build assembly-to-IR translators is to build
architecture-neutral translators and drive them using manually-written target descriptions.
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For such systems, automatically extracted semantic models can be used to replace manually-
written architecture specifications. Our solution helps in improving the effectiveness of
these systems by allowing them to target more architectures and also supporting existing
architectures completely.

Although we described the problem of manually-developing assembly-to-IR translators
by using examples of existing systems such as Valgrind and QEMU, this dissertation does
not consider the problem of building a complete end-to-end binary translation, instrumen-
tation and analysis system. It instead demonstrates the applicability of the extracted models
in building the assembly-to-IR translators (which are one of the building blocks of these
systems). Moreover, it is not within the scope of this dissertation to address the limitations
of a specific system (e.g., Valgrind). By translating compiler’s IR to the specific tool’s IR,
one may use the assembly-to-IR translators built using our models to support a specific
system.
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2 OVERVIEW OF APPROACHES FOR AUTOMATIC SYN-
THESIS OF INSTRUCTION SET SEMANTICS

In this section, we will discuss various approaches to extract instruction set semantics mod-
els automatically. We will then discuss limitations of these approaches before moving on to
our approach. But before we discuss these approaches, we need to specify precisely what
is the level of detail that we want in the extracted semantics.

2.1 Level of Abstractions Required In the Extracted Semantics

Semantics of an instruction can be specified and modeled at different levels of abstraction.
Too much detailed semantics may not be desirable to applications which actually expect
slightly abstracted semantics. Thus, it is important to establish the level of details that
we want the extracted semantics to confirm. The desired level of details of the extracted
semantics is actually dictated by the applications which will consume the semantic models
at that level. Thus to establish the level of abstractions, we need to understand the kind
of applications that will be consumers of our extracted models. In this dissertation, we
target applications which work at the level of binaries but which want to target multiple
architectures without much porting efforts. An example of such application could be a
binary analysis framework. Typically, such a framework operates on binaries, but the kind
of analyses performed are mostly architecture-neutral. So such frameworks operate on
architecture-neutral representation of the input binary. Such a representation essentially
makes the framework applicable to binaries from any architecture. Our extracted model
will be used by such a framework to translate input binary into an architecture-neutral
representation. Let us now see what level of detail these applications expect from the
architecture-neutral representation.

Semantics of an assembly instruction can be represented at various levels of detail. For
instance, semantics of addl %eax,%ebx could be described in the following ways:

D1 : add the value of eax to ebx and store the result in ebx, or

D2 : one could simply enumerate possible values of eax and ebx, and could specify the
outcome of the execution of the instruction (treating instruction semantics as a func-
tion between possible input values and output values), or
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D3 : add the value in first input operand with the value in second input operand, and store
the result in the output operand.

In this dissertation, we are interested in representing the semantics at the level of detail
captured in the first option. In fact, that is the level of details that the applications like
binary analysis are interested in. Semantics specified in the second option are too detailed,
and a binary analysis system may not really process such level of details2. The third option,
on the other hand, captures the semantics at a very abstract level, and thus is not desirable
for binary analysis systems either. Various approaches for semantics extraction that we will
describe now extract the semantics at different levels. In addition to this mismatch, they
have some limitations which make them unsuitable for our purposes.

Notations and terms. Before we describe our approaches, we define the notations and
terms which will be used in the rest of the dissertation.

We use notation A to represent an assembly instruction. An assembly instruction is
abstract when the operands of the assembly instruction are abstract. For instance, “add %1,

%2” is an abstract assembly instruction for the x86 add instruction. A concrete assembly
instruction, on the other hand, has concrete operands. For instance, “add %eax, %ebx”
is a concrete x86 add instruction. We use Ac to represent a concrete assembly instruction,
and Aa to represent an abstract assembly instruction. Notation A represents both abstract
and concrete assembly instruction.

We use notation σ to represent the semantics of an instruction. The semantics of
concrete assembly instructions can be defined concretely in terms of the processor state
changes caused by their execution. The semantics of abstract assembly instructions, on the
other hand, cannot be defined concretely. For instance, the semantics of x86 add instruction
as it is given in the Intel manual is shown in Figure 1.

We use notation R to represent a mapping between an assembly instruction A and its
semantics σ . We represent R as R = 〈A, σ〉.

We use notation M to represent semantic model. A semantic model is a collection of
mapping rules between all the assembly instructions for some target architecture and their
semantics. Thus, a semantic model can be formally defined as M = {〈Ai, σ i〉}∀i ∈T ,
where T is a target architecture.

2This is the case because systems which perform binary analysis operate on IR instructions which contain
operators like plus to model semantics of addition. So they do not need to know what is the meaning of
addition.
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Description:
Adds the destination operand (first operand) and the source operand (second
operand) and then stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate a
carry (overflow) in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. In 64-bit mode, the instruction’s default operation size is
32 bits. Using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX a REX prefix in the form of REX.W promotes
operation to 64 bits. See the summary chart at the beginning of this section for
encoding data and limits.

Operation:
DEST← DEST + SRC;

Flags Affected:
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Figure 1: Semantics of x86 add instruction taken from Intel manual

2.2 Possible Approaches

The high-level idea behind these approaches is to rely on authentic sources of instruction
semantics. There exist two sources of such information: manuals supplied by the processor
vendors (e.g., Intel’s instruction set manual [5]), and the CPU itself. So these approaches
rely on either of them, with tendency to prefer CPU over the manuals. Recently, there
have been approaches which rely on “software” form of a CPU. By “software” form of a
CPU, we mean some software which mimics the functionality of an actual CPU (e.g., CPU
emulators). “Software” CPU is used because actual CPU imposes some restriction on its
usage. We will see what these restrictions are, and also other approaches now.
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2.2.1 Extraction from instruction-set manuals

Vendor-supplied instruction-set manuals are one of the authentic sources of information
about instruction semantics. In fact, supplying such information is one of the main purposes
of such manuals. So it is perfectly logical to think of such manuals as a first stop for
the instruction semantics. We saw an example of how these manuals contain instruction
semantics by describing the entry found for addl x86 instruction in Intel manual. Most
manuals contain pseudo code for instruction semantics in addition to English description.
Unfortunately, we believe that extracting semantics from such pseudo code is not a trivial
task. More important issue is that such an approach will not be architecture-neutral as we
need to tailor-made such approach for each and every architecture. Given these limitations,
we decided not to pursue such approach at all.

2.2.2 Extraction from the hardware

Given that semantics extraction approach based on CPU can be systematically applied to
any other CPU, this is generally a preferred approach over use of instruction-set manu-
als. Such approaches rely on the observation that the hardware CPU can be treated as a
hardware oracle to obtain instruction semantics. Intuitively, to obtain instruction semantics
from the CPU, one can simply execute that instruction on the CPU, and compare the pre-
and post-state of the CPU to learn the semantics. Although, this approach is simple and
intuitive, unfortunately, it is infeasible. Specifically, in order to learn the semantics of some
instruction completely, one needs to execute that instruction with all possible input values
(if not under various possible operand combinations additionally) and under various pos-
sible pre-states of the CPU. Moreover, this option captures the semantics at the level D2,
which makes it unsuitable for the applications that we are interested in.

To give an idea of the infeasibility, let us consider an example of x86 add instruction.
x86 add instruction takes two operands, one of which being a register or memory location,
and the other being either a register, a memory location, or an immediate. The total number
of possible operand combinations and their values for add are (8+232)∗(6+232+232) —
8 for the number general-purpose registers on x86, 232 for the number of memory locations
that can appear in the instruction (considering 4GB virtual address space), and 232 for the
total number of 32-bit immediates that can appear. The idea here is that if we execute add

instruction on x86 processor with these many operand combinations in all possible states
of the processor, then we can essentially learn the complete semantics of add instruction.
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It is easy to see that the number of operand combinations needed for exhaustive enu-
meration approach are far too many to be feasible in practice.

2.2.3 Extraction by exhaustive testing of CPU

The drawback of exhaustive enumeration is that it needs to cover the huge space of possible
inputs of an architecture instruction in order to obtain its semantics. A natural question to
ask then is: can we reduce this space somehow? Some research efforts such as [41] try
to answer this question by relying on manual efforts. Specifically, they manually define
instruction semantics templates in such a way that they are (1) generic enough that few such
templates suffice for the whole instruction set, (2) but at the same time specific enough that
they reduce the input space considerably. Work described in [41] uses 6 such templates to
model semantics of 580 x86 instructions (8-bit, 16-bit and 32-bit). For this work, semantics
of an instruction can be thought of as a function which maps the inputs of the instruction
to its outputs. Instead of searching the function implemented by an architecture instruction
in the huge space of possible functions, they restrict their search to the manually-defined
function templates. The contribution of this work is an efficient approach which makes the
function synthesis from I/O samples of 32-bit instructions possible. In order to discriminate
multiple functions which may satisfy a subset of all possible I/O samples of an instruction,
they develop a notion of discriminating inputs (called as smart inputs).

Although their approach is effective in synthesizing functions of 580 x86 instructions, it
suffers from following limitations. First of all, the level of details captured in the extracted
semantics is still at level D2 which makes this approach unsuitable for our purpose. While
their goal is to encode the extracted semantics in symbolic formulas which can be used
by symbolic execution systems, the applications that we are interested in do not look for
such level of details. Second, we believe that designing the templates and the smart inputs
demands considerable understanding of the target assembly instructions. In their work,
they had to study instruction-set manuals and had to manually develop the templates and
the inputs. It is unclear how easy/difficult it is to come up with these templates and inputs
for complex instruction set extensions such as SSE and AVX for x86. Moreover, it is
unclear how much time does it take for them to support a new architecture. As we will
see later in this dissertation, as compared to this approach, our approaches require very
minimal (if not none) architecture knowledge to extract their semantics model. Third,
designing templates to model semantics of 64-bit instructions, floating points and advanced
floating point instructions is very complex and challenging (They also admit about this
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complexity.) The approaches that we propose in this dissertation are not limited by the size
of instruction’s input space. Thus, our approaches can easily scale to complex instruction
sets.

2.2.4 Extraction by symbolic execution of CPU specification

Symbolic execution [49] is a very powerful technique proposed in the literature to exactly
solve the kind of problems for which exhaustive enumeration is practically infeasible. It
exploits the fact that most of the program inputs follow same program path. Thus, instead
of considering each of such inputs separately, one can simply put them in one partition
of the input space, and consider only one representative input for the whole partition. By
defining few partitions to cover complete input space and by considering only one input
per partition, symbolic execution can drastically reduce the number of inputs that we need
to consider to obtain complete semantics. Using symbolic execution, it is thus possible to
avoid exhaustive enumeration and extract instruction semantics. We will see what are its
limitations when applied to the semantics extraction problem.

To extract a complete and accurate instruction set semantics model, one can simply
perform symbolic execution of CPU hardware. Theoretically, this idea works fine, but,
practically, it is infeasible for the following reasons. First, to perform symbolic execution
of a program, one needs access to its source code or binary. In other words, the program
must be available in a software form; unfortunately, CPU is hardware. Second, symbolic
execution involves setting the program inputs symbolically rather than concretely. Unfor-
tunately, CPU requires concrete inputs instead of symbolic3. Symbolic execution of CPU
hardware is thus practically infeasible.

Symbolic execution of a publicly-available high-fidelity CPU emulator. A practically
feasible idea, which can achieve the same effect as that of symbolic execution of CPU hard-
ware, is to perform symbolic execution of a publicly-available high-fidelity CPU emulator.
After all, CPU emulators are expected to faithfully and accurately emulate instruction se-
mantics of the underlying CPU. PokeEmu [57] proposes such idea, and demonstrates how
can one use popular emulators such as Bochs [85] for such purpose. Although, such ap-

3It is most likely true that CPU manufacturers have software forms of the CPU which are used to validate
functionality of the CPU before it is manufactured. As a result, it is conceivable that one could perform
symbolic execution of such software forms to perform symbolic execution of the CPU. But, unfortunately,
such software forms are always intellectual properties of the respective manufacturers and are not available
to general public.
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proach can be used to extract level of semantics suitable for our purpose, unfortunately,
such an approach suffers from the limitations of the emulators. First and foremost, most of
the emulators support a very limited number of architectures. An approach based on such
emulators would naturally be applicable to only few architectures. Second, even though
high-fidelity emulators exist, they are also shown to contain a number of bugs [57]. So the
accuracy of the semantics models extracted from such emulators is an questionable.

2.3 Our Approach

In the last section, we saw how can one use instruction semantics manuals, hardware CPU
and software CPU for semantics extraction. We also discussed the limitations of each
of them in the semantics extraction process. Given that discussion, we will first specify
a number of requirements from the semantics information source that we want to use for
extraction. Such requirements can make the comparative study of our approach easy. Then,
we will see what our approach is. The requirements from the semantics information source
are as below.

R1 : Accurate and faithful representation of CPU semantics. This is the most basic and
important requirement of the system which we want to use to extract instruction set
semantics.

R2 : Completeness: representation of semantics for all CPU instructions. It is desirable
that the system that we want to use for extraction supports all the instructions from
the target architecture. A frequent addition of a number of instruction set extensions
to modern architectures underlines the importance of this requirement.

R3 : Support for diverse architectures. Since our objective is to extract instruction set
semantics automatically, we would like to apply the solution to as many architec-
tures as we can. This requirement also ensures that the applications built using the
extracted semantics will be applicable to many architectures. For instance, system
emulators will be able to support architectures that are not supported generally. This
requirement thus translates into portability of the applications built using extracted
instruction set semantics.

Given those requirements above, we found that the high-fidelity CPU emulators satisfy
most of the requirements except R3. Lack of support for diverse architectures limits the
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applicability of semantics extraction to very few architectures, thus limiting the overall
effectiveness of applications built using extracted semantics models. Modern compilers,
such as GCC [3] and LLVM [8], on the other hand, satisfy all the requirements in a better
manner than the emulators. Specifically, modern compilers offer following advantages:

• Modern compilers support a number of architectures (requirement R3) — many more
than those supported by most of the commonly used emulators.

• They are tested extensively through rigorous test suites, thus minimizing the chances
of bugs in them (requirement R1).

• These compilers are usually very quick to provide support to newly added instruction
set extensions (requirement R2).

• Infrastructure developed by these compilers such as optimization passes can poten-
tially be reused in other architecture-independent systems. For instance, a quick
way to build a retargetable binary translator using extracted instruction set semantics
could be to reuse existing compiler infrastructure such as optimizer, register allocator,
instruction scheduler, directly. As a result, we will not need to build the components
of the binary translator from scratch. Such an approach to build a binary translator
has a number of advantages.

– The process of developing a translator from assembly-to-IR would be greatly
simplified because the mapping from assembly-to-IR can be viewed as an in-
verse of the mapping from IR-to-assembly.

– The binary translator is inherently retargetable as it inherits retargetability from
the compiler. When the compiler is retargeted to a new platform, new backend
can be used to facilitate retargeting of the translator.

– As the binary translator and the compiler share same IR, we can simply reuse
compiler optimizations and other passes (such as register allocation, instruction
selection). Binary instrumentation frameworks, such as Valgrind, builds such
components manually from scratch.

– Compiler IRs are well designed. Ability of these compilers to compile source
programs written in a number of high-level programming languages and gener-
ate binaries for a number of platforms proves that their IRs are comprehensive
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enough to represent features from all languages and architectures. So, instead
of designing a new IR, the binary translator can simply rely on compiler IR for
its purpose.

Given the advantages offered by modern compilers, we decided to use GCC compiler
for extracting instruction set semantics. Even though we have used GCC for our research
purpose, the ideas and techniques discussed later are equally applicable to LLVM. To un-
derstand how these compilers offer a better solution, we need to discuss some of their
internal details. A reader familiar with such details can skip this section.

2.3.1 Background on code generation in modern compilers

Structure of a Modern Compiler. Compiler researchers have long worked to develop
architecture-independent code generators [33, 32]. These code generators start with an
intermediate representation (IR), and emit assembly code. Ideally, the code generator is
driven by an instruction set specification called a machine description (MD). This MD may
take the form of a set of rules, each mapping a snippet of IR into an assembly instruction.
Such a rule-based approach can generate inefficient code since it fails to take into account
the context in which translation takes place, e.g., it may generate many redundant loads
and stores. These inefficiencies can be mitigated by performing several optimizing trans-
formations on the IR, and by driving instruction selection using some cost metrics. Such an
approach moves the complexity to IR optimization passes that are shared across different
architectures, while simplifying architecture-specific MDs.

Code generators in contemporary compilers such as GCC and LLVM follow this gen-
eral outline. Due to GCC’s maturity and support for many instruction sets, we chose GCC
in our implementation. But an important feature of our approach is that it does not depend
on GCC specifics, and hence can be applied to other retargetable compiler backends.

Figure 2 shows the key steps in the compilation of a high-level language (a C-program,
in this case) by GCC into machine code. These steps are illustrated using a simple example:
an assignment statement in C that eventually gets translated into two assembly instructions.
The front-end of the compiler translates from different source languages to a high-level
intermediate form called GIMPLE. Several optimizations are performed on GIMPLE and
then it is translated into GCC’s IR, which is called RTL (register transfer language). (These
details of the front-end are not relevant for the purposes of this report, but are shown here
simply to provide more context.) Then the back-end uses MDs to translate RTL snippets
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Figure 2: Key steps in GCC’s translation of a source program

into assembly. As noted earlier, the back-end in GCC incorporates over 40 optimization
passes over RTL, and also performs related tasks such as register allocation.

Machine Descriptions. A machine description (MD) specifies all aspects of a target ma-
chine architecture, including the number of registers, endianness, parameter passing con-
ventions, and a mapping from RTL snippets to equivalent assembly instruction(s). This
mapping is the most important part of an MD, and poses most of the interesting research
challenges, so we focus on it below.

As mentioned earlier, code generation is a pattern-driven process: it is specified using
rules of the form RPat −→ Asm where RPat represents an RTL pattern, and Asm represents
equivalent assembly code. Typically, Asm is a single instruction, but there are occasional
cases where it may contain several instructions. An RTL pattern includes an RTL snippet,
together with conditions on when the rule can be applied. The code generator starts with
RTL code generated by the compiler front-end. MD rules are matched with snippets of
this RTL, and any matching snippet is replaced by the corresponding assembly code. This
rewriting process is continued until no more RTL is left. The order in which MD rules
are tried may be governed by a cost metric associated with a rule. In addition, the code
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(set (match_operand : 0 “reg_opnd” “a”)
(div (match_operand : 1 “reg_opnd” “0”)
(match_operand : 2 “nonimm_opnd” “qm”)))
(clobber (reg : FLAGS_REG))

−→ "div %2"

Figure 3: An MD entry for x86 div instruction

generator may modify RTL under translation in order to find a match, e.g., moving a value
from one register (or memory) to another register in order to satisfy conditions specified in
RTL patterns.

An example MD rule for the x86 instruction set is shown in Figure 3. To reduce clutter,
we have abstracted away some details that are not critical for the purpose of explaining our
approach.

This instruction corresponds to x86 divide instruction. The RTL pattern specifies the
semantics of this instruction in RTL, namely, that it sets operand 0 to be the result of
dividing operand 1 by operand 2. It also states that the flag registers are modified. Since
the compiler does not require the flag values after a divide operation, it is simpler to state
that flags are modified, instead of detailing the exact change. Nonetheless, when an RTL
instruction checks a particular bit of flag values, its preceding instruction sets that particular
bit precisely. This pattern is applicable when input RTL matches the match_operand

conditions, which are broken into a predicate and a constraint. It is not necessary for
our discussion to understand the full semantics of predicates and constraints, but we will
explain one of them for illustration. The predicate on operand 1 states that the operand
should correspond to a register, while the constraint indicates that operand 1 should be the
same as operand 0. Moreover, the constraint on operand 0 states that it should be the EAX
register. Thus it is quite easy to see that the above example captures the semantics of x86
div instruction correctly.

Given the above structure of MD rules, one might simply think that the MD files al-
ready represent extracted instruction set semantics. Consequently, one can simply refer to
MD files for the extracted semantics and can avoid synthesizing the instruction set seman-
tics altogether. For instance, semantics of div instruction can be learned from the RTL
contained in the rule. Unfortunately, this simplistic approach runs into many difficulties:

• Some aspects of RTL corresponding to an assembly instruction are defined by the
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virtue of predicates and constraints, e.g., the condition that the destination operand
is the EAX register, or that the two operands of RTL instruction should be identi-
cal. While this could potentially be handled by incorporating the semantics of con-
straints and predicates into a reversing algorithm, such an approach suffers from the
drawback that the semantics of many of the predicates and constraints differ across
architectures.

• For many rules, the Asm part does not directly specify assembly code, but is instead
a snippet of C-code that, when executed, will generate a string representation of
assembly code. Clearly, it is difficult to statically determine the string(s) that may be
generated by a snippet of C-code.

To overcome above problems, we develop approaches that avoid referring the specifics
of MD rules. Such approaches eliminate dependencies on architecture specifics in imple-
mentation. More importantly, such approaches can be general, and applicable to compilers
other than GCC that may use more programmatic MD rules.

Even though direct use of MD files is complex task, it is a very important observation
to note that the MD files already contain extracted instruction set semantics. We put this
observation along with few other important observations about modern compilers to tackle
the problem of automatically extracting instruction set semantics.

2.3.2 Possible challenges for our approaches

Use of compilers for model extraction can lead to some interesting challenges because of
the way compilers operate. Specifically, semantics models extracted using code generators
may be incomplete and/or incorrect also. Incompleteness of the models comes from two
different sources.

First source of incompleteness relates to a possibility that the compilers may not sup-
port all of the target architecture instructions. Consequently, such unsupported instructions
would also be missing from the extracted models. We expect this to be a case for newly
added architecture instructions. Nonetheless, we expect such number of unsupported in-
structions to be small — actively-developed modern compilers such as GCC and LLVM
are generally quick to support newly added instructions (including those from advanced
instruction sets).

Second source of incompleteness relates to a common observation that the compil-
ers may not model semantics of every instruction in all the details. Unfortunately, miss-
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ing details would also be lacking in the models extracted by our approaches. For in-
stance, GCC’s machine description may not model how CPU flags are modified as a re-
sult of some operation, but it may just model the fact that the flags are modified. For
instance, GCC’s MD entry for x86’s div instruction discussed in the Section 2.3.1 contains
(clobber : (reg : FLAGS_REG)) instead of detailing out which bits of EFLAGS are mod-
ified and how they are modified. Such loose semantics modeling is sound for compilers
because most of the compiler static analyses may only be interested to know if a particular
instruction modifies flags. That is why compilers may capture over-approximation of the
instruction semantics. Compilers may not always capture over-approximate semantics all
the times — whenever required they may as well capture precise semantics. For instance, in
x86, when the div instruction is followed by a conditional jump instruction, IR for the div
instruction will precisely update the bits of EFLAGS that are needed by the jump instruction.

Incompleteness of the extracted models can be addressed in multiple ways. First, we
can choose a compiler that uses most (if not all) of the target machine instructions. More-
over, the models extracted by our approaches can be augmented with manual specifica-
tions — by cutting down manual specifications to a small minority of instructions, we can
achieve significant savings over existing approaches. On the other hand, manual specifica-
tion of the details may not be needed as most of the applications of the extracted models,
such as binary analysis and instrumentation systems, do not need much level of details.
Nonetheless, in those rare cases where additional precision is desired, the models extracted
by our approach can be manually augmented with the missing details.

Incorrectness of the models stems from the fact that even though modern compilers are
tested rigorously, given the limitations of software testing, they are not completely bug-
free. Consequently, the semantics obtained from GCC’s code generator may have some
correctness issues. We will talk about different types of possible correctness issues in the
appropriate section of this dissertation. We will also talk about how to rectify these issues
as and when relevant. But before getting into challenges, we will talk about our overall
approach now.

2.3.3 Approach details

Our overall approach to synthesize instruction set semantics automatically using GCC con-
sists of two phases.

• Phase 1: extract the instruction set semantics using GCC’s code generator.
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For this phase, we have developed two approaches, namely LISC and EISSEC, to ex-
tract instruction set semantics from GCC’s code generator. Both these approaches are
discussed in depth in the Section 3 and Section 4. EISSEC uses symbolic execution
of code generator to extract the semantics model. So at a high-level, this approach
is similar to symbolic execution of CPU emulator performed by PokeEmu. LISC, on
the other hand, employs a completely different technique than EISSEC. Specifically,
it treats code generator as a black-box and learns the semantic model from it. Since
code generators generate semantically-equivalent assembly instruction(s) for the in-
put IR instruction(s), the outcome of this phase is a mapping between semantically
equivalent IR-to-assembly pairs for all compiler-supported target assembly instruc-
tions. Such a mapping precisely defines the instruction set semantics model followed
by the code generator.

• Phase 2: Checking correctness of extracted instruction set semantics.

Even though we are able to extract instruction set semantics from code generators
automatically, there is one important challenge that we need to tackle before such
semantics can be used in some applications. Specifically, to address the correctness
issues, we have developed an approach named ArCheck (Section 5). Since we as-
sume that the IR to assembly instruction pairs present in the model should be seman-
tically equivalent (because compilers are expected to preserve semantic equivalence
during compilation), we enforce semantic equivalence test as the correctness check.
The outcome of this phase is a new model such that most of the correctness issues
from the input model are resolved.

2.4 Summary

In this section, we described various approaches for automatic extraction of instruction-
set semantics. We also described various levels of semantic details that one can extract,
and how and why they may not be relevant for our purpose in this dissertation. We then
described the advantages offered by modern compilers, and why we believe that they are
appropriate for extracting instruction-set semantics. Finally, we described our overall ap-
proach of semantic extraction using code generators of modern compilers. In the next
couple of sections, we will see our semantic extraction approaches in detail.
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3 LISC: LEARNING INSTRUCTION SEMANTICS FROM CODE

GENERATORS

As we saw in the last section, the direct use of architecture specifications for extracting
instruction set semantics model is hard. Moreover, it is undesirable since it would tie the
approach of model extraction to a specific compiler. A much better approach for model ex-
traction is to treat compilers (and code generators) as a black-box and to decouple from the
specifics of their architecture specifications. Fortunately, the common practice of dumping
the inputs and outputs of intermediate stages of modern compilers makes such an approach
feasible. To be precise, code generators of modern compilers provide options to log IR in-
structions and their corresponding assembly instructions generated by the code generators
during compilation of source programs. As a result, it seems possible to extract semantics
models used by the code generators by referring to their logs. Our approach for seman-
tics model extraction, called LISC (stands for Learning Instruction Semantics from Code
generators), is exactly based on these observations.

A sample log obtained from GCC’s x86 code generator during the compilation of a
typical C code (for fibonacci series) is shown in Figure 4. The log contains x86 assembly
instructions and their corresponding RTLs (GCC’s IR) instruction. (It is not necessary at
this stage to understand details of RTL instructions. So we will not discuss them here.)

int fib(int n) {
if (n ≤ 1)

return n;
else

return fib(n-1) + fib(n-2);
}

(a) C program

No Assembly RTL instruction
(set (mem : SI

1 pushl %ebp (pre_dec : SI (reg : SI esp)))
(reg : SI ebp)))

2 movl %esp,%ebp (set (reg : SI ebp) (reg : SI esp))
(set (mem : SI

3 pushl %ebx (pre_dec : SI (reg : SI esp)))
(reg : SI ebx)))

(parallel [(set (reg : SI esp)
4 subl $20,%esp (plus (reg : SI esp)

(const_int −20)))
(clobber (reg : CC eflags))])
(set (pc)(if_then_else

5 jg .L2 (gt (reg : CCGC eflags)
(const_int 0)))
(label_ref .L2)(pc))

(b) Compilation log

Figure 4: Sample compilation log produced by GCC’s x86 code generator during com-
pilation of fibonacci’s C code
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Given the details of a code generator logs, it is logical to ask: why the logs themselves
cannot be treated as semantic models? Specifically, the logs themselves contain semantics
of assembly instructions in terms of compiler IRs, and thus it is logical to think that logs
can be treated as models also.

Unfortunately, there is one important problem in using logs as models. Specifically,
the issue is that the logs contain concrete instructions, and to use these logs as a model,
we would need huge number of such concrete instructions. Specifically, by concrete in-
structions, we mean when the operands of the instructions are concrete. For instance,
mov %eax, %ebx is a concrete instruction, because eax and ebx are concrete operands.
The opposite of concrete instructions would be parameterized instructions. For instance,
mov %1, %2 is a parameterized instruction. This is because operands of this instructions
are now parameters4.

It is desirable that the extracted models contain parameterized pairs, otherwise, we
would need a pair for every possible operand value and the combinations of different
operands. This is because, otherwise, we will not know the semantics of target instructions
missing from the log file. For instance, Figure 4 contains a pair with “subl $20, %esp”
instruction. If we use this pair to generate a model, we will not know the semantics of
“subl $10, %esp”. To solve this problem, we would need to collect 232 similar pairs for
different immediate values that can appear in place of 20. While storage space taken by
such a huge number of pairs might not be an issue, being able to generate all such pairs
is a serious challenge. In contrast, an approach that uses parameterized pairs to generate
models would avoid this problem. Specifically, parameterized pairs would allow us to un-
derstand the semantics of “subl $10, %esp” even though it is missing from the log. LISC
thus uses parameterized pairs to represent semantic models. The parameterized pairs are
produced by learning the semantics of target instructions. We will see the details of LISC
soon.

Unfortunately, LISC also faces two challenges. First challenge relates to the complete-

ness of the model, while the second one relates to the correctness of the model.

• Completeness

Given the high-level description of our approach, it is easy to see that in order for the
extracted models to contain all of the target instructions, the compilation logs need

4Intuitively, this can also be thought of as a instruction template which when instantiated with concrete
operands makes concrete instruction.
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to contain all those instructions. Unfortunately, the compilation logs may not contain
all of the target instructions for following reasons:

1. A source program may not need some of the machine instructions. Compilation
log in Figure 4 demonstrates this point. Compiling a variety of source packages
may address this issue.

2. Compilers might produce some instructions only when specific compilation op-

tions are used.

For instance, GCC generates x86 SSE instructions only when “−msse” option
is used. Otherwise, it generates i387 instructions for floating point computa-
tions. It seems that by compiling a variety of source packages with different
compilation options, we can possibly increase the number of supported instruc-
tions. But we need to experimentally validate our hypothesis.

• Soundness

Unfortunately, the approach of using parameterized pairs in extracted models comes
with its own challenge. In particular, the process of generating parameterized pairs
from concrete pairs would be sound only if the semantics represented by parameter-
ized pairs is exactly the semantics of the corresponding concrete pairs. For instance,
if we generate a parameterized pair shown in Figure 5 from the concrete pair shown
in the same figure, then it is necessary that we have referred to 232 values5 that can
appear in place of 10. This is because the parameterized rule would represent all such
cases, and we need to verify that it is indeed correct. But if we do not have all of
232 concrete pairs, then the process of obtaining parameterized pairs from available
pairs can be called as speculative generalization. It is speculative because, we are
speculating the semantics of missing pairs. Such speculative generalization can be
unsound. For instance, it might be possible that, for “add $−10, %eax”, a com-
piler may produce an IR which subtracts value 10 instead of adding -10. Intuitively,
the solution we are looking for would allow us to keep the scope of generalization
narrow enough to avoid unsound mappings, yet broad enough to cover pairs with all
possible operand combinations. Moreover, at this stage it is important to mention
that generalization is the fundamental property of all learning-based approaches.

5assuming 32-bit integers
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Concrete IR instruction Concrete Assembly instruction
[(set (reg : SI ax)
(plus (reg : SI ax) add $10,%eax

(const_int 10)))
(clobber (reg : FLAGS))]

Parameterized IR instruction Parameterized Assembly instruction
[(set (reg : SI ax)
(plus (reg : SI ax) add $P,%eax

(const_int P)))
(clobber (reg : FLAGS))]

Figure 5: Concrete pair for x86 add assembly instruction and its parameterized ver-
sion

3.1 LISC Overall Approach

Given the challenges faced by LISC, we would now discuss how we address them. LISC

extracts the semantics model from GCC’s code generator logs in three steps described be-
low. The block diagram of LISC is shown in Figure 6. Note that our current implementation
targets GCC, but it should be possible to extend it to other compilers too.

1. Extracting IR and assembly pairs.

The goal of this step is to extract pairs of IR instructions and the corresponding
assembly instructions from the code generator log files.

2. Parameterization.

Once concrete pairs are obtained, the goal of this step is generate parameterized
pairs from them. This step helps in producing parameterized pairs by learning how
to identify parameters in assembly and RTL instructions. Generally, operands and
operators of the assembly and IR instructions are parameters, but we do not en-
code architecture-specific ways to identify parameters in LISC at all. If one can
imagine the parse trees of assembly and RTL instruction, then LISC follows an ap-
proach of treating their leaves as operand instead. Such approach helps in making
LISC architecture-neutral. Once parameters are identified, they are then replaced
by variables to produce parameterized pairs. For instance, in assembly instruction
add %eax, %ebx, if LISC learns that eax and ebx are parameters, and if it as-
signs variable X for eax and Y for ebx, then the parameterized assembly instruction
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Figure 6: LISC block diagram

would be “add %X, %Y”. Correspondingly substituting eax and ebx from the RTL
(set (reg ebx) (plus (reg ebx) (reg eax))), we would get (set (reg Y)(plus

(reg Y) (reg X))) as the parameterized RTL. Parameterized pairs (parameterized as-
sembly and its RTL) provide a way to represent multiple concrete pairs compactly.
These pairs then form the extracted semantics model.

3. Transducer construction.

A set of parameterized pairs can be considered as a extracted model. But we observed
that many parameterized pairs have similar syntactic structures or sub-structures. For
instance, both “add %eax, %ebx” and “add %ecx, %edx” produce same parame-
terized assembly (“add %X, %Y”), and thus have same syntactic structure. To elimi-
nate such duplications, one can extract out common parts across pairs and only con-
sider uncommon parts. Such optimization essentially helps in generating compact
semantics models. We call this notion as merging and implement it by developing an
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approach to construct a transducer (automata with outputs) to merge parameterized
pairs together. The output of this step is the final extracted semantics model.

We will now describe each of these steps in detail.

3.2 Extracting IR and Assembly Pairs

We first use GCC to compile many source code packages and collect concrete pairs of
IR instructions and the corresponding assembly instructions from its code generator log
files. Earlier we gave an example of pairs obtained from a compilation log of C code for
Fibonacci series. All such captured IR-to-assembly pairs are then fed to the next step in the
process.

3.3 Parameterization

The goal of parameterization is to generate a parameterized pair of IR and assembly instruc-
tion from their concrete pair. Such a generation of parameterized pairs demands that param-
eters in IR and assembly are identified and also that the mapping functions between param-
eters are identified. For instance, to produce 〈“add $X, %Y”, (set (reg Y)(plus (reg Y)

(const_int X)))〉 parameterized pair from 〈“ add $10, %eax”, (set (reg eax)(plus (reg

eax) (const_int 10))) 〉 concrete pair, we first need to identify that eax and 10 are pa-
rameters. Moreover, we need to identify that immediate value in assembly instruction (10)
is same as that in the RTL (10); in other words, the mapping functions between immediates
is the identity function ( f (x) = x). Identifying the mapping functions between parameters
is necessary so that parameterized pair can be used to generate a concrete IR or assembly
when the extracted semantics model is used in some application. For instance, when we
use above parameterized pair to translate “add $20, %ebx” assembly instruction (from a
disassembled binary) into RTL, we will simply bind variables X and Y from the parame-
terized pair with 20 and ebx resp, and apply the mapping functions for both of them to
produce (set (reg ebx)(plus (reg ebx)(const_int 20))) as the concrete RTL.

Parameterization step thus has two objectives: (1) identify parameters in the instruc-
tions, and (2) find out how input parameters are mapped to output parameters. To achieve
these objectives, LISC operates on the syntactic structures of the concrete assembly and
RTL instructions. We use parse trees to represent syntactic structures. The tree structure
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allows grouping of related information together, and it also simplifies the task of finding
common nodes/subtrees between multiple trees.

Construction of first-order terms (parse trees). Instead of detailing out how we build
parse trees for assembly and IR instructions, in Figure 7a we specify the grammar for
representing these trees as first-order terms. In the grammar, we have considered assembly
instructions with limited types of operands such as register, memory, and immediates6.
Additionally, for memory, we consider only two types of operands: indirect reference via a
register and indirect reference via a register plus some constant. To simplify our discussion
here, we have restricted grammar to the basic set of operands. RTL syntax is slightly
different from assembly instructions but semantically both are close. Note the use of *1
and *2 in memory operations of assembly instruction. These functors encode the arity of
the terms, and are used to distinguish uses of the same operator with different number of
operands. Subterms with zero arity are leaves in the parse tree, so we call such terms as
leaf terms. Examples of concrete pairs for x86 which follow this grammar are shown in
Figure 8a.

Parameter identification. Once IR and assembly instructions are represented as first-
order terms, the next step is to identify parameters in these terms. Note that any field of a
term can be a parameter. For the purpose of such identification, one can simply encode the
knowledge of what is a parameter into the system. Specifically, one can encode names of
architecture registers and use them to identify which fields of a term are registers (e.g., eax
is a parameter). Unfortunately, such an approach is architecture-specific. LISC thus avoids
such approach and instead relies on a simple approach of treating leaf terms as potential
parameters. Such an approach does not treat non-leaf terms such as “(*1 (reg eax))”
(which stands for assembly operand “(%eax)”) as parameters. We found such treatment of
parameters enough for the purpose of our problem.

Identifying the mapping functions. Once the parameters in IR and assembly terms are
identified, the next step is to learn how parameters in assembly maps to those in the RTL.
Intuitively, the objective of this step is to find out how the semantics of an assembly in-
struction is mapped by its corresponding RTL instruction. Concretely, mappings between

6Note that LISC implementation supports all types of operands of RTL and assembly instructions such as
floating point value, strings, etc.
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Pair ::= 〈Assembly RT L〉

Assembly := (Id AsmOpList)

AsmOpList := /∗ empty∗/ | AsmOp AsmOpList

AsmOp ::= Reg | Mem | ConstInt

Reg ::= ST RING

Mem ::= (∗1 Reg) | (∗2 Reg ConstInt)

ConstInt ::= INT

Id := ST RING

RT L ::= (Id RT LOpList)

RT LOpList := /∗ empty∗/ | RT LOp RT LOpList

RT LOp ::= Reg′ | Mem′ | ConstInt ′

Reg′ ::= (reg ST RING)

Mem′ ::= (mem MemOp′)

MemOp′ ::= (Reg′) | (plus Reg′ ConstInt ′)

ConstInt ′ ::= (const_int INT )

(a) Grammar for concrete pairs

Reg′ ::= (reg ST RING MapFuncs)
ConstInt ′ ::= (const_int INT MapFuncs)

MapFuncs := [] | [MapFunc]

MapFunc ::= Eq | Plus ConstInt ′ | Minus ConstInt ′ | Mult ConstInt ′ |
Div ConstInt ′

(b) Grammar for parameterized pairs (updated with support for representing mapping functions)

Figure 7: Grammar for concrete and parameterized pairs
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(set (reg eax)
Pair 1 (add 20 eax) (plus (reg eax)

(const_int 20)))

(set (reg eax)
Pair 2 (add 10 eax) (plus (reg eax)

(const_int 10)))

(set (reg eax)
Pair 3 (add (∗1 ebx) eax) (plus (reg eax)

(mem (reg ebx))))

(set (reg eax)
Pair 4 (add (∗2 ebx 40) eax) (plus (reg eax)

(mem (plus (reg ebx)
(const_int 30)))))

Pair 5 (mov 10 eax) (set (reg eax)(const_int 10))

Pair 6 (mov ebx eax) (set (reg eax)(reg ebx))

Pair 7 (mov (∗1 ebx) eax) (set (reg eax)(mem (reg ebx)))

(a) Concrete pairs
(set (reg (Eq Y))

Pair 1 (add X Y) (plus (reg (Eq Y))
(const_int (Eq X))))

(set (reg (Eq Y))
Pair 2 (add X Y) (plus (reg (Eq Y))

(const_int (Eq X))))

(set (reg (Eq Y))
Pair 3 (add (∗1 X) Y) (plus (reg (Eq Y)

(mem (reg (Eq X)))))

(set (reg (Eq Z))
Pair 4 (add (∗2 X Y) Z) (plus (reg (Eq Z))

(mem (plus (reg (Eq X))
(const_int (Minus Y 10))))))

Pair 5 (mov X Y) (set (reg (Eq Y))(const_int (Eq X)))

Pair 6 (mov X Y) (set (reg (Eq Y))(reg (Eq X)))

Pair 7 (mov (∗1 X) Y) (set (reg (Eq Y))(mem (reg (Eq X))))

(b) Parameterized pairs

Figure 8: Examples of concrete and parameterized pairs for a subset of x86

assembly and RTL instructions are mapping functions between their terms. For instance,
we can see that the term for a register eax in assembly maps to the term (reg eax) in RTL.

In general, two values can be mapped using a number of mapping functions, but fortu-
nately, we do not need to find out all of the possible mapping functions. Instead, we can
rely on the common observations about assembly and IR instructions to restrict them to
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few. Specifically, different types of values used in assembly/IR instructions follow differ-
ent mapping functions: most parameter types such as register names, floating point values,
immediates, string, etc, almost always follow equality relation (which we designate as =).
Registers sometimes might follow subtype relation where in the output register is a sub-
register of the input register (e.g., if ax is the output register and eax is the input register,
then we have a subtype relation.) In addition to equality relation, numeric values such as
integers and floats might follow few others, such as addition of a constant, subtraction,
multiplication, or division of input with some constant value. We need to consider addi-
tional mapping functions for numeric values because, even though it is mostly the case that
constants appear unchanged between IR and assembly, it may not always be true. Given the
description about mapping functions, the problem of finding a mapping function f between
two values x and y can be formulated as f | f (x) = y, and in our implementation, we re-
strict relations between x and y to y = x, or y = x op C, where op is one of +, −, ×, and÷,
and C is some constant value. Note that multiple mapping functions are possible between
two values. For instance, if an assembly instruction in a pair contains 10 (represented by
variable x) and the corresponding IR contains 20 (represented by variable y), then there
are two possible mapping functions: y = x + 10 and y = x × 2. Our goal thus is to find
out all of the possible mapping functions. This is needed because by just processing one
pair we do not know which one is the exact mapping function for that pair. When we will
come across more instances of similar pairs, then we can find out which mapping func-
tion actually holds. For instance, if we come across same pair with assembly containing
30 (represented by x) and IR containing 40 (represented by y), then it is more likely that
y = x + 10 holds over y = x × 2. So, to begin with, we will find out all possible mapping
functions between two values, and later prune out those that do not hold. Such an approach
ensures that we do not lose our ability to generalize by being able to find common mapping
functions between pairs.

Algorithm and its description. Once we can represent all subterms of a term by vari-
ables, we systematically visit all of the assembly’s leaf terms, and check if they can be
mapped with any of the RTL’s leaf terms. If such mappings are found, RTL’s leaf terms
are updated with the found mapping functions. Specifically, if y is one of the RTL’s leaf
terms, and x is one of the assembly’s leaf terms, and y = f (x), where f is some mapping
function, then y is updated with f (X), where X is the variable that represents any value
that appears in the position of x. Note that since leaf terms of an RTL’s parse tree might
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be updated to capture the mapping function, we need to update our grammar to support
these functions. Grammar productions which are updated to capture mapping functions are
shown in Figure 7b, with newly added productions shown in bold (rest of the productions
are same as that of grammar for concrete pairs). Also note that mapping functions are
added to RTL’s leaf terms, while assembly’s leaf terms remain same. Lastly, in RTL, we
have updated definitions of registers and constant integers only; mapping functions are not
added to mem node because memory is not a leaf term. To illustrate mapping functions: for
assembly instruction “add $10, %eax” when the RTL instruction contains 20 instead of
10, then it can be learned that the RTL adds 10 to the value that appears in place of 10 (in
the assembly instruction) or it multiplies it by 2. If we represent parameter 20 in the RTL
by Y and parameter 10 in the assembly by X, then both these mapping functions for Y are
captured as [Plus X 10; MultX 2]. ; is used to indicate that multiple mapping functions are
possible. Our general policy for finding the mapping functions also handles tricky cases
such as different number of input and output parameters, an input parameter appears at
multiple output positions, etc.

Given a list of variables and input and output leaf terms represented by those variables,
the algorithm to identify mapping functions between them is shown in Figure 9. For each
of the output terms, the algorithm checks to see if it is some function of any input term. If
such a function is found, then it is recorded as the mapping between that output term and
the position of the input term. One notation might need a bit clarification. + operator is used
to represent list concatenation. Note that t ′o is a variable to represent list of terms. Thus,
+ allows us to combine multiple mapping functions in a term. This is needed when term
contains “Eq X” already and we want to add “Div Y 2” to make “[Eq X ; Div Y 2]”. When
the algorithm is applied to concrete mapping pairs from Figure 8a, we get parameterized
pairs from Figure 8b.

3.4 Transducer Construction

The output of parameterization is a set of parameterized pairs for input concrete pairs. But
since parameterization produces a single parameterized pair for every concrete pair, we will
essentially get as many parameterized pairs as that of concrete pairs. This is undesirable
since it would mean a huge number of parameterized pairs. A more serious issue is the
matching time of the model constructed using these pairs, which would be linear in terms
of number pairs.

31



// I is a set of pairs of a variable and a leaf term of an input term.
// O is a set of pairs of a variable and a leaf term of an output term.
// Algorithm returns a set of all mapping functions between terms of I and O .

procedure find_mappings(I , O):
M = {} // set of mapping functions
CAS = {−16, ..,16} // Constants for addition and subtraction function
CM = {−65536, ..,65536} // Constants for multiplication function
CD = {1, ..,65536} // Constants for division function
foreach 〈vo, to〉 ∈ O
do

t ′o = [to] // t ′o is a local variable to represent a list of terms
foreach 〈vi, ti〉 ∈I
do

if to = ti then
t ′o = t ′o + [Eq vi] // + is a function for list concatenation

if to = ti + ca, where ∃ ca ∈ CAS then
t ′o = t ′o + [Plus vi ca]

if to = ti - cs, where ∃ cs ∈ CAS then
t ′o = t ′o + [Minus vi cs]

if to = ti * cm, where ∃ cm ∈ CM then
t ′o = t ′o + [Mult vi cm]

if to = ti / cd , where ∃ cd ∈ CD then
t ′o = t ′o + [Div vi cd]

// if none of the above conditions match, then unsupported function
fi

done
M = M ∪{〈vo, t ′o〉}

done
return M

Figure 9: Pseudo code for identifying mapping functions between values of input and
output parameters
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A more efficient approach to construct a model that has matching time which is inde-
pendent of the number of pairs is to construct a DFA (deterministic-finite state automata).
Since many parameterized pairs have same syntactic structure, the automata construction
can extract out common parts across pairs. For instance, note that pair 5 and 6 in Figure 8b
have same syntactic structure of (set (reg (Eq Y)), Z), where Z represents parameter val-
ues where they differ. So, intuitively, it seems that we can extract out common parts be-
tween pairs, and generate checks to identify uncommon parts. For instance, we can gener-
ate check such as if X = ebx then Z = (reg ebx) else Z = (const_int 10) to dis-
tinguish pair 5 and 6. Extraction of common part across pairs helps in two ways: (1) it
avoids duplication, and it allows us to emit parts of an output even without looking at all
the parts of an input (for instance, in the above example, we can output (set (reg (Eq Y))

even without looking at the input), (2) the reduction in the size of the automata reduces the
size of the extracted semantics model.

Tree automata (an automata which operates on trees) is a DFA which accepts trees as
input. Tree automata which produces output trees in addition to accepting the input trees is
called as tree transducer. Since we generate IR parse trees as output by accepting assembly
parse trees as input, our problem can be classified as the problem of constructing a tree
transducer from the set of parameterized pairs.

A tree transducer constructed for the example discussed above is shown in Figure 10.
Circular nodes in the graph indicate the input variables that are inspected, while the edge
labels represent the test being performed for those input variables. For instance, edge
labelled = 10 checks if value of variable X is 10. Box type nodes, on the other hand,
represent parts of the output that will be emitted by the transducer when the input has
matched all the tests from that node to the start node. Double-bordered box nodes represent
the end states of the transducer in which all the input variables have matched some assembly
term and thus the transducer has produced corresponding IR term as output. Intuitively,
what we have done here is to emit common part of the output between both the pairs
(i.e., (set (reg eax) Z), and we emit it immediately when we know that the assembly
instruction is mov and its parameter for Y is eax.

Tree transducers offer two important advantages for our problem. First, Being able to
extract out such common parts across pairs helps in reducing input matching time. For
instance, if we were to match the input term with the assembly terms of the above two
pairs, then we would need to do it one by one (sequential matching). The matching time
complexity in this case would be O(n) where n is the number of pairs. The matching
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Y

(set (reg eax) Z)

= eax

X

(set (reg eax)(reg ebx)

= ebx

(set (reg eax)(const_int 10)

= 10

Figure 10: A tree transducer for the example

complexity of tree transducer from the figure, on the other hand, is independent of the
number of pairs, and is proportional to the length of the input. Second, by building a
transducer we can match the input in one scan — in case of sequential matching, we need
to revisit the input when the match has failed for the first pair.

3.4.1 Background

Before we discuss our algorithm to construct tree transducer from the set of parameterized
pairs, we need to develop the notations and concepts that will be used in the algorithm. We
assume familiarity with the basic concept of a term. The symbols in a term are drawn from
a nonempty set of alphabets Σ and a countable set of variables X . We will use w, x, y,
and z (with or without subscripts) to denote variables and f to denote non-variable symbols
(also called as function symbol). Additionally, we use t and u to denote a term.

Term t over Σ can then be formed according to following syntactic rules:

t ::= x, f (t1, t2, . . . , tn), where x ∈X & f ∈ Σ

Parameter positions. In order to refer to subterms of a assembly or IR terms, we develop
the concept of a position. For instance, for (add 2 eax), we need a way to designate 2
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uniquely. Then only we can say that value v that appears at the position of 2 from the
assembly follows some mapping function, say f , and maps to f (v) in RTL. Fortunately,
inductive nature of term structure provide an easy way to uniquely identify subterms. We
call unique identifier for each subterm as its position [80].

Definition 1 (Position) A position of a subterm t, denoted Pt , in term T is a string rep-

resented as p.i, where p is a position and i is an integer. Position p satisfies all of the

following criteria: (1) if T is a term for assembly instruction, then its root symbol has p.i

= 1, (2) if T is a term for RTL instruction, then its root symbol has p.i = 2, (3) otherwise, if

T is of form f (t1, t2, . . . , tn), where n > 0, and p is position of T , then p.1 is position of t1,

p.2 is position of t2, and p.n is position of tn.

String representation of Pt is obtained by prefixing ‘@’ to Pt .

Note that in the context of our problem, set X of variables is a set of strings represent-
ing positions. For instance, one value of X could be {@1.1,@1.2,@1.3}.

A ground term is a term with no occurrences of variables. A set of all ground terms of
t in Σ is represented as TΣ(t).

Lastly, > and ⊥ are special terms such that TΣ(>) is the universal set of terms over Σ

and TΣ(⊥) is the empty set of terms on Σ.
To illustrate terms and ground terms:

- (mov eax ebx) is a term representing assembly instruction, while (set (reg eax

(Eq @1.1)) (reg ebx (Eq @1.2))) is a term representing RTL instruction for
that assembly instruction. Note that term for the assembly instruction is a ground
term since it does not contain any variables, while the term for RTL instruction is not
a ground term.

Now that we have defined how to represent parameterized pairs as terms, we now need
to define how can we merge two terms together. Intuitively, a term which is general than
the terms that are being merged together should be the result of merging. In order to find
such a general term, we need to define the notion of substitution.

A substitution is a mapping from variables to terms. Given a substitution δ , we denote
by δ (t) the term obtained by replacing every variable x in t by δ (x). We say that t is an
instance of u if δ (u) = t for some substitution δ . If t is an instance of u, then we denote it
by t <= u. Intuitively, if δ (u) = t, then u is more general than t, or t is more specific than
u. On the other hand, if t and u differ only in the variable names, then they are said to be

35



equal to each other, and denoted as t = u. Also, > and ⊥ are special terms such that > is
more general than any other term, and ⊥ is more specific than any other term.

Substitutions can also be written as [x1 7→ t1,x2 7→ t2, . . . ,xn 7→ tn], with xi pairwise
distinct, and then mapping function δ can be denoted as:

[x1 7→ t1,x2 7→ t2, . . . ,xn 7→ tn](y) =

ti, i f y = xi

y, otherwise

In some instances, we write xδ for δ (x).
To illustrate substitution and instances of a term,

- [x 7→ eax,y 7→ ebx](set (reg x) (reg y)) = (set (reg eax)(reg ebx)).

- [x 7→ eax](set (reg x) (reg y)) = (set (reg eax)(reg y)).

- [z 7→ eax](set (reg x) (reg y)) = (set (reg x)(reg y)).

The notion of substitution now allows us to define partial ordering among terms, and
leads to forming of a lattice over terms. We will denote such lattice by L . A sample lattice
for a set of parameterized assembly instructions is shown in Figure 11.

Now that we have described how to construct a lattice over a set of terms for parame-
terized rules, we can now describe how to compute mcp and residue.

3.4.2 Maximal common prefix (mcp)

Intuitively, computing mcp of parameterized pairs can be considered as synonyms to union
operation on sets — as union operation allows one to merge multiple sets together, mcp

computation allows us to merge multiple parameterized pairs together. Note that mcp com-
putation would be sound only if the pair obtained by combining multiple pairs captures the
complete semantics of all those pairs. Union operation satisfies this criteria.

Definition 2 (mcp) Conceptually, mcp of terms t1 and t2, denoted as mcp(t1, t2), is the

least-upper-bound of t1 and t2 in lattice L .

Formally, mcp(t1, t2) is another term t such that both of the following conditions are

satisfied:

t1 <= t and t2 <= t, and t <= t ′, ∀t ′ | t1 <= t ′∧ t2 <= t ′
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>

(mov x y)

(mov (reg z)(reg w)) (mov (mem (reg x))(const_int y))

(mov (reg eax)(reg ebx))(mov (mem (reg ecx))(const_int 10))

(add x y)

⊥

Figure 11: Lattice over a set of parameterized x86 assembly instructions

3.4.3 Residue

Since residue is the uncommon part of a term with respect to another term, we can define
residue as follows.

Definition 3 (Residue) Residue of a term t1 with respect to another term t2, denoted as

residue(t1, t2), can be defined as:

residue(t1, t2) = δ ⇐⇒ δ (t1) = t2
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Residue of a set of terms T with respect to some term t ′ can be defined as

{residue(t, t ′) ∀ t ∈ T }

To illustrate mcp and residue, consider following set of terms.

- t1: (set (reg eax) x )

- t2: (set (reg eax) (reg ecx))

- t3: (set (reg eax) (const_int 10))

- t4: (mem (reg eax) (const_int 10))

Then

• mcp(t1, t2) = t1, and residue(t1, t2) = [x 7→(reg ecx)]

• mcp(t1, t3) = t1, and residue(t1, t3) = [x 7→(const_int 10)]

• mcp(t1, t4) =>, and residue(t1, t4) = []

• mcp(t2, t1) = t1, and residue(t2, t1) = []

• mcp(t2, t2) = t2 , and residue(t2, t2) = []

• mcp(t2, t3) = (set (reg eax) x), and residue(t2, t3) = []

• mcp(t3, t1) = (set (reg eax) x), and residue(t3, t1) = []

• mcp(t3, t4) =>, and residue(t3, t4) = []

• mcp(t4, t1) => , and residue(t4, t1) = []

• mcp(t4, t3) => , and residue(t4, t3) = []

Note that actually mcp(t3, t4) could have been (x (reg eax)(const_int 10)), but since
our grammar allows variables (positions) to appear only in leaves of the parse trees, mcp(t3, t4)

is >.
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Speculative generalization. Notion of mcp essentially introduces generalization in the
extracted semantics model. And, naturally, generalization can compromise soundness
of the extracted models. For instance, mcp((set (reg eax) (reg ebx), (set (reg eax)

(reg ecx))) is (set (reg eax)(reg x). By having variable x represent any registers be-
yond set {ebx, ecx}, we are essentially generalizing the rule. Nonetheless, we are also
loosing the information that we have seen the IR to assembly pair for only ebx and ecx.
So saying that the RTL is applicable to edx (while we have not seen it for edx) can lead to
unsound RTL.

Note that if we want to ensure that generalization does not compromise soundness at
all, then we need to remember the values of the operands for which every pair holds. So, for
instance, in the above example, we would need to remember that mcp holds only for {ebx,
ecx}. Unfortunately, maintaining sets of values can lead to situations where these sets
contain plenty of elements. For instance, for immediates, there could be a huge number of
elements in the set. More importantly, this leads to problem of over-fitting as it is called in
machine learning domain. In particular, if we simply remember the values of the operands
for which pair holds, then we are not allowing generalization at all. Such pairs will thus
be applicable to pairs we have already seen (training data) and will not generalize well to
unseen pairs (test data).

A solution for keeping the set size restricted and also not to lose the information is to
use intervals to represent sets. Specifically, after ordering elements of a set, we can take
the first and last element of a set to form a interval. For instance, {3, 1, 4, 10, 5, 12, 100}
can be represented compactly as [1, 100]. Intuitively, intervals introduce a restricted form
of generalization. That is why using intervals are much better (in terms of soundness) than
saying that a pair is applicable to any integer value, which would be same as saying we have
seen values in the range of [−∞,∞] (or for a 32-bit integer [INT32_MIN, INT32_MAX] to
be precise).

Additionally, we rely on some observations about operand usage across architectures to
ensure soundness even with speculative generalization. To be precise, it seems that one can
classify operands of assembly instructions into various functionally-similar categories. By
functionally-similar categories, we mean operands belonging to these categories function
similarly when used in instructions. For instance, in add $20,%eax and add $1,%eax,
both 1 and 20 perform similar role of immediate operands; in many x86 instructions regis-
ters eax, ebx, ecx and edx can be used interchangeably. We put this observation to use by
keeping operands of the same type in the intervals.
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Additionally, to keep the scope of generalization restricted, we define mcp as the least

upper bound of two terms, and not any other upper bound.
Lastly, we will talk about our soundness test in the evaluation section.

3.4.4 Discriminating tests

Intuitively, discriminating tests help us distinguish uncommon parts of mapping pairs from
one another. There could exist many discriminating tests for a given set of pairs. For in-
stance, for a pair of RTLs (set (reg eax) (reg ebx)) and (set (reg eax) (plus (reg eax))

(reg ecx)), one could distinguish them on the basis of the structure of the pairs (note that
plus subtree does not exist in the first RTL), presence of ecx register in the second pair,
etc. We would then need to decide which tests to prefer over others. One more important
point to note is that the discriminating tests need not always partition a set of uncommon
parts in two, but they could partition a set in more than two. In other words, discriminating
tests need not only be binary tests like does rule contain ecx, but instead can be N-ary tests
like partition pairs into those having mnemonic mov, add, and sub.

Note that the important requirement of discriminating tests is that these tests must create
disjoint subsets of a set of uncommon parts. This requirement is needed in order to keep a
polynomial bound on the size of the extracted model in the worst case. Specifically, for a
set of N uncommon parts, if discriminating tests do not create disjoint subsets (such tests
would actually be called as non-discriminating tests), then in the worst case they can lead to
creation of 2N different subsets (corresponding to the number of possible (overlapping and
disjoint) subsets) of the set of N uncommon parts. In such case, size of the extracted model
would have non-polynomial worst case complexity. That is why we need discriminating
tests to be such that these tests would produce maximum of N disjoint subsets for a set of
N uncommon parts.

Given the requirement of discriminating tests, we will now see how do we satisfy it.
We follow a specific order of preferences for choosing discriminating tests:

1. Mnemonic of an assembly instruction. If residues of pairs differ in their assembly
mnemonic, then we discriminate them based on assembly mnemonic.

2. Number of operands of an assembly instruction. Instructions having same mnemonic
are then partitioned on the basis of a number of operands.

3. Operand arity (rule structure). Once pairs are partitioned on the basis of assembly
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mnemonic and the number of operands, we then look at the arities of operands. Arity
of an operand is the arity of the functor term for that operand. For instance, 8(%eax)

has two operands, while immediate 8 has only one operand.

4. Operand type. Once operands are split based on arity, operands of same arity are then
split based on their type — whether operand is string or integer, etc. For operands of
arity more than one, we apply operand type test on their sub-fields recursively in the
left-to-right order till we find first discriminating test. Employing operand type test
also falls in line with the notion of functionally-similar operands.

5. Operand value. Lastly, all pairs whose operands are indistinguishable after applying
above four tests, are split based on the values of their operands.

The particular order of choosing discriminating tests arise from the observation that we
do not want to merge pairs having different syntactic structures. That is why first three tests
above look for syntactic differences. Even the fourth test can be considered as following
the same principle. This is because, in RTL, operands of different types have different syn-
tactic structure. For instance, integers are represented as (const_int 10) while strings are
represented as (reg eax) or (stringref “printf′′). Once we have exploited all syntactic
differences to discriminate pairs, we are left with no other choice but to look at operand
values to distinguish.

Also note that when we discriminate based on operand values, there might exist multi-
ple operands positions where values could differ. When such a case arises we have multiple
choices and then a question arises about which operand position to select. Our criteria in
such case is guided by our requirement to keep the size of extracted semantics model min-
imum. To satisfy this requirement, we follow a simple greedy strategy of choosing an
operand position which would lead to a minimum number of discriminating tests. Note
that such a strategy may not always produce the minimal-size semantics model, but given
the simplicity of the approach we prefer it over others.

Also note that choices 1–4 are actually discriminating tests. This is because all of
these tests always divide the input set into disjoint subsets. There is a chance that the last
choice of splitting based on operand value can lead to non-discriminating test, if the test for
splitting based on value is not chosen properly. To ensure that such case does not arise, we
follow a simple approach of ordering the operand values by defining an ordering operator
(such as <), and splitting the ordered set such that first half of the ordered set forms one set,
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procedure Build(sc,m,R):
1. if R is empty then
2. f inal[s] = m
3. else
4. T = select(R)
5. for each Ti ∈T do
6. Ri = {R ∈R | Ti(R) = true} // Partitioning of R
7. R = {R ∈R | Ti(R) = f alse} // Consider remaining residues for next test
8. mi = mcp(Ri)
9. Rsi = residue(Ri,mi)
10. if state si corresponding to (mi,Rsi) is not present then
11. Construct state si
12. Build(si,mi,Rsi)
13. fi
14. Construct an edge from sc to si labeled with Ti.
15. done
16. fi
17. return sc

Figure 12: An algorithm for constructing automaton

and second half forms another. Generation of two disjoint subsets ensures that such test is
always a discriminating test.

3.4.5 Algorithm for constructing automaton

The algorithm Build for constructing a tree transducer is shown in Figure 12. Note that
tree transducer is a generalization of a decision tree, which would have been a straight-
forward representation of merged pairs (edges in the tree would represent discriminating
tests selected.) We specifically chose automaton over decision tree because automaton
opens up the possibility of sharing nodes. States in our transducer represent mcp of input
pairs, with final states representing a complete pair learned by LISC. An important property
of this transducer is that it eagerly emits output — as soon as some parts of the output are
known, it is emitted, without having to wait to reach a final state.

Build starts with a dummy start state of the transducer (sc), mcp (m) of the set of pa-
rameterized pairs to be merged, and their residue(R). Specifically, first call to Build would
be Build(sc, mcp(I ), residue(I ,nil)), where I is the set of parameterized pairs to be
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merged. Eventually, Build returns a start state sc as the output. Build is a recursive pro-
cedure which then constructs sub-transducer rooted at sc. When R is empty, we construct
final state of the transducer which is marked by part of the output (mcp) accepted by the
state.

When R is not empty, it means we still have some part of pairs to be processed. In
that case, we first call select to obtain a set T of discriminating tests to distinguish “un-
common” parts in R. For every test Ti from T , we partition R into two sets by applying
the test. Elements of R which do not satisfy the test are considered for further partition-
ing by remaining tests of T in the next iterations. We obtain mcp and residue of Ri, the
partition which contains all elements of R which passed the test Ti. Since we construct
automaton instead of a decision tree, we can share common states of the automaton. We
do it by checking if a state corresponding to the newly obtained mcp and residue is already
generated, and if it is, then we simply obtain that state and generate a transition from the
current state to that state labeled by the test Ti. In case such state is not present already, then
we create it, and call Build again to explore sub-automaton rooted at newly created state.

To illustrate the algorithm, consider the set of parameterized pairs shown in Figure 13a.
The transducer constructed for these set of pairs is shown in Figure 13b. Notice that in all
the pairs the part of the output i.e., (set(reg eax & @12) is common, and that is why the
algorithm emits it as the mcp before input is seen. The only sub-term of the output term
that the transducer needs to find is the one at position @2.2. Since discriminating tests
prioritizes mnemonic of the assembly instructions over others, algorithm choose position
@1 of the input for branching (at line 4). Specifically, it first selects all pairs who have
@1 = add_2. The set of pairs which match this test would be pairs 1–4. These four pairs
again have common sub-structures, specifically eax at @12 and plus(reg (eax & @12)

at @22. The algorithm emits this mcp (line 8). Pairs which do not satisfy @1 = add_2
test (line 7) are considered for next iteration of for loop. In the next iteration, the algorithm
would select the discriminating test of @1 = mov_2. It should now be easy to understand
how the algorithm constructs rest of the transducer. One thing though needs an explanation.
Discriminating tests such as <> ∗2 or = ∗2 are arity-based discriminating tests which
check for the arity of the input at that position. For instance, @11 = ∗2 test would check
that the input term at position @11 has arity of 2. Similarly, tests of type = StringType

or <> StringType are type-based discriminating test which check the type of input at that
position. Notice that the input and output which satisfy these tests (e.g., @11 : 10, 22 :
(const_int 10)) are syntactically different than those which do not satisfy these tests (e.g.,
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11 : ebx, 22 : (reg ebx)).

3.4.6 Error detection

In the final step, we flag any inconsistencies identified in the parameterized pairs. Two types
of inconsistencies are possible. The first involves multiple distinct parameterized assembly
instructions produce same IR. This is not a cause for concern, as there are typically multiple
assembly instructions that have the same effect, such as xor %eax, %eax and mov $0,

%eax. The second inconsistency involves mapping of same assembly instruction to distinct
IRs. Unless the two IRs are semantically equivalent, this inconsistency likely indicates an
error in the mapping. Our system flags such errors if they are found. In our experiments,
we have not had to deal with this inconsistency.

3.5 Implementation

LISC prototype implementation works on Linux, and we have used it to synthesize instruc-
tion set semantics for x86, ARM and AVR7 architectures. We chose these architectures
because x86 CPUs are found in many desktops, laptops, notebooks, and servers, while
ARM and AVR are used in embedded systems with ARM being popular especially in mo-
bile phones and smartphones.

The breakdown of total implementation effort involved is shown in Figure 14. The
implementation of log collection phase is architecture-neutral and is done using a GCC
plugin that is is implemented in approximately 70 lines of C code. To collect IR to assembly
mapping for foo.c in log.dump, one would use the command:

gcc -dP -fplugin=rule_collection.so -fplugin-arg-out-file=log.dump foo.c

Here −dP is a standard GCC option to tell GCC to dump the IR corresponding to each
assembly instruction as a comment. Thus, the log collection phase easily integrates with
configure and make based package compilation process used commonly on Linux.

The implementation of parameterization and transducer construction is independent of
GCC and is done using 2400 lines of OCaml code. All of the OCaml code is architecture-
independent. But we do require minimal architecture-specific code to parse the log files

7AVR is a modified Harvard architecture 8-bit RISC single chip microcontroller which was developed by
Atmel in 1996.
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(set (reg (Eq Y))
Pair 1 (add X Y) (plus (reg (Eq Y))

(const_int (Eq X))))
(set (reg (Eq Y))

Pair 2 (add X Y) (plus (reg (Eq Y))
(const_int (Eq X))))

(set (reg (Eq Y))
Pair 3 (add (∗1 X) Y) (plus (reg (Eq Y)

(mem (reg (Eq X)))))
(set (reg (Eq Z))

Pair 4 (add (∗2 X Y) Z) (plus (reg (Eq Z))
(mem (plus (reg (Eq X))
(const_int (Minus Y 10))))))

Pair 5 (mov X Y) (set (reg (Eq Y))(const_int (Eq X)))
Pair 6 (mov X Y) (set (reg (Eq Y))(reg (Eq X)))
Pair 7 (mov (∗1 X) Y) (set (reg (Eq Y))(mem (reg (Eq X))))

(a) Example of parameterized pairs

start

{2:(set (reg (eax & @12)) _)}

1

{12:eax
22:(plus (reg (eax & @12)) _)}

add_2

{12:eax}

mov_2

11

11

<>*2

{11:(*2 40 ebx)
222:(mem (plus (reg (ebx & @112))

(const_int (30 & -10+@111))))}

=*2

{11:(*1 ebx)
222:(mem (reg (ebx & @111)))}

<>*0

{11:[10,20]
222:(const_int (@11))}

=*0

11

{11:(*1 ebx)
22:(mem (reg (ebx & @111)))}

<>*0

{11:[ebx,10]}

=*0

11

{11:10
22:(const_int (10 & @11))}

<>StringType

{11:ebx
22:(reg (ebx & @11))}

=StringType

(b) Tranducer constructed by LISC

Figure 13: Example of transducer construction by LISC
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Component Architecture-neutral code x86 ARM AVR
Log collection (C) 70 - - -
Parameterization and
transducer construction (OCaml) 2400 - - -
Assembly lexer (Ocamllex) 74 10 12 7
Assembly parser (OCamlyacc) 76 117 103 89
Utility code (scripts) 500 50 16 15

Figure 14: Breakdown of LISC implementation effort

and extract RTL and assembly pairs from the logs. Moreover, we have written architecture-
specific parsers to parse assembly instructions and build first-order terms from them. Parsers
for all three architectures in total constitute around 350 lines of OCamllex and OCamlyacc
code written in OCaml. Once the RTL and assembly instructions are parsed and converted
into first-order terms, rest of the processing is completely architecture-neutral.

One of the complications that arise when we decide to apply the extracted model for
assembly-to-IR translation is that the assembly output produced by a compiler may be
slightly different than the one produced by a disassembler. One such case is that of con-
crete memory addresses in the assembly instructions produced by a disassembler (e.g.,
movl 0x80000000,%eax). Such memory addresses originally would contain a label or a
symbol reference in the assembly output of a compiler. As a result of this issue, the code
generator logs will not be enough to translate such assembly instructions. To solve this
issue, we simply treat concrete memory addresses as if they are label references. This is
done by treating concrete memory addresses specially in architecture-specific parsers.

Rest of the utility code to disassemble binaries in the correct format, and apply the
extracted models to the assembly instructions is written in bash scripts. These scripts are
around 500 lines in total.

We added a number of features, such as the ability to save the generated transducer into
a file, ability to load the transducer into memory from file, etc, into LISC. These features
save effort to build a transducer repeatedly, and thus make it easier to use the generated
transducer multiple times.
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3.6 Evaluation

To evaluate effectiveness of LISC, we used it to extract semantics models for x86, ARM
and AVR. We used multiple of packages to obtain compilation logs for model extraction.
All experiments were performed on a quad-core Intel i7 processor running 32-bit Ubuntu-
14.04 OS. Compilers and other tools needed for ARM and AVR were obtained using cross-
compilers for these architectures8.

3.6.1 Completeness of the model

A systematic evaluation of completeness requires knowledge of the target architecture,
or else we cannot be sure whether all possible instructions have been used. While it is
relatively easy to enumerate all possible opcodes, it is nontrivial to identify all possible
operands, especially in the case of complex instruction sets. Moreover, we need to identify
a collection of applications that use all of these instructions, which is another nontrivial
task. For this reason, we have used an indirect approach that is commonly used for evaluat-
ing learning-based approaches: we use a set of programs (Ptrain) to generate model, and test
them using another set (Ptest) of programs. In particular, we determine what fraction of the
instructions in the binaries for Ptest can be lifted by the model learned from Ptrain. Specif-
ically, for our experiments, Ptrain consists of multiple packages. We will talk about our
package selection policy for Ptrain soon. Ptest , on the other hand, consisted of all executable
programs (not scripts) in the standard desktop OS. Specifically, we disassembled all bina-
ries found on standard OS distributions (such as Ubuntu and Debian) using objdump and
used the disassembled instructions to translate to RTL. Though such a Ptest may not cover
all possible target instructions and their operand combinations, we believe that it covers
most commonly used instructions and their operand combinations.

As a comparison point, we implemented a naive exact recall (ER) approach, which
would look for exact match of assembly instructions from Ptest binaries in the pairs obtained
from Ptrain. If a match is found, the corresponding RTL instruction in the pair is emitted
as the translation of the input assembly instruction. Note that Exact Recall also provides
a point for comparing correctness of the translations performed using training data, and
the amount of generalization performed during such translations. Intuitively, translations
performed using exact recall would be good but will have no generalization.

8On Ubuntu-14.04, one can simply install binutils-arm-linux-gnueabi package for ARM and
binutils-avr and gcc-avr packages for AVR to obtain them.
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Package selection policy. Package selection policy for Ptrain might seem to be less of an
interesting issue, given that one can find tons of packages for many open-source OSes these
days. Though such random selection of packages can serve the purpose, we devised an it-
erative package selection policy which uses the results of performed tests to make better
choices for package selection than simply random selection. Specifically, package selec-
tion policy affects the completeness numbers — the ultimate goal of LISC evaluation is to
demonstrate that all of the assembly instructions could be translated to RTL. In order to
achieve 100% completeness number as quickly as possible, our package selection policy is
to select a package that has lowest completeness number in the current iteration for compi-
lation in the next iteration. Such selection policy attempts to improve coverage number —
because of hand-written assembly instructions and presence of concrete memory addresses,
lowest completeness number might not be a faithful indicator all the time. Nonetheless, we
have found this policy to work as expected in our experiments.
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Results for x86. The result for x86 is shown in Figure 15a. Rows in the figure list the
packages that we added to the training data set in each round. So +ffmpeg in the second ex-
periment means that ffmpeg was added to the base training data of openssl and binutils

in second iteration. We used gcc-4.6.4 for 32-bit x86 to compile these packages. For test-
ing, we used all (9237) x86 binaries (Refer 15b for details.) found on Ubuntu-14.04 stan-
dard desktop OS installation. These binaries were disassembled using objdump-v2.24 for
x86. To the best of our knowledge, Ubuntu uses GCC (exact version not known) to pro-
duce these binaries. Columns in the figure list following in order: percentage of assembly
instructions which could be translated to RTL by Exact Recall, percentage of assembly
instructions which could be translated to RTL by LISC, the percentage breakdown of the
missing instructions (calculated with respect to mnemonics from Intel manuals [5]) in terms
of causes, and the classification of mnemonics of instructions which could not be lifted be-
cause those mnemonics were not in the training data.

After training LISC with a combination of openssl and binutils as a base, we could
lift 98.46% instructions in all of x86 binaries on Ubuntu-14.04. Of the remaining 1.54%
instructions, 1.05% instructions could not be lifted to RTL because their mnemonics were
not present in Ptrain, while 0.49% of the instructions could not be lifted to RTL because
their operand combinations were not in Ptrain. By missing operand combination, we mean
if training data did not contain some instruction with a specific type of operand then we
cannot translate such assembly instruction from test data. For instance, push with imme-
diate data instruction (i.e., push $imm) was not found in training data, and hence could
not be translated to IR. Of the 1.05% missing mnemonics, many of them belonged to the
basic (126) and SSE (147) instruction set. In these instruction counts, we have counted a
single mnemonic with different modes (byte vs word) separately. Thus, movl is a different
mnemonic than movb. With our way of counting the mnemonics, there are a total of 1187
mnemonics in the Intel manual (details in 15d). The percentage of total missing mnemon-
ics is obtained with reference to the 1187 total mnemonics in the x86. We found that
Ubuntu-14.04 binaries cover all of the 1187 mnemonics. Therefore, the number of missing
mnemonics obtained from Ptest is same as the number of missing mnemonics obtained with
reference to the Intel manual.

By associating missing instructions with the packages that they belonged to, we found
that ffmpeg was the package with the highest percentage of missing instructions. That
is why we selected ffmpeg package to add to Ptrain in the next round. Notice that with
the addition of ffmpeg and the other packages in the subsequent rounds, the completeness
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number converges towards 100%. An interesting observation to make about the improve-
ments in the completeness number is the changes in the breakdown of the missing operand
combination percentages. Specifically, note that in the fourth experiment, the percentage of
instructions with missing operand combinations went up from 0.19% to 0.23%. This is be-
cause as new packages are added, new mnemonics are discovered. These new mnemonics
reduce the number of missing mnemonics, but they might cover only few operand combina-
tions. So the percentage of missing mnemonics can only decrease when new packages are
added, but the percentage of instructions with missing operand combinations can increase.

We followed this repetitive package addition till we reached a point where addition of
new packages did not improve the completeness number any further. This was the point
when the completeness number was 99.49% with 0.51% of instructions could not be lifted.
Our analysis revealed that instructions which belonged to the missing mnemonics category
were such that they were either hand-written or GCC did not support them. Instructions
that are not generated by GCC are: instructions (such as nop, enter, etc) that are generated
by the assembler, some arithmetic instructions (aaa, aad, aam, and aas), some instructions
which set/clear bits of EFLAGS (cld, cli, cmc, clac), and low-level instructions (such
as cpuid, invpcid which invalidates entries in TLB, rdtsc, etc)9. In all, we manually
modeled 91 pairs of assembly instructions and their RTLs. Of these 91 pairs, 49 pairs
modeled the semantics of instructions with missing mnemonic, and 42 pairs modeled the
semantics of instructions with missing operand combinations. The breakdown of these
91 pairs is shown in Figure 15c. After the manual modeling, we were able to translate
100% of the assembly instructions from Ptest . Modeling semantics of 49 mnemonics out of
1187 mnemonics manually underlines our intuition that compilers cover most of the target
instructions, if not all.

Results for ARM. After performing the completeness experiment for x86, we repeated
the same experiment for ARM. We followed the same package selection policy that we
followed for x86 with the base Ptrain containing openssl and binutils. Ptest contained
all ARM assembly instructions obtained from disassembling all binaries (7.3K in total)
on a Debian-7.8.0 desktop installation. We used the gcc-4.7.3 cross-compiler for 32-bit
ARM cortex-v7A [12] and arm-linux-gnueabi-objdump-v2.24 as the ARM disassem-

9Note that the list of assembly instructions that are not supported by gcc-4.6.4 is based on our analysis
of GCC’s source code and its x86 architecture-specifications. To the best of our knowledge, there is no official
GCC documentation to confirm our findings. This is also applicable to other results such as those of ARM
and LLVM presented next.
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bler on x86 Linux. The results are shown in Figure 16. Most of the numbers can now be
interpreted easily in a similar manner as the numbers for x86. The classification of instruc-
tions not supported by gcc-4.7.3 is: few miscellaneous instructions (such as dbg, dmb,
etc), few low-level instructions (such as isb, mcr2, mrs, wfi, etc), and few other advanced
instructions (such as vtbl, vtbx, vstm, etc). The total time, including time to port the
architecture-specific part of our implementation, was around 9.5 man hours.
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Results for AVR. We then selected the AVR [31] processor. We trained LISC by using
same base packages (training data) as the earlier experiments and using avr-gcc-v4.8.2

cross-compiler to compile them. We then tested the extracted model on few of the core-
utils binaries (ls, cp, cat, echo and head) for AVR. We used avr-objdump-v2.23.1

disassembler to disassemble these binaries. Unfortunately, we could not get complete
coreutils package cross-compile using GCC’s cross-compiler. The extracted model had
around 700 abstract pairs for 4.3K concrete pairs from the compilation log, and it covered
72 out of the total 76 mnemonics. Our system was able to translate all of the assembly in-
structions from the input binaries. Our manual modeling effort was restricted to 4 missing
mnemonics (break, nop, wdr, and sleep, which we found that are not supported by GCC)
and 3 operand combinations. The total time taken including the time to port architecture-
specific part of our implementation was hardly 3 man hours.

3.6.2 Soundness

Soundness of A→ I translation is one of the fundamental properties on which the applica-
tions built using the assembly-to-IR translator would rely on. Thus, it is necessary to ensure
the soundness of the translation. Given the number of generalizations performed by LISC,
an interesting question is how many translations performed via generalization are incor-
rect. Intuitively, generalization increases the chances of producing incorrect translations.
We employ different ways to ensure soundness — going from simple and straight-forward
ones to the one with more formal proofs.

Cross-testing and self-testing. LISC generalizes A → I translations from 〈I,A〉 pairs
found in the code generator logs. A simple soundness test is thus to check whether A′→ I′

translation holds for some 〈I′,A′〉 pair. This is where cross-testing and self-testing come
into picture.

If the model built using Ptrain is denoted by M, then these testing methods use the
following definition of soundness:

∀〈I,A〉 ∈ Ptest : M(A) = I

In other words, we translate assembly A to new IR I′ using the learned model M (this
is represented by M(A)), and then check if new IR I′ is same as original IR I. Conceptu-
ally, above definition checks following: given that a code generator has mapped IR I into
assembly A (i.e., I→ A holds), does A→ I hold as per model M?
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Cross-testing is one of the most basic method of testing the learned model (hypothesis)
in machine learning. It consists of separate Ptrain and Ptest set, and using the model learned
from Ptrain to test it on Ptest . Self-testing, on the other hand, uses Ptrain as Ptest .

Semantic equivalence. Self-testing and Cross-testing are good techniques to evaluate the
effect of generalization and to ensure that model learned by LISC does not over-fit or under-
fit the training data. These techniques, unfortunately, suffer from an important limitation:
if a single assembly instruction A maps to multiple IR instructions I1 and I2, then the model
can map A to only either of them, and such a translation may not satisfy the above definition
of soundness.

In order to address the limitation of self and cross-testing, we need to modify our defini-
tion of soundness. Specifically, compilers are supposed to perform semantic-preserving IR
to assembly translations. Similarly if we ensure that assembly-to-IR translations are also
semantic-preserving, then because of these two reasons, both A→ I1 and A→ I2 transla-
tions are sound.

Thus, a formal way to ensure the soundness of assembly-to-IR translation would be to
ensure that every assembly instruction and its translated IR are semantically-equivalent. If
semantics of an instruction is denoted by function Sem, then we can define soundness with
semantic-equivalence as:

∀〈I,A〉 ∈ Ptest : Sem(M(A)) = Sem(I)

We will define the Sem function and how to perform semantic equivalence in the next
section. But to make it easier to understand this section, we will give an intuitive expla-
nation of semantic equivalence. Intuitively, IR I is considered semantically-equivalent to
assembly instruction A, if semantics represented by I is equal to the semantics represented
by A. Semantics of an instruction can roughly be thought of as the effect of the execution of
that instruction on the CPU for that instruction. Note that since above definition demands
equality of semantics, it is the strongest definition of semantic equivalence. In other words,
if the above definition holds for some A→ I translation, then such a translation is sound.
We call this a equivalence definition of soundness.

Unfortunately, compilers do not model semantics of assembly instructions precisely
in their intermediate representations. That is why often the above definition of semantic-
equivalence would fail. To handle such situations, we modify the notion of semantic-
equivalence as follows: IR I is considered semantically-equivalent to assembly instruction
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A, if semantics represented by I is either equal to or the approximation of the semantics
represented by A. An A→ I translation is sound if above definition of semantic-equivalence
applies for A and I. We call this a abstraction definition of soundness. As a comparison
to the equivalence definition of soundness, notice that the abstraction definition is simply
losing some precision in terms of semantics during translation. Otherwise, both definitions
guarantee soundness.

Some applications built using an assembly-to-IR translator can still work with the ab-
straction definition of soundness10 (e.g., static analysis). Other applications, however, de-
mand a equivalence definition of soundness (e.g., IR instrumentation). To satisfy these
demands, we first check if the equivalence definition holds for the A→ I translation, and in
case it does not, then check for the abstraction definition of soundness. It is perfectly fine
to provide A→ I which satisfy the equivalence definition of soundness to the applications
which can work with the abstraction definition of soundness. But the opposite can lead
to some issues. For instance, if the IR instrumentation system uses parts of IR semantics
which are an over-approximation of the semantics of an assembly instruction, the results
are undefined. In such cases, it is thus necessary that such over-approximate parts of IR
semantics are not used by these applications.

Note that semantic equivalence gives stronger guarantees of soundness than any of the
testing techniques mentioned earlier. This is because the testing techniques mentioned
above rely on the assumption that A→ I translation is semantic preserving — a compiler is
supposed to preserve semantics during I→ A translation. Semantic equivalence checking,
on the other hand, does not make such assumptions. Instead, it checks whether compiler
preserves semantics during translation. As a side note, because of this property of semantic
equivalence checking, one can use it to test code generators. We demonstrate this in the
next section.

Handling one-to-many assembly-to-IR translation. Note that the techniques mentioned
above work in the context of one-to-one or many-to-one assembly-to-IR translation. But
one-to-many assembly-to-IR translations presents an additional challenge for LISC. Specif-
ically, the challenge comes from the confusion of which IR instruction to choose as a part
of translation.

Intuitively, when multiple IRs map to single assembly, we want to choose an IR which

10These applications generally are conservative in deriving results, and this is how they can cope up with
the abstraction definition of soundness.
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is both sound and the most precise among those IRs. When a single assembly instruction
maps to multiple IR instructions, then following are the possible cases:

• All IRs are semantically-equivalent to the assembly instructions as per the equiv-

alence definition of soundness, or some IRs are semantically-equivalent to the as-

sembly instruction as per the equivalence definition, while others are semantically-

equivalent as per the abstraction definition. In such case, we can choose any IR
out of those who satisfy the equivalence definition, and still guarantee soundness of
A→ I translation. Note that we can also choose an IR which satisfies the abstraction
definition, but because we want to select an IR which is also more precise, we select
the one which satisfies the equivalence definition.

• All IRs are semantically-equivalent to the assembly instruction as per the abstraction

definition of soundness. In such a case, instead of selecting one randomly, we choose
an IR which is the most precise among the possible IRs. Specifically, if assembly A

maps to multiple IRs I1, ..., In represented as A→ I1 & A→ I2 & .. & A→ In, and all
IRs are semantically-equivalent, then we choose I such that s(I) = s(I1)∩ s(I2)∩ ..∩
s(In), where s is the semantics function that we define in the next section.

• Some IRs do not satisfy the semantic-equivalence test. Our abstraction definition
of soundness is general enough that this case does not arise in practice. But when
it does, it indicates that the compiler did not preserve semantics during translation.
Thus it can indicate the presence of a bug in the compiler.

In our completeness experiment for x86, we found that of the total 1187 mnemon-
ics in x86, around 24% map to multiple possible RTLs. So for the remaining 66%, self-
and cross-testing are enough for a soundness check. The percentage of mnemonics with
semantically-equivalent (as per the equivalence definition) RTLs were 22%. For remaining
2%, we simply cannot choose any RTL randomly. Instead, we have to choose an IR by
defining ∩ operation on two IRs. One of the very common cases where we use the ∩ oper-
ation is when one RTL says (clobber EFLAGS) and another one precisely says which bits
of EFLAGS are modified. The ∩ operation in such cases selects the RTL which says which
bits of EFLAGS are modified. After defining this operation for 2% of the mnemonics, 1.8%
of the mnemonics passed semantic-equivalence check (the abstraction definition). 0.2% (or
2 mnemonics in absolute numbers) failed even on the abstraction definition. Our analysis
revealed that IR for such assembly instructions capture the semantics which is not modeled
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explicitly in assembly. Call and indirect jump that call a variable-argument function repre-
sent these two mnemonics. In such a case, the assembly instruction looks like any other call
instruction, such as, call func. But the RTL contains explicit reference to the number of
parameters passed in the call, for example, (call (symbol_ref func)(const_int 10)).
The ∩ operation of multiple (const_int) is nil. That is why the soundness check fails
for such pairs.

Similarly for ARM, of around 1200 assembly mnemonics, 180 had multiple possible
RTLs. Of these 180, 171 (95%) had semantically-equivalent RTLs. 5% of the mnemon-
ics were mapping to RTLs which were semantically-inequivalent (as per the equivalence
definition). After using the ∩ operation on multiple RTLs, we were able to check the equiv-
alence of 7 mnemonics. The remaining 2 mnemonics (bl and blx) follow the same story
of call and jump from the x86.

Although we cannot check the semantic-equivalence in case of indirect call, the ap-
plications utilizing the translated IRs can mitigate the concern by relying on analysis to
uncover operands of call. Recovering the number of operands of a call from the binary is
an investigated research problem [26, 36, 37].

3.6.3 Compiler independence

To find out how many of the instructions produced by compilers other than GCC can be
lifted by LISC, we used the LLVM compiler (clang-3.3) to build coreutils-2.23 and
SPEC 2000 binaries. We lifted them to IR using the GCC x86 model that achieved 100%
completeness on Ubuntu-14.04 binaries. Results of this evaluation are summarized in Fig-
ure 17. Our system was able to lift an average of around 96.03% of the instructions. We
found that 3.97% instructions that we could not lift were using 7 mnemonics (such as nopw)
and 12 operand combinations (such as nopl 0(%eax) produced by LLVM vs only nopl

produced by GCC) that were not covered in the training data11. This finding is also re-
flected in the result of exact recall, which is around 57% for LLVM produced binaries,
while it is around 74% for GCC produced binaries.
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% of insns lifted
Binary # of insns ER LISC

chown 9939 59.01 97.79
chgrp 9630 59.45 95.17
chmod 9018 58.94 95.73
cp 18043 57.41 97.16
cat 6676 57.94 97.35
cut 4986 55.45 95.76
dir 20489 57.54 97.65
echo 3800 56.10 95.16
head 6919 63.94 96.76
ln 8121 58.35 95.46
ls 20489 57.37 97.74
mkdir 8021 55.65 97.45
mv 18375 57.87 97.08
pwd 4136 58.44 95.16
rm 9348 59.76 95.42
sort 18510 59.54 94.56
tail 11868 58.55 95.04
uname 3733 56.77 94.34
ammp 26444 51.36 94.01
art 3262 47.76 92.96
bzip2 7832 56.15 95.65
crafty 36028 57.76 97.88
equake 4233 59.53 96.54
gap 100598 57.47 96.88
gzip 7916 59.65 96.51
mcf 2334 48.53 96.27
mesa 99805 51.47 95.67
parser 25260 56.56 95.53
vpr 25310 59.78 96.06
Total 521184 (Avg) 57.03 (Avg) 96.03

Figure 17: Completeness results of LLVM compiled binaries for x86

3.6.4 Sizes of the models and performance of LISC

Figure 18 captures the effect of adding different packages to Ptrain on the number of con-
crete and parameterized pairs, model size, and the number of mnemonics. We used four
different metrics for comparison: the number of concrete pairs in the log files, the number
of parameterized pairs derived by LISC from the concrete pairs, the number of mnemonics

11We found that LLVM generated x86 binaries use multi-byte nop sequences, while those generated by
GCC contain a sequence of single-byte nop to represent multi-byte nop.
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Figure 18: Extracted model details
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covered by the derived models, the size of the transducer in terms of number of edges, and
the time taken by LISC to build the transducer. Interesting things to note about the figure is
that LISC obtains between 3X–10X reduction in the number of pairs by merging pairs to-
gether. On the other hand, the time taken by LISC is linear to the number of parameterized
pairs. The increase in the number of concrete pairs indicate that many new operand com-
binations were covered. These combinations also resulted in the increase in the number of
parameterized pairs when the logs obtained from new packages are added to the existing
list.

3.7 Related Work

Although there does not exist an approach to extract instruction-set semantics from code
generator logs automatically, LISC relates to a number of well-known topics. Because it
is a learning-based approach that tries to extract the mapping functions between IR and
assembly, it relates to machine learning [62, 64] in general. The transducer constructed
by LISC is very close to the concept of decision trees [62] from data mining [76]. In the
natural language processing (NLP) domain, the transducer that translates input to output
is called as Finite State Transducer (FST) [63]. FSTs are very popular in the NLP domain
and LISC’s objective of extracting the mapping function can be thought of as an attempt to
build FST automatically. We explain each of these related areas in detail.

3.7.1 Relation to machine learning

Learning hypothesis. Although we say that LISC learns the translation of RTL instruc-
tions into corresponding assembly instructions, in terms of the notion of learning used in the
standard machine learning (ML) domain, we are not learning the translation. Specifically,
note that LISC employs learning only when it needs to understand how the leaves (operand
values) in RTL and corresponding assembly instruction map to each other. This mapping
is actually what is called as hypothesis in the ML domain. Because the operand values are
continuous, our learning problem can be thought of as a regression problem. In particular,
given as input operand i and output operand o, we want to find f such that f (i) = o. Re-
lying on the observation that operand values between RTL and assembly mostly undergo
a linear relation, the problem of finding f can be classified as linear regression problem.
One can then employ Gradient Descent algorithm to find f . In relation to these standard
practices in the ML domain, LISC does not even employ Gradient Descent. Instead, by
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relying on the observation that operand values in RTL follow an identity function (e.g.,
f (x) = x), we have simply enumerated five different mapping functions (one identity func-
tion and four arithmetic functions for addition, subtraction, multiplication, and division),
and LISC searches for the hypothesis function among these five functions. In other words,
the problem addressed by LISC is such that it does not really need to employ standard ML
practices for solving the problem.

Evaluating hypothesis. Although we do not use standard machine learning algorithms
for solving our problem, we do employ standard ML evaluation criteria such as self-testing
and cross-testing. A standard practice in the ML domain to evaluate the quality of the
learned hypothesis is to split the available data into three sets: training, test, and cross-
validation. The training set is used to learn the hypothesis; the test set is used to evaluate
the hypothesis; the cross-validation set is used to learn parameters in the model selection
process (such as degree of polynomial for hypothesis, regularization parameter, etc). Be-
cause model selection is not a problem for LISC, we do not use separate validation set for
our evaluation.

One of the simple ways to evaluate a hypothesis function is called self-testing. In self-
testing, both the training set (used to derive the hypothesis) and the testing set (used to test
the hypothesis) are the same. Self-testing helps one evaluate how good the hypothesis “fits”
the training data. If a hypothesis fits the training data poorly (also called under-fitting),
then one might need to change the model selection parameters to derive new hypothesis
which might fit better. Self-testing is thus a good way to detect under-fitting. On the other
hand, self-testing has the limitation that it cannot detect over-fitting — over-fitting occurs
when the hypothesis fits the training data too strictly such that it does not fit “unseen” data
(data not seen in training data). For instance, if a 2nd degree polynomial is enough to fit the
training data, but the hypothesis is a 4th degree polynomial which fits the training data well,
then over-fitting might occur. A standard machine learning practice to detect over-fitting
is to evaluate hypothesis against unseen data. This is called cross-testing. Specifically, the
hypothesis function derived from a training set is tested against a test set which is separate
from the training set. This is also called generalization in the ML domain.

Self-testing helps us evaluate training error, while cross-testing helps us evaluate testing
(or generalization) error. In ML problems, it is very common for one or both of these
errors to be high (when both are high, it is called high bias. On the other hand, when
the training error is low, but the testing error is high, it is called high variance.) In the
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context of our problem, note that we require both training and testing error to be zero! This
is because the extracted semantic models will be employed in the context of applications
such as binary analysis, instrumentation and translation problems, where the assembly-to-
IR translator needs to guarantee “correct” translations. In other words, in the context of
errors in learning, our problem is different than the one faced by standard ML problems.
Fortunately, the hypothesis function learned by LISC is simple enough that errors do not
creep in. This is also demonstrated by the evaluation of LISC.

Availability of learning data. It is not unusual that the standard ML problems need to
work with limited training data. Limited training data can lead to the training/testing errors
discussed above. Fortunately, LISC does not face a limited data problem. We can easily
find new packages to compile and generate new dataset for LISC. The question of how
many packages to add to the training data is addressed by evaluating against a test data.
To be precise, in the evaluation we discussed how many packages to be added to training
data to lift all binaries on Ubuntu-14.04 distribution. Note that, as is the case with most
learning systems, it might happen that we can find new test data for which we are not able
to translate 100% of the instructions. In such cases, we can simply add more packages to
the training data. In other words, there will not be training data which is enough to handle
any random test data. In most machine learning problems, adding new training data helps
improve the accuracy of learning outcome. For LISC, this is also true.

3.7.2 Decision tree learning

Decision tree learning [62, 2] is a method used in data mining and machine learning for
inferring high-level rules from the gathered data (or training data). The gathered data needs
to be of the form of collection of records where individual entries in the record are attribute-
value pairs. For instance, the data below

[Outlook = Sunny, Temperature = High, Playtennis = Yes]

[Outlook = Sunny, Temperature = Low, Playtennis = No]

[Outlook = Overcast, Temperature = High, Playtennis = No]

[Outlook = Overcast, Temperature = Low, Playtennis = No]

is a set of records about weather conditions and the decision to play tennis. Here
Outlook is an attribute which takes the values from the set {Sunny,Overcast}. Similarly,
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Temperature and Playtennis are other attributes. If we treat Playtennis as an output at-
tribute (that we want to infer from input attributes Outlook and Temperature) then the
data can be seen as the following rule:

Outlook = Overcast→ Playtennis = No ∧
Outlook = Sunny∧Temperature = Low→ Playtennis = No ∧
Outlook = Sunny∧Temperature = High→ Playtennis = Yes

A decision tree is a tree that semantically represents rules that can infer output attribute
from the values of the input attributes. Interior nodes in such a tree are input attributes from
the data and the edges represent the possible values of these attributes. Finally, the leaves
of a decision tree represent the value of an output attribute that can be inferred from the
conditions met along the path from the leaf to the root. A decision tree for the above data
set is shown in Figure 19. Notice that every clause in the above rule is represented by a
single path from the root to a leaf in the tree, and the complete tree represents the complete
rule.

Outlook

Temperature

Sunny

No

Overcast

Yes

High

No

Low

Figure 19: Decision tree for decision to play tennis based on weather data

More generally, rules in decision trees take several attributes (features in machine learn-
ing) of the data as input and classify the value of the output attribute based on the input
attributes. Decision trees can thus also be thought of as a way to approach classification

problem in machine learning (Decision tree learning can be thought of as a method to ap-
proximate a discrete-valued function, in which the hypothesis is represented as a decision
tree.) Generally, decision tree learning problems work with data sets where both input as
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well as output attributes have discrete values. Nonetheless, extensions have been proposed
where decision trees can be learned from continuous-valued input attributes as well.

Inferring such rules from data can be useful in understanding the data. Additionally,
it allows us to understand whether one is likely to play tennis or not given the weather
conditions not in the data set. The overall idea of learning rules from the data set is also
called association rule learning.

This section is not intended to be a comprehensive discussion on Decision Trees (For
a detailed discussion on Decision Trees, see [62].) It is meant instead to be a comparison
between decision tree construction algorithms, their properties, etc, and the algorithm used
by LISC.

At a high level, LISC also builds a decision tree to map an input RTL instructions
and their operands to an output assembly instructions and their operands. Attributes in
such a tree are actually the position variables in the term for an input RTL instruction.
Nonetheless, there exists a number of differences between LISC decision trees and the
decision trees discussed in the literature. We discuss these differences below.

Decision tree construction. One of the earliest algorithm for decision tree construction
is the ID3 algorithm [73] proposed by Quinlan12. Throughout the algorithm, the decision
tree is constructed by selecting an input attribute to branch on and partitioning data based
on different values of the selected attribute. The question addressed by ID3 in attribute
selection for partitioning is: which attribute to select for partitioning?

ID3 defines a heuristic called information gain to select an attribute for partitioning.
Specifically, an attribute with the highest information gain is selected for partitioning the
data set. Conceptually, information gain of an attribute specifies the reduction in the entropy

of the data set after partitioning the data set based on the values of the selected attribute
(The notion of entropy, which was proposed by Shannon, is taken from the domain of
information theory.) The rationale behind selecting information gain as a measure to decide
the attribute was to prefer shorter trees over longer ones. Shorter trees reduce the matching
time when the test data is matched against the decision tree. Shorter trees are thus more
efficient in matching than the longer trees. Notice that in the tree from Figure 19, we did
not branch on Temperature if the Outlook is Overcast. This was done because once we
know that the Outlook is Overcast, the entropy of the data set is 0 (This is because, as per
the training data, the value of the output attribute is No in all cases.)

12Quinlan later proposed C4.5 [74] as an extension of ID3.
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At a high-level, ID3 employs a greedy strategy (based on information gain heuristic)
to build shorter decision trees than longer ones. Unfortunately, it means that it makes a
locally-optimal decision than a globally-optimal one. Consequently, trees built by ID3 can
be sub-optimal.

The LISC decision tree construction algorithm is more general than ID3 algorithm.
First, ID3 operates on data sets where attributes are discrete-valued (Later, extension was
proposed to fit continuous-valued attributes into ID3 by converting a continuous-valued
attribute into discrete attribute [74].) Our algorithm, on the other hand, is more general
than a classification problem — LISC attempts to learn a function: given an input, produce
the corresponding output. The question of test selection has overlap with decision trees, but
other aspects such as parameters, transformation functions on these parameters, etc do not
have an analog there. Second, to the best of our knowledge, no decision tree construction
algorithm operates on structured input. Lastly, unlike decision trees, LISC constructs finite
state automaton by sharing nodes of decision trees. This leads to reducing the size of the
automaton as compared to the equivalent decision tree.

Branching criteria: information gain vs discriminating tests. ID3 uses information
gain to decide which attribute to use for branching. LISC, on the other hand, uses discrimi-
nating tests that preserve structural integrity of the output. The difference in the branching
policies arises because of the difference in the objectives and the contexts of the two algo-
rithms. LISC is used in the context where only certain types of parameter values can appear
in the output terms. This is what we call structural integrity. To ensure structural integrity,
LISC branches based on values of non-parameter positions. Once all non-parameter posi-
tions are explored, it then branches based on parameter positions having the same types of
values.

LISC cannot use ID3’s information gain policy as a branching factor. There are multiple
reasons why this is the case. First, none of the existing decision tree construction algorithms
such as ID3 and C4.5 operate on data sets where values are terms or variables. LISC

operates in the context where this is the case. Second, the syntactic integrity check can be
seen as dictating the selection criteria for branching. If ID3’s choices conflict with those
required for the syntactic integrity check, then that could produce ill-formed terms. Third,
it has been shown that the information gain heuristic does not work well when building
decision trees for terms [89, 81]. Specifically, previous work that used traditional decision
trees have experienced massive increase in size in many cases while operating on terms
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[81].

Over-fitting and inductive bias. Over-fitting, a well-known problem in machine learn-
ing, arises when the learned hypothesis does not generalize well to future test data. The
problem arises when the learned hypothesis fits the training data more closely than it
should. Inductive bias in machine learning is the set of assumptions which, along with
the training data, justify the policy used by the learner to classify test data. In other words,
inductive bias specifies how a particular algorithm generalizes so that it is applicable to
future data (in other words, it avoids over-fitting.) In all decision tree building algorithms,
some form of inductive bias is required to avoid over-fitting.

ID3’s inductive bias can be specified as: shorter trees are preferred over longer trees13,

and trees that place high information gain attributes closer to the root are preferred over

those that do not [62]. Illustration of this policy can be seen in the tree that we discussed
earlier. Specifically, the tree built outputs Playtennis = No immediately when Outlook =

Overcast. It does not explore any other trees with Outlook = Overcast. By avoiding
such exploration, ID3 makes the decision tree generalize to future data. For instance, the
particular tree from the example generalizes to Temperature = Normal when Outlook =

Overcast.
LISC inductive bias, on the other hand, can be specified as: trees that preserve the syn-

tactic integrity of the output are preferred over those that do not. Among the trees that

preserve syntactic integrity, trees that place non-parameter attributes (non-parameter posi-
tions) closer to the root are preferred over those that do not. There is a very clear difference
between the policies of LISC and ID3. This difference stems from the fact that LISC at-
tempts to address the problem of translating input instruction into output instruction (by
preserving syntactic integrity). Building shorter trees is thus not the branching factor for
LISC. Because LISC needs to preserve syntactic integrity, it cannot avoid over-fitting when
it is branching based on non-parameter values. But when it outputs the translation, it avoids
over-fitting by using interval constraints (or variables) instead of using set constraints. For
instance, let us say the training data contains a rule that applies for an immediate between
{1,3}. Then, LISC will generalize this rule to interval [1,3] and thus will make it applica-
ble for immediate 2 also. LISC can also simply consider this rule to be applicable for any
immediate value between [−∞,∞]. LISC can do this by relying on the observation that, usu-

13Interestingly, the soundness of ID3’s favor for shorter trees over longer ones is an unsolved debate. It
goes back to 1320, when William of Occam first discussed this question. It is known as Occam’s razor in
machine learning.
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ally, the mapping function (hypothesis) used by immediate values is the identity function.
The effectiveness of LISC policy in terms of over-fitting is experimentally demonstrated.

3.7.3 Finite state transducers and grammatical inference

Finite state transducers (FST) [63] has been one of the fundamental concepts in computer
science. Conceptually, an FST is an extension of an FSA (finite-state automata) which
produces output strings in addition to accepting input. Formally, a finite state transducer is
a finite state machine with two tapes: an input tape and an output tape. This contrasts with
an FSA, which has a single tape. FST has been used in a number of areas such as natural
language processing, speech processing, image processing, and machine translation. The
initial definition of FST operates on strings, but later on, extensions were proposed to FST
that accept and produce trees. Transducers which accept trees are called as tree transducers
[77, 86, 30]. Tree transducers are more general than FSTs because they allow input and
output to be structured. Consequently, tree transducers have found a number of important
applications which need to process structured data (e.g., syntax-directed translation, tree
rewriting, etc).

LISC can also be considered as an application of tree transducers to the problem of
model extraction from the code generator logs. Specifically, assembly and IR instructions
in the code generator logs are structured, and one can find mappings between parts of inputs
and outputs. Furthermore, we found that an algorithm called OSTIA (Onward Subsequen-
tial Transducer Inference Algorithm) [68, 69] has already been proposed in the literature
for learning string transducers from a training set. OSTIA builds a prefix-tree representa-
tion (idea same as mcp) of all input/output pairs from training data. Additionally, it has the
ability to move output strings towards root of the tree as much as possible (our notion of
eagerly emitting output is same as this idea), which it calls as onward tree representation.

Although OSTIA can be considered as a fundamental algorithm from which our algo-
rithm is derived, we found that there are key differences between LISC and OSTIA. First
of all, to the best of our knowledge, application of tree transducers to learn assembly-to-IR
translations from code generator logs is a novel idea. Second, the classical definition of
FST relies on labelling the automata edges with input symbols. On the other hand, LISC
relies on a number of different types of tests as discriminating tests. Lastly, OSTIA builds
upon the notion of sequential transducers, where the order of input and output prefixes is
preserved. Conceptually, sequential transducers visit an input in sequence, and produce
an output in the same order in which input is visited. Such transducers thus inherently
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restrict which parts of an input are used for deciding the branching conditions in case of
discriminating tests. While there is a notion of subsequential transducers to eliminate this
restriction, we believe that LISC can be thought of as a generalized subsequential trans-
ducer which considers multiple criteria for branching.

Some of the techniques used in solving grammatical inference problem [51, 78] have
interesting correlations with the techniques developed in LISC. Grammatical inference
problem is the problem of learning a context-free grammar for the unknown language from
the finite set of positive (and possibly negative) examples in the language. A typical ap-
proach used in solving this problem is to first build a prefix-tree acceptor which exactly
accepts a set of given positive examples, and then to successively merge the states in the
tree to produce an automata that accepts more general language than the one accepted by
the tree. The problem of learning the grammar is often defined in terms of the problem
of finding which states to merge. One of the common approaches used in state merging
is to rely on negative examples if they are available. Specifically, if the merging of some
states leads to acceptance of any negative example by the automata then such a merging
is rejected. While the overall idea of building a prefix-tree and then merging its states can
be thought of as similar to employed by LISC, the approach used by LISC is more gen-
eral. Specifically, LISC builds a tree transducer which is much more general than the tree
automata required in the grammatical inference problem. Moreover, prefix-tree acceptor
naturally restricts the order of inspected symbols from the input to the sequential order.
LISC, on the other hand, does not restrict itself to the sequential order but rather uses non-
sequential order. The non-sequential order allows LISC to produce smaller automata (and
to emit output much faster) than those produced by using sequential order.

3.7.4 Learning using assemblers and compilers

Although research work [28, 44] do not extract instruction-set semantic models using code
generators, their overall approaches have many interesting correlations with LISC.

Derive [44] is an approach to learn machine encodings of assembly instructions by us-
ing an assembler as a black-box. Specifically, instead of writing the assembly to machine
instruction encodings manually, Derive relies on the observation that such encodings are
already specified in the system assembler, and that one can learn them from the assembler
by feeding different operand permutations of assembly instructions and analyzing the gen-
erated machine instruction bytes. In comparison to LISC, Derive can be thought of as an
approach to extract assembly-to-machine instruction encoding models which can be later
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used in other tools like disassemblers, debuggers, binary rewriters, etc. Instead of obtaining
the training date as in LISC, Derive demands the user to supply it with a list of assembly
instruction names and operand types. Using such a description, it then generates all pos-
sible permutations of register names, few combinations of immediate and other types of
operands. Training data used by LISC can thus be thought of as similar to the permuta-
tions produced by Derive. In order to learn an encoding of a particular operand, Derive
relies on a simple idea of keeping all other operands constant and generating all (or few in
case of immediates) permutations of the operand of interest. In terms of learning the map-
ping functions between input and output operands, it follows an approach similar to LISC:
the encoding of a particular operand does not depend on other operands, and they mostly
follow an identity function (with immediates undergoing few additional simple transfor-
mations such as multiply or divide by a constant). Given that Derive attempts to extract
the model of an assembler, it needs to deal with issues such as operand size, endianness,
etc, which LISC does not need to deal with. Although, Derive has some interesting correla-
tions, it has one important difference with LISC. Specifically, LISC builds a tree transducer
to represent the extracted model, while Derive simply generates a list of C code snippets
which implement the encoding for different assembly instructions.

While Derive learns the assembly-to-machine instruction encoding models, work by
Collberg [28] attempts to extract target architecture specifications used by the code gen-
erators automatically. Collberg’s hypothesis is that by using a native C code compiler to
compile snippets of C code and by observing the assembly and machine code outputs, one
can learn enough of architecture details to construct architecture specifications for the code
generators. Such an approach can avoid manual efforts needed in modeling architecture
specifications for new architectures and thus enable easy porting of compiler backends. In
order to extract the instruction semantics from a set of assembly instructions, Collberg’s
high-level idea is to use “reverse interpretation”. In particular, “reverse interpretation” tries
to synthesize instruction semantics by using a set of basic primitives such as operations for
arithmetic, logical, shift, load and store. By using very simple basic C programs (such as
for a = b+c), reverse interpretation can synthesize how to generate assembly code for any
other addition operation automatically. The set of primitives used to extract the instruction
semantics can be thought of as the mapping function in LISC. Since Collberg needs to ex-
tract the instruction semantics, primitives for load and store needs to be provided. Besides
these correlations, most other details are different from LISC.
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3.8 Summary

In this section, we described a learning-based approach (named LISC) to extract instruction-
set semantics models by treating a compiler as a black-box. Being a learning-based ap-
proach which generalizes from the available training data, LISC needs to evaluate the
correctness of the extracted models. We discussed how LISC makes conservative gener-
alizations to reduce the chances of incorrect learning outcome, and evaluated the accuracy
of the extracted models. Finally, we demonstrated that LISC can learn the semantic mod-
els of new architectures (such as AVR) in a very short amount of time (3 hours), and can
considerably reduce the amount of manual effort needed in supporting new architectures.
Nonetheless, being a learning-based approach, LISC theoretically suffers from the limita-
tions of applicability of extracted models to unseen test data. To address this limitation
and to theoretically ensure the completeness of the model, in the next section, we look at a
complimentary technique to extract semantic models.
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4 EISSEC: EXTRACTING INSTRUCTION SEMANTICS BY

SYMBOLIC EXECUTION OF CODE GENERATORS

The key limitation of the LISC approach is that as a learning-based approach, it relies on the
completeness of the training data to achieve completeness of extracted semantic models.
There could be three limitations of the models produced by LISC:

1. All target instructions are not covered in the extracted models.

This case may arise because the training data used to extract the model does not
contain some target instructions. For instance, this may happen because a compiler
may not generate some assembly instruction A just because there is an alternative
more efficient target instruction which is semantically equivalent to A.

It may also be possible that A is actually generated by a compiler, but our test inputs
did not cover that part of the compiler which generates A.

2. All possible operand combinations of the target instructions are not covered.

This case may arise because of some choices that a compiler may make. For instance,
even though instruction A allows an immediate value as an operand, a compiler may
decide to store such immediate value into a register and generate instruction A with
that register as an operand. Consequently, binaries produced from such a compiler
will not contain A with an immediate operand.

3. All possible operand values are not covered.

This case arises because there are too many possible values for some operands mak-
ing it almost infeasible to cover all. For instance, it is infeasible to produce 232

possible instances (on a 32-bit processor) of an assembly instruction containing an
immediate value. Moreover, the number of possible instances increases drastically
when the instruction contains multiple immediate values.

In terms of the implications of these limitations, the first two limitations lead to incom-
plete semantic models. Although the LISC completeness evaluation demonstrated that its
extracted models can handle assembly instructions from all the binaries on desktop OSes,
the completeness number of a learning-based approach is always with respect to a test data
set. In other words, it may be possible that binaries present on typical desktop OSes do not
cover all of the target architecture instructions and their possible operand combinations.
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The last limitation, on the other hand, can compromise the correctness of the extracted
models. Specifically, incomplete training data requires LISC to generalize the extracted
models to support mapping pairs that are missing from the data. Such generalizations may
introduce correctness issues in the extracted models.

A better approach to evaluate the correctness and completeness of LISC extracted mod-
els is to generate test data set such that it contains all possible target instructions and
their operand combinations. This is the goal of our approach called EISSEC (stands for
Extracting Instruction Semantics by Symbolic Execution of Code generators, and pro-
nounced as Isaac).

To put simply, EISSEC is a technique to find out all target instructions and their operand
combinations that are supported by a code generator. In addition, it also precisely yet
generically captures how various operand values of instructions are treated by the target
architectures. By generically, we mean EISSEC will not lead to the problem of generating
232 instances of an immediate operand. Instead, it generalizes the effect of 232 instances. It
thus helps in addressing the last limitation of LISC.

In terms of the first two limitations, EISSEC extracts all instructions supported by a code
generator and, as we saw in LISC, it is possible that a code generator does not support some
target instructions. Thus, the list of assembly instructions and their operands obtained by
EISSEC may be incomplete. The key advantage of EISSEC is that it can obtain all assembly
instructions and their operand combinations which are supported by a code generator, but
were not present in the training and test data of LISC because the parts of the code generator
which produce them were not covered by LISC. In other words, EISSEC enables us to

achieve complete coverage of a code generator.
Because our goal is to cover all paths inside a code generator and produce its input (IR)

to output (assembly) mapping, the problem that we are trying to solve can be classified as
code generator function extraction. More formally, the problem of function extraction can
be defined as follows: given a system S, find function f : i→ a such that if i is an input to
S, then S would produce o as output. In other words, the problem of function extraction is
about extracting the function (or input to output relation) supported by system S. In case of
our problem, S is a code generator.

In this section, we describe how EISSEC extracts the mapping function supported by a
code generator. It does this by relying on a technique called symbolic execution. Before
getting to the details of EISSEC, we first describe the required background on symbolic
execution.
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4.1 Background: Symbolic Execution

Software testing plays a central role in software development and maintenance. One of the
important challenges in software testing is to generate test cases that maximize program
coverage. Given the complexity of modern software (such as browsers, file editing tools,
etc,), there is a general consensus in the software community that manual testing is unlikely
to achieve adequate program coverage. Symbolic execution is one of the many techniques
that can be used for generating test cases that achieve higher coverage of programs.

Symbolic execution [49] is a program analysis technique that executes programs with
symbolic rather than concrete inputs. Because programs are executed with symbolic in-
puts, program data flow now propagates symbolic values from inputs to outputs. Program
operations also operate on symbolic values. Program variables, thus, contain symbolic ex-
pressions. The effect of executing a program symbolically is that the output of the program
is expressed as a function of its input. In other words, symbolic execution helps us uncover
the function implemented by the program. During execution, symbolic executions also
maintains a path condition which encodes constraints on the inputs that reach a particular
program point. These path conditions are updated for every branch point in the program.
Test cases that cover all program paths can then be generated by solving the collected path
conditions (constraints) using constraint solvers.

Symbolic execution maintains a symbolic state, which maps variables to symbolic ex-
pressions, and a symbolic path constraint PC over symbolic expressions. PC accumulates
constraints on the inputs that trigger the execution to follow the associated path. At every
conditional statement if (e) S1 else S2, PC is updated with conditions on the inputs to
choose between the alternative paths. A new path condition PC′ is created and initialized
to PC ∧¬δ (e) in an “else” branch and PC is updated to PC ∧ δ (e) in a “then” branch,
where δ (e) denotes the symbolic predicate obtained by evaluating e in symbolic state δ .
Note that, unlike concrete execution, both branches can be taken, resulting in two execu-
tion paths. If path condition becomes unsatisfiable, symbolic execution along that path is
terminated. Satisfiability is checked with a constraint solver.

Once we have traversed all paths inside a program and have collected PC for every path,
then these PC can be solved using a constraint solver. Solving a path condition for a path
produces a mapping between input and output represented by that path. Thus, by solving
the path conditions for all paths, we can extract the input to output function supported by
the program.

As mentioned earlier, in the software testing domain, symbolic execution is used to
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generate high coverage test inputs for a program [19, 21, 82, 39]. This is done by querying
a constraint solver upon path termination and asking it for an input value that satisfies the
path condition for that path. Note that, though there may be more than one set of input
values which follow the same program path, for ensuring program coverage, obtaining one
input value is enough. Function extraction, on the other hand, needs to know all the input
values that satisfy a path condition, and the corresponding output produced by each of
those values. Thus, the problem of generating high-coverage test inputs for a program is a
sub-class of the function extraction problem addressed in this dissertation.

4.1.1 A simple code generator and its symbolic execution

We now illustrate how symbolic execution of a code generator can be performed in order to
extract its function (or the semantic model). To describe a simple code generator, consider
a simple hypothetical instruction set for a processor which supports (a) only four registers
r1 to r4, (b) only mov and add instructions, (3) a constraint that a valid source operand can
be a register, a memory address (with memory is accessed indirectly using registers only),
or an immediate integer; a valid destination operand can be only a register or a memory
location, and for mov, both source and destination operands cannot be memory at the same
time. The grammar for this instruction set and a mapping table used by a code generator
for such a processor is shown in Figure 20. The mapping table uses RTL as IR.

Note that the mapping process enumerates some aspects of the instruction set, (e.g.,
the name of the instruction and the operand type). Other aspects are not enumerated (e.g.,
the actual registers or integer constants). Instead, the mapping uses expressions to refer to
components of the RTL, denoted in the example using the notation %N.

A code generator implementing this mapping table is shown in Figure 21. To simplify
the illustration of our technique, we used an implementation in a declarative language.
Note that the code generator takes an RTL instruction as the input and produces an as-
sembly instruction as the output. For the simple code generator, assembly instructions are
represented as strings.

Because RTL has a number of subfields, it can be represented using nested expressions.
To simplify understanding, we represent RTLs as first-order terms (same as in LISC). Input
rtl thus can thus be initially bound to the term (set D S). Note that the code generator
only accepts RTLs with their operator (first subfield) set to set. D and S are symbolic
variables for destination and source of rtl respectively (set is an assignment from S to D.)
Once we bind D and S, symbolic state τ will be updated with the bindings. When symbolic
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Instruction ::= mov S, D | add S, D

S ::= rN | (∗rN) | $Int

D ::= rN | (∗rN)

N ::= 1..4

mov r%1, r%2 −→ (set (reg %2)(reg %1))

mov (∗r%1), r%2 −→ (set (reg %2)(mem (reg %1)))

mov $%1, r%2 −→ (set (reg %2)(const_int %1))

mov r%1, (∗r%2) −→ (set (mem (reg %2))(reg %1))

add r%1, r%2 −→ (set (reg %2)(plus (reg %2)(reg %1)))

add (∗r%1), r%2 −→ (set (reg %2)(plus (reg %2)(mem (reg %1))))

add $%1, r%2 −→ (set (reg %2)(plus (reg %2)(const_int %1)))

add r%1, (∗r%2) −→ (set (mem (reg %2))(plus (mem (reg %2))(reg %1)))

Figure 20: Instruction set and mapping table for a simple code generator

execution reaches the match statement on line 5, there are two possibilities: S is a plus

rtl expression or it is not. It might happen that S is bound to some rtl expression in the
symbolic state τ , and in such a case either the “if” or the “else” branch would be taken.
Let us say that S is bound to (O, _) in τ . To decide which branch to take, the symbolic
execution system queries a constraint solver on the constraint O == plus. If the constraint
solver returns true then it means that O is bound to the value plus before line 5, and in
that case only the “if” branch can be taken. A false return value means that O is bound
to some value other than plus before line 5, and in that case only the “else” branch will
be taken. A return value of satisfiable means that O is not bound to any value — in other
words, it is unbound — and hence the condition O == plus can be satisfied by assigning
O with plus in the “if” branch and by setting O 6= plus in the “else” branch. Thus in
such a case, both the “if” and the “else” branches would be taken. When the symbolic
execution system needs to follow both the “if” and the “else” branches, it updates state τ

with the conditions on O which hold true in that branch: O = plus in if branch, and O 6=
plus in else branch. Program execution is effectively divided into two at such a branch
point. Also, PC is updated with O = plus in if branch and O 6= plus in else branch.
With this explanation, it is easier to see how the tree presented in Figure 22 represents a
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1 let recog (rtl) : asm =
2 match rtl with
3 (SET D S) −>
4 (match S with
5 (PLUS _) −> (∗ add ∗)
6 let (PLUS _ S1) = S in
7 let (O1 D1) = D in
8 let (O2 S11) = S1 in
9 if O1 = reg then

10 if O2 = reg then
11 ‘‘add rS11, rD1’’
12 else if O2 = mem then
13 let (reg S111) = S11 in
14 ‘‘add ( ∗S111), rD1’’
15 else if O2 = const_int then
16 ‘‘add $S11, rD1’’
17 else if O1 = mem && O2 = reg then
18 let (reg D11) = D1 in
19 ‘‘add rS11, ( ∗rD11)’’
20 | _ −> (∗ mov ∗)
21 let (O S1) = S in
22 let (O1 D1) = D in
23 if O1 = reg then
24 if O = reg then
25 ‘‘mov rS1, rD1’’
26 else if O = mem then
27 let (reg S11) = S1 in
28 ‘‘mov ( ∗rS11), rD1’’
29 else if O = const_int then
30 ‘‘mov $S1, rD1’’
31 else if O1 = mem && O = reg then
32 let (reg D11) = D1 in
33 ‘‘mov rS1, ( ∗rD11)’’
34 )
35 | _ −> raise error

Figure 21: OCaml code for a simple code generator
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add rS11, rD1 add (*rS111), rD1 add $S11, rD1

add rS11, (*rD11)

mov rS1, rD1 mov (*S11), rD1 mov $S1, rD1
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            O == reg }

Figure 22: Symbolic execution tree of the simple code generator

symbolic execution of a simple code generator’s OCaml code. The root node of such a tree
is the entry point of the code generator, and the leaves correspond to assembly instructions
supported by the code generator. A path from the root to a particular leaf node represents
an RTL to assembly mapping pair generated by the code generator. Non-leaf nodes, on the
other hand, correspond to branch points in the program and represent the conditions on the
input that must be satisfied in order to generate the assembly instructions at the leaves. For
instance, in order to generate the assembly instruction “add r%1, r%2”, the input RTL
must be such that: O = plus && O1 = reg && O2 = reg. The combination of all these
constraints is actually a PC for the path with “add rS11, rD1” as a leaf node. Satisfying
all the constraints in the PC generates input rtl R which produces “add rS11, rD1” as the
assembly instruction.

Note that this is where the difference between function extraction and test case gener-
ation shows up clearly. To be precise, there could be more than one RTLs (i.e., R1, R2, ..)
that produce “add rS11, rD1”. For instance, there are 16 RTLs (corresponding to 4 pos-
sible values of rS11 and 4 possible values of rD1) that map to “add rS11, rD1”. For the
problem of test case generation, it is sufficient to produce one RTL (but may not be all) that
produces the assembly instruction. This is because all 16 RTLs represent the same path in
the code generator, and thus even a single RTL is enough to cover that path. The problem
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of function extraction, on the other hand, by definition demands that the relation between
all 16 RTLs and “add rS11, rD1” instruction is obtained. More specifically, note that,
similar to test case generation, if we only select single RTL, then we would be extracting
an incomplete mapping function (or incomplete semantic model). That is why for function
extraction, the constraint solver needs to return to us all the possible values that satisfy PC.
Once the program execution tree is generated, PCs for different paths are solved by using a
constraint solver. All the solutions provided by the constraint solver for a particular PC are
the input assignments which map to the output represented by the path for PC. Solving all
such PCs and obtaining all of their solutions gives us the mapping table used by the given
code generator.

4.1.2 Concolic execution of the simple code generator

The symbolic execution technique described above is called classical symbolic execution,
and it was introduced by King in his 1976 paper [49]. Unfortunately, applying classical
symbolic execution to extract a function from modern complex software is a very chal-
lenging problem. The first challenge is the exponential increase in the number of program
paths. Notice that the number of paths explored in the program tree of Figure 22 increases
exponentially as more branch points are visited. The second challenge is that all code that
can be reached from the program whose function we want to extract needs to be executed
symbolically. In the context of code generators, the second limitation proves critical. Code
generators are complex pieces of software with thousands of lines of code and, more im-
portantly, they may interact with other components of a compiler (e.g., instruction selector,
register allocator, etc). Because we are only interested in the function implemented by the
code generator, we only want to perform symbolic execution of a part of a compiler. This
is where the idea of concolic execution [82] comes into the picture.

Concolic execution is an optimization over symbolic execution that allows us to exe-
cute only a part of a program symbolically. To achieve this, it follows a simple idea: re-
strict symbolic execution to only interesting paths and visit the remaining paths concretely.
Concolic execution stands for a mix of symbolic and concrete execution. Conceptually,
it operates at a middle ground between symbolic and concrete executions. Specifically,
instead of making all program inputs symbolic, only the program inputs of interest are
made symbolic, while the remaining inputs are made concrete (i.e., concrete values are
assigned to these inputs.) The reason concolic execution reduces the number of program
paths visited symbolically is because whenever all the inputs involved in a branch condi-
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1 let recog (rtl, rtl_id) : asm =
2 if (isRTLInCache(rtl_id) == 1)
3 then getRTL[rtl_id]
4 else
5 match rtl with
6 (SET D S) −>
7 (match S with
8 ...

Figure 23: Modified OCaml code for the simple code generator

tion are concrete, the condition is evaluated concretely, and only one of the two possible
branches is taken. On the other hand, whenever at least one of the inputs involved in a
branch condition is symbolic, PC is updated appropriately as explained earlier, and both
branches are explored. Note that with concolic execution, we can effectively prune one of
the two possible subtrees at a branch point. This pruning effectively controls the explosion
in the number of program paths.

Concolic execution of the simple code generator can be performed as follows. To
demonstrate an example of the need for concolic execution, let us modify the simple code
generator. The snippet of the modified code is shown in Figure 23. The modified code
takes one more argument rtl_id (which represents a unique id for every rtl) as input.
Then, the code uses the input rtl_id to check if we have already translated the input RTL
by calling a function isRTLInCache. Assume that the function isRTLInCache uses a hash
table implementation from some library for implementing the cache, and that rtl_id of
-1 is never found in the cache. It then returns 1 if the rtl_id is found in the cache (in
which case the code calls getRTL to return the cached RTL), 0 otherwise (in which case it
explores the decision tree to translate the input RTL. The code to explore the decision tree
is same as that of the original simple code generator (hence not shown).

Given this code snippet, it is clear that we are not interested in exploring the code of
isRTLInCache and getRTL symbolically. So the question is how to handle this piece of
code? What we do in this case is to simply assign a concrete value of -1 to rtl_id, but
assign a symbolic value of (O, X, (C, A, B)) to rtl. This way, we always execute
isRTLInCache concretely. Because isRTLInCache(-1) always returns 0, the execution
will always go into the else branch at line 4. This is the code that we are only interested in
executing symbolically. In other words, we are pruning if branch at line 2 in the program
execution tree, thus reducing the number of program paths. The program execution tree
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Figure 24: Concolic execution tree of the simple code generator

of the simple code generator’s concolic execution will look like Figure 24. The pruned
subtree is shown with dotted lines.

4.2 Design

EISSEC is a concolic execution system for GCC’s code generator. Given the limitations of
classical symbolic execution discussed earlier, the complexity of GCC14, and the fact that
we are only interested in extracting a function of the code generator, we decided to employ
concolic execution instead of symbolic execution. By executing a code generator concol-
ically EISSEC can thus obtain all the RTL-to-assembly mapping pairs (semantic model)
supported by the code generator.

One of the significant complications introduced by concolic execution is the existence
of both symbolic and concrete state and the scenarios where there are assignments from
one state to another. To give a simple example, a symbolic variable could be assigned a

14There are plenty of components in code generator which perform functionalities other than mapping
RTL to assembly, and extraction of RTL-to-assembly pairs does not demand executing these components
symbolically.
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concrete value, and a concrete variable could be assigned a symbolic value. The former is a
much easier scenario to deal with, but the latter is the case of “explosion” — by explosion,
we mean in such case one has to effectively enumerate all possible values that can be taken
by the symbolic variable and assign all of those values to the concrete variable. Moreover,
we need to ensure that any natively executed code will not access symbolic variable state.

In this section, we discuss the issues produced by concolic execution of GCC’s code
generator and how EISSEC design handles them. In general, our strategy is to keep as much
of GCC’s state as concrete, and only mark global variables, functions, etc, that are needed
to extract the code generator function as symbolic. Another important aspect of EISSEC
is how it addresses the function extraction problem. There exists a number of popular
symbolic execution systems such as KLEE [19], DART [39], EXE [21], CUTE [82], etc.
But these systems are used in the context of test case generation, and not in the context of
function extraction. Although these systems do not target the function extraction problem,
there are many parallels between them and EISSEC in terms of design of concolic execution
systems.

4.2.1 Input program

Symbolic execution systems can take input programs in different forms — some take pro-
grams in a compiled binary form, while others take program source code. There are systems
like KLEE [19] that take programs in a byte-code form (program source code is compiled
to byte-code using a compiler.) Systems that perform symbolic execution of a program
executable have an advantage of being able to perform symbolic execution of any program
(even COTS binaries). Since in our case, the source code of GCC’s code generators is avail-
able, EISSEC operates on the source code. EISSEC transforms the C source of the code
generator using a source-to-source transformation approach, and the transformed source
code is then compiled and executed to perform concolic execution of the code generator.

4.2.2 Overall flow

Our concolic execution engine is implemented as a source-to-source transformation of
GCC’s code15 (which is written in C) using CIL-1.4.0 [66]. Because we can use native
execution as well, not all of GCC’s code needs to be transformed. Specifically, transforma-

15We used GCC-4.6.4 — the most recent version of GCC at the time we began our project — for our
purpose.

82



tion starts at the function recog that generates target assembly instructions from the input
RTL instructions by matching an RTL snippet against an MD rule. Any function called
by recog with possibly symbolic arguments will also be transformed to support concolic
execution. This may not always be desired. To override default choices in terms of trans-
forming (or not transforming) certain functions, we rely on annotations.

Before describing the transformation, it is necessary to understand how and when con-
colic execution comes into play. After performing all the necessary initializations, we in-
troduce a call to recog by setting the RTL code that needs to be translated as symbolic. All
other objects in GCC’s memory are concrete at this point. Concolic execution will explore
all possible paths in recog and functions invoked from it. Each such path will ultimately
terminate with a successful return from recog or a failure. In the former case, assembly
code is printed into a string-valued variable returned by recog.

Recording the mapping requires obtaining the symbolic values of the argument and
output of recog corresponding to a single execution path, and storing the pair. Most pre-
vious implementations of symbolic and concolic execution have used SAT/SMT solvers as
their constraint solvers. Unfortunately, these solvers are optimized to find a single instanti-
ation that satisfies a formula. In our case, we cannot use a single instantiation beacuse that
would capture only one of the possible translations that may be performed on a program
path. Constraint solvers, such as those included in constraint logic programming languages,
are better engineered to produce all possible instantiations. That is why we use constraint
logic programming based solvers for our purpose.

4.2.3 Source-to-source transformation for concolic execution.

Because concolic execution systems allow some of the program inputs to be symbolic, the
first design challenge for EISSEC is how to represent symbolic values in the system. Pro-
gram variables, in addition to concrete values, can now contain symbolic values. Further-
more, because variables can now have symbolic values, program statements which operate
on symbolic values need to be handled. Symbolic execution systems transform such state-
ments so that the effect of executing a statement with symbolic inputs captures the effect of
executing the statement with concrete inputs. For example, for x = y+1, if symbolic value
of y is Y , then the transformation of the statement would be such that the symbolic value
of x would be Y +1. EISSEC transforms all of the statement types supported in C, such as
assignments, conditionals, function calls, etc.

We describe our source-to-source transformation using an abstract language that cap-
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tures the essential features of C:

P ::= S

S ::= A | I(V,S,S) | W(V,S) | S;S
A ::= R | V= R | ∗V= V

R ::= O | O op O | op O | f(V, ...,V)
O ::= V | C

Here, P stands for program, S for statement, A for assignment statement, I for if-then-
else, and W for a while statement, L and R for lhs and rhs of assignments, V for a variable
(not a memory location), and C for a constant.

The transformation is specified using a function T that takes two input parameters: a C-
program statement S and an abstract environment E . While the abstract environment could
hold any type of information about variables, in our case E says whether a variable is def-
initely symbolic (Vsym = true), possibly symbolic (represented as Vsym = >), or definitely
not symbolic (Vsym = f alse). The output of T is a pair (S′, E ′), where S′ is the transformed
version of the input statement S, and E ′ is the new abstract environment.

Rules governing symbolic vs non-symbolic variables. Note that we rely on both compile-
time approximation of whether a variable contains a symbolic value and an accurate run-
time information. The former is used to avoid transformation of large sections of code that
may never manipulate symbolic state, while the latter is used to maximize concrete execu-
tion at runtime. The compile-time symbolic type of a variable with respect to its abstract
environment E is represented using function cTypeE , while the runtime type is represented
using function rTypeE . Possible values of for compile-time types are {conc,sym,>},
whereas possible values for runtime type are {conc,sym}.

The rules governing variable type need to be such that they ensure the integrity of sym-
bolic and concrete states. Because during concolic execution, both symbolic and concrete
states exist simultaneously, it is necessary that these states do not interfere with each other.
To be precise, it is necessary to ensure that accesses of all symbolic variables in the program
source code are identified correctly and are modified to access symbolic state. Additionally,
it is also necessary that all concretely executed program statements do not modify symbolic
state. The fact that the GCC-4.6.4 code generator is written in C makes this challenging.
Specifically, pointers in C make this issue complex, as they make reasoning of locations
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that are accessed difficult. Fortunately, features of GCC’s code generator source code make
addressing this challenge a bit easier.

In order to ensure integrity of symbolic state, we need to ensure that all accesses that
clobber a symbolic state are detected by our system. First, pointer dereferences pose a
challenge for this requirement because pointer arithmetic and aliases make reasoning about
pointer dereferences hard. Symbolic pointers pose an even more significant issue. In par-
ticular, dereference of a symbolic pointer demands enumeration of all concrete addresses
that could be taken by that pointer at the time of dereference and dereference of all those
memory locations (KLEE [19] follows this approach.) This makes the system very ineffi-
cient, and introduces complications (ensuring correct and accurate update to memory with-
out corrupting symbolic state)16. That is why we allow symbolic pointers in very limited
contexts. Second, because global objects are visible from “everywhere” in the program,
and because we are performing concolic execution, the requirement of ensuring integrity
also means that we need to limit which objects are considered symbolic. GCC has many
global objects, and most of them are not accessed in the code generator. Such objects can
be safely considered concrete. We thus annotate global objects which are accessed by the
code generator and consider only them as symbolic.

Based on the above discussion, the following rules govern if and when a variable can
be symbolic or concrete: (1) if a variable is annotated as being symbolic (which we do for
selected global variables only), or if a variable’s address is not taken then it is considered
symbolic, (3) variables of pointer types are considered non-symbolic unless they are anno-
tated otherwise (in our case, only pointers of type RTL were annotated as symbolic), (4)
variables of type array, structure and union are considered symbolic if they satisfy either
of the above requirements, and they are accessed using an offset which is a compile-time
constant (e.g., a[2] is fine, but not p = &a[0]+2; *p=..) — in other words, accessing
them using pointer arithmetic is not allowed17. Fortunately, in case of GCC, most of the
code uses pointers in accordance with our rule, but there were a few places where symbolic
arrays were accessed using pointer arithmetic, and we rewrote such cases to use constant
offsets.

Fortunately, GCC’s code generator conforms to most of these restriction, but in the fol-
lowing case, we rewrote the code to enforce these constraints. To be precise, the case of

16While an alternative approach of treating memory objects symbolically [82] can work in such a case,
given the large number of GCC’s in-memory objects, we do not want to treat them symbolically.

17This does not mean that we refuse a program which uses pointer arithmetic. In such case, we treat pointer
arithmetic concretely.
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Array of rtx accessed using a pointer needed a rewriting. Operands of an RTL instruction
are stored in an array (declared as rtx operands[]) of rtx pointers. GCC’s code was ac-
cessing the elements of operands using pointer arithmetic, such as rtx* o = operands;

..; *(o+2) = ... As per rule 4 above, this was not allowed. So we rewrote this access
as operands[2] = ... Note that, although operands[2] can also be thought of as a syn-
tactic sugar over pointer arithmetic and dereference syntax, the expression operands[2]

allows reasoning about the element of the array that is being accessed. This allows gener-
ating appropriate constraints easily. There were 12 places in the code generator where this
change was necessary.

Once program variables are marked as sym or conc as per the above rules, we use stan-
dard data-flow analysis to compute symbolic types of the other program variables. Specif-
ically, the following rules were used.

• First, if output (VO) of a program statement is marked as definitely symbolic/non-
symbolic (i.e, either cTypeE (VO) = conc or cTypeE (VO) = sym), then we do not
need to propagate any symbolic type information from input to output.

• Otherwise, if all input variables of a program statement are definitely concrete, then
the output is marked as concrete (cTypeE (VO) = conc).

• On the other hand, if all input variables of a program statement are definitely sym-
bolic, then the output is marked as symbolic (cTypeE (VO) = sym).

• Otherwise, cTypeE (VO) of output is set to >.

These data-flow analysis rules are applied at function granularity by starting with the
types of formal parameters and using them as input for the type propagation rules. E for the
function is updated when the type of new variables is derived, and it is used to transform
program statements.

Before we talk about the transformation of each program statement from the abstract
language, we will look at the high-level idea behind the transformation, shown in Figure 25.
The figure shows how we transform a statement S depending on the compile-time type or
runtime type of inputs (VI) and output (VO). T is the transformation function which takes
S and E as input and emits the transformation of S and the statement to update the abstract
environment E as an output.

• cType(VO) = conc: the high-level idea captured in this case is that if the compile-
time symbolic type of the output is conc (i.e., the variable cannot hold a symbolic
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Conditions on VO Conditions on VI T
∀VI, cTypeE (VI) = conc S

E [rTypeE (VO)← conc]
cTypeE (VO) = conc if ∀VI, rTypeE (VI) = conc

S

∃VI, cTypeE (VI) 6= conc else
enumerate

E [rTypeE (VO)← conc]
cTypeE (VO) = sym ∀VI,cTypeE (VI) => addCons(Vo = S(VI1 , ..,VIn))

E [rTypeE (VO)← sym]
if ∀VI, rTypeE (VI) = conc
S

cTypeE (VO) => ∀VI,cTypeE (VI) => E [rTypeE (VO)← conc]
else

addCons(Vo = S(VI1, ..,VIn))
E [rTypeE (VO)← sym]

Figure 25: Transformation logic for VO = S(VI1, ..,VIn)

value), then we cannot execute S symbolically. This is because there is a constraint
on the symbolic type of output. In such case, if all inputs are concrete then we
can execute S concretely. Note that the runtime check (if) has to be emitted before
statement S to ensure that all inputs are concrete at runtime. If this runtime check
fails, then we enumerate all possible concrete values for symbolic inputs, and execute
S for each of them. We will specify how to perform such enumeration for each of the
program statement from our abstract language shortly. But the intuitive description
of enumeration is given after discussing all the cases.

• cType(VO) = sym: when the compile-time type of output is symbolic, then irrespec-
tive of compile-time type of inputs, we generate a constraint which captures relation
between inputs and output. The generated constraint is then sent to constraint solver.
addCons is thus a function used to send a constraint to a constraint solver.

• cType(VO) = >: when we do not know the compile-time symbolic type of output,
then depending on the run-time symbolic type of all inputs, we will either execute
the statement concretely (and set run-time symbolic type of output conc), or generate
a constraint (and set the run-time symbolic type of output to sym). Note that the case
of compile-time symbolic type of all inputs being conc will not arise for this case, as
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our data-flow analysis in such a would mark the output as conc at compile-time.

Enumeration (symbolic to concrete conversion). Whenever there is an operation in-
volving at least one symbolic argument, we must either have a symbolic version of the
operation, or we must enumerate and try all possible values of the symbolic argument.
Additionally, whenever a symbolic value is assigned to a concrete variable, we must enu-
merate all possible values that could be taken by that symbolic variable at that program
point, and assign each value to the concrete variable one by one. This leads to a significant
increase in the number of program paths, but we do not anticipate such cases to arise fre-
quently. We make concrete variables symbolic as often as possible. Additionally, to reduce
the number of program paths that we generate by enumeration, we have devised a number
of optimizations which we discuss in Section 4.4. Optimizations which reduce the number
of program paths are crucial to complete the concolic execution of the code generator.

Figure 26 shows the program statement that will be transformed (in column S), the logic
behind its transformation (in column T), and the updated value of the runtime variable type.
Column T contains the actual transformation of S, while the conditions checked at compile-
time to produce the transformation are shown in column C . Following the high-level logic
for statement transformation discussed earlier, we do not show cases for which we execute
statement concretely (case of S being produced in column T). Instead, in this figure, we
only show cases where the statements are transformed.

Transformations.

• V= O1 op O2: this case applies for statements containing binary expressions. It can
also be thought of as a general version of unary expressions (so we do not show trans-
formation of unary statements.) The idea behind transformation of this statement is
same as the high-level idea. Only the case of enumeration deserves some explana-
tion. Specifically, if the compile-time type of output is conc, and the run-time type
of any of the inputs is sym, then we have to enumerate all possible concrete values
that can be taken by the symbolic value and use those concrete values to execute the
statement concretely. This is the idea captured by the runtime check inserted for this
case. For a symbolic execution system, this is the most undesirable situation because
enumeration leads to creation of numerous symbolic processes.
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S C T
V = O1 op O2 cType(V) = sym ‖ cType(V) = > addCons(V = O1 op O2)

if ∀Oi, rTypeE (Oi) = conc
E [rType(V)← conc]

else E [rType(V)← sym]
cType(V) = conc if rTypeE (O1) = sym ∧

foreach o1 ∈ conc(O1)
foreach o2 ∈ conc(O2)

(V = o1 op o2)
elif rTypeE (O1) = sym

foreach o1 ∈ conc(O1)
(V = o1 op O2)

elif rTypeE (O2) = sym
foreach o2 ∈ conc(O2)

addCons(V = O1 op o2)
else addCons(V = O1 op O2)
E [rType(V)← conc]

*V1 = V2 // No condition if rTypeE (V2) = sym
checked as V1 (foreach v2 ∈ conc(V2)
must be concrete fork_and_continue();

*V1 = v2;)
else (*V1=V2);
E [rType(V2)← conc]

f(V1,...,Vn) f_cons is defined if ∃i, rTypeE (Vi) = sym
f_cons(V1,...,Vn, V)

f_trans exists if ∃i, rTypeE (Vi) = sym & rTypeE (VPi ) = conc
(foreach vi ∈i

fork();
Vi = vi;
f(v1, .., vn))

else (f_trans(V1, ..., Vn, V1meta, ..., Vnmeta))
f(V1,...,Vn)

S1; S2 (S1n, E1) = T(S1, E )
(S2n, E2) = T(S2, E1)
(S1n; S2n;, E2)
E = E2

I(V, S1, S2) if rTypeE (V) = sym
let ret = addCons(V = true);

if ret = SAT
if fork() = child

addCons(V = true);
T(S1, E );

else
addCons(V = false);
T(S2, E );)

else
addCons(V = false);
T(S2, E );

else I(V, S1, S2);

Figure 26: Transformation function for different program statements
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• ∗V1= V2: this case applies to pointer-dereferences, and since pointer being derefer-
enced is concrete at compile-time, we simply generate a runtime check for enumer-
ation (as in the previous case). In case of enumeration, since V2 was symbolic, we
need to update its runtime type to concrete.

Dereferences of symbolic pointers introduces an interesting challenge. Specifically,
since the pointer value is symbolic once must concretize the value in order to deref-
erence it. This leads to the issue of enumeration discussed earlier. Fortunately, in
GCC’s code generator, there are no direct pointer dereferences. Instead, pointers to
compound data types are dereferenced to access their fields. For symbolic rtx point-
ers, rtx being an object, all dereferences were to access the fields of the object. GCC
uses special functions, called accessor functions to access fields of rtx. For instance,
assuming that rtx were to have a field named foo, then GCC would have a function
named GET_FOO(x) which would be defined as GET_FOO(x) = x->foo. In other
words, accessor functions define an interface to access fields of RTL instruction, and
thus hide the representation of RTL object. We exploit this observation to handle
field references of symbolic rtx. Specifically, for each accessor function (around 50
in total), we manually write a new symbolic accessor function which would model
the semantics of GCC’s accessor functions on symbolic RTL instruction. For in-
stance, for GET_FOO, we would generate GET_FOO_CONS(x) which would generate
a constraint that x is of type rtx and return the symbolic value of x->foo. Total
code for symbolic accessor functions constitute around 2000 lines of C code. We
need to manually write symbolic versions of accessor functions because we want to
represent rtx type specially in our constraint system. Specifically, we treat rtx as a
compound type and hide its details (such as fields, their ordering, etc) from the rest
of the code. If we transform accessor functions as any other functions, then we will
not be able to control the symbolic representation of rtx type.

Note that the approach of allowing accesses to compound objects only via constant
compile time offsets allows us to handle references to elements of compound sym-
bolic types like arrays, structures, etc. For instance, the field dereferenced in case of
array would be the element of the array being accessed. For these compound types,
in addition to GET function, we also define SET function. Note that this also allows
us to handle non-rtx type pointer dereferences also. By encapsulating accesses to
compound symbolic types, we can change the underlying symbolic representations
of these types easily.
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• f(V1, ...,Vn): since we expect most (if not all) global variables to be concrete, sym-
bolic values will flow into local variables primarily from function parameters (same
rules applied to local variables are applied to formal parameters to determine which
of them are symbolic.) In particular, a call f (x,y) will need to be transformed into
f _trans(x,y,xmeta,ymeta). xmeta and ymeta allows us to pass meta-information about
symbolic actual arguments from caller to callee, and it is used to assign symbolic
actual arguments in the function prologue. We also need to transform f ’s body to
produce f _trans’s body. f _trans is produced by transforming all statements in its
body. Note that in the figure VPi represents the formal parameter in the function
prototype corresponding to actual argument Vi.

Note that f _trans is different than f _cons because f _cons represents the transformed
version of an accessor function f , while f _trans represents the transformed version
of any other function f defined in the code generator.

Note that original function f will continue to exist, in case it is called from untrans-
formed code. But we do not call f from transformed code even if the arguments are
all concrete. This allows us to support cases where a global variable (accessed within
f ) contains a symbolic value. This is important because if we were to call untrans-
formed f in case all of its arguments are concrete, we would update the symbolic
global variable concretely, and would miss constraints on that variable.

Whenever a function call is to be transformed, we check if the function being called
is a standard library (such as libc) function (e.g., malloc). In case it is a standard
library function, we do not transform the call, and keep the original call as it is. If
the function is not a standard library function and we have already transformed the
definition of such a function then transformed(f) returns true, and in such case,
we emit the code shown next to it. Thus, in short, we do not transform any functions
outside of GCC’s code generator source code.

The transformed named for GCC’s accessor functions are obtained by appending
_CONS to the accessor’s original name. That is why we first check if the function
being transformed is an accessor function and if we have its symbolic version. In
case it is, then we invoke symbolic version of the function in place of the original
call.

One another type of function which we manually transform is the one which relates
to printing of symbolic operands of assembly instructions. Note that the code for
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printing assembly instructions mostly consist of libc functions such as write or
fputs. If we want to print symbolic operands using these functions, then we have to
transform these functions as well. This adds unnecessary complexity to the system.
Instead, we write wrappers (similar to accessor functions for rtx) and handle the
printing of symbolic operands in them. Wrappers and accessor functions in total
constitute around 1.2K lines of code.

As a last option in the transformation of function calls, if the function is neither
transformed nor an accessor function, then we execute that function call concretely.
This is captured in the last case.

• S1;S2: this case represents a sequence of two statements. The way we transform this
sequence is by first transforming S1 and then feeding the output E 1 of S1 to transform
S2. The output E 2 is then the output E of the sequence.

• I(V,S1,S2): if-then-else statement represents an important case in statement trans-
formation because it is where the symbolic processes will fork their execution into
two. First of all, if the condition (of if statement) is concrete, then we can simply
execute the statement concretely. In such case, symbolic process will not fork its
execution.

On the other hand, if the condition is a symbolic expression, then we may need to
fork the execution. To determine if we need to fork, we first check if the condition is
satisfiable (SAT ) by sending the constraint to the constraint solver. If the condition
is unsatisfiable, then we can only take else branch. An example of an unsatisfiable
constraint is V = 10, when V is already bound to 5 by the statement V = 5. In the
else branch, we add the constraint that V is f alse as that is what the semantics is. On
the other hand, if the condition is satisfiable (e.g., condition V < 5 is satisfiable, if
V is not bound to any value), then we need to fork the execution. Conceptually, this
is similar to Unix fork() semantics. After fork, child continues with the if branch,
while parent continues with the else branch.

Treatment of if statement can also be thought of as similar to generating one or two
concrete values from V . Specifically, similar to symbolic-to-concrete conversion, we
would enumerate V by assigning it either of none, true, f alse or both.
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1 asm recog_trans(rtl, rtl_meta) {
2 RTL_CHILD_CONS(rtl, 1, rc1); // RTL accessor function
3 RTL_CHILD_CONS(rtl, 2, rc2);
4 // ask constraint solver if the constraint is satisfiable
5 if (try(rc2 = (plus,_,_))) { // add
6 if (try(rc1 = (reg,_))) {
7 RTL_CHILD_CONS(rc2, 2, rc22);
8 if (try(rc22 = (reg,_))) {
9 // End of program path. Record the I/O mapping and

10 // terminate execution here.
11 recordMapping(rtl, "add r%1, r%2");
12 } else if (rc22 = (mem,_)) {
13 // In else, we add negation of if condition.
14 addCons(rc22 != (reg,_));
15 recordMapping(rtl, "add r%1, (∗%r2)");
16 } else if (rc22 = (const_int,_)) {
17 addCons(rc22 != (mem,_));
18 recordMapping(rtl, "add r%1, $%2");
19 } else {
20 addCons(rc22 != (const_int,_));
21 recordUnreachablePath(rtl);
22 }
23 backTrack();
24 } else if (try(rc1 = (mem,_))) {
25 if (try(rc22 = (reg,_))) {
26 addCons(rc1, != (reg,_));
27 recordMapping(rtl, "add (∗r%1), r%2");
28 backTrack();
29 } else addCons(rc1 != (mem,_));
30 }
31 // Inputs lead program execution to failure cases.
32 recordUnreachablePath(rtl);
33 } else { // mov
34 addCons(rc2 != (plus,_,_));
35 // transformation for mov
36 ...
37 }
38 }
39 }
40 // To save the space, the original function is not shown here.
41 // But our transformation preserves the original function.

Figure 27: Source-to-source transformation of the simple code generator
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Example. Source-to-source transformation of the simple code generator from the previ-
ous section performed using T is shown in Figure 27. Notice that the function translate_rtl
is transformed into translate_rtl_trans with rtl_meta being passed as an additional
parameter. rtl_meta is the part of runtime metadata that helps in identifying if a given
variable is symbolic or concrete. Calls to RTL accessor functions such as RTL_CHILD are
transformed so that appropriate constraints are generated in them. For RTL_CHILD, a con-
straint that would be generated would capture the relationship that rc1 is the first child of
rtl. Conditions of the if statement are transformed into a call to a constraint solver with
conditions transformed into constraints. try() is a way to ask a constraint solver if the
constraints that it has been passed are satisfiable. try() behaves exactly like fork() –
whenever constraints are satisfiable, it creates two program execution flows: one goes into
the if branch and the other goes into the else branch. In the else branch, we first add a
negation of the if condition as a constraint that must hold. addCons is a way to add con-
straints into the constraint system and also to ensure that the constraint addition does not
fail. If addCons fails, then it terminates the execution flow along that path and returns to
the latest branch point visited in the flow. If addCons succeeds, as should happen in most
cases, the execution flow continues to the next statement. Return statements from functions
are transformed into calls to recordMapping to record the input to output mapping. This
is because the return statements of translate_rtl_trans are an ends of program paths.
That is why we invoke backTrack after calling recordMapping. For other functions,
return is a way to return to their callers. In such cases, we do not call recordMapping
and backTrack, but instead set the metadata of the return value and return the actual return
value. In the example, translate_rtl_trans is a top-level function and the transforma-
tion generates recordMapping and backTrack for it. All unreachable program points are
transformed into a call to recordUnreachablePath, which records the information that
the particular program point is unreachable, and then terminates the current execution flow.
Execution of this transformed program, which amounts to concolic execution of the simple
code generator, yields the mapping table in Figure 20.

4.2.4 C language features and challenges for EISSEC

C is a very well-known language for the power it gives to the programmers by having
features like pointers, typecasting, etc. All such features pose challenges for EISSEC. In
this section, we discuss the challenges of performing symbolic execution of GCC’s code
generator.
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Pointers. Pointers in C introduce some complications for our symbolic execution system.
This is because, unlike C, in constraint programming languages, there is no concept of a
reference to an object. Moreover, treating program variables of pointer type as variables
of basic types and assigning them symbolic variables leads to further complications. C al-
lows pointers to be used in dereferencing as well as arithmetic. To support both semantics
of pointer types, the type system of our constraint solver must allow all unsafe type casts
that are allowed in C. This can lead to runtime inconsistencies. Moreover, dereferencing
of symbolic pointers demands assigning all possible valid memory addresses to the sym-
bolic pointer (i.e., symbolic-to-concrete conversion) and then performing the dereference
on the concrete pointer. Given the large number of concrete memory addresses, enumer-
ation of symbolic pointers is too inefficient and introduces considerable complications in
the system.

To avoid runtime inconsistencies altogether, our system supports pointers in very lim-
ited contexts. Specifically, pointers of rtx type are allowed to be symbolic in our constraint
system. Additionally, pointers to compound types, such as arrays or structures, that are
used for accessing field offsets which are compile-time constant expressions are allowed
to be symbolic. Pointers of all other types are untransformed, and hence treated as con-
crete. Fortunately, GCC’s code generator hardly uses pointers, and in cases where it does,
it uses pointers of type rtx. Additionally, rtx pointers are not used in pointer arithmetic
and are used in a type-safe manner. As a result, representing rtx pointers by a symbolic
object, and modeling type-safe dereferences of such pointers is quite straight-forward for
EISSEC. As mentioned earlier, our source-to-source transformation pass handles pointer
dereferences via accessor functions which refer to semantics of the operation and generate
the corresponding constraints.

Note that representing NULL rtx pointers and allowing comparison to other rtx point-
ers demands special treatment. This is because NULL is generally defined as 0, and because
rtx is a term type in the constraint system, comparison of an integer with a term would fail
in the constraint solver. To solve this problem, we define a special rtx object (with rtx

code of -1; valid rtx objects have positive values of code) in our constraint system, and
treat that object to be semantically equivalent to a NULL rtx pointer.

To give an example, Figure 28 shows a piece of C code, and the comments after the
statements show the corresponding constraints that are generated for such code.
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1
2 /∗ Definition of rtx type ∗/
3 struct rtl {
4 enum rtx_code code;
5 enum machine_mode mode;
6 rtx childs[]; // variable size array
7 };
8 typedef struct rtl∗ rtx;
9 ..

10
11 /∗ actual code ∗/
12 rtx r = new_rtx(); // R = rtx(C, M, CH) /∗ Prolog functor ∗/
13 if (r == NULL) // C == −1? /∗ Valid RTL has C >= 0. ∗/
14 .. /∗ So NULL rtx has C = −1. ∗/
15
16 if (r−>code == REGISTER) // C == REGISTER?
17 ..
18 else if (r−>code == MEMORY) // C == MEMORY?
19 ..
20
21 r−>mode = 0; // M = 0
22 ..

Figure 28: C Source code with use of rtx pointers and constraints generated for it

Type casting. Type casting introduces runtime inconsistencies for our constraint solver.
Comparison of NULL with rtx pointer is one such example. The fundamental problem
is that by faithfully following the source type, the constraint solver assigns types to the
symbolic variables. If the source type is changed abruptly, then the constraint solver throws
a runtime exception about the type change of a symbolic variable. Our constraint solver
is written in Prolog and supports type-safe casting and, fortunately, we found that GCC’s
code generator conforms to the type-safe use of C types as well. We therefore do not have
to handle type casting specially.

Unions. GCC’s code generator frequently uses unions. To model C unions in our type
system, we treat them as tagged unions (i.e., same as structures in C). In other words, the
semantics of sharing of C’s unions is not modeled in our constraint system. This is because
we expect the code generator to use unions in a type-safe manner. In our experiments, we
found that GCC’s code generator meets our expectation.
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Other C features. Converting C’s bounded-range arithmetic into our constraint system’s
pure integer constraints is sound only when there are no overflows. If an overflow reflects
a programming bug or, more commonly, an assumption on legitimate inputs, its conse-
quences are not serious — our transformation function simply does not capture input ranges
that lead to overflow. But if the overflow is intended and expected, then it poses a problem.
However, we found that this is rare in GCC’s code generator. Nonetheless, we found one
case where the overflow was intended, and our constraint system generated incorrect con-
straints in such case. To solve this problem, we transform the code automatically so that
our constraint system generates correct constraints.

The code below shows how GCC defines a macro IN_RANGE. The macro returns true if
VALUE is within the range of [LOWER, UPPER].

IN_RANGE(VALUE, LOWER, UPPER) =
((unsigned int) (VALUE) - (unsigned int) (LOWER) <=

(unsigned int) (UPPER) - (unsigned int) (LOWER))

GCC relies on C’s conversion of a negative result into a positive, and thus it does not
need to check explicitly for a case when VALUE is in the range [0, LOWER]. Unfortunately,
when we have an IN_RANGE check as a condition on if statement, our system negates this
check in else branch incorrectly. Specifically, the negation is defined as follows:

((unsigned int) (VALUE) - (unsigned int) (LOWER) >

(unsigned int) (UPPER) - (unsigned int) (LOWER))

This check ignores the possible values from [0, LOWER], which could satisfy the nega-
tion. To solve this problem, arithmetic expressions in C which could potentially trigger
overflows are transformed to use the semantics of unbounded precision. Specifically, for
the source statement a = b + c, where a, b and c are unsigned 32-bit integers, we trans-
form them to:

a = (b + c) > MAXUNSIGNED ? a = b + c - MAXUNSIGNED - 1 : b + c

where MAXUNSIGNED is (unsigned)(-1). Such explicit modeling of unbounded range
arithmetic helps address the challenge for EISSEC.

97



4.3 Implementation

EISSEC’s implementation is divided into multiple components.

4.3.1 Source-to-source transformation

Source-to-source transformation is implemented as a plugin to CIL [66], a popular open-
source source-to-source transformation system. The implementation of the plugin consists
of around 2600 lines of OCaml code. The plugin utilizes some of the CIL features such as a
simplification pass to generate 3-address code from C code to simplify the transformation.
The plugin also handles other challenges such as avoiding the transformations of system
code included from header files. This is done by getting a list of directories which are
included in the compiler’s include search path. We treat files included from any of those
directories as a header files and avoid their transformation. The transformer needs support
code (written in C) to implement various functions such as addOpCons etc. This support
code is approximately around 7200 lines of C code. It also includes approximately 3000
lines of C code for RTL accessor functions.

4.3.2 Dynamic single assignment

One challenge to consider while designing a symbolic execution system is how to provide
the value semantics demanded by symbolic execution. To be precise, value semantics
means that objects are immutable (which is the case, as symbolic variables are immutable.)
On the other hand, the C language uses reference semantics where the value of a variable
can be updated multiple times. Note that concrete execution updates variables in memory,
whereas symbolic execution generates constraints on values in memory. In particular, a
constraint on the value of a variable holds only until the variable is assigned again. To
capture these value semantics, the symbolic execution system treats each assignment of a
variable as if it is an assignment to a distinct symbolic variable.

The approach of using variable’s runtime address to generate a unique symbolic name
will not work in case of value semantics. We address this challenge by relying on the
notion of dynamic single assignment [92]. Specifically, we map every symbolic variable to
a unique integer (we call it generation count, and it is used to generate a symbolic name),
and then reassign the variable to a new generation count in case of multiple assignments to
the same variable. Similar to SSA (static single assignment), all new variable references
will use the most recent generation count. A stack of generation counts is used to keep track
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of all generation counts. Use of a stack also integrates well with the variable scoping rules
in C. Additionally, the map between locations and generation counts for all local variables
of a function is built at the function entry and destroyed on function exit.

4.3.3 Undo records

Whenever a symbolic process reaches a branch point and the branch condition is satisfi-
able, the symbolic process needs to fork its execution into two processes and follow both
paths. The ability to follow both paths is the key difference between symbolic and concrete
execution which helps symbolic execution achieve better coverage than concrete execution.

There are two key criteria that must be satisfied in such forked symbolic execution:
(1) the symbolic state of both symbolic processes after forking should only differ in terms
of the branch condition (in the symbolic process that follows the if branch, the branch
condition must be true, while in the one that follows the else branch, it must be false),
otherwise, the rest of the symbolic state must be same, and (2) symbolic states of both
processes must be completely isolated from each other (by using copy-on-write, they could
share the same state) — changes made by one process to its symbolic state must not be
visible in the other symbolic process.

Naive fork() based solution. The two criteria from the forked symbolic execution fit
perfectly in the context of Unix-style fork(). Naturally, the use of fork() to implement
forked symbolic execution is a very logical solution. The EXE [21] symbolic execution
system follows this intuition. Unfortunately, the use of fork() to implement the notion
of forked symbolic execution leads to serious performance degradation. Our experiments
revealed that this is not efficient solution (this also falls in line with the view presented in
KLEE [19], the follow up work to EXE.) Specifically, the overhead of fork() is consider-
able with respect to the time spent by the forked symbolic process before it is terminated.
This is because most of the symbolic processes correspond to error conditions in the code
generator, and in such cases these paths are terminated immediately.

Undo records. Given that a fork() based solution proved to be inefficient, we decided
to develop our own solution based on logging and rollback to satisfy the criteria of forked
symbolic execution. Intuitively, the solution schedules the symbolic process for the if

branch first, and it records all the changes made to the symbolic state before its termination.
Once the symbolic process for the if branch has terminated, it undoes all the changes made
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by that process (to the symbolic and concrete states), and passes that state as a starting state
to the symbolic process for the else branch. The overall semantics of our solution are
same as fork() with one important difference: the solution inherently prohibits parallelism
— processes for both branches cannot be scheduled in parallel. We found that, given the
performance improvement that it gave, the disadvantage in parallelism can be tolerated.
We call our solution undo records, because it relies on the notion of maintaining a record
of the changes made and eventually undoing them.

The undo record solution intuitively needs to satisfy the following criteria: (1) keep
track of all the changes being made to both the symbolic and concrete state, and rollback
those changes when the program path has terminated (symbolic process has exited), and
(2) transfer control back to the latest branch point whose path is being explored. The first
criteria is easier to understand, while the second criteria needs some explanation. Note that
a program path will most likely consist of multiple branch points. When such a path is
terminated, we need to visit the branch points that were visited in the opposite order. These
semantics naturally specify that one needs to maintain a stack of branch points.

A naive solution to implement undo records is to snapshot the symbolic process at a
branch point and to apply that snapshot when the program path terminates. Because the
symbolic metadata is also maintained as a part of symbolic state, such approach can work.
Unfortunately, it is too inefficient. Specifically, the snapshot size could be considerable,
especially on a 64-bit machine. The drawback of this approach is that it ignores the fact
that most program memory is not writable (specifically, program text and read-only data),
and thus we do not need to take a snapshot of it. Additionally, with branch points being
visited frequently, there would be only a few changes to the states. Thus, keeping track of
them should not be inefficient. This observation inspired our undo record solution which
uses a combination of snapshotting and recording techniques.

Recording symbolic state changes. All changes made to symbolic state, such as addi-
tion, deletion, and modification of symbolic variables, are recorded before the change is
applied. Every symbolic state change record consists of the symbolic variable that is being
changed, the type of the change, and the value of the symbolic variable before modifica-
tion. All changes made to the symbolic metadata are also tracked. Thus, dynamic single
assignment effects are also undone in the end.

The changes are undone by performing the inverse of the action logged in the record.
For instance, if a symbolic variable is deleted as per the record, then we create a variable. In
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order to undo constraints sent to the constraint solver, we do not need to send it the inverse
of the constraints. This is because the constraint solver supports the branching logic for
symbolic processes, and recovers its state to the last branch point whenever a path has
terminated (backtracking in Prolog).

Recording concrete state changes. In addition to symbolic state changes, all changes
made to the concrete state of the symbolic process need to be tracked as well. Concrete
state changes include changes made to program registers and memory. Specifically, all
changes made to writable (W) memory such as stack, heap, and writeable global data need
to be tracked and rolled back. Our solution for these is as below:

• Program registers

To handle registers, we use a snapshot technique. Specifically, we use setjmp+longjmp,
where we call setjmp at a branch point and store the jmp_buf for every branch point.
In the end, when the path is terminated, we call longjmp using the jmp_buf of the
latest branch point on the stack. This helps us to take control back to the latest branch
point on the stack and to recover the register state correctly.

• Heap and global memory

Unfortunately, setjmp+longjmp do not recover the state of the program memory.
We developed an additional solution for the memory. Our high-level approach to
handle memory is to track all changes being made to the memory contents. Thus, we
instrument every program statement and record the memory locations that are being
modified in the statement, the type of change being made, the size of the access being
made, and the contents of the memory locations before the change.

This solution works in most cases, but free() function causes an interesting compli-
cation. The problem is that we cannot use malloc() to undo effect of free() as this
does not guarantee that the memory allocator would allocate the memory at the same
address that it allocated before free(). To solve this problem, we override the free()
function, and define it as an empty function (that does nothing). Fortunately, GCC’s
code generator does not perform heap allocations at all, and thus this approach does
not lead to any issues because of the memory leaks.

• Stack
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Unfortunately, the instrumentation-based approach used for the heap and global mem-
ory does not work for the stack. This is because stack memory can be updated in ways
which are not visible in the source code. Specifically, function calls and returns will
modify activation records, and at the source code level, these changes are not visible.
Additionally, stack updates are much more frequent as compared to heap or global
memory updates. An instrumentation-based solution would prove inefficient. We use
a snapshot-based solution for stack. (Accesses made to the stack are distinguished
from accesses made to other memory by relying on top and bottom values of stack.)

In more detail, at the branch point, we take a snapshot of the full program stack (from
stack top to stack bottom) and store it in the branch point. (We need to take a full
snapshot because a path can terminate in the bottom-most activation record, and thus
when we go back to such a branch point, all of the activation records would have been
deleted. In such case, we would need to recreate all those activation records.) When
the program path is terminated, we refer to the saved stack of the latest branch point
and use it to overwrite the current stack. The fact that the program stack is generally
small (less than 8KB on Linux) makes this approach time-efficient (by trading some
space).

We opted for this inefficient, but simple, solution because we found that it works fine
in our context. Moreover, a more efficient approach that we designed was leading to
a lot of complications and was making our system unstable. Our efficient approach
was trying to reduce the amount of stack space saved in each branch point. The idea
that we can snapshot the top part of the stack since the previous snapshot can reduce
the memory consumed considerably. However, this approach complicates undoing
of stack changes considerably. Specifically, the complications arise because there
may not be synchronization between visits to the branch points and the creation or
deletion of activation records. These complications were making our system buggy.
As a result, we decide to use a simple approach instead of this efficient approach.

Our undo record approach is implemented in around 500 lines of C++ code. The space
complexity of our approach is proportional to the length of the program path (in terms of
branch points), and is not proportional to the number of program paths. Thus, our system
can scale to millions of paths.
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4.3.4 Constraint solver

Constraint solver plays an important role in the efficiency of a symbolic execution system.
Because the constraint solving time dominates the overall runtime of symbolic execution
systems, popular symbolic execution systems such as KLEE [19], CUTE [82], etc, have
implemented optimizations to simplify the constraints before sending them to a constraint
solver or eliminate them altogether. These systems use SAT/SMT solvers such as STP
[38] or Z3 [34] as their constraint solvers. SAT solvers solve the SAT problem, whereas
SMT solvers are SAT solvers with the support for higher-order theories such as theory of
bit-vectors, theory of arrays, etc. With the support of these theories, SMT solvers allow
modeling of high-level language constructs efficiently. For instance, constraints generated
from C code that use arrays can be efficiently modeled using SMT solvers with the theory
of array. That is why SMT solvers are popular among many symbolic execution systems.

Even though SMT solvers are commonly used constraint solvers among symbolic ex-
ecution systems, in EISSEC, we use a finite-domain constraint solver [90] with constraint

logic programming (CLP) to model the constraints. The reason why we do not use SMT
solvers is because SMT solvers are efficient at producing multiple answers to the same
query18. Specifically, they are not engineered to provide all solutions [42, 95]. CLP, with
the support of a finite domain constraint solver, on the other hand, is based on the idea that
all solutions need to be enumerated. In EISSEC, we need to produce all answers to a query
when we convert a symbolic variable to a concrete variable (we called it concretization or
“explosion”).

The implementation of our constraint solver uses Swiprolog [96], a popular Prolog
engine, with its support for CLPFD [90]. GCC’s code generator only generates finite-
domain constraints, so CLPFD is enough for our purpose. The solver is implemented in
around 700 lines of Prolog and is supported by 1000 lines of C code. It uses the well-known
Prolog concept of backtracking (using fail.) and other supported features of Swiprolog
such as association lists, enumerating all solutions to a query using labeling.

Although, we could map most of our requirements from the constraint solver into the
predicates of CLPFD or Swiprolog, one problem demanded special treatment. Specifically,
we found that neither CLPFD nor Swiprolog provides predicate(s) to access the set of
constraints imposed on the variables. The output mapping rules generated by EISSEC are
of the form A→ I |C, where A is an assembly instruction which maps to an IR instruction

18It is thus quite logical that the symbolic execution systems that are used in the context of bug finding
(where generating even one answer to a query is enough) can use SMT solvers.
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I under a set of conditions C. C represents conditions on the variables from A and I. To
give an example, push %X→ (set(mem (reg esp))(reg X)) | X = eax,ebx, .. could be a
mapping rule for push instruction with a register as an operand. Note that X is a variable,
and since it can only contain the valid register names, there are constraints on it. These
constraints would be imposed by GCC’s code generator, and they would be present in the
Swiprolog constraint store. Unfortunately, we did not find any predicates (to the best of
our knowledge) to access the constraint store and retrieve the constraints on all the variables
in a mapping rule. To solve this problem, we access the constraints using clpfd_attr and
access its propagators via fd_props19 as Swiprolog stores the constraints using attributed
variables [91]. In order to capture a complete set of constraints on all the input and output
variables of a mapping rule, we traverse the dependence graph of the variables starting from
the output variables and reaching all the input variables. The dependence graph can is an
undirected graph where the nodes are variables and the edges are constraints between the
variables. The goal of the traversal is to print constraints appearing on all the paths between
the output and the input variables.

The constraint solver runs as a separate process than the transformed C code and sim-
ply acts as a proxy between transformed C code (which generates constraints) and the
Swiprolog Prolog engine (which solves them). The C support code provides APIs to
the transformed C code to generate constraints (addCons), sends them to the constraint
solver, and also maintains statistics for diagnostic purposes. Additionally, it also sup-
ports functions which deal with symbolic processes, such as handling of symbolic fork
(try()), enumerating all solutions to a query (getNext()), recording input/output map-
ping (recordMapping()), etc.

4.4 Optimizations

Symbolic to concrete conversion (“enumeration” as we described earlier) leads to a large
number of program paths, more than what we would get if there is only one symbolic
process per program path. As the total time taken to extract a code generator function is
proportional to the number of program paths, enumeration increases the time needed for the
function extraction. As a part of improvement, we found a few optimizations that reduce
the effect of enumeration on the number of paths.

To understand how optimizations help in reducing the number of program paths, we

19These are not standard predicates in Prolog, but rather are internal ones.
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1 /∗ Some definitions ∗/
2 enum rtx_code = {REG = 0, MEM, CONST_INT, LABEL};
3 int num_ops[] = {1, 2, 1, 1};
4 #define HAS_SINGLE_OPERAND(code) (num_ops[code] == 1);
5
6 /∗ actual code ∗/
7 int getType(enum rtx_code code) {
8 if (HAS_SINGLE_OPERAND(code)) {
9 ...

10 if (code == REG)
11 ...
12 else if (code == MEM)
13 ...
14 } else {
15 ...
16 }
17 }

Figure 29: Sample C source code for concolic execution

first need to understand the problem in more detail. Consider that we want to execute the
code in Figure 29 concolically. The code implements a simple function of accepting the
rtx code and processing it depending on whether the code corresponds to an RTL term
with a single operand or multiple operands (this is captured in num_ops which is an array
indexed by code.)

To perform concolic execution of the above code, we make the input code symbolic.
Thus, when we start, at line 7, we only have one symbolic process. Assuming that we
decided to treat num_ops array concretely, the index used to access the array must also
be concrete. Then, we have a case of symbolic-to-concrete conversion in the code of the
if statement (at line 8). Instead of one symbolic process, now we have to enumerate all
possible values of code when we are indexing into num_ops. Given that num_ops has four
elements, we must generate four concrete processes, each for the element of rtx_code.
To be precise, in the first concrete process, the value of code will be REG; in the second
one, the value will be MEM, and so on. Each of these four processes will now continue with
the execution of the remaining statements before the program path has ended. Given that
the condition of the if statement (at line 8) is satisfied by three of the four processes, the
three of them will enter the block of statements beginning at line 9. One process, on the
other hand, will enter the else block beginning at line 14. Given that every if statement
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can produce two processes for a single input process, the total number of processes that
will execute the above code will be (3*2*2+1) = 13. Thus, there will be 13 input to output
mapping pairs for above code. On the other hand, if there had been no symbolic-to-concrete
conversion, then we would have (1*2*2+1) = 5 symbolic processes.

The above example shows that, if a symbolic state is never required to be converted to
concrete state, then we do not need to enumerate. Unfortunately, in concolic execution such
ideal case is uncommon. Nonetheless, one can make several interesting observations about
the process of enumeration, and reduce the cost of enumeration. Specifically, if we can
reduce the number of concrete processes from 3 to 2, or may be 1, at line 8, then, we will
have fewer than 13 concrete processes, and we will be able to finish the concolic execution
of the C code more quickly. Such observations make the basis of our optimizations, which
aim at achieving the ideal case either by deferring the conversion or by reducing the effect
of symbolic to concrete conversion, and thus reduce the number of explored program paths.

4.4.1 Using range and set constraints

Notice that the reason the enumeration produced four concrete processes above is because
the num_ops array contains four elements. Thus, these four processes will each have code
set to REG, MEM, CONST_INT, LABEL, resp. Also notice that the condition num_ops[code]

== 1 is satisfied by three of them, while the remaining one does not satisfy the condition.
So instead of having three different processes to represent the case when the number of
operands is one, we can have one process and set code as REG | CONST_INT | LABEL. The
idea here is that, instead of setting code to a single value, we set it to a set of values. Note
that such an optimization is sound because we are capturing the same semantics of the three
different processes setting code individually.

Fortunately, our constraint solver can support setting a symbolic variable to a set by
relying on swipl’s support for domain constraints. Specifically, in swipl, we represent
the above set as code = REG | CONST_INT | LABEL. Unfortunately, it is easy to see that, to
represent set constraints, we need to enumerate all elements of the set. Fortunately, range
constraints make this process easier.

Range constraints allow us to represent a set of elements that form a range. For instance,
the set {1, 2, 3, 4} can be represented as a range [1, 4]. swipl supports this notion, and we
exploit it to represent sets compactly. For instance, the set {REG, CONST_INT, LABEL} can
be represented compactly as {REG} and [CONST_INT, LABEL]. Note that in this example,
because the range is representing a set of two elements, there is a little reduction in the
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number of processes. However, a set having hundreds of elements that form a range can
lead to significant reduction in terms of the number of processes.

By using a combination of set and range constraints, we can reduce the number of
program paths in the above example from 13 to 7 (7 = 2*2*2+1). The above example
also represents a common case in GCC’s code generator, and thus, by relying on set and
range constraints, we are able to reduce the number of program paths considerably. We
implement this optimization in array accessor functions, and in case of GCC, some of the
arrays contain hundreds of elements. By using range constraints, such elements could be
represented using few ranges.

4.4.2 Strength reduction

Another way to avoid symbolic-to-concrete conversion is to avoid operations that index
into concrete arrays using symbolic values. Instead, if we can represent the semantics of
such operations in a way that avoids enumeration, then we can achieve get more speedup.
Strength reduction thus aims at replacing an expensive operation by a semantically-equivalent
less expensive operation (strength reduction in standard compiler optimization terminology
is same.)

In the context of our example, notice that symbolic-to-concrete conversion is required
because we are indexing into a concrete array symbolically. We replace the check in C
num_ops[code] == 1 by a less expensive check such that no enumeration is needed.
In this case, we rewrite the check as code == REG || code == CONST_INT || code

== LABEL, avoiding the enumeration. Note that the set constraints discussed earlier also
achieve the same effect, but with strength reduction generation of set constraint is more
straight-forward.

The savings offered by this optimization are directly proportional to the number of
elements that we must enumerate. In the context of the example, we would have only
5 (i.e., 1*2*2+1) paths instead of 13. We have implemented this optimization by hand-
rewriting the expensive operations by semantically-equivalent less expensive ones.

4.4.3 Exploiting hardware-level parallelism

Recall that our undo record solution takes away the inherent parallelism in exploring both
the if and the else branches of a symbolic conditional in parallel. We found that such
restriction was necessary so that EISSEC does not overwhelm the CPU with too many live
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symbolic processes. But we also found that EISSEC, by default, does not exploit multi-
core parallelism commonly found in contemporary desktop and server CPUs. To put this
observation to use, we developed a parallel execution system within EISSEC.

Our parallel execution system relies on the following observations: (1) code genera-
tor’s RTL-to-assembly translation process operates on a decision tree, and (2) that subtrees
of the root node represent considerable portions (divided equally) of the code generator
source code. Thus, if we schedule N different subtrees of the root node in parallel, then
we get speedup of N (ideally). Because all subtrees are representing a similar amount of
symbolic execution work, parallelism should yield maximum benefit. This optimization
can thus be seen as a restricted form of parallelism: we are parallelizing the top-level sub-
trees of the source code only, but within each tree, there is no parallelism. Because N is not
considerably more than the number of CPU cores, this optimization does not overwhelm
the CPU.

In the context of the example, we schedule if and else branches of the top-level if
statement (at line 8) in parallel. If both branches are doing a similar amount of work, this
yields parallelism of two.

4.5 Evaluation

The evaluation of EISSEC is divided into three parts. In the first part, we evaluate the
performance of EISSEC in extracting the x86 semantic model. In this part, we also see the
impact of different optimizations on EISSEC performance. In the second part, we analyze
the extracted model in terms of soundness, completeness, and ability to support binaries
produced by other compilers. More importantly, we compare the x86 models extracted
from EISSEC with those of LISC. Because EISSEC allows us to cover all possible assembly
instructions produced by the code generator, testing LISC model using EISSEC model is an
interesting experiment. In the last part, we analyze the effort involved in applying EISSEC

to extract a model for other architecture (AVR).
The evaluations in this section were performed on an Intel Core i7-3517U ultrabook

running at 1.90GHz. The machine is equipped with 4GB of RAM and 4GB of swap space,
and runs Linux kernel-3.13.0-53 and 32-bit Ubuntu-14.04 desktop OS. We performed sym-
bolic execution of the x86 code generator from gcc-4.6.4 and the AVR code generator
from avr-gcc-v4.8.2.
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4.5.1 Model extraction performance

GCC’s decision tree. We first discuss the RTL-to-assembly decision tree which is the
focus of our symbolic execution. With reference to this tree, we also describe the terms
which we will use in our evaluation.

We performed symbolic execution of the GCC-4.6.4 x86 code generator which contains
2244 RTL-to-assembly mapping rules for x86. These rules cover all of the x86 advanced
instruction sets such as SSE, AVX, etc. GCC’s decision tree, which is one large C function,
implements this using approximately 120,000 lines of C code.

The decision tree accepts RTL instruction as input and outputs assembly instruction(s)
as output. The nodes in the decision tree represent specific constraints on the fields of RTL,
and the leaves represent the assembly instructions. Thus the nodes along the path from the
root to a leaf represent a set of constraints that are satisfied by the input RTL that maps
to the assembly instruction at the leaf node. (As a side note, GCC generates this decision
tree from an architecture-specific machine description file when GCC is compiled for that
architecture.) A sample C code for the code generator and the decision tree produced by
GCC for it is shown in Figure 30. Two things need to be mentioned: instead of showing the
conditions at the node, we have shown them on the edges, and gray nodes represent error
conditions.

With reference to this decision tree, we describe our terms below.

• Positive paths and failure paths.

A path in the decision tree is a path from the root of the tree to any leaf node. Because
the input to the tree is an RTL instruction and the output is the corresponding assem-
bly instruction, a path in the decision tree corresponds to a single RTL-to-assembly
mapping.

A positive path in the decision tree corresponds to the case of a valid RTL to assembly
mapping. By valid RTL, we mean the RTL that is accepted by the decision tree
as correct RTL, and maps to a valid assembly instruction supported by the target
architecture.

Failure paths, on the other hand, represent exactly the opposite of positive paths. To
be precise, failure paths represent cases where the input RTL to the code generator is
invalid and there will not be assembly instruction(s) generated by the code generator
if this RTL is given to the code generator as input. In other words, failure paths never
end with the production of a valid RTL; they end with producing an error code.
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1 assembly translate_rtl(rtl) {
2 if (CODE(rtl) == 1) {
3 /∗ push ∗/
4 rtlch = CHILD(rtl);
5 if (CODE(rtlch) == REG)
6 return "push %VAL(rtlch)";
7 elif (CODE(rtlch == MEM))
8 return "push (VAL(rtlch))";
9 elif (CODE(rtlch == IMM)

10 return "push $VAL(rtlch)";
11 else
12 // Unsupported operand
13 return error;
14 } else if (CODE(rtl) == 2) {
15 /∗ mov ∗/
16 /∗ operands of mov ∗/
17 } else
18 // Unsupported instruction
19 return error;
20 }

(a) Sample C code for the decision tree
translate_rtl

push

CODE(rtl) == 1

mov

CODE(rtl) != 1 &&
 CODE(rtl) == 2

return error

CODE(rtl) != 1 &&
 CODE(rtl) != 2

push %VAL(rtlch)

CODE(rtlch) == reg

push (VAL(rtlch))

CODE(rtlch != REG &&
 CODE(rtlch) == MEM

push $VAL(rtlch)

CODE(rtlch != REG &&
 CODE(rtlch) != MEM &&

 CODE(rtlch) == IMM

return error

CODE(rtlch != REG &&
 CODE(rtlch) != MEM &&

 CODE(rtlch)
!= IMM

(b) Decision tree

Figure 30: Sample C code and its decision tree
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In the example figure, “translate_rtl -> push -> return error” is a fail-
ure path. While, “translate_rtl -> push -> push %VAL(rtlch)” is a positive
path.

• Length of a path

We measure the length of a path in the decision tree by counting the number of nodes
in the decision tree along the path. A node in the our decision tree represents a
branching point where a condition would decide where execution would continue.
Thus, the length of a path in decision tree is the number of conditionals along that
path. Because a conjunction of such conditions along a path (i.e., path condition PC

as it is called in symbolic execution systems) represents the condition on the input,
the length of a path is the same as the number of clauses in PC.

For instance, length of “translate_rtl -> push -> push %VAL(rtlch)” is 2.
(It is not 3 because we count only the interior nodes on the path and not the leaves.)

• Coverage

Coverage is defined as the percentage of leaf nodes visited by EISSEC (at least once)
out of all the leaf nodes in the decision tree. There exist other coverage criteria such
as the number of lines of source code covered, number of branches covered, etc. As
our goal is to obtain the complete semantics model for the target architecture, we
found our definition of coverage effective in evaluating EISSEC. Moreover, unlike
test case generation or bug finding, where most symbolic execution systems are used,
our problem demands covering all program paths. So coverage criteria based on
source code lines do not serve our purpose.

For instance, in the example tree, if we produced “push %VAL(rtlch)” then we
have covered 20% of the leaves (note that the “mov” node does not have a child.)

Performance of extracting complete x86 model. We evaluate the performance of EISSEC
in traversing all paths and extracting the complete x86 model.

Detailed results on the evaluation of the symbolic execution of the complete x86 code
generator are shown in Figure 31. The first thing to note for these numbers is that they
represent the baseline for further comparison. We did not enable any optimizations during
this experiment. Thus, in the worst case, we take 13 CPU days to extract the complete
semantics model. We make the following observations:
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Total Number of Failure Positive Path Number of Coverage Virtual
Time Paths Paths Paths Length Constraints Memory

(in Days) (in M) (in M) (in M) (in B) (in %) (in MB)
0.00 0 0 0 0 0.00 0 17
0.51 23 18.1 4.5 123 0.26 13 20
0.89 34 28.4 5.8 119 0.48 15 19.7
1.27 46 38.6 7.1 135 0.70 17 20.4
1.65 57 49.9 7.3 146 1.00 17 21
2.04 69 61.2 7.6 131 1.35 19 20.2
3.17 103 94.9 8.5 26 1.58 21 17.6
4.88 137 127.6 9.0 82 1.95 37 18.9
6.09 167 156.3 11.2 92 2.46 49 19.2
7.31 241 223.3 17.4 37 3.16 66 18.1
8.53 266 248.0 17.6 68 3.45 69 19
9.75 287 268.5 18.1 71 3.65 70 18.7
10.42 307 287.5 19.2 74 3.83 79 18.7
11.55 340 316.9 23.5 35 3.91 87 17.8
12.22 360 336.0 24.3 42 4.49 91 18
13.11 386 360.2 25.6 1 5.96 100 17.3

Figure 31: EISSEC performance (without optimizations) to extract complete x86 model

• Total paths, positive paths, and failure paths.

There are a large number of total paths at various times during the experiment be-
cause there exist many failure paths. Our analysis revealed that between 80–94% (on
different days) of the total paths traversed by the system ended as failure paths. The
reason behind the large number of failure paths is that a positive path is a conjunction
of constraints imposed by the nodes along that path. If a conjunction of constraints
represent a positive path, then the negation of conjunction can lead to failure paths. A
negation of the conjunction with N conditions can be represented in N different ways.
(It is not 2N−1 because, in a decision tree, N conditions are checked in a particular
sequence. A negation of such a conjunction can be done by negating each condition
one by one.) In other words, for a single positive path with N internal nodes along
the path, there could be a maximum of N failure paths. In the experiment, the highest
path length that we obtained was 146. This means that, in the worst case, there would
be 146 failure paths for a single positive path. Fortunately, there were around 4X to
15X failure paths for a single positive path.
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Paths per assembly instruction. That just completes half the answer. The ques-
tion of why there are so many positive paths is yet to be answered. There are two
important reasons why there are so many positive paths: (1) a mapping rule produced
by EISSEC contains assembly instruction along with some operand combination, and
(2) the effect of symbolic-to-concrete conversion.

To understand the first reason, realize that the output of a code generator is a complete
assembly instruction along with operand combinations, for instance, push %eax as
against just push as a mnemonic. Because GCC prints operands differently, it is intu-
itive that there would be multiple mapping rules for a single assembly instruction. For
instance, for the push assembly instruction which accepts different types of operands
such as register, memory, immediate operand, etc, there would be multiple different
rules. Specifically, these different rules correspond to printing of operands in the fol-
lowing different syntactic notation (in AT&T syntax): %reg, $immediate, (%reg),
(%reg,%reg), (%reg,%reg,const), and const(%reg,%reg,const), etc. Thus,
for a single mnemonic push, there are multiple mapping rules (positive paths), each
corresponding to a particular operand combination. Note that, for mnemonics with
multiple operands (e.g., add), the possible number of operand combinations are even
greater.

While analyzing the number of positive paths, we came across the effects of symbolic-
to-concrete conversion. To explain with an example, for a single mapping rule of
push %reg, we found that there were multiple mapping rules corresponding to dif-
ferent ways in which x86 registers are mapped in RTL. For instance, all 16-bit parts
of 32-bit general purpose registers correspond to RTL with one of its fields (mode)
set to HImode, where all 32-bit registers correspond to RTL with that field set to
SImode. It is thus possible to see that, by generating multiple mapping rules cor-
responding to push %reg, our symbolic execution system leads to enumeration of
different values of the mode field in RTL. Moreover, we also found that, because of
symbolic-to-concrete conversion for other fields of RTL (other than mode) which are
not related to the size of registers, our system can produce duplicate mapping rules.
For instance, it may be possible that for 32-bit registers, our system produced eight
different mapping rules (corresponding to eight 32-bit registers in x86) instead of
generating a single rule for all 32-bit registers.

In relation to the number of assembly instructions, the number of positive paths is a
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large number. We address this issue is two ways. First, we implement an optimiza-
tion of reducing the impact of symbolic-to-concrete conversion. Second, instead of
keeping mapping rules (positive paths) as a list, we build an automata (transducer)
from them. Automata helps in finding the common parts across terms and thus re-
duces the model size considerably.

• Length of a path, percentage coverage, and memory consumed

As expected, the percentage coverage of the x86 code generator reaches 100%. How-
ever, it is interesting to observe that, during some parts of the experiment, our system
obtained more coverage than some others. Specifically, within the initial 2 days,
EISSEC covered 20% of the total paths, while in the next 3 days, it covered only
around 17% more. This is because of the difference between maximum length of
the path in the part of the code generator that was being explored at these two times.
Specifically, in the first 2 days, the maximum path length was 146, while for the next
3 days, it was 82. A path with a longer length most likely has a greater number of
leaves than a path with a shorter length. The effect of path length on the coverage is
also visible towards the end of the experiment, where the improvement in coverage
reduced considerably as our system was exploring a relatively small subtree of the
decision tree.

It is also interesting to note that the length of a path reduced drastically (from 131 to
26) on the third day. We found that this was because our system finished exploration
of a subtree of the decision tree around that time, and was about to enter the next
subtree. Recall that we execute both branches of a condition sequentially. Conse-
quently, all children of the root node are visited in DFS fashion. Such sudden dips in
the path length are also visible in Figure 32a. We found that these dips correspond to
finishing the exploration of a large subtree and moving to the next one. This is also
visible in Figure 32b in which the slope of the lines corresponding to paths is high
during the first 7 and half hours of the experiment, and it reduces towards the end.
Although we do not parallelize branches of a conditional, we do exploit hardware
level parallelism by exploring subtrees of the root node in parallel.

It is also important to note the amount of virtual memory consumed by our system
(including the constraint solver) is small. Specifically, the memory consumed is
proportional to the maximum path length. This is exactly the benefit of undo record
feature in our system. This is because at every node (branch point) along a path, we
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Figure 32: Relation between number of paths, coverage and virtual memory

need to store the machine state (CPU and memory) in order to explore another child
of that node. Given that the complete exploration of a code generator is an all-path
problem, we believe that our decision of using sequential execution kept the demand
on memory low. As a consequence, we could complete the exploration of the full
code generator on a machine with 4GB of RAM.
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Parameters Without + Range + Strength + Top-level
Optimizations Constraints Reduction Parallelism

CPU time (in Day) 13.11 9.20 9.04 6.64
Number of Paths (in M) 386.00 270.00 263.88 263.88
Failure Paths (in M) 360.20 259.10 257.56 257.56
Positive Paths (in M) 25.60 10.90 6.32 6.32
Number of Constraints (in B) 5.96 3.71 3.45 3.45

Figure 33: EISSEC performance with optimizations to extract complete x86 model

EISSEC performance with optimizations. To understand the effectiveness of different
optimizations, we systematically enabled them one by one, and measured the key perfor-
mance parameters. The results are summarized in Figure 33. The best time to extract
the complete x86 model was around 6 days and 14 hours. In the figure, optimizations
are enabled in sequence, going from left to right. For any column, all optimizations in the
columns on its left are enabled. Note that we do not include other parameters such as cover-
age, maximum path length, virtual memory, etc, because they will be the same irrespective
of the optimizations. We make following observations from the figure.

• Range constraints

Among all three optimizations, range constraints yield the maximum effectiveness
(around 42% reduction from the base case) in terms of the reduction in CPU time. We
expected greater reduction in runtime from this optimization. Our expectations were
high because cases where symbolic-to-concrete conversion occurs operate on sets of
120 to 140 elements. To be precise, one such case was using an RTL code (which is
symbolic) to index into an array of 128 elements, and was checking if the value in an
array satisfies a condition. In the worst case, symbolic-to-concrete conversion would
produce 128 concrete processes for a single symbolic process. By relying on the
condition, we were able to represent the semantics using 24 ranges, thus reducing the
symbolic-to-concrete conversion factor from 128 to 24. With a factor of 5 reduction,
we were expecting to see similar benefit in the result of this optimization. However,
our analysis pointed out several symbolic-to-concrete conversion places as culprit.
Specifically, to realize the full effect of this optimization, all the places along a path
which use symbolic-to-concrete conversion should use this optimization. We found
that we are not able to obtain a factor of 5 reduction at some of those places, and
consequently, we do not realize the full effect of this optimization.
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• Strength reduction

Strength reduction followed similar ideas to range constraint, and with range con-
straint optimization enabled, we were not expecting significant savings from this
optimization. This proved to be true as we got around 1% reduction in CPU time.
We still see some reduction in the number of positive paths, because some syntac-
tic structures reduce the effectiveness of range constraints. This is because, in such
cases, our system cannot realize that it can use range constraints instead of symbolic-
to-concrete conversion. By rewriting these syntactic constructs, we enable strength
reduction which in turn enables range constraints.

• Parallelism

We explored all 6 subtrees of the root of the decision tree in parallel. We created one
process per subtree and also added appropriate constraints from the previous trees in
succeeding trees. To be precise, note that the root of these subtrees actually represents
different conditions on the input. When sequentially executing these conditions, the
second condition always means that the first condition is not satisfied. In order to
capture these semantics correctly, we must negate the conditions at the root of these
subtrees and add them to the constraint set of the next subtree.

With a factor of 6 parallelism, we observed only 36% improvement in CPU time. We
found significant differences in the heights of the subtrees. To be precise, four of six
subtrees are of same height, which is around one third of the height of the remaining
two. That is why the four of the six trees were explored very quickly as compared
to the last one. The exploration of the last two trees dominated the runtime. Note
that, in the case of this optimization, all other parameters have the same value as
that of strength reduction, because these parameters are independent of sequential or
parallel execution. In other words, parallel execution only offers the advantage of
utilizing more cores to complete the exploration of the decision tree.

A better approach to parallelism could be explored in the future. Specifically, instead
of restricting parallelism only among top-level subtrees, we could employ parallelism
at every branch point depending on CPU utilization. To be precise, at every branch
point, if the CPU is not fully utilized, then we could explore both branches of a
conditional in parallel rather than exploring them sequentially. If the CPU is fully
occupied, then we could switch to sequentially exploring the branches of a condi-
tional. We believe that such an approach could yield maximum improvement under
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the constraint of a given CPU limit.

4.5.2 Soundness, completeness, and model size

Soundness. To check the soundness of the extracted x86 model, we followed the seman-
tic equivalence test from LISC. This soundness test did not find any soundness violations
other than the two violations (of call and jmp) reported in the LISC evaluation.

An approach of how we obtained assembly and IR pairs for this test needs an expla-
nation. Recall that, in LISC, we used binaries from the Ubuntu-14.04 distribution as the
test data. In case of EISSEC, we followed a different approach. We used EISSEC mapping
rules themselves to produce concrete assembly and IR pairs. We could do this because the
mapping rules, in case of EISSEC, precisely capture constraints on input operands that sat-
isfy those rules. By using the constraint solver to find the satisfying assignments for input
operands, we can concretize assembly and IR pairs. Being able to produce a set of all valid
operand values is one of the advantages of symbolic execution. In contrast, the compiled
binaries may contain only a commonly used subset of all operand combinations.

Next, we used the x86 model obtained using EISSEC to test the soundness of the x86
model obtained using LISC. This is interesting to evaluate because generalizations in LISC

can lead to soundness issues. Our approach for this evaluation consisted of three steps: (1)
generate a set of concrete assembly instructions by using the EISSEC model, (2) translate
those instructions to IR using LISC, and (3) run the semantic equivalence test on the orig-
inal assembly instruction and the translated IR. With this approach, we did not find any
soundness issues in the LISC model.

Given that LISC cannot infer constraints on the input and output operands precisely, it
often can accept operands which it should not accept. For instance, just by relying on the
code generator logs, LISC cannot infer that xmm registers cannot be used as the base regis-
ter in memory operands. Thus, it would accept instruction such as “mov %eax,(%xmm0)”.
Note that LISC accepts this instruction because it would have seen instructions such as
“mov %eax,(%ebx)” which it generalizes to allow any register combinations. To find out
how many such instances are accepted by LISC, we used the EISSEC extracted model
to generate invalid assembly instructions. This was done by negating the constraints on
the input and output operands, and generating the assembly instructions that satisfy those
negated constraints. We found a number of cases where LISC accepted invalid assembly
instructions. But note that we did not come across such cases while evaluating LISC on
Ubuntu-14.04 binaries, because GCC would never produce these invalid assembly instruc-
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tions. That is why acceptance of invalid assembly instructions does not represent a serious
practical problem with LISC.

Completeness. Measuring the completeness of a model extracted using EISSEC is a chal-
lenge in itself. Because symbolic execution is expected to produce a “complete” model that
is used by the code generator, to measure the completeness of such a model, we must com-
pare it against the architecture manual. But, given that such a comparison is practically
difficult to automate (recall that this is the one of the reasons why we decided to use the
code generator for model extraction to start with!), we followed the same completeness test
as we did in LISC. Specifically, we performed two tests: (1) comparison against all binaries
on Ubuntu-14.04, and (2) comparison against LLVM-produced binaries. The first test tells
us if we covered all instructions that the code generator could produce, while the second
test tells us exactly which instructions are not supported by the particular version of GCC.

On the Ubuntu binary test, we found that we were able to translate 99.66% of the as-
sembly instructions (without any manual effort). In comparison, the LISC x86 model was
able to translate 99.49% of the instructions. EISSEC could translate 0.17% more instruc-
tions because it did not face the issue of missing operand combinations. It also found that
out of 49 missing instructions reported in LISC, 2 were actually not missing (rcl and rcr).
Nonetheless, remaining 47 instructions were not found in the model extracted by EISSEC.

We then evaluated the EISSEC model against LLVM-produced binaries from LISC. We
were able to translate 97.45% of the instructions from those binaries (vs 96.03 with LISC).
We found that the slight improvement was again contributed by the improvement in missing
operand combinations. Unfortunately, we could not translate assembly instructions that
had missing mnemonics in LISC the LLVM test. To be precise, those mnemonics were also
missing from the EISSEC model.

We then used the EISSEC x86 model to test the completeness of the LISC x86 model.
This evaluation is interesting because Ubuntu binaries may not cover all possible operand
combinations for the assembly instructions. The EISSEC model, on the other hand, can pro-
duce such combinations. In order to perform such evaluation, we used the EISSEC model
to generate a list of assembly instructions along with all possible operand combinations
known to GCC. Out of around 7000 operand combinations of assembly instructions, we
found that around 260 were not accepted by LISC. One such example is push $immediate.
We found that GCC-produced code generator logs did not contain such instructions. An-
other case was of a memory operand written in the form of base, index and scale (e.g.,
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8(%eax,%ebx)). We found that GCC logs did not contain this operand for many instruc-
tions.

Model size. We used the LISC transducer construction algorithm on the set of mapping
rules obtained by EISSEC. Note that the number of mapping rules in case of EISSEC is
greater (6.32M) than the number of parameterized rules in the case of LISC (370K). This
was because of the effect of symbolic-to-concrete conversion and also because EISSEC

mapping rules contain the enumerated mode field. Specifically, in EISSEC, the mode of
an RTL is explicitly encoded in the rule. Because modes of various registers are different
(e.g., the mode of eax is different than the mode of ax), there are more mapping rules in
EISSEC than in LISC. Note that LISC does not treat RTL mode as a parameter. It instead
infers the mode of the register from its name.

Even though the mode field for the same assembly instruction might have different val-
ues in the EISSECmapping rules, rest of the fields were same, so the transducer construction
algorithm exploited the common parts effectively. Nevertheless, in order to handle different
values of the mode field, the constructed transducer has more states and edges than LISC.
Specifically, in comparison to the LISC transducer with 133K edges, the EISSEC transducer
has 797K edges. Construction of the transducer took around 80 minutes.

We believe that these results deliver on the promise of EISSEC. Specifically, by being
able to cover all paths inside the code generator, we were expecting to get a model that
is more complete than LISC. And, we believe that the results match our expectations.
On the other hand, it is also interesting to find that the model extracted by LISC was not
too incomplete as compared to that of EISSEC. This implies that, by compiling a number
of packages with various compilation options, we could explore almost all of the code
generator.

4.5.3 Model extraction for AVR

After extracting an x86 model using symbolic execution, we followed the same steps to
extract an AVR model from the code generator of avr-gcc-v4.8.2.

Complexity of AVR code generator. The AVR architecture has 76 mnemonics, and the
code generator used for the symbolic execution contained 98 RTL-to-assembly mapping
pairs. The decision tree used by the code generator takes approximately 12K lines of C
code.
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Total Number of Failure Positive Path Number of Coverage Virtual
Time Paths Paths Paths Length Constraints Memory

(in mins) (in K) (in K) (in K) (in M) (in %) (in MB)
0 0 0 0 0 0.00 0 3.2

20 11.2 9.1 2.1 17 2.8 13 6
40 36.2 29.2 7 29 5.6 49 8.3
60 56.3 48.5 7.8 21 8.3 71 7.3
87 73.1 63.4 9.7 7 11.2 100 5.8

Figure 34: EISSEC performance (with optimizations) to extract a complete AVR model

Time to apply EISSEC to AVR. To enable symbolic execution of a code generator,
EISSEC relies on manual modifications to parts of the decision tree. Mostly, these man-
ual modifications are required in the places where the C code of the decision tree does
not conform to the restrictions enforced by our source-to-source transformation system.
Nonetheless, at several places, we rely on manual modifications to enable optimizations.
Although, manual modifications are performed at several places, they demand porting ef-
fort in applying EISSEC to AVR. In total, applying EISSEC to AVR took approximately 7
hours and 45 minutes of manual modification effort. Note that this time does not include
the time to extract the AVR model by executing the decision tree symbolically.

The model extraction performance. After several manual modifications to the code
generator decision tree, we applied EISSEC to transform and execute the modified deci-
sion tree symbolically. We also enabled all the optimizations that we enabled for the x86
model extraction. The AVR decision tree has 2 subtrees under the root, so we explored
both of them in parallel.

The detailed performance results are shown in Figure 34. The columns in the figure
have the same meaning (but different units, e.g., thousands vs millions) as those in the
evaluation of x86 model extraction performance. In total, EISSEC took 1 hour and 27 min-
utes to extract the complete model from the AVR code generator. This time is considerably
less than the one taken for the complete exploration of the x86 code generator, because
AVR is an embedded system architecture with hardly 76 instructions and only 3 modes
(8-bit, 16-bit, and 32-bit). Consequently, the number of program paths explored by EISSEC

are also less than those in the x86 code generator exploration.
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Completeness of the extracted model. To evaluate the completeness of the extracted
AVR model, we applied it to translate the same set of coreutils binaries (ls, cp, cat,
echo, and head) used in the LISC test. The model was able to translate all of the assem-
bly instructions from these binaries. Moreover, in terms of the number of mnemonics, it
contained 72 out of total 76 mnemonics from the AVR architecture manual. Similar to the
results reported in the LISC evaluation, we found that 4 mnemonics were not supported by
the GCC’s code generator (break, nop, wdr, and sleep).

4.6 Related Work

The idea of symbolic execution was proposed in the 1976 paper by King [49]. The idea
of classical symbolic execution introduced in this paper has two key limitations. First, the
limitations of the constraint solver in terms of solving the symbolic formulas can limit the
applicability of symbolic execution. For instance, if a branch condition generates a non-
linear constraint then a linear constraint solver cannot solve it, and the symbolic execution
cannot proceed in such cases [39, 82]. Second, all the program parts that could be called
from the program under symbolic execution needs to be symbolically executed. Specifi-
cally, that means, all the libraries used by the program needs to be symbolically executed.
In fact, if a library used by the program invokes system calls with symbolic arguments,
then even the system call handlers needs to be symbolically executed. Given the complex-
ity of modern software (such as their interactions with environment, number of libraries
used, etc) and the path explosion problem (the fact that number of program paths grow
exponentially in terms of number of static program branches), classical symbolic execu-
tion of modern software is practically infeasible. That is why, in the last decade or so, a
great deal of research [82, 39, 19, 21, 20, 40, 72, 24] has focused on improving classical
symbolic execution so that it can be applied to modern and complex software. Signifi-
cant improvements in the computational powers of SAT/SMT solvers have also fueled this
interest considerably. These symbolic execution techniques are generally called as mod-
ern symbolic execution techniques. Given the improvements brought by modern symbolic
execution systems, some of these systems are now used actively in software industry for
software testing [40, 87, 13].

Modern symbolic execution systems. Modern symbolic execution systems address the
limitations of classical symbolic execution by mixing concrete execution along with sym-
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bolic execution (Mixed concrete and symbolic execution is called as concolic execution
[82].) In other words, these systems try their best to perform symbolic execution as long as
they can, but if they come to a point where symbolic execution is not possible (such as when
constraint solver cannot solve the formula, or a function call or a system call is made and
we cannot perform symbolic execution of callee code) then they concretize the symbolic
variables. Concretization essentially consists of assigning a concrete value to a symbolic
variable. This is done by asking constraint solver for a possible value that could be taken
by the variable. One can then simply select any value out of possible values randomly [39].
The drawback of concretization is that once we concretize a symbolic variable, the execu-
tion will follow only one path from the program tree rooted at the point of concretization
— if we had continued symbolically, we would have traversed all of the program paths
rooted at that point. This is generally referred to as incompleteness of concolic execution.
Concretization, though it reduces the completeness of symbolic execution, it helps us get
past a point where a classical symbolic execution would be stuck. Moreover, concolic exe-
cution helps in executing large and uninteresting parts of complex software concretely, and
allows us to perform symbolic execution of selective part of the program. This is one of the
crucial advantage of concolic execution, which we also exploit in our work. Specifically,
a compiler code generator might refer to other parts of the compiler, but we are interested
in symbolic execution of the code generator only. Concolic execution, in such case, allows
us to treat other “uninteresting” parts of the compiler concretely. But instead of selecting
one value randomly at the time of concretization, we choose all possible instantiations of a
symbolic variable. We will now talk about common challenges faced by modern symbolic
execution systems, and contrast existing solutions for these challenges with ours.

4.6.1 Path explosion problem

Path explosion problem is one of the key reasons why classical symbolic execution cannot
be applied to modern complex software. Concolic execution tries to address this challenge
by pruning some program paths by treating some parts of the program concretely. Fun-
damentally, path explosion problem in unsolvable — the number of program paths grow
exponentially, but machines have limited physical resources (such as memory). So all of the
existing approaches try to address this problem in the context of limited physical resources.
These approaches can be classified into following two categories: (1) path prioritization,
and (2) path pruning.

Path prioritization tries to prioritize paths which are likely going to yield “interesting”
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results over others. Techniques which follow this approach [19] use various heuristics for
decision making. An example of an heuristic can be a coverage based selection — select
a path which is likely going to explore unexplored parts of a program. Intuitively, the
approach of these techniques could be thought of as making a best effort in fulfilling the
analysis objective (bug finding, etc) without worrying about covering all the program paths.

Path pruning, on the other hand, tries to reduce the number of program paths either by
merging them [50, 84, 29] or by pruning redundant paths [16]. Intuitively, multiple con-
crete executions can be combined together by representing them using a single symbolic
execution. Merging multiple such concrete executions can thus reduce the number of pro-
gram paths considerably. Techniques such as RWset [16], on the other hand, try to prune
redundant program paths. One of their criteria to find a redundant path relies on the insight
that if a program execution reaches some program point which has been visited before and
both the times the symbolic state that was used at the point is same, then program exe-
cution will follow same program path from that point onwards. Such redundant program
executions can then be killed. Such pruning can reduce the number of program paths also.

EISSEC also relies on techniques similar to above discussed techniques to address path
explosion problem. EISSEC, unfortunately, does not really have a choice in terms of path
selection or prioritization. This is because to obtain a complete model of the instruction
set semantics, we need to cover all program paths. So EISSEC does not really use any
path selection heuristic/algorithm. Its path selection can thus be considered as a systematic
exploration — we systematically visit all program paths one-by-one by visiting if branch
of a condition first and then going into else branch. Nevertheless, EISSEC uses optimiza-
tions such as use of range and set constraints and strength reduction to merge multiple
paths together. Intuitively, whole idea behind these optimizations is to defer symbolic-to-
concrete conversion as much as possible and thus avoid splitting of program paths as much
as possible.

4.6.2 Constraint solver inefficiencies

Constraint solver plays a key role in symbolic execution systems because in many pro-
grams constraint solving time dominates the overall runtime. Moreover, some programs
which cannot be executed symbolically might be producing constraints which bogs down
constraint solvers. Consequently, a lot of attention has been paid to improve constraint
solver abilities and performance. This has led to production of a number of efficient SMT
solvers, such as STP [38] and Z3 [34], used in many popular systems such as KLEE and
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Microsoft’s SAGE, resp. Given that SMT solvers with the support for various theories such
as arrays, match closely with the semantics of C language, most systems use SMT solvers
as their decision procedures. Furthermore, given that constraint solving dominates overall
runtime, most system employ some optimizations for query processing. Specifically, they
try to eliminate queries as much as possible [19], employ counter-example guided cache
[19], or perform simple static optimizations on queries [82, 19] before sending them to
solvers. In our case, we did not employ any optimizations.

Unfortunately, SAT/SMT solvers are designed to efficiently find only one solution to a
given formula. In other words, existing solvers are not really efficient for all-SAT problem
(finding all solutions to a SAT problem) necessitating modifications to the core of these
solvers [42, 95]. Fortunately, in the context of bug finding or software testing where these
solvers are mostly used, producing one solution (or a few solutions) to a formula is enough.
There is rarely a need for solving all-SAT problem in case of bug finding or software testing.

Unfortunately, model extraction problem addressed by EISSEC is an all-SAT problem:
in order to ensure a complete semantic model, we need to find all inputs which reach
a particular program path. Given that SAT/SMT solvers are not really efficient for all-
SAT problem, we decided to use solvers based on constraint logic programming (CLP).
CLP languages and their solvers have dealt with the problem of producing all solutions
to a formula (given that the problem space is not too large) much more efficiently than
SAT/SMT solvers. We discussed the details of our solver in the Implementation section, so
we will not repeat that discussion here.

4.6.3 Symbolic execution for function extraction

Given that the symbolic execution allows exploration of all program paths, it can be used
in the context of the problems related to verifying program properties. For instance, work
presented in [10] uses symbolic execution in order to extract and verify cryptographic pro-
tocol models from their C implementations. Although the high-level idea of using symbolic
execution to extract a function from C code is similar to EISSEC, there are number of dif-
ferences. Specifically, the complexity of cryptographic code handled in this work is several
orders of magnitude less than GCC’s code generator. For instance, highest number of C
lines symbolically executed by them is around 1000, while GCC’s code generator is ap-
proximately 120K lines of C code. Moreover, their system confines symbolic execution to
main path in the code and can only handle the protocol implementations with no signifi-
cant branching. In order to reduce the complexity of symbolic execution, they manually
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build semantic models for commonly used cryptographic function. EISSEC, on other hand,
would use concrete execution in such cases. Approach described in [94] uses model ex-
traction of GUI programs from hand-held devices and compares extracted models with the
expected models (obtained from specifications). Because of their context, their notion of
models is different than ours. To be precise, their work is mainly concerned with extracting
models to capture how system responds to user inputs. Consequently, their model is a state
machine which captures system transitions on various event inputs. EISSEC definition of
model, on the other hand, is simply the mapping between input (RTL) and output (assembly
instructions).

Another application of the symbolic execution of a complete program could be in the
program comprehension or software maintenance [70, 43]. To be precise, reverse engineer-
ing using symbolic execution can help the maintainers in understanding the code which is
poorly documented. Preliminary work by Pichler et al [70] describes an approach similar
to ours for extracting specifications from the programs. Although, the overall ideas used
are similar to ours, there is one important difference. Specifically, this work uses dynamic
symbolic execution to perform concrete program execution along with symbolic execution.
Whenever symbolic execution comes to its limits, results from concrete execution are used
to get past the limits. EISSEC, on the other hand, starts with symbolic execution only.
Whenever symbolic-to-concrete conversion occurs, all possible concrete values of a sym-
bolic variable are enumerated systematically. Another difference is that this work, being
the preliminary work, does not present any evaluation results. So it is hard to evaluate their
system with EISSEC.

4.7 Summary

In this Section, we described our symbolic execution system (called EISSEC) to explore
GCC’s code generator for model extraction. We had two questions in performing symbolic
execution of the code generator: (1) how does the model extracted using symbolic execu-
tion compare with that obtained using LISC, and (2) whether we can address the all-path
problem in the context of GCC’s code generator. As compared to most of the existing
symbolic execution systems that limit their exploration to few paths, our problem demands
covering all the paths of a code generator. In order to solve this problem, we described
several design choices (such as undo record), and we believe that the evaluation results
demonstrated the effectiveness of our choices. In terms of comparison with the model
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extracted using LISC, we found interesting results. Specifically, we were able to cover
more operand combinations and instructions than LISC. We believe that these results speak
about the effectiveness of our symbolic execution system. Moreover, they also satisfy our
expectations with which we started EISSEC.
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5 ArCheck: CHECKING CORRECTNESS OF EXTRACTED

SEMANTICS MODELS

In the previous sections, we discussed our approach for extracting instruction set semantics
from compiler code generators. But before we can use the extracted semantic models in
some applications (e.g., to build binary translation system), we need to ensure that they are
both correct and complete. The models may have correctness issues because compilers,
given their complexity, may contain bugs. Bugs in code generators may result in gener-
ating incorrect assembly instruction(s) for some IR instructions. Such inconsistencies can
introduce correctness issues in the applications built using these models. That is why it is
necessary to remove these inconsistencies before they can be used in any application. To
address this problem, in this section, we develop an approach, called ArCheck, to check
the correctness of the models extracted from the code generators. Because completeness
of the models has been discussed and evaluated earlier (in LISC and EISSEC), we will not
discuss it here.

ArCheck is applicable to a number of problems. Although we demonstrate our ap-
proach on the models extracted from compiler code generators, the techniques that we
develop in this section can be used to test the semantic models extracted from any source.
Thus, ArCheck has very general applicability. Specifically, below are two of the possible
applications of ArCheck.

• Semantic models are used by a number of software systems such as binary transla-
tors, virtual machines, system emulators, etc. Most of these systems play vital roles
in software security. That is why it is important to ensure that these systems are tested
thoroughly. ArCheck can be used to address this problem and to test the semantic
models used by these systems.

• Another interesting application of ArCheck is to test compiler code generators them-
selves. Because models are extracted from compiler code generators, testing of these
models can also test code generators. Recent research [97] has demonstrated that
modern compilers such as GCC and LLVM contain many bugs. And these bugs high-
light the limitations of existing compiler testing techniques. ArCheck thus makes an
important contribution to the state-of-the-art in compiler testing.

128



5.1 Models and Inconsistencies

Given the general applicability, we will first discuss our technique to test the models ex-
tracted from any general source, and then will apply it for the models extracted from code
generators.

5.1.1 Types of inconsistencies in semantic models

Recall that a semantic model captures the mapping between target assembly instructions
and their semantics. Given this, the following are the possible inconsistencies in semantic
models.

• I1: Abstraction of semantics. This kind of inconsistency occurs when semantics of
an assembly instruction is captured correctly but loosely. For instance, for x86 add

instruction which modifies only the carry flag (CF) and the overflow flag (OF) bits
of EFLAGS, semantics of add might say that EFLAGS is modified, without detailing
which bits are modified and how they are modified. This occurs frequently in com-
pilers.

• I2: Omission of semantics. This kind of inconsistency occurs when some of the
semantics of an assembly instruction are omitted while modeling that instruction.
This is a correctness issue in the model because instruction semantics are not modeled
correctly. An example of omission of semantics is forgetting to mention that x86 add

instruction may modify the EFLAGS register.

• I3: Over-provisioning of semantics. This kind of inconsistency occurs when captured
semantics of an instruction is more than the actual semantics. For instance, when
semantics for the x86 mov instruction contains clobber of EFLAGS even when mov

does not clobber it.

Note that the above definition of inconsistencies is with respect to modeling the seman-
tics of assembly instructions in terms of IR. In this section, we talk about inconsistencies
in modeling semantics of assembly instructions in the compiler IR. We take this view be-
cause this is how architecture specifications are usually written. Specifically, specification
writers encode the semantics of the target machine instructions in terms of compiler IR
instructions. Although we check modeling of the assembly instructions in IR for incon-
sistencies, the approach developed in this section is generic and can be applied to check
IR-to-assembly modeling inconsistencies as well.
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5.1.2 How to detect inconsistencies in semantic models

Conceptually, to detect inconsistencies we check that for every instruction, its semantics
are “correct”. Let us assume the existence of an oracle which would tell us the “correct”
semantics of every assembly instruction. To detect inconsistencies for every assembly in-
struction in the model, we obtain its semantics from the oracle, and check if it same as the
semantics present in the model. Architecture manuals or actual hardware CPUs can func-
tion as an oracle. (For this report, we assume that the hardware manuals or the processors
are “correct.”) Unfortunately, architecture manuals are not in an easily-parsable form, thus
it is hard to obtain semantics from them automatically. CPUs, on the other hand, offer a
solution to automate the process of semantic extraction. We rely on the CPUs to function
as the oracle for this study.

Can we perform semantic equivalence checking of the abstract rules themselves?
Use of hardware to obtain the semantics of assembly instructions would require concretiza-
tion of the abstract mapping rules from the semantic models. This is because we cannot
execute abstract assembly instructions on the hardware CPU.

Symbolic equivalence checking [75] (or symbolic simulation) is a commonly used ap-
proach to prove equivalence of two programs. It is a popular technique in the electronic
design verification field to check the equivalence of RTL or gate-level descriptions in HDL.
The idea behind symbolic equivalence checking is to obtain symbolic formulas that cap-
ture the semantics of the programs to be checked, and then to prove that those formulas
are equivalent by using constraint solvers or theorem provers. Symbolic formulas are ob-
tained by executing programs symbolically (i.e., by making program inputs symbolic, in-
stead of executing concretely). Symbolic input values propagate during program execution
from source to destination. Furthermore, whenever control flow branches in a program, all
branches are explored unless any of them is a provably infeasible path. Symbolic traversal
of program paths ends when program execution ends. The equivalence of formulas for each
program path for two programs is then checked using a constraint solver.

Unfortunately, in our case, symbolic equivalence checking cannot be used to prove
the equivalence of abstract IR-to-assembly mapping rules. This is because equivalence
checking demands representations of both IR and assembly instructions, such that they are
amenable to symbolic execution. The representation of IR instructions satisfies this criteria,
but unfortunately, that of assembly instructions do not. Consequently, if we want to apply
symbolic equivalence checking to assembly instructions, then we must encode semantics of
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each assembly instruction in some traversal-friendly representation manually. As discussed
in section 1, this is exactly what we want to avoid, given the fact that such manual encoding
is often the root of many modeling errors.

Had it been the case that there were two different semantic models M and M′, such
that M = {〈A, II1〉}, where II1 is an IR instruction used to represent the semantics of an
assembly instruction A in some intermediate language, and M′ = {〈A, II2〉}, where II2 is
an IR instruction for the same assembly instruction in some other intermediate language,
then we could apply symbolic equivalence checking to both IRs for the same assembly
instruction. But, unfortunately, when we have only one model, we cannot perform symbolic
equivalence checking on abstract rules.

How to convert abstract mapping rule into concrete one? Recall that the difference
between abstract and concrete mapping rules is that the operands of concrete mapping rules
are concrete. So, conceptually, to convert abstract mapping rules into concrete rules, we
must produce concrete operands in place of abstract operands. The process of concretiza-
tion will generate multiple concrete rules for a single abstract rule. So the question then
is if we should generate all of the possible concrete rules, or we can generate only a few.
This question translates into even more fundamental question: how many concrete map-

ping rules do we need to test using semantic equivalence checking to obtain same level of

confidence that we would have obtained if we had tested abstract rules directly? Note that,
in the worst case, we would need to test all possible concrete rules to test a single abstract
rule. This is undesirable, because the number of concrete rules would grow combinatorially
in the number of operands. For instance, when an instruction has a single operand which
can be a register, and the target architecture of the instruction has 6 registers, then there
would be 6 concrete rules. On the other hand, if there are 2 operands of type register, then
there would be a maximum of 36 concrete rules. We can systematically eliminate some
concrete rules. Intuitively, ways to eliminate the rules would arise from understanding how
we can constrain the operands of abstract mapping rules.

• Constraints defining invalid operands and their combinations. One of the easiest
ways to eliminate concrete rules is to rely on constraints that restrict the types of
operands the instructions can have. For instance, the x86 mov instruction accepts
two operands, both of which cannot be memory operands simultaneously. Such
instruction-specific operand constraints are encoded in the applications that use se-
mantic models. For instance, the architecture specifications used by the code gen-
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erators of modern compilers contain such constraints for assembly instructions. An
approach to enforce such constraints is to generate a concrete rule and use these ap-
plications to check if that the rule is valid. This approach eliminates the need of
enforcing such constraints ourselves.

• Constraints specifying functionally similar operands and their combinations. Once
rules containing invalid operands are eliminated, the rest of the rules are all valid
rules. To eliminate some of the valid rules, we rely on functional-similarity of assem-
bly instructions containing the same mnemonic but different operand combinations.
Specifically, by functional-similarity we mean that most of the operand combinations
of an assembly mnemonic generally perform similar functions. For instance, the x86
mov %eax,%ebx and mov %eax,%ecx perform the same function of moving values
between two registers. We can select one representative for all of the functionally-
similar combinations. For instance, if we generate a concrete rule for the eax and ebx
operand combination, then we can eliminate the eax and ecx combination. Relying
on this observation, for every architecture, we define operand combinations which
perform the same function for abstract rules.

A generic approach to generate concrete rules from abstract rules could be: (1) for
every abstract rule, find out how many operands it takes. Let us denote this number by K,
(2) using N different sets of functionally-similar operands, generate NK different operand
combinations (note that NK is reasonably low in practice), (3) feed NK different instances
of concrete rules to the code generator and check which of them are valid.

5.1.3 Detecting inconsistencies in compilers’ semantic models

To detect inconsistencies in the compiler semantic models, we first formalize the semantics
of assembly and IR instructions. Both IR and assembly instructions operate on processor
state. Hence their semantics can be formalized in terms of the changes they make to the
processor state. Note that an IR’s view of processor state can be more limited than the
assembly-level view. For instance, the processor state may capture detailed information
about condition codes and other details of a processor’s internal state, which may not be
of interest to the code generator. A natural approach, therefore, is to expose only a subset
of the assembly-level state at the IR-level. This discussion leads to the following defini-
tion that formalizes a notion of correspondence between processor states at the IR- and
assembly-level.
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Definition 4 (State at assembly- and IR-level) The state SA at the assembly level is given

by an assignment of values to a set of variables VA representing the processor’s user-space

accessible registers and memory. Each variable v ∈ VA takes values from an appropriate

domain.

The state SI at the IR-level is given by an assignment of values to a set of variables

VI representing the processor’s state as viewed by the code generator. We assume that

VI ⊆ VA. The set of permitted values for a variable v at the IR level will include all of the

values permissible at the assembly level, plus a special value called > that captures the

idea that the value is unknown or undefined. SI is said to be valid for an IR snippet I if for

every variable v read by I (excluding those variables that are first updated and then read

by I), SI(v) 6=>.

Definition 5 (Semantics of an assembly and IR instruction) The semantics of an instruc-

tion at the IR (or assembly) level can be understood in terms of how it modifies the proces-

sor state. We use the notation I : S′ −→ S′′ to denote that the execution of I in state S′ leads

to a new state S′′.

Use of actual hardware as the oracle introduces a complication in the problem. Seman-
tics of an assembly instruction obtained from hardware would be in the form of a hardware
state, and we would need to produce IR semantics in terms of hardware state for compar-
ison. An easier approach to obtain IR semantics in terms of hardware state would be to
develop a “hardware” for IR where we can “execute” the IR and obtain its semantics. Once
both semantics — the semantics of an assembly instruction and its IR — are obtained in
terms of hardware state, comparing them would be easier.

Definition 6 (Processor state correspondance) States SA and SI are said to correspond,

denoted SA ∼ SI , if:

∀v ∈VA (SI(v) = SA(v))∨ (SI(v) =>)

Alternatively, one can say that SI is a conservative approximation of SA: either they
agree on the value of a state variable, or SI leaves it unspecified. The latter choice is made
by the developers of machine descriptions, who choose not to model the exact value of a
state variable, but simply state that an instruction “clobbers” it. (This imprecision is delib-
erate, as it makes it possible to develop machine descriptions that work across variants of a
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processor. They also provide a way out when the instruction set description is ambiguous
or unclear about the final value of a state variable.)

While precision of the model can be an important property for some applications of the
semantic models, correctness of the model is a fundamental property of the model without
which the applications of the models would need to worry about soundness and correctness.
Moreover, if we consider precision for state correspondence then too many inconsistencies
would be reported. That is why for compiler semantic models, we do not consider I2 as an
inconsistency. Nonetheless, by tweaking the definition of state correspondence, it is quite
easy to change this decision.

I1 and I3, on the other hand, must be considered for state correspondence because they
represent cases in which semantic equivalence of an assembly instruction and its modeling
in IR — one of the important guarantees given by code generators, as per our assumptions
— is violated.

Definition 7 (Soundness of IR) I is said to be a sound abstraction of the semantics of A,

denoted I ∼ A, if the following condition holds for every state SI that is valid for I and all

states SA ∼ SI: (
(I : SI −→ S′I) ∧ (A : SA −→ S′A)

)
⇒ S′A ∼ S′I

Mapping rule 〈I,A〉 is said to be sound, if I ∼ A.

From the definition of state correspondence, it is easy to see that if I is not sound for A

then there will be at least one variable v that will have conflicting values in S′A and S′I. This
means that a subsequent instruction I′ that relies on v will likely diverge from the behavior
of A′ even when I′ and A′ are equivalent in every way. In other words, a code generator
that emits A for I will generate incorrect code unless it ensures that none of the following
instructions rely on v’s value. Doing so complicates the code generator logic, because the
mappings from IR to assembly now become context-specific. More important, such an
approach seems to defeat the purpose of architecture specifications used in compilers such
as GCC and LLVM: the purpose of these specifications is so that the compiler does not
have to reason about the semantic equivalence of IR and assembly, yet this step requires
that very same task to be performed! For this reason, we believe that code generators will
translate I into A when I is sound for A.

Definition 8 (Testing extracted model for inconsistencies) Let I be an IR snippet and A

be the assembly code present in the extracted model. The problem of testing the extracted

model for inconsistencies is to test every such 〈I,A〉 pair to determine if I ∼ A.
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The problem of testing extracted model for inconsistencies is also same as the problem
of testing code generators for correctness. Formally, it can be defined as below.

Definition 9 (Checking correctness of compiler code generators) Let I be an IR snip-

pet, and A be the assembly instruction produced by a code generator G for I. The problem

of checking correctness of G is same as the problem of testing model extracted from G for

inconsistencies.

Unfortunately, given that a state is defined by the contents of registers and memory
locations (Definition 7), a number of possible start states is enormous. Thus, verifying
the semantic equivalence of mapping rules by exhaustive enumeration of start states is
practically infeasible. Thus, instead of verifying the semantic equivalence of the mapping
rules, we test their equivalence under some specific start states with the aim of uncovering
as many semantic differences as possible. An important challenge faced by our approach
is the design of start state generation strategy — a strategy that we are looking for must

be such that with the smallest number of start states, maximum of the semantic differences

should be uncovered.

Checking correctness of mapping rules also helps in finding semantic equivalence bugs
in the code generator architecture specifications. That is why we call our approach ArCheck
(Architecture Specification Checking). In other words, we check if the architecture spec-
ifications used by the code generators conform with the specifications used by the actual
hardware. An important contribution of our approach is that it is architecture-neutral and
very practical: given the challenging problem of verifying modern compilers, we develop
an approach which can be easily applied by code generator developers at the time of de-
velopment to detect all the correctness issues in the architecture specifications. We believe
that such checking will in turn help developers in discovering many compiler bugs ahead of
time, which, otherwise, could lead to compiler crashes, or even worse, generation of wrong
code.

Any software testing technique must address two fundamental problems in testing: test

generation and result verification. For result verification, as we mentioned before, we
will use hardware CPU as the test oracle. Test case generation is one of the fundamental
challenges that any software testing approach must address. To handle this challenge, we
develop a coverage testing strategy to expose most of the semantic differences in the ex-
tracted mapping rules. Generating test cases to check semantics of assembly instructions
is a very hard problem because it requires one to know the exact semantics of each and
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every instruction. Consequently, developing an automated test generation strategy, and that
too which considers assembly instructions for multiple architectures, is a very challenging
problem. We exploit an important observation to tackle this problem. IR instructions often

exposes the semantics of assembly instructions in detail. Consequently, if we develop a test

case generation strategy by leveraging instructions in architecture-neutral languages, then

such strategy can be effectively automated and can also be applied to multiple architec-

tures.

5.2 Our Approach

Our high-level approach, called ArCheck, to check correctness of semantic models ex-
tracted from GCC’s code generator is depicted in Figure 35. We describe main steps of
ArCheck below.

• Instantiation.

First step of ArCheck is to instantiate abstract rules obtained from the extracted se-
mantics model. Since we have already described a generic approach to obtain con-
crete rules from abstract rules, we will not repeat it here. Instead, we will describe
how one can apply that approach to x86 below.

An important challenge in instantiation is how to define functionally similar operands
and their combinations. This requires one to be familiar with the target architecture
of the extracted model and functions performed by different operand combinations.
For x86-32, we have defined following functionally similar categories:

– general-purpose registers: eax, ebx, ecx, edx, esi, and edi,

– stack-related registers: esp and ebp,

– Constant integers: [INT32_MIN, INT32_MAX]

– Constant memory addresses: [0, 4GB]

– Memory operands: ConstInt(Reg), ConstInt(Reg,Reg,ConstInt), etc

Note that we have not specified details of some other categories such as constant
floats above. Nonetheless, above description essentially capture the the notion of
functionally similar categories. In all there are around 6 different categories of
functionally similar x86 operands. For an abstract rule containing mov %1,%2, we
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Figure 35: Design of ArCheck

would generate 26 different concrete rules by systematically selecting both operands
from each of the 6 different categories such that duplicate operand combinations are
avoided. Note that not all of these 26 combinations are valid, e.g., mov $100,$200
is an invalid combination. We will realize this after feeding such mov instruction to
the code generator. Also note that we have made a category of memory operands,
because putting them in one category eliminates a possible source of explosion in the
number of operand combinations.

Another challenge is related to how many instances of an abstract rule should we
test. Intuitively, higher the ratio of abstract to concrete rules higher should be the
level of confidence in the soundness of the extracted models. So we thought about
three different selection points: one instance, multiple instances, and all-possible
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instances. All-possible instances option is same as exhaustive enumeration of all
operand combinations of an abstract rule. To reflect these three options, we have
developed three different modes for generating different number of concrete rules
from abstract rules:

– single-instance mode (SI): in this mode, one valid operand combination out of
NK is selected while instantiating abstract rules.

– multiple-instances mode (MI): in this mode, multiple valid operand combina-
tions (such as 8 — the idea is to pick a number between 1 and NK for the target
architecture) are selected while instantiating abstract rules.

– restricted exhaustive enumeration mode (REE): Since testing all-possible NK

operand combinations of an abstract rule may not be practically feasible, we
develop a restricted exhaustive enumeration mode, where the ratio of number
of abstract to concrete rules is restricted to a sufficiently high number (closer to
NK but still such that testing is practically feasible).

• Generating start states. Once abstract rules are instantiated, the next step in the
process consists of generating the start states to be used for the semantic equivalence
test. ArCheck relies on white-box analysis of IR instructions to generate start states
for a given mapping rule.

• Test execution and result comparison. Last step in ArCheck consists of using the
generated start states to obtain semantics of an IR and the corresponding assembly
instruction from a given concrete mapping rule. To obtain the semantics of an IR in-
struction, we have developed an IR interpreter which accepts the IR instruction and
the start states generated by the previous step as input. It then interprets that IR in-
struction after setting the interpreter in the given start states. The difference between
end states of the interpreter and its start states is the semantics of that IR instruction.
To obtain the semantics of an assembly instruction, we have developed a hardware-
based oracle. Once the semantics of both an IR and the assembly instruction are
obtained, we compare them for equivalence.

We will now describe state generation, and test execution and result execution step in
detail.
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5.2.1 Start state generation

Generating start states for checking the correctness of mapping rules from the extracted
model is one of the important challenges for our approach. This is because the goal of
ArCheck is to achieve all of the following objectives: (1) maximize the possibility of find-
ing semantic differences in the mapping rules, (2) minimize the number of start states
generated for a given mapping rule, and (3) develop a strategy such that it can be easily
applied to test models of other architectures. Note that these objectives actually outline
the requirements of a test generation strategy for the problem of checking the correctness
of mapping rules: given the challenges of verifying modern compilers and seemingly in-
feasible approach of exhaustive enumeration, how can one develop a practical approach
for achieving maximum confidence in the correctness of extracted models (and in code
generators, in general)?

What are “interesting” outcomes and “interesting” inputs. We believe that first two
objectives mentioned above naturally lead to the following requirements: (a) generated
test inputs must “represent” most of the remaining inputs from the input space, and (b)
the number of generated test inputs must be reasonably small subset of the input space.
By “represent” we mean that the semantics of an instruction for the representative inputs
should be same as that for the non-representative inputs. Requirement (b) says that such
representative inputs must be a reasonably small subset so that testing of a single mapping
rule is practically feasible.

An ideal test strategy that can satisfy both the requirements would partition the input
space according to the inputs for which an IR or the assembly instruction exhibits same
semantics, and then select one representative test input from each partition. We believe
that such strategy maximizes the confidence in the soundness of mapping rules because the
selected test inputs would explore the semantics of an instruction thoroughly. That is why
we call them “interesting” test inputs.

Unfortunately, generating “interesting” test inputs for each and every mapping pair
is a practically infeasible task. Note that the notion of “interesting” inputs assumes that
we already know what is the semantics of an instruction for each and every input value.
But obtaining such knowledge is practically infeasible because (1) it would require us to
exhaustively explore all input space and obtain instruction semantics for each input, and (2)
semantics of an instruction depends on values of its operands. For instance, for assembly
instruction from Figure 5, if eax contains -2, then output of add is 0 and, on x86, zero
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flag will be set. On the other hand, if instruction was add $1,%eax, and eax contained -2,
then output would have been -1. The point here is that same inputs to different assembly
instructions produce different semantics. Thus, if we want to generate “interesting” inputs,
then we need to generate them for each and every mapping pair. That is why we do not
follow this approach.

Instead, we make an important observation that one could enumerate different output
values corresponding to different semantics for an instruction, and then obtain inputs which
would produce those output values. Since number of different semantics for an instruction
is small, such enumeration seems feasible. Additionally, such approach would avoid prob-
lems in generating “interesting” inputs, and at the same time, satisfy all of our requirements.
For instance, for both add $1,%eax and add $2,%eax, one of the desired outputs will be 0
because value 0 is treated specially by most architectures. Once we fix our desired outputs,
we can find out which inputs lead to those outputs. That way we do not need to perform
exhaustive enumeration at all, and we still obtain “interesting” inputs. A set of desired out-
puts is what we call “interesting” outcomes. Specifying such “interesting” outcomes and
deriving “interesting” inputs from them is the core of ArCheck.

We will concretize our discussion about “interesting” outcomes now. Taking Figure 5
as an example, the plus operator in the IR performs a signed 32-bit addition. And various
possible outcomes are: (1) a positive value in the range of [1, INT32_MAX], (2) 0, and (3)
a negative value in the range of [INT32_MIN, -1]. They are divided in such categories to
capture the different behaviors the CPU might have for different outcomes. For example,
for add instruction of x86, when the sum is 0, zero flag is set. But it is not changed in
other cases. In addition, the signedness and the size are also factors for considering the
categories, since they are relevant for possible overflows during addition. Therefore,
“interesting” inputs to test soundness of a mapping pair would be those which generate
outcomes belonging to every category at least once. In this example, One can simply select
boundary values of the above two ranges and 0, i.e., {INT32_MIN, -1, 0, INT32_MAX}
as interesting outcomes.

With above discussion, it is quite easy to see why random testing would not be a good
strategy for our purpose: random testing does not have any notion of partitioning of space
of possible inputs and outcomes. Furthermore, as the number of partitions of the input
space increases, its confidence in the soundness of mapping rules decreases.
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Figure 36: Constraint generation and propagation for start state generation

5.2.2 Obtaining “interesting” test inputs: constraint generation, propagation and
solving

Unfortunately, designing a generic strategy for generating “interesting” test inputs for a
mapping rule is challenging problem. This is because such inputs depend a number of
factors such as types of source and destination (e.g., 1-byte vs 4-byte), the way in which
input data is used (e.g., is the value in the operand used as a number or as a memory address
for indirect reference), etc. Additionally, since we are going to use the obtained test inputs
in order to obtain semantics of an assembly instruction, it is necessary that the constraints
imposed by the physical machine state are considered while generating start states. For
instance, it is better if esp and ebp point to R+W pages rather than inaccessible pages.
While it is not absolutely necessary that such constraints are satisfied, we consider them
because invalid memory access errors do not represent interesting semantics for us. This is
because compiler IRs do not have a notion of physical memory layout, consequently, they
do not have a notion of invalid memory access.

Given the discussion about possible constraints on the inputs, it is easy to see that the
test case generation problem that we are trying to solve can be formulated as a constraint
satisfaction problem. “Interesting” test inputs are then simply solutions of such constraint
satisfaction problem. A way to formulate constraint satisfaction problem from the white-
box analysis of IR instruction for add eax,$2 is shown in Figure 36. Notice that in the
Figure IR instructions are represented as trees. The way in which we obtain start states
from the IR tree in the Figure is as follows. Set O represents the set of outputs of the IR
instruction. In the figure, we set it to 0, i.e, we are trying to solve the following constraint
satisfaction problem: “find out a 4-byte signed integer value for eax which when added
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with 2 would produce the output of 0.” S is a set to represent the state initializations which
satisfies the constraints. For the example in the Figure, S contains an assignment of eax.
Once we decide set O for a given mapping pair, the analysis starts by propagating set O of
the root of IR tree to the set O of the first right child. This is done because the operation
performed by RTL is actually the root of right subtree. That is why O of plus is same
as that of set. plus node then looks at constraints C that can be enforced on I, the set
of inputs which produce the expected output. For this example, it enforces the constraint
that the addition must be signed 32-bit. Solving this constraint produces all pairs of signed
32-bit integers which add to 0 in set I. plus node then takes every pair of I, and propagates
its first element to its left child and second element to right child. This is done till all
children of a node accept the assignment of values. For (1,−1), reg : eax node accepts
the assignment because it satisfies its constraints, but const_int 2 node does not accept
the assignment of -1 because it does not satisfy its constraint. Analysis then goes on with
this process till it reaches (−2,2) for which both children of plus accept the assignment.
Once a satisfying assignment is found, analysis stops exploring any further input pairs.
This is because we are interested in only one representative input for any given partition
of the input space. Note that all pairs of I which generate same element of O are in one
partition. Once reg : eax accepts the assignment, S is updated with the value for eax.
Since const_int 2 does not correspond to any part of the state, it does not update S. Set
S for plus is then obtained by unifying S of all of its children for a satisfying assignment.
Set S is thus formed in the bottom-up fashion, while the constraints propagate in top-down
fashion. S for set thus contains an element eax :−2.

An algorithm to generate “interesting” inputs for IR to assembly mapping rules is
given in Figure 37. This algorithm starts with a call to generate_start_states func-
tion with ir as the IR instruction of a mapping rule, and it ends by returning set S, the set
of start states to test a given mapping pair. Using function get_outputs and by passing
it the top-level IR operator op and its type, it obtains a set of expected outputs for the
given mapping pair. For instance, for RTL 32-bit signed plus operator, it would obtain
{INT32_MIN,0,1,INT32_MAX} as the expected outputs.

Note that get_outputs is manually specified, and its implementation will typically be
different for each IR operator. For this reason, we have not shown it in the figure. Since
the number of operators in the IR is relatively small, the effort involved in this step is
relatively small. Despite being manual, our approach does provide a systematic way to
divide outputs into equivalence classes, while enabling us to leverage human knowledge
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generate_start_states (ir):
op = TopOp(ir)
O = get_outputs(op, Type(op))
foreach oi in O do

// get start state which would produce output oi
// and add it to S, which is set of all start states
S.add(get_inputs_for_output(ir, oi))

done
return S

get_inputs_for_output (ir, o):
op = TopOp(ir)
I = get_inputs(op, o, Type(op))
H = Children(ir)
s = {}
if H = /0 then // leaf node

// does input match constraints
if check_cons (o, ir) then

s.add(o)
return s

fi
fi
foreach (i1, . . . , in) in I do

foreach ir j in H do
// propagate constraints to children
s j = get_inputs_for_output (ir j, i j)

done
if none of s1, . . . ,sn are empty then

// all children have valid input assignments,
s = merge({s1, . . . ,sn}) //now combine them.
return s

fi
done
return {} // if no satisfying assignments found

Figure 37: An algorithm for obtaining “interesting” inputs from an IR instruction of
a mapping rule
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and insight to minimize the number of such classes.
Once a set of expected outputs is obtained, function get_inputs_for_output is called

to obtain a set of inputs for each of the expected outputs. In order to find inputs which
produce the specified output, get_inputs_for_output first calls get_inputs by passing
it the operator, the expected output value, and the type. For the “add” example, one of the
calls would be get_inputs(plus,0,Int32). Note that the set C discussed in the Figure 36
can be seen as a collection of {plus,Int32} here. Note that get_inputs returns a set I

of all 32-bit integers, which, when added, produce the expected output. I is a set of tuples
whose arity matches that of the IR operator. For instance, for plus, tuples will have 2
elements, while for unary negation, tuples will have only 1 element.

Note that function get_inputs might return an empty set in case it could not find
an inputs which satisfy combination of op, o, and Type(op). In such case, constraint
propagation cannot proceed, and we return immediately.

On the other hand, if I is non-empty, then constraint propagation starts as an element
of set I would now become expected output of the children of ir. In order to propagate
constraints, it obtains set (H) of all children of given IR instruction. H would be empty for
leaf nodes of IR, in which case, it simply checks if the constraints imposed by that IR node
are satisfied by the input to that node. For instance, for (mem (reg eax)) RTL expression,
it would check if the input value is a valid memory address which points to an accessible
page. Note that an input of a leaf node would be same as the o, that is why we simply check
using value of o. Given the small number of IR expressions which impose constraints at the
leaf node, we have simply enumerated these constraints manually. Note that if a constraint
is matched even for one input value, the algorithm updates state s and returns it. This is
because we are only interested in finding a single representative. If constraints are not
satisfied by the input value, then it continues to find the next input value which matches
those constraints. When H is non-empty, input values from tuple (i1, . . . , in) are passed to
respective children of the input IR. If all children accept the assignment, then the algorithm
returns the obtained state s as the output, otherwise it continues to next i. If no satisfying
assignments are found for all children, then we return empty set.

5.2.3 Test execution and result comparison

For IR execution system, ArCheck, relies on an interpreter for that IR. Compiler such as
LLVM already provides an interpreter for its IR, but others such as GCC do not. Since se-
mantics of compiler IRs is defined precisely, it is straight-forward to develop an interpreter
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if there does not exist one already.
Our high-level approach to obtain semantics of an assembly instruction is to execute

the test instruction under a user-level process monitoring framework. Such a framework
satisfies all the requirements needed from an assembly execution system for this problem.
First, it can execute the test instruction in a separate isolated environment and monitor the
execution. Second, by relying on process tracing features offered by most OSes, it can
inspect and modify register/memory contents for test execution. Third, it can gracefully
handle exceptions or signals generated by the test instruction. The framework first assem-
bles a test program containing the test instruction, creates an isolated environment for the
execution of the assembled code, and initializes the environment with the specified start
state. Isolated environment ensures that all effects of a test execution are confined. The dif-
ference between start and end states of the environment at the end of the execution would
be semantics of the test instruction.

For memory, semantics that we are interested in is being able to tell older and newer
contents of all the memory locations whose contents have been modified as a result of
test execution. A simple approach to satisfy the desired memory semantics would be to
snapshot memory of the isolated environment just before and after the execution of a test
instruction and to compare the snapshots. This approach may seem too inefficient because,
in the worst case, it could require us to compare snapshots for whole virtual address space
(4GB on a 32-bit machine) of a process. But we observed that the virtual memory layouts
of our assembly execution system and isolated environments are very sparse. Given this,
we decided to use this simple approach for our purpose.

Nonetheless, we made an important observation which helped us optimize simple ap-
proach considerably. Specifically, we observed that the difference between start and end
state of memory needs to be calculated only if memory is updated by the test instruction.
In other words, if memory is only read by the test instruction, then we do not need to com-
pare memory snapshots at all. To put this observation to use, ArCheck marks memory as
read-only. With this setup, the framework can receive memory access fault in two cases:
when test instruction accesses invalid memory location, and when the test instruction per-
forms write access. We distinguish between these two cases by making memory read-write
and re-executing the test instruction. If the framework receives one more fault, then it is
because of first case now, and it is dealt as an exception case. If the framework does not
receive any fault, then it is the second case, and the framework makes a note that memory
snapshots must be compared in such situation. Note that as an additional optimization, the
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framework also notes the pages that will be modified and only considers those pages in
comparing memory snapshots. Furthermore, if the framework does not receive memory
fault in the first place, then it means that either the instruction does not access memory at
all, or it performs read access. In both situations, we do not need to compare snapshots at
all. Consequently, in both these situations, our system does not even snapshot memory at
the end of the execution.

Once end states of assembly and IR executions are obtained, we follow Definition 6
and compare them.

5.3 Implementation

Prototype implementation of our approach targets GCC’s x86 code generator and runs on
32-bit Linux. The approach, however, is more general, and can easily be applied to other
compilers and architectures.

5.3.1 Obtaining concrete rules from abstract mapping rules

Implementation of instantiation step needs some architecture-specific knowledge such as
different types of operands and their combinations. But once such knowledge is encoded in
the system, rest of the implementation of instantiation (feeding concrete rule to GCC and
checking validity of concrete rules) is architecture-neutral. While SI and MI mode relies
on architecture-specific knowledge, REE mode is implemented by randomly selecting a
sufficiently high number (architecture-specific and configurable) of operand combinations
per mapping rule.

5.3.2 Obtaining start states for a mapping rule

The algorithm for start state generation is implemented in 1000 lines of C code and it uses
a constraint solver written in 500 lines of Prolog. Expressiveness of constraint language es-
sentially comes from the expressiveness of IR — we simply map semantics of IR operators
to a sequence of constraints in Prolog.

Most of the components of state generation are architecture-neutral, but we do need an
architecture-specific component to impose architecture-specific constraints such as those
related to memory layouts.
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5.3.3 Obtaining RTL semantics

Since there does not exist an interpreter for GCC’s RTL, as a part of our prototype, we have
developed an RTL interpreter by referring to GCC’s RTL specification. Implementation of
the interpreter took around 3K lines, and is mostly architecture-neutral. Only architecture-
specificity is in initializing interpreter’s state from the input start state. This initialization
code for x86 is about 50 lines of C++ code.

Errors in the IR interpreter can result in false positives or false negatives in ArCheck. To
address this challenge, we have tested our RTL interpreter by using it to interpret RTL pro-
grams obtained from source code of coreutils package. Furthermore, whenever ArCheck
reports a semantic difference, we manually verify that the RTL semantics does not match
that of the assembly instruction. So far in our testing, we have not encountered any false
positives or negatives.

5.3.4 Obtaining assembly semantics

Implementation of our user-level process monitoring framework relies on parent-child re-
lationship and ptrace() interface of Linux. Test execution starts with the framework
assembling a test program containing the test instruction and then creating a child pro-
cess (using fork()) for executing the test program. The test program consists of a test
instruction wrapped with two trap instructions. Trap instructions allow the parent (i.e., the
framework) to intercept child’s execution (by writing a trap handler) just before and after
the execution of the test instruction, to set the start state, and to capture the end state of the
execution. After fork(), child calls mmap() to map the binary encoding of the assembled
test program and jumps to its beginning, while parent calls wait() and blocks itself. Once
trap handler performs necessary actions such as setting or capturing the state, parent con-
tinues child’s execution by sending PTRACE_CONT request to child. Along with trap, parent
also handles other signals that might be raised by child by registering signal handlers for
them. Although, cases leading to signals are not interesting for our purpose, parent handles
them to exit gracefully.

To access child’s execution state, the monitoring framework relies on the ptrace() in-
terface provided by the Linux kernel. In particular, using PTRACE_SETREGS request parent
process can set the registers used by the child process, while using PTRACE_GETREGS it can
get their values. This is needed to initialize hardware state from input start state and also
to save the end state of child’s execution. We will discuss the way in which the framework
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handles memory shortly.
Overall flow of getting the semantics of an assembly instruction using our framework

is as follows.

1. To start, parent takes both an assembly instruction to be executed and a start state as
input. The start state is obtained from the algorithm discussed earlier in the report.

2. Parent then composes a test program, by simply wrapping the test assembly instruc-
tion by two trap instructions. Test programs thus consist of sequence of three assem-
bly instructions. We will discuss the role of trap instructions shortly. Parent then
assembles the test program using as assembler and produces a binary file containing
the shell code (byte encoding) for the test program using objcopy. To handle ex-
ceptional cases during child’s execution, parent then sets signal handlers for most of
the common signals such as SIGSEGV, SIGFPE, SIGTRAP, etc. Finally, parent calls
fork() to create a child process and passes the file containing the shell code of the
test program to the child. Parent then calls wait() and blocks for the child to execute
the test program.

3. Upon starting its execution, child process first calls mmap() to map the shell code of
the test program as an executable page, and then jumps to the first instruction from
the test program.

4. First instruction of the test program is a trap instruction. When child executes this
instructions, OS halts the child process and notifies parent immediately via SIGTRAP.
Upon receiving first SIGTRAP, parent notes that the child is about to execute the test
instruction, and so it initializes child’s register state using PTRACE_SETREGS. Use of
trap thus allows parent to initialize child’s hardware state just before the execution of
the test instruction. After hardware state is initialized successfully, parent resumes
child’s execution by sending it SIGCONT signal, and again blocks itself by calling
wait().

5. Child then executes the test instruction. Execution of the test instruction can lead
to any exceptional situations, which are all handled by the parent (if such situations
lead to generation of a signal.) In most of the exceptional cases, such as execution of
illegal instruction or unaligned memory access, it is not safe to continue with the child
execution. Consequently, parent simply records the diagnostic information about
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the situation and then kills the child process by sending SIGKILL signal. If child
execution does not lead to any exceptional situations, then parent is not interrupted
at all.

6. If execution of the test instruction does not lead to any exceptional situations, the
child continues with the execution of the subsequent instruction which is our inserted
trap instruction. When it is executed by the child, OS again sends SIGTRAP to the
parent. This time though, parent reads register values via PTRACE_GETREGS and saves
them as the end state. After reading the register values, it kills the child process as
we do not need to continue with the child execution.

Our user-level process monitoring framework is implemented in 2000 lines of C code
and 50 lines of shell script C code has some architecture-specific features, such as the use
of trap instruction, but is mostly architecture-neutral. The shell script uses GNU assem-
bler gas, objdump, and objcopy to encode a test program containing a given assembly
instruction wrapped in two traps and obtain its binary encoding.

5.3.5 Handling memory

Since taking snapshots of process’s memory using ptrace() is too expensive, we rely
on accessing /proc/<pid>/mem, a file representing virtual memory of a process. Our
snapshots have formats very similar to that of core files. Start states of memory also use the
same format as that of snapshots. According to the start state, desired values are written to
specified memory locations before executing a test program.

As compared to the assembly execution environment, our RTL interpreter deals with
memory differently. Specifically, all load and store operations performed by the test RTL
instruction are transformed into file I/O operations on the file representing start state of the
memory. This is done to isolate memory of the RTL instruction from that of the interpreter,
which has its own memory layout that is different than that of the RTL instruction. We
could have also represented memory for an RTL instruction as a byte array, but such an
approach would demand mapping between virtual memory addresses used by the RTL
instruction to the corresponding addresses inside byte array. This would unnecessarily
complicate the implementation. On the other hand, since we already had a file representing
start state of the memory, transforming RTL instruction’s memory accesses into file IO
was an easier approach. Lastly, details of all load and store operations (exact address of
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SI MI REE
# of Mapping Rules 140 1132 150K
# of Test Cases 1056 5762 421,090
% of Useful Test Cases in ArCheck 92 85 79
% of Useful Test Cases in Random testing 64 59 52
Time To Run Test Cases in ArCheck 5 min 7 sec 31 min 1 day 6 hrs
Time To Run Test Cases in Random testing 4 min 10 sec 24 min 1 day 1 hrs

Figure 38: Analysis of mapping rules obtained from GCC’s x86 code generator logs
and test cases generated for them

Description ArCheck Random Testing
SI MI REE SI MI REE

D1 25 26 28 3 10 11
Classification of D2 4 4 6 2 3 1
Semantic D3 1 1 1 0 0 1
Differences D4 1 3 4 0 1 1

Total 31 34 39 5 14 14
# of New Bugs Found 1 1 1 0 0 1
# of Existing Bugs Found 15 7

Figure 39: Statistics of evaluating mapping rules obtained from GCC’s x86 code gen-
erator

the access, the contents) performed by IR are recorded and are eventually used to obtain
memory semantics of an IR instruction.

5.3.6 Test execution and result comparison

Based on the observation that there is no dependency between the logged mapping rules,
we have built a test execution system which can run multiple test cases in parallel. The
degree of parallelism can be changed using a command line parameter. Test execution and
result comparison are both implemented in C, and use about 700 lines of code.

5.4 Evaluation

We evaluated the effectiveness of our approach by testing models extracted from x86 code
generator of GCC-4.5.1. Our current prototype supports only general-purpose and SSE
x86 instructions. (Supporting the rest of the instruction set requires further engineering
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work on the RTL interpreter.) We conducted our experiments on 32-bit Linux running on a
quad-core Intel Core i7 processor.

For comparison purposes, we implemented a random start state generation strategy.
Note that a random strategy can be used to generate any number of start states, but to
simplify comparisons, we generated the same number of start states as ArCheck.

The extracted model that we tested had 140 abstract rules corresponding to 140 unique
mnemonics. These 140 mnemonics covered roughly 23% of total 32-bit x86 instruc-
tions. Breaking down these 140 mnemonics, we found that they covered 80 of around
200 general-purpose and 60 of around 70 SSE instructions. Of the remaining 120 general-
purpose instructions, around 78 were system-related and I/O instructions, 12 were control-
transfer20 instructions, and 30 were not covered in the extracted model. Using 140 abstract
rules, ArCheck generated 140 concrete rules in single-instance mode (SI), 1132 concrete
rules in multiple-instances mode (MI), and 150K concrete rules in restricted exhaustive
enumeration mode (REE). So that is abstract to concrete rule multiplier of 1, around 8, and
around 100 for these three different modes respectively.

Following observations can be made from these results:

• Average number of generated test cases in three modes differs. ArCheck generated an
average of 8, 5, and 3 test cases per instruction in SI, MI, REE modes respectively.
The average number for REE mode is smaller because instructions, such as “mov” for
x86, generate higher number of operand combinations but relatively lesser number
of test cases than many other instructions.

• Numbers of useful test cases generated by ArCheck are significantly higher than
those generated by random state generation approach. We call a test case “useful” if
ArCheck completes a test run for it without raising exceptions. For instance, when
eax is 0, mov 0(%eax),%esp leads to a null-pointer dereferencing exception.

Using randomly generated start states, almost every memory related instruction ended
up leading to an invalid memory access. ArCheck also produced a few useless test
cases for some of the SSE instructions because the constraints involving floating
point instructions are more complex than those on integer operations.

20We do not handle control-transfer instructions because they present a complication in restricting control-
flow and regaining control back to the test framework. Nonetheless, we are definitely considering them in
our future work.
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Figure 39 compares ArCheck with random testing in terms of different categories of in-
stances in which semantics of IR and assembly instructions do not match. Note that for this
evaluation, we checked for both soundness and semantic equivalence. Unlike soundness
check, semantic equivalence is a strict check: it demands that the semantics of an assembly
instruction is strictly modeled by an IR instruction. We enforced both these checks because
we wanted to understand the type and the number of instances which belong to both cate-
gories. Note that the numbers reported in the Figure 39 are for semantic equivalence check.
We will discuss which of these differences are soundness violations shortly.

Following observations can be made from these results:

• The semantic differences found by all three modes of ArCheck are considerably more
than those found by random testing. Note that we have grouped semantic differences
by abstract rules, and have counted maximum of 1 difference per abstract rule. We
did this in order to eliminate duplicate counting of same semantic difference for
different instances of same abstract rule. So 31 differences that we found using SI
mode of ArCheck means that 31 x86 abstract rules from the model were found having
at least one semantic difference.

• Comparing results from SI and MI mode with those from REE mode, we can see
that the first two modes found fairly comparable number of semantic differences in
significantly less time. This suggests that most of the semantic differences manifest
for most operand combinations. The results are quite different for random testing,
where detection is a lot less reliable.

Though SI and MI mode did well in terms of finding semantic differences, REE
mode found the most in all tests. This suggests that testing a mapping pair with
multiple operand combinations might help in finding more differences. On the other
hand, REE mode also took considerably longer to finish its run. We found that
one of the major reasons for the amount of time taken is the explosion caused by
the immediate values. To eliminate this source of explosion, but also to exploit the
advantage of instruction mode over others, in the future, we can think of a mode
where the multiplier between abstract and concrete rules is restricted to value less
than 100 but close to 100. We speculate that such a mode should be able to finish its
test run lot faster than that of the REE mode, but at the same time, perform equally
better as REE mode.
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movzwl 8(%esp), %eax

(set (reg : HI ax)
(mem : HI (plus : SI (reg : SI 7) (const_int 8))))

Figure 40: Example of movzwl instruction and its RTL

shrdl $16, %ebx, %eax

[(set (reg : SI ax)
(ior : SI
(ashiftrt : SI (reg : SI ax) (const_int 16))
(ashift : SI (reg : SI bx)
(minus : QI (const_int 32) (const_int 16)))))

(clobber (reg EFLAGS))])

Figure 41: Example of shrdl instruction and its RTL

• Unlike ArCheck, which detected the new bug in all three modes, only the REE mode
of random testing detected this bug. We will discuss this point shortly.

Figure 39 shows that REE mode of ArCheck found the largest number (39) of semantic
differences. We have classified these differences into 4 different categories:

• D1: Imprecise modeling of EFLAGS. This kind of difference arises frequently in
GCC’s x86 code generator when an RTL instruction does not capture precise bits of
EFLAGS that are modified by the corresponding assembly instruction. For instance,
the example of add $2,%eax discussed earlier falls into this category. This type
of difference does not represent a soundness issue in the code generator because
(clobber (reg EFLAGS)) is actually an over-approximation of the instruction se-
mantics.

• D2: Incorrect value in the destination operand. This kind of difference arises when
an RTL instruction does not perform some operation, such as zeroing or sign-extending
a value, that is performed by an assembly instruction. For instance, for movzwl in-
struction in the Figure 40, RTL simply moves lower 2 bytes of the source into desti-
nation, but fails to zero out upper 2 bytes of the destination. This kind of difference
is a soundness violation.

• D3: Incorrect operation in RTL. This kind of difference arises when an RTL in-
struction performs different operation than the corresponding assembly instruction.
This kind of difference represents a soundness violation. For instance, for shrdl
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mull %ebx

[(set (reg : SI dx)
(truncate : SI
(lshiftrt : DI
(mult : DI
(zero_extend : DI (reg : SI ax))
(zero_extend : DI (reg : SI bx)))

(const_int 32))))
(clobber (reg : SI ax))(clobber (reg EFLAGS))]

Figure 42: Example of mull instruction and its RTL

instruction in the Figure 41, RTL uses arithmetic shift operator (ashiftrt), whereas
assembly instruction performs a logical shift (lshiftrt).

More specifically, semantics of shrdl instruction as per Intel manual is: “The in-
struction shifts the first operand (eax) to the right the number of bits specified by the
third operand (count operand). The second operand (ebx) provides bits to shift in
from the left (starting with the most significant bit of the destination operand).” The
way RTL models this is by inclusive-or of arithmetically right-shifted destination and
left-shifted source operand. Soundness issue shows up when the destination contains
a negative value. Since arithmetically right-shifted destination will have top bits set
to 1. Inclusive-or with such a value will then generate result with its top bits set to 1
instead of moving contents of source into the top bits of the destination. We detected
this issue when we set, eax = 0xb72f60d0, ebx = 0xbfcbd2c8. Above shrdl instruc-
tion in that case produced 0xd2c8b72f in eax. But the corresponding RTL produced
0xffffb72f in eax.

We reported this difference to GCC’s bug reporting system. GCC developers have
acknowledged that this is a bug, and have fixed it promptly. Details of our bug report
can be found at [6].

• D4: Update to a destination not specified. This kind of difference arises when GCC
uses some implicit assumptions not mentioned in the RTL specification. For instance,
mull %ebx instruction shown in Figure 42 modifies register pair [edx:eax], where
the top 4-bytes of the product are stored in edx, and lower 4-bytes of the product are
stored in eax. But RTL for mull stores lower 4-bytes of the result in edx, and says
eax is clobbered.
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We found that GCC uses this instruction only when it is computing a modulo of a
number (in other words, there is an implicit assumption that this instruction should
only be used when the product cannot be more than 4-bytes long.) Since RTL for
mull instruction captures over-approximation of the semantics, it does not represent
a soundness violation. Nonetheless, use of implicit assumptions can possibly lead to
soundness violations. Moreover, We believe that programming practices that rely on
implicit assumptions lead to a number of latent bugs which are not uncovered easily.
To achieve the objective of minimizing the number of bugs in compilers, one should
strictly avoid such programming practices.

5.4.1 Detecting known soundness issues

As further evidence of the ability of ArCheck to identify code generator bugs, we used it
on older version of GCC with known bugs in machine descriptions. (These were the bugs
that have previously been reported to the GCC team and fixed.) Overall, we obtained a list
of 15 soundness issues reported against x86 code generator in the last 4 years (July 2011
to December 2014). We consider an issue as a soundness related if semantics of assembly
and IR instruction in the issue do not match. (This requires human knowledge about the
target architecture, so we had to manually analyze the bug reports.) We specifically tested
the mapping pairs involved in the issues, and verified that ArCheck is able to detect all the
issues. Some of these issues are serious, e.g., missing update to EFLAGS, changing order of
source and destination, not following RTL specification accurately, etc.

We will now discuss some of these bugs and the way we detected21 them.

• The bug reported in [7] is about failing to model possible updates to EFLAGS by an
execution of sbbl instruction. ArCheck detected this bug because the start state gen-
erator initialized start states to unset bits of EFLAGS (because as per RTL semantics
EFLAGS neither affected the end result, nor EFLAGS were clobbered by it), but the
result produced by the assembly execution system had those bits of EFLAGS set. This
bug belongs to category D2. Out of 15 bugs we collected, 3 were of this type.

• One older bug [4] (older than 4 years) detected by ArCheck was about an incorrect
modeling of movsd SSE2 instruction. This instruction operates on two XMM registers

21Though our implementation does not support all of x86 instructions, to detect these bugs, we added
support for the assembly and RTL instructions from the buggy mapping rules. Specifically, we had to add
support to detect 6 of the 15 issues.
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and moves the lower 64-bits (double precision floating point number) of the source
register to the lower 64-bits of the destination, and preserves the upper 64-bits of the
destination. The issue was an incorrect use of RTL’s vec_merge operator because of
which exactly opposite semantics (assign the upper 64-bits of the source to the up-
per 64-bits of the destination, and preserve the lower 64-bits of the destination) was
modeled. We detected this bug because ArCheck initialized the source and the des-
tination XMM register with different values (because instructions which move values
from a source to a destination have no “interesting outputs”, so the state generator
initializes the source and the destination with different byte patterns such as all bits
set to 0 in the source and all bits set to 1 in the destination or vice versa22), and the
result produced by the RTL interpreter was different than the one produced by the
assembly execution system. This bug is a representative of the category D3. The list
of 15 bugs had a couple of this type.

• An interesting type of bugs detected by ArCheck is syntactic bugs and syntactic
errors which lead to soundness violations. For instance, the bug reported in [1] is
about an incorrect order of operands in bextr assembly instruction generated by
GCC’s x86 code generator. Specifically, bextr instruction takes 3 operands of which
first and third can only be registers, while the middle one can be a register or memory
operand. Modelling of this instruction in x86 machine description was incorrect — it
allowed first operand to be either a register or memory. We detected this bug when we
attempted to assemble the assembly instruction using as. Although, this particular
bug is not a soundness violation, and ArCheck is not designed to detect these type of
bugs, some syntactic errors can lead to soundness violations. For instance, the bug
reported in [9] is about missed square brackets around an immediate constant which
changed the semantics of an instruction from moving a value from a memory location
to moving an immediate value. Although the particular bug in [9] is a x86-64 bit bug,
it is easy to see that it is indeed a soundness violation. The list of 15 bugs had 1 bug
of this type.

Finally, we believe that the presence of these bugs in the bug reports indicates that the
errors were not caught by the end-to-end testing used in GCC, thus establishing the need
for dedicated frameworks such as ArCheck.

22Rationale behind such assignment is being able to detect incorrect move of a single bit.
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Given the experimental results of ArCheck, an important question is: what should be

the ratio of abstract-to-concrete mapping rules so that we achieve very high confidence in

the soundness of extracted semantics model? Note that, theoretically, to achieve very high
confidence, one should test every abstract rule from the model with all possible operand
combinations. On the other hand, experimentally, we found that REE mode took consider-
ably more time but found very little additional differences than those found by MI mode.
So we think that ratio close to that of MI mode is good enough to achieve high-level of
confidence in the soundness of the extracted models.

5.5 Related Work

Compiler testing, verification, and bug finding. Compiler testing has been an active
area of research for several decades. One of the earlier works, which described use of
machine descriptions for compiler testing, is [79]. It describes an interesting approach to
compiler testing by checking equivalence of source program and its object code by trans-
lating both to a common intermediate language. Translation of object code to intermediate
language is done by relying on a set of procedures which encode the semantics of low-level
instructions in terms of intermediate language instructions.

More recently, by randomly generating valid C programs, the CSmith system [97] per-
formed a systematic end-to-end testing of modern compilers such as GCC and LLVM and
found a number of bugs in them. Along with CSmith, other works such as [54, 83, 59, 99]
have applied the technique of automatically generating valid C/C++ programs to test com-
pilers. A fundamental difference between ArCheck and all these works is the targeted
testing of code generators performed by ArCheck. In contrast, systems such as CSmith
are targeted at testing all components of the compiler. Unfortunately, end-to-end testing
of compilers — a very common practice used by modern compilers — does not help in
testing individual components of the compiler thoroughly. This is corroborated by findings
of CSmith as well. Tools such as ArCheck are thus complementary, and serve to provide
much more in-depth testing of individual components of the compiler.

Compiler verification has also been a prominent area for compiler research with tech-
niques such as certified compiler [53, 52] and translation validation [65, ?, 71] being de-
veloped. CompCert [53, 52] has been a popular compiler verification work with promising
results. However, scaling formal verification to production compilers such as GCC remains
a challenge. While recent work has made significant progress in tackling components of

157



production compilers, e.g., mem2reg optimization in LLVM [100], scaling these to com-
ponents of the size of code generator represents a significant challenge. Testing-based
approaches such as ArCheck thus represent an important complementary approach that can
work on industry-strength compilers.

Given that verification of a complete compiler is difficult, Translation Validation tries to
check the correctness of each of the compiler passes. The correctness of a pass is checked
by comparing the semantics of the program being compiled and its semantics after each
pass. Such checking also helps in pinpointing the compilation errors and thus helps with
compiler debugging and testing. A common approach in Translation Validation is to first
check the equivalence of control flow graph of input program and that after each pass. Once
both graphs are checked for equality, symbolic evaluation along with constraint solver is
used to check the correctness of input program and the output of each pass. Unfortunately,
Translation Validation of a code generator is infeasible since the output of a code generator
is a sequence of assembly instructions. And to prove the equivalence of input source pro-
gram with the list of assembly instructions, one needs to convert the assembly instructions
in some intermediate language. And this demands manual modeling which is exactly the
source of semantic bugs in code generators.

Whereas ArCheck is focused on the correctness of IR to assembly translations, the
work of Fernández and Ramsey [?] targets the correctness of assembly to machine-code
translations. They utilize a language called SLED (Specification Language for Encoding
and Decoding) to specify instruction encodings at a high-level, and to associate assembly
and machine code instructions. These specifications can then be used to generate machine
code from assembly, or vice-versa. The main focus of their work is that of correctness
checking of the mappings specified in SLED. This is accomplished using a combination of
static checks and by comparing SLED-based translations with the translations produced by
another well-tested independent tool such as the system assembler.

Approaches for test case generation. Generating better test inputs by improving test
case generation strategies has been an area of active research. One can broadly classify
existing testing strategies into black-box and white-box. Black-box testing strategies such
as fuzz testing (random testing) [61] and grammar-based fuzz testing [58, 56], can also be
applied for testing code generators. A drawback, however, is that it is difficult to ensure that
all “relevant” and/or “interesting” input values have been tested. In contrast, ArCheckhas
been explicitly designed to leverage the semantics of IR, and intuition and insight of human
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experts, to generate relevant/interesting test cases.
White-box testing strategies, such as symbolic execution [49, 19, 39], on the other hand,

generate more “interesting” inputs because they treat the system-under-test as a white-box.
Symbolic execution, in particular, seems best suited for our problem since it is a cover-
age testing technique; checking soundness of code generator mapping rules is a coverage
testing problem. Moreover, symbolic execution has recently received a lot of research at-
tention, and it has led to improvements in the symbolic execution systems. Unfortunately,
it still suffers from the problem of explosion in the number of branches while handling
complex code. Fortunately, IR instructions that we want to analyze are simple enough that
such problems will not arise. Nonetheless, given the simplicity of white-box static analysis
of IR instructions, we preferred it over symbolic execution for building robust tools that
can operate on production compilers.

5.6 Summary

In this section, we developed a new, efficient and practical approach for systematic testing
of semantic models extracted from code generators of modern compilers. Our approach
can also be considered as a way to check the correctness of compiler code generators. One
of the key contributions of our work is the development of an architecture-neutral testing
technique. Another important benefit of our approach is that it treats the compiler/code-
generator as a black-box, and hence can be easily applied to any compiler. A third major
benefit is that it not only detects bugs, but also makes it easy to locate/diagnose them.

Our evaluation showed that ArCheck can identify a significant number of bugs and
inconsistencies in architecture specifications used by GCC’s code generator. Specifically,
we used ArCheck on approximately 140 unique x86 instructions and identified potential
inconsistencies in 39 of them. Although a majority of these are not soundness related,
we believe that approximately 7 are, including one that has already been fixed by GCC
developers. Moreover, we verified that ArCheckis able to detect 15 other known bugs
(soundness issues) in the previous versions of GCC. Some of these bugs are serious, and
their presence in the bug reports indicates that the errors were not caught by the end-to-end
testing used in GCC, thus establishing the need for dedicated frameworks such as ArCheck.
These results demonstrate the utility of tools such as ArCheck, and suggest that similar
tools should be integrated into the test cycle of today’s compilers.

159



6 BUILDING ASSEMBLY-TO-IR TRANSLATORS AUTOMAT-
ICALLY

Recall from our discussion in Section 1 that the existing binary analysis, translation, and
instrumentation systems such as Valgrind and QEMU manually build their assembly-to-
IR translators. Another common approach is to develop architecture-neutral translators
and drive them using the manually-written architecture specifications. Because LISC and
EISSEC help us in extracting semantic models automatically, in this section, we demon-
strate an application of such models by using them to build assembly-to-IR translators
automatically.

Before we describe how to use the extracted models for building the translators, we will
describe a typical design of binary analysis, translation, and instrumentation systems.

Assembly

to IR
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Transformation

IR to 

Assembly

Assembler

IR
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Disassembler

Binary
New 
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Figure 43: Process of architecture-independent binary analysis, binary translation,
and binary instrumentation using IR

Figure 43 shows a typical design of binary translation and binary instrumentation sys-
tems. The process of binary translation or instrumentation starts with accepting an input
binary and ends with generating a new binary (In binary translation, a new binary may not
be generated. Instead, the generated IR may be interpreted.) Binary analysis systems, on
the other hand, do not generate new binaries. They instead analyze the binaries (by ana-
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lyzing the IR), produce appropriate analysis results, and terminate the process at that point.
These systems, in other words, do not have the second part of the framework which trans-
lates IR into a new binary. Below, we describe the various components of these systems.

1. Disassembler.

Program binaries, before they are analyzed or transformed, need to be disassembled.
Disassemblers handle the low-level architectural details, such as object file formats
(e.g., COFF [60], ELF [88], etc), encoding of machine instructions, etc, from the
input binaries and effectively hide all such details from the higher-level components
in the system. An output of a disassembler is a list of assembly instructions corre-
sponding to the machine instructions from the input binaries23.

2. Assembly-to-IR translator.

Once the binaries are disassembled, the next step is to translate the list of assembly
instructions into the list of IR instructions. The rationale behind such translation is
architecture-neutrality, which enables the analysis systems to24 support binaries from
different architectures.

A naive approach to implement an assembly-to-IR translator is to manually encode
the assembly-to-IR translation rules in the translator code directly. Unfortunately,
this approach makes the translator architecture-specific. A better approach is to
develop an architecture-neutral translator, which refers to the architecture-specific
translation rules. Architecture-specific rules, in such a case, can be written in the
form of an architecture specification. Such a design of the translator, which refers
to the manually-written architecture specifications, is common among the developers
of binary analysis, binary translation and binary instrumentation systems [25, 67, 15,
35, 11, 27, 14, 48]. Instead of relying on the manually-written specifications, we
develop an approach to use the extracted models as specifications.

23An accurate disassembly of program binaries is in itself a research problem with a number of solutions
such as BinCFI [98] being proposed. We will not discuss the disassembly problem and its solution here, but
will assume that there is a disassembler which provides us with an accurate disassembly of binaries.

24The IR instructions produced by an assembly-to-IR translator may not be in a form which can be directly
used for analysis and instrumentation. The generated IR instructions will mostly likely be semantically close
to the assembly instructions. Because the IR instructions are semantically close to the assembly instructions
and do not capture high-level program semantics (such as variables and types), they may be of less value to
the architecture-neutral binary analysis and instrumentation tools. To address this issue, low-level analysis
passes (not shown in the figure) are run on the IR instructions. Because program analysis to extract high-level
program semantics is a separate research topic, we do not talk about these analysis in this dissertation.
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3. Analysis and transformation. In this step, any desired program analysis and trans-
formation passes work on the semantically-rich program representation (IR) of the
input binary. An essential advantage of building an architecture-neutral system is
that the program analyses or transformations can be architecture-neutral and thus ap-
plicable to any architecture. This saves the effort of implementing the analyses or
transformations for every architecture.

4. IR-to-assembly translator + assembler. This is the last step in which the list of IR
instructions is translated into a list of assembly instructions, and a new binary is gen-
erated by assembling those assembly instructions. Commonly this is done by relying
on the specifications used by the assembly-to-IR translators [27]. The functional-
ity of this stage is similar to that of a combination of a compiler backend and an
assembler.

We now describe our approach to use the extracted models for building an assembly-
to-IR translator automatically.

6.1 Our Approach to Assembly to IR Translation

An input for the assembly-to-IR translation is the list of assembly instructions obtained
by disassembling the input binary. One can obtain such a list using a disassembler (e.g.,
objdump).

6.1.1 Challenge

To translate a list of assembly instructions into a list of IR instructions, an assembly-to-IR
translator needs to solve an interesting algorithmic challenge. The challenge stems because
a sequence of assembly instructions may be translated to a single IR instruction. This leads
to the question of how many assembly instructions should be grouped together and trans-
lated into IR. For instance, if the input assembly list contains four assembly instructions,
{a1, a2, a3, a4}, then there exists following different ways of partitioning them, where each
partition is translated into a single IR instruction:

1. All partitions of size 1:

• (1) {a1}, {a2}, {a3}, {a4},
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2. Partitioning with at least one partition of size 2:

• (2) {a1, a2}, {a3}, {a4},

• (3) {a1}, {a2, a3}, {a4},

• (4) {a1}, {a2}, {a3, a4},

• (5) {a1, a2}, {a3, a4},

3. Partitioning with at least one partition of size 3:

• (6) {a1, a2, a3}, {a4},

• (7) {a1}, {a2, a3, a4},

4. Partitioning with at least one partition of size 4:

• (8) {a1, a2, a3, a4}

Thus there are 8 different ways in which one can partition the list of four assembly
instructions for translating to IR. Which of these different ways should one use for transla-
tion? Note that all of the partitioning schemes may not be valid for a given list of assembly
instructions. To be precise, for all 8 ways (mentioned above) to be valid for the translation,
all assembly sequences used by them must be present in the extracted semantics model.
For instance, for the 7th partitioning to be valid, the extracted model must have two rules:
one for the single assembly instruction a1 and another for three assembly instructions {a2,
a3, a4}. If one of these rules does not exist, then we can safely discard that partitioning.
This observation can be applied to eliminate invalid ways of partitioning. Unfortunately,
given the exponential number of possible partitioning schemes (valid and invalid), a simple
algorithm could run into worst-case of exponential time complexity. Fortunately, given that
different partitioning schemes of a given list of assembly instructions represent overlapping
partitions, we can develop an efficient dynamic programming algorithm. The overlapping
partitions of above example is shown in Figure 44. Note that a path in the tree corresponds
to either a valid or invalid partitioning scheme. There could be multiple paths correspond-
ing to the valid schemes, and we just want to find any one path which corresponds to a
valid scheme. In the figure, partitions that overlap are shown in the same color. For in-
stance, partitions {a3, a4}, {a3} and {a4} overlap same partitions across multiple paths. If
we observe carefully, then all of these overlapping partitions correspond to possible par-
titioning schemes of assembly sequence {a3, a4}. Once we solve the problem of finding
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[Start]

{a1}

{a2}

{a3}

{a4}

{a3, a4}

{a2, a3}

{a4}

{a2,
a3, a4}

{a1, a2}

{a3}

{a4}

{a3, a4}

{a1,
a2, a3}

{a4}

{ a1, a2,
a3, a4 }

Figure 44: Tree of various possible partitioning schemes of sequence {a1, a2, a3, a4}

a valid partitioning scheme of {a3, a4}, we do not need to solve it again. We will exploit
this overlapping sub-problem property of the assembly-to-IR translation problem in order
to develop an efficient dynamic programming algorithm.

In order to develop a dynamic programming algorithm, we will use few notations and
then develop a recursive solution to the problem. The recursive solution will essentially
capture the overlapping sub-problem nature. We will first denote the list of assembly in-
structions by A, and the particular element i of A by Ai. Thus, A1 = a1 in the above example.
To represent a partition of A consisting of all elements from i to j, with both Ai and A j in-
cluded, we will use notation Pi, j. Thus, in the above example, P2,4 = {a2, a3, a4}. When i

and j are equal, Pi, j represents a single element. We will denote the semantic model used
for assembly-to-IR translation by M . Using the model to obtain a list of IR instructions for
a list of assembly instructions (A) can be represented as M [A]. Note that A here could be
a single assembly instruction or a sequence of them. Also, the model may not have the IR
instructions corresponding to some value of A. In that case M [A] = φ . Finally, the notion
that there is some valid partitioning scheme for a partition Pi, j is represented by solution
Si, j. Intuitively, in the tree of possible partitioning schemes, Si, j corresponds to one of the
all possible valid paths from node Ai to node A j. If there is no valid partitioning scheme
for Pi, j then Si, j = []. Concretely, we can define Si, j as:
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Si, j =



M [Pi, j], if i = j

M [Pi,i] & Si+1, j |
M [Pi,i+1] & Si+2, j |
. . .

M [Pi, j−1] & S j, j |
M [Pi, j], Otherwise.

Intuitively, above equation captures the observation that the solution to a list of in-
structions constitutes any of the following: either a translation for its first element and the
solution for the remaining elements in the list, or a translation for the partition obtained
from first two elements and the solution for the remaining elements in the list, and contin-
uing this way till we get the translation for whole sequence directly by treating that list as
a single partition. Note that the disjunction above represents the fact that there could be
multiple paths in the tree of possible partitioning schemes. Also, Si, j when i is equal to j is
same as M [Pi,i]. To illustrate above equation, for {a, b, c, d}, S1,4 is:

S1,4 = M [{a}] & S2,4 |
M [{a,b}] & S3,4 |
M [{a,b,c}] & S4,4 |
M [{a,b,c,d}]

This equation exactly captures the overlapping sub-problem nature of the assembly-to-
IR translation problem. This is because in order to find S1,4 we need to find S2,4, which
requires finding S3,4. Specifically, for above example,
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S2,4 = M [{b}] & S3,4 |
M [{b,c}] & S4,4 |
M [{b,c,d}]

The dynamic programming algorithm to find the translation of an input assembly list
thus solves these equations recursively, storing the solutions to sub-problems to avoid solv-
ing them again.

6.1.2 Algorithm

Dynamic programming algorithm for assembly-to-IR translation which incorporates
the approach discussed above is shown in Figure 45. Given a list of disassembled assembly
instructions (represented by A), the partition Pi, j of A identified by the start (i) and end ( j)
index in A, and the semantic model M , the algorithm produces a list of IR instructions
(I) for A. Si, j from the equations above is thus a list of IR instructions I corresponding
to Pi, j. Typically, first invocation of Translate would look like Translate(A, 1, |A|, M ),
where |A| represents the total number of assembly instructions in A. The algorithm follows
our earlier discussion and solves the problems recursively. Solutions to sub-problems is
memoized in a table T . Ti, j represents a solution (list of IR instructions) corresponding to
Pi, j. Note that the algorithm stores the information when some sequence (or sub-sequence)
of assembly instructions does not have a solution. This is done in line 19. Storing this
information essentially helps algorithm in avoiding the exploration of sub-partitions for a
visited partition. Lines 5–8 check if the solution to the problem already exists, and if it
does, then return it directly without proceeding any further. If the solution does not exist,
then the algorithm explores all partitions of increasing size until a solution is found. If it
finds a solution to any of the partition sizes, then it is returned immediately. @ operator at
line 16 is simply used to represent concatenation of an IR list for Pi,k and I′.

To demonstrate partitioning decisions made, let us go back to our initial example where
A = {a1, a2, a3, a4}. Let us say that the solution to P1,4 is to partition A such that {a1,
a2, a3} is one partition and {a4} is another. The tree of invocations of Translate before
arriving at the solution is shown in Figure 46. A node in the tree captures the value of
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1. // A is the list of all assembly instructions to be translated to IR.
2. // i and j define the partition Pi, j of A which we need to translate.
3. // Algorithm returns, I, the list of all IR instructions for instructions of Pi, j.
4. algorithm: Translate(A, i, j, M ):
5. if Ti, j 6= φ // T is a table used to store solutions to sub-problems.
6. then
7. return Ti, j
8. fi
9. for k = i to j

10. do
11. if M [Pi,k] 6= φ // If a mapping pair exists in the model.
12. then
13. I′ = Translate(A, k+1, j, M )
14. if I′ 6= []
15. then
16. Ti, j = M [Pi,k] @ I′

17. return Ti, j
18. else
19. Tj+1,k = I′

20. fi
21. fi
22. // May be the current way of splitting assembly list is not correct.
23. // Let’s increase the partition size by 1.
24. k = k+1
25. done
26. // Mapping rule for assembly instructions from Pi, j is not in M at all.
27. // We cannot lift this assembly sequence.
28. return []

Figure 45: Algorithm for assembly-to-IR translation

Pi,k accepted in various invocations of Translate, and the values of k+1 and j used in the
corresponding invocation. Notice that siblings represent successive iterations of for loop,
where as a path (towards a leaf) leaf represents recursive invocations made to explore a
solution. In the figure, the solution nodes are shown in Gray, where as the nodes which
are not explored (because of memoization) are shown in Dark Gray. Also, notice that a
sub-partition is visited only once, which allows us to find the worst-case complexity of the
algorithm easily.
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(1,4)

{a1},
(2,4)

{a2},
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{a4}

{a2, a3},
(4,4)

{a4}
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(3,4)

{a3},
(4,4)

{a4}

{a3, a4}

{a1,
a2, a3},
(4,4)

{a4}

Figure 46: Decision tree for assembly to IR translation

Since the algorithm avoids exploring subpartitions of an already visited partition, the
worst case complexity of the algorithm is bounded by the total number of partitions of a
given list of assembly instructions. For a list of size N, given that partition size can vary
from 1 to N, the total number of partitions can be obtained by the formula:

1+2+ ..+N =
N× (N +1))

2

The worst case time complexity of the algorithm is thus O(N2).
While the algorithm described above is a generic one, we found that in practice we do

not require full generality. Specifically, instead of allowing a maximum partition size to be
equal to |A|, we restrict it to 4 for x86, ARM and AVR architectures. This is because we
found that on these architectures, a single IR instruction can map to at most 4 assembly
instructions. This is implemented by simply modifying the condition of for loop as: k =
i to min(i+ 4, j). Because the algorithm that we implemented using constant value for a
maximum partition size, its worst-case time complexity is O(N).
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6.1.3 Other challenges for Assembly to IR translation

Besides the algorithmic challenge discussed earlier, there exists a few other challenges for
the assembly-to-IR translation.

Soundness of using extracted semantics model for assembly-to-IR translation. The
first challenge relates to the soundness of our approach. Specifically, the question is why is
it sound to use the extracted models for assembly-to-IR translation.

Code generators use extracted models in the forward direction to translate IR to assem-
bly, so a natural question is whether it is sound to use them backwards. There are several
reasons to believe that they are sound for translating assembly to IR. The first concerns the
way in which code generators (architecture specifications) are developed. The developer
starts by enumerating instructions in the target architecture, and specifying the semantics
of those instructions in IR. The developer view is one that corresponds to an assembly
to IR mapping. Second, note that the IR-to-assembly mapping must be sound, or else the
code generator will likely generate incorrect code. Therefore, an assembly instruction must
perform all of the actions that are included in IR. This suggests that perhaps the assembly
instruction could do more than what was asked for by the IR, e.g., change an additional
register. If so, assembly-to-IR translation does not capture these extra actions. However,
consider the fact that the IR optimizer performs several optimizations such as removal of
redundant computations and reordering of code snippets. These would be unsound if we
allowed an IR snippet to be replaced by an assembly instruction that modified CPU state in
ways beyond what was stated in IR.

In addition to above discussion, we checked the correctness of the models using ArCheck
semantic equivalence test. Because every assembly-to-IR pair from such models is seman-
tically equivalent, the assembly-to-IR translation will always be sound.

Syntactic differences between the output of a compiler and a disassembler. Another
challenge faced by the translator is the different ways of printing the instruction mnemon-
ics. For instance, the GCC compiler does not print the suffix of instruction mnemonics,
such as the ‘l’ suffix for 32-bit x86 mov instruction. The objdump disassembler, on the
other hand, prints the suffix. These minute differences create challenges for the translator
because the assembly-to-IR translation rules will not match in these cases. To handle such
issues, we introduce a post-disassembly step to process the assembly instructions and to
rectify all such differences. We have not shown this step in the figure for the architecture-
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independent binary analysis and transformation system, because it is not a standard step in
these systems.

Handling control-flow transfers. A control-flow graph (CFG) is one of the program
properties central to most program analyses. Thus, to allow a user of our translator to
perform sophisticated static analyses and instrumentations on the IR, we must reconstruct
the program’s CFG from the list of IR instructions produced by our translator.

We construct the CFG by processing the list of IR instructions produced by the trans-
lator. Our approach to link control-flow sources and their targets is as follows. First, we
use the runtime address of the assembly instructions (or their offset, in case of PIC code)
produced by a disassembler to generate unique code labels. To be specific, an instruction’s
address is prefixed by “L_” to produce a unique string label for that instruction. Once this
is done, we update the places where these instruction addresses are used and use labels
instead of concrete memory addresses. This is done by identifying these addresses using
pattern matching and replacing them by their labels. This takes care of fixing the targets of
jumps and linking their sources to the targets. Unfortunately, function calls introduce ad-
ditional complication. On Unix-based systems, external function calls are performed using
the GOT and PLT tables. As a result, the address of the call operand printed by a disassem-
bler is that of an address of the PLT stub for that function. Fortunately, the disassemblers
also print the name of the function being called in the disassembly. We exploit this ob-
servation to replace the target of a call instruction with the actual function being called.
Internal function calls do not need special treatment, because the address of their callee is
also present in the assembly instruction, and the approach of handling jump targets can be
easily applied in such case.

6.2 Implementation

The implementation of our assembly-to-IR translator comprises approximately 400 lines
of OCaml code and 140 lines of shell scripts. OCaml code implements the algorithm and
translates the list of assembly instructions. The scripts disassemble binaries, and imple-
ment post-disassembly steps such as processing the assembly instructions and fixing the
instruction labels.

In addition to above code to translate a binary into a list of IR instructions, we imple-
ment a parallel translation framework (around 110 lines of shell script) to perform batch
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Parameter x86 ARM AVR
Total number of binaries 9237 7326 12
Avg # of insns per binary 74K 117K 30K
Number of binaries translated in parallel 24 24 12
Total translation time 7 hrs 10 mins 8 hrs 30 mins 34 secs
(including disassembly)
Avg translation time per binary 1 min 8 secs 1 min 36 secs 34 secs
Avg disassembly time per binary 16 secs 23 secs 7 secs
Total avg virtual memory 245 MB 181 MB 32 MB
consumed by the translator

Figure 47: Details of Assembly to IR translator performance

translations. The framework divides the list of input binaries among the available number
of workers and keeps track of progress. We have utilized this parallel translation framework
to translate all x86 and ARM binaries on standard desktop OSes.

6.3 Evaluation

Translation time and memory consumption. The translation algorithm given in this
section is general and does not put any restrictions on the highest length of consecu-
tive assembly instructions that are translated to a single IR. However as we mentioned
earlier, for x86, ARM and AVR, we have fixed the maximum sequence size to be 4.
With this setting, we translated all the x86 binaries on Ubuntu-14.04 desktop OS, all the
ARM binaries on debian-7.8.0, and the coreutils-2.22 binaries for AVR. The transla-
tions were performed on a 32-bit Intel i7 CPU running Ubuntu-14.04. The disassemblers
used were objdump-2.24 for x86, arm-linux-gnueabi-objdump-2.24 for ARM, and
avr-objdump-2.23.1 for AVR25.

Figure 47 summarizes the translation time and memory consumption for x86, ARM,
and AVR translations performed using the LISC generated semantic models. We exploited
our parallel translation framework to translate multiple binaries simultaneously. As we
found, our translator translates approximately one binary per minute. The total translation
time includes the disassembly time and the time to translate a list of disassembled assembly
instructions. Although disassembly is fast, model (extracted semantics model same as LISC
transducer) loading takes time. For instance, it takes around 2.76 seconds to load the x86

25On Ubuntu-14.04, one can simply install binutils-arm-linux-gnueabi package for ARM, and
binutils-avr and gcc-avr package for AVR to get them.
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model of size 192MB in memory. To avoid loading of the model for the translation of every
binary, our parallel execution framework loads the model in memory only once, and then
forks its execution for parallel translations. Time to load automata in-memory is thus offset
by the parallelization. The amount of memory taken by the translator is also reasonably
small as compared to the RAM available on modern desktop systems.

Correctness. One of the important evaluation criteria for an assembly-to-IR translator is
the correctness of the translation. Specifically, how many of the assembly-to-IR translations
performed by the translator are correct. Since we used the translation algorithm given in
this section for the evaluation of LISC and EISSEC, we would like to point an interested
reader to the evaluation sections of these sections.

In addition to the correctness test based on semantic equivalence, we use a loop-back

test to check the correctness of translating a list of assembly instructions into a list of IR
instructions. The loop-back test consists of three steps: (1) applying the extracted models to
translate a list of assembly instructions L to IR, (2) then running the compiler (GCC in our
case) with the IR as input, and (3) verifying that the compiler produces the exact same list of
assembly instructions as L. If GCC cannot translate an IR instruction — possibly because
of the manually modeled mapping rules — then we perform such a translation ourselves
and emit the corresponding assembly instruction(s) modeled in the matching rule. All the
binaries used for experiments in this section passed on the loop-back test.

6.4 Related Work

All of the previous approaches to translate low-level instructions into high-level IRs are
based on manually building the components needed for such translation. To further clas-
sify, one can make two categories of existing approaches. Approaches falling into the first
category require a hand-written target instruction specification to drive the translator. The
approaches that fall in this category are [25, 67, 15, 35, 11, 27, 14, 48]. For instance,
SecondWrite [11] requires the XML specification of the architecture instructions, whereas
UQBT [27] has designed its own format for such specification.

Approaches falling into second category make a clever use of existing systems such
as QEMU and Valgrind. QEMU translates a source architecture instruction into the tar-
get. All existing architectures such as x86, ARM, etc have their own backend written for
QEMU which takes instruction written in QEMU IR and translates it into target instruction.
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Approaches [23, 45] have written a LLVM backend for QEMU, i.e., a backend to convert
QEMU IR into LLVM IR. While approaches [18] directly use Valgrind’s assembly to IR
translator as it is.

One important drawback of all existing approaches is that they require manual effort
for build the translators. Approaches falling in the second category suffer from their de-
pendence on QEMU and Valgrind. QEMU and Valgrind’s lack of support for some archi-
tectures such as AVR restricts application of these approaches to those architectures also.

DisIRer [46], on the other hand, is an approach similar to ours in that it relies on GCC
to build assembly-to-IR translators automatically. Unfortunately, their approach relies on
using architecture specifications (machine description files in GCC) to build inverse map-
ping table for assembly-to-IR translators. Their approach is thus specific to GCC and may
also be specific to a particular version of GCC. LISC, on the other hand, is a compiler-
neutral approach. We believe that compiler-neutrality helps LISC in avoiding issues such
as changes between different versions of a compiler or different internal details across mul-
tiple compilers.

6.5 Summary

In this section, we described our approach to use the extracted semantic models to build
assembly-to-IR translators automatically. Assembly-to-IR translators need to address a
challenge of understanding how to divide the input list of assembly instructions for trans-
lation. This challenge arises because an IR instruction could map to a single assembly
instruction or a sequence of them. We described our algorithm to address this challenge.
In addition to the challenge of selecting assembly instructions for translation, we also dis-
cussed various other challenges in lifting input binaries to compiler IR. We believe that our
evaluation consisting of models for multiple architectures and the input set of all binaries
found on desktop OSes validate the effectiveness of our approach to build assembly-to-IR
translators automatically. More importantly, we believe that it demonstrates the effective-
ness of our approach to reduce the manual effort needed in building these translators.

173



7 CONCLUSION AND FUTURE WORK

Extraction of instruction-set semantic models is one of the common problems faced by
a number of software systems (such as system emulators, virtual machine monitors, etc).
Unfortunately, the common approach of a manual model extraction reduces applicability
and effectiveness of these systems. This dissertation proposes two approaches (LISC and
EISSEC) to address this problem by automatically extracting instruction-set semantic mod-
els using code generators in modern compilers. To the best of our knowledge, there does
not exist any research work which attempts the automatic semantic extraction using modern
compilers. Automatically-extracted models enable these systems to support new architec-
tures quickly, and saves time, money and human efforts required in porting these systems.
The approach of automatic extraction thus leads to better software engineering practices.

In terms of contributions of the approaches, LISC demonstrates that the code generators
of modern compilers contain architecture-specific knowledge, and that one can extract such
knowledge by learning it from the code generator logs. More importantly, it demonstrates
that one can learn the model for a new architecture quickly, and that such an approach can
reduce the manual effort required in supporting new architectures. By evaluating against all
the binaries (for x86 and ARM) found on commodity OS distributions, LISC demonstrates
that the approach is generic and can deal with the complexities of modern architectures.

EISSEC, on the other hand, demonstrates that one can perform the symbolic execution
of compiler code generators and extract their function (thus extracting complete instruction-
set semantic models). Symbolic execution is a popular technique that is mostly applied in
the context of test case generation and bug finding. By extracting the function of a code
generator, we believe that EISSEC demonstrates how one can address the path explosion
problem for complex software such as code generators. We believe that some of the tech-
niques developed in EISSEC can be applied in the general context of the function extraction
of other software.

Implementing program analysis and instrumentation passes at the compiler IR level is
one of the approaches for source-to-source transformation and static analysis. This ap-
proach has been made popular by GCC and LLVM by introducing mechanisms to write
plug-ins which can inspect or modify intermediate representations. To exploit such IR-level
program analysis, compiler-specific assembly-to-IR translators are developed manually. In
comparison to these compiler-specific tools, the approaches proposed in this dissertation
are more general and applicable to a wide variety of compilers. LISC, in particular, is
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applicable to any compiler, and it does not need to be worry about modifications to the in-
ternals of compilers. Systematic, architecture- and compiler-neutral approaches to develop
assembly-to-IR translators is thus yet another important contribution of this dissertation.

To demonstrate an applicability of the extracted semantic models, we developed an
approach to test the correctness of the code generators. Testing compilers and ensuring that
they are bug-free is one of the important problems in software engineering. By developing
an approach to check the correctness of the code generators, this dissertation makes an
important contribution towards solving this problem. Moreover, by developing a compiler-
neutral approach and demonstrating its effectiveness in finding the modeling bugs in a
real-world compiler (GCC), ArCheck demonstrates that the approach is practical and can
be applied to test real-world compilers.

Broadly speaking, developing assembly-to-IR translators and testing code generators
are two of the possible applications of the semantic models. This dissertation abstracts out
the common problem of semantic model extraction across many applications, and addresses
it by developing approaches for the automatic extraction. In other words, applicability of
this dissertation goes beyond development of assembly-to-IR translators.

7.1 Future Work

One of the important contributions of this dissertation is to develop a framework for the
extraction of semantic models using compilers. There exist many interesting applications
of this framework. One such application is to use the extracted semantic models to build
binary translation, instrumentation and analysis systems. Although, we demonstrated that
the extracted models can be used to build assembly-to-IR translators quickly, building a
binary analysis, translation and instrumentation systems on top of these translators will be
a useful application of the extracted models. Many binary analyses and instrumentations
are platform-independent, and can be applied to the binaries from many architectures. Un-
fortunately, a limited architecture support restricts their effectiveness. Our approach can
address this problem and increase the effectiveness of existing systems.

Given that LISC is a black-box approach to learn the models followed by a code gen-
erator, we believe that it can be extended to learn the models from other systems such as
assemblers, virtual machine, etc. Moreover, it seems that the idea of testing the extracted
models can be extended to test these systems by defining appropriate correctness criteria.
Checking the correctness of these systems can help in eliminating modeling bugs, and can
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also reduce the programmer efforts needed in bug detection, analysis and fixing.
We believe that the models extracted using our techniques have several applications be-

yond testing and using them to build other systems. For instance, the models can be used
to check the conformance of a system with a standard or reference model. For instance,
by extracting an assembly to machine code model embedded inside an assembler, we can
check the conformance of the assembler to a standard specification for instruction encoding.
More broadly, these models can also be checked using techniques from the model checking
domain, and one can also approach the verification problem with this direction. Further-
more, the models of multiple systems and multiple implementations of same specification
can also be compared to find issues in them using techniques from n-version testing.
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