
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Code-Pointer Integrity
Volodymyr Kuznetsov, École Polytechnique Fédérale de Lausanne (EPFL);

László Szekeres, Stony Brook University; Mathias Payer, Purdue University;
George Candea, École Polytechnique Fédérale de Lausanne (EPFL);

R. Sekar, Stony Brook University; Dawn Song, University of California, Berkeley

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 147

Code-Pointer Integrity

Volodymyr Kuznetsov∗, László Szekeres‡, Mathias Payer†,§

George Candea∗, R. Sekar‡, Dawn Song†

∗École Polytechnique Fédérale de Lausanne (EPFL),
†UC Berkeley, ‡Stony Brook University, §Purdue University

Abstract
Systems code is often written in low-level languages

like C/C++, which offer many benefits but also dele-
gate memory management to programmers. This invites
memory safety bugs that attackers can exploit to divert
control flow and compromise the system. Deployed de-
fense mechanisms (e.g., ASLR, DEP) are incomplete,
and stronger defense mechanisms (e.g., CFI) often have
high overhead and limited guarantees [19, 15, 9].

We introduce code-pointer integrity (CPI), a new de-
sign point that guarantees the integrity of all code point-
ers in a program (e.g., function pointers, saved return ad-
dresses) and thereby prevents all control-flow hijack at-
tacks, including return-oriented programming. We also
introduce code-pointer separation (CPS), a relaxation of
CPI with better performance properties. CPI and CPS
offer substantially better security-to-overhead ratios than
the state of the art, they are practical (we protect a
complete FreeBSD system and over 100 packages like
apache and postgresql), effective (prevent all attacks in
the RIPE benchmark), and efficient: on SPEC CPU2006,
CPS averages 1.2% overhead for C and 1.9% for C/C++,
while CPI’s overhead is 2.9% for C and 8.4% for C/C++.

A prototype implementation of CPI and CPS can be
obtained from http://levee.epfl.ch.

1 Introduction
Systems code is often written in memory-unsafe lan-
guages; this makes it prone to memory errors that are
the primary attack vector to subvert systems. Attackers
exploit bugs, such as buffer overflows and use after free
errors, to cause memory corruption that enables them to
steal sensitive data or execute code that gives them con-
trol over a remote system [44, 37, 12, 8].

Our goal is to secure systems code against all control-
flow hijack attacks, which is how attackers gain remote
control of victim systems. Low-level languages like
C/C++ offer many benefits to system programmers, and
we want to make these languages safe to use while pre-
serving their benefits, not the least of which is perfor-
mance. Before expecting any security guarantees from
systems we must first secure their building blocks.

There exist a few protection mechanism that can re-
duce the risk of control-flow hijack attacks without im-
posing undue overheads. Data Execution Prevention
(DEP) [48] uses memory page protection to prevent the
introduction of new executable code into a running appli-
cation. Unfortunately, DEP is defeated by code reuse at-
tacks, such as return-to-libc [37] and return oriented pro-
gramming (ROP) [44, 8], which can construct arbitrary
Turing-complete computations by chaining together ex-
isting code fragments of the original application. Ad-
dress Space Layout Randomization (ASLR) [40] places
code and data segments at random addresses, making it
harder for attackers to reuse existing code for execution.
Alas, ASLR is defeated by pointer leaks, side channels
attacks [22], and just-in-time code reuse attacks [45]. Fi-
nally, stack cookies [14] protect return addresses on the
stack, but only against continuous buffer overflows.

Many defenses can improve upon these shortcomings
but have not seen wide adoption because of the overheads
they impose. According to a recent survey [46], these so-
lutions are incomplete and bypassable via sophisticated
attacks and/or require source code modifications and/or
incur high performance overhead. These approaches typ-
ically employ language modifications [25, 36], compiler
modifications [13, 3, 17, 34, 43], or rewrite machine code
binaries [38, 54, 53]. Control-flow integrity protection
(CFI) [1, 29, 53, 54, 39], a widely studied technique for
practical protection against control-flow hijack attacks,
was recently demonstrated to be ineffective [19, 15, 9].

Existing techniques cannot both guarantee protection
against control-flow hijacks and impose low overhead
and no changes to how the programmer writes code. For
example, memory-safe languages guarantee that a mem-
ory object can only be accessed using pointers prop-
erly based on that specific object, which in turn makes
control-flow hijacks impossible, but this approach re-
quires runtime checks to verify the temporal and spatial
correctness of pointer computations, which inevitably
induces undue overhead, especially when retrofitted to
memory-unsafe languages. For example, state-of-the-art
memory safety implementations for C/C+ incur ≥ 2×

1

148 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

overhead [35]. We observe that, in order to render
control-flow hijacks impossible, it is sufficient to guaran-
tee the integrity of code pointers, i.e., those that are used
to determine the targets of indirect control-flow transfers
(indirect calls, indirect jumps, or returns).

This paper introduces code-pointer integrity (CPI), a
way to enforce precise, deterministic memory safety for
all code pointers in a program. The key idea is to split
process memory into a safe region and a regular region.
CPI uses static analysis to identify the set of memory ob-
jects that must be protected in order to guarantee memory
safety for code pointers. This set includes all memory
objects that contain code pointers and all data pointers
used to access code pointers indirectly. All objects in the
set are then stored in the safe region, and the region is
isolated from the rest of the address space (e.g., via hard-
ware protection). The safe region can only be accessed
via memory operations that are proven at compile time
to be safe or that are safety-checked at runtime. The reg-
ular region is just like normal process memory: it can be
accessed without runtime checks and, thus, with no over-
head. In typical programs, the accesses to the safe region
represent only a small fraction of all memory accesses
(6.5% of all pointer operations in SPEC CPU2006 need
protection). Existing memory safety techniques cannot
efficiently protect only a subset of memory objects in a
program, rather they require instrumenting all potentially
dangerous pointer operations.

CPI fully protects the program against all control-flow
hijack attacks that exploit program memory bugs. CPI
requires no changes to how programmers write code,
since it automatically instruments pointer accesses at
compile time. CPI achieves low overhead by selectively
instrumenting only those pointer accesses that are neces-
sary and sufficient to formally guarantee the integrity of
all code pointers. The CPI approach can also be used for
data, e.g., to selectively protect sensitive information like
the process UIDs in a kernel.

We also introduce code-pointer separation (CPS), a re-
laxed variant of CPI that is better suited for code with
abundant virtual function pointers. In CPS, all code
pointers are placed in the safe region, but pointers used to
access code pointers indirectly are left in the regular re-
gion (such as pointers to C++ objects that contain virtual
functions). Unlike CPI, CPS may allow certain control-
flow hijack attacks, but it still offers stronger guarantees
than CFI and incurs negligible overhead.

Our experimental evaluation shows that our proposed
approach imposes sufficiently low overhead to be de-
ployable in production. For example, CPS incurs an
average overhead of 1.2% on the C programs in SPEC
CPU2006 and 1.9% for all C/C++ programs. CPI incurs
on average 2.9% overhead for the C programs and 8.4%
across all C/C++ SPEC CPU2006 programs. CPI and

CPS are effective: they prevent 100% of the attacks in the
RIPE benchmark and the recent attacks [19, 15, 9] that
bypass CFI, ASLR, DEP, and all other Microsoft Win-
dows protections. We compile and run with CPI/CPS a
complete FreeBSD distribution along with ≥ 100 widely
used packages, demonstrating that the approach is prac-
tical. This paper makes the following contributions:

1. Definition of two new program properties that of-
fer a security-benefit to enforcement-cost ratio su-
perior to the state of the art: code-pointer in-
tegrity (CPI) guarantees control flow cannot be hi-
jacked via memory bugs, and code-pointer sepa-
ration (CPS) provides stronger security guarantees
than control-flow integrity but at negligible cost.

2. An efficient compiler-based implementation of CPI
and CPS for unmodified C/C++ code.

3. The first practical and complete OS distribution
(based on FreeBSD) with full protection built-in
against control-flow hijack attacks.

In the rest of the paper we introduce our threat
model (§2), describe CPI and CPS (§3), present our im-
plementation (§4), evaluate our approach (§5), discuss
related work (§6), and conclude (§7). We formalize the
CPI enforcement mechanism and provide a sketch of its
correctness proof in Appendix A.

2 Threat Model

This paper is concerned solely with control-flow hijack
attacks, namely ones that give the attacker control of the
instruction pointer. The purpose of this type of attack is
to divert control flow to a location that would not oth-
erwise be reachable in that same context, had the pro-
gram not been compromised. Examples of such attacks
include forcing a program to jump (i) to a location where
the attacker injected shell code, (ii) to the start of a chain
of return-oriented program fragments (“gadgets”), or (iii)
to a function that performs an undesirable action in the
given context, such as calling system() with attacker-
supplied arguments. Data-only attacks, i.e., that modify
or leak unprotected non-control data, are out of scope.

We assume powerful yet realistic attacker capabilities:
full control over process memory, but no ability to mod-
ify the code segment. Attackers can carry out arbitrary
memory reads and writes by exploiting input-controlled
memory corruption errors in the program. They can-
not modify the code segment, because the corresponding
pages are marked read-executable and not writable, and
they cannot control the program loading process. These
assumptions ensure the integrity of the original program
code instrumented at compile time, and enable the pro-
gram loader to safely set up the isolation between the
safe and regular memory regions. Our assumptions are
consistent with prior work in this area.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 149

3 Design
We now present the terminology used to describe our
design, then define the code-pointer integrity prop-
erty (§3.1), describe the corresponding enforcement
mechanism (§3.2), and define a relaxed version that
trades some security guarantees for performance (§3.3).
We further formalize the CPI enforcement mechanism
and sketch its correctness proof in Appendix A.

We say a pointer dereference is safe iff the memory it
accesses lies within the target object on which the deref-
erenced pointer is based. A target object can either be a
memory object or a control flow destination. By pointer
dereference we mean accessing the memory targeted by
the pointer, either to read/write it (for data pointers) or
to transfer control flow to its location (for code pointers).
A memory object is a language-specific unit of memory
allocation, such as a global or local variable, a dynami-
cally allocated memory block, or a sub-object of a larger
memory object (e.g., a field in a struct). Memory objects
can also be program-specific, e.g., when using custom
memory allocators. A control flow destination is a loca-
tion in the code, such as the start of a function or a return
location. A target object always has a well defined life-
time; for example, freeing an array and allocating a new
one with the same address creates a different object.

We say a pointer is based on a target object X iff the
pointer is obtained at runtime by (i) allocating X on the
heap, (ii) explicitly taking the address of X , if X is allo-
cated statically, such as a local or global variable, or is a
control flow target (including return locations, whose ad-
dresses are implicitly taken and stored on the stack when
calling a function), (iii) taking the address of a sub-object
y of X (e.g., a field in the X struct), or (iv) computing
a pointer expression (e.g., pointer arithmetic, array in-
dexing, or simply copying a pointer) involving operands
that are either themselves based on object X or are not
pointers. This is slightly stricter version of C99’s “based
on” definition: we ensure that each pointer is based on at
most one object.

The execution of a program is memory-safe iff all
pointer dereferences in the execution are safe. A pro-
gram is memory-safe iff all its possible executions (for
all inputs) are memory-safe. This definition is consis-
tent with the state of the art for C/C++, such as Soft-
Bounds+CETS [34, 35]. Precise memory safety enforce-
ment [34, 36, 25] tracks the based-on information for
each pointer in a program, to check the safety of each
pointer dereference according to the definition above; the
detection of an unsafe dereference aborts the program.

3.1 The Code-Pointer Integrity (CPI) Property

A program execution satisfies the code-pointer integrity
property iff all its dereferences that either dereference or
access sensitive pointers are safe. Sensitive pointers are

Figure 1: CPI protects code pointers 3 and 4 and pointers 1 and
2 (which may access pointers 3 and 4 indirectly). Pointer 2 of
type void* may point to different objects at different times. The
int* pointer 5 and non-pointer data locations are not protected.

code pointers and pointers that may later be used to ac-
cess sensitive pointers. Note that the sensitive pointer
definition is recursive, as illustrated in Fig. 1. According
to case (iv) of the based-on definition above, dereferenc-
ing a pointer to a pointer will correspondingly propagate
the based-on information; e.g., an expression *p = &q
copies the result of &q, which is a pointer based on q,
to a location pointed to by p, and associates the based-
on metadata with that location. Hence, the integrity of
the based-on metadata associated with sensitive pointers
requires that pointers used to update sensitive pointers
be sensitive as well (we discuss implications of relaxing
this definition in §3.3). The notion of a sensitive pointer
is dynamic. For example, a void* pointer 2 in Fig. 1 is
sensitive when it points at another sensitive pointer at run
time, but it is not sensitive when it points to an integer.

A memory-safe program execution trivially satisfies
the CPI property, but memory-safety instrumentation
typically has high runtime overhead, e.g., ≥ 2× in state-
of-the-art implementations [35]. Our observation is
that only a small subset of all pointers are responsible
for making control-flow transfers, and so, by enforc-
ing memory safety only for control-sensitive data (and
thus incurring no overhead for all other data), we ob-
tain important security guarantees while keeping the cost
of enforcement low. This is analogous to the control-
plane/data-plane separation in network routers and mod-
ern servers [5], with CPI ensuring the safety of data that
influences, directly or indirectly, the control plane.

Determining precisely the set of pointers that are
sensitive can only be done at run time. However,
the CPI property can still be enforced using any over-
approximation of this set, and such over-approximations
can be obtained at compile time, using static analysis.

3.2 The CPI Enforcement Mechanism

We now describe a way to retrofit the CPI property into
a program P using a combination of static instrumenta-
tion and runtime support. Our approach consists of a
static analysis pass that identifies all sensitive pointers in
P and all instructions that operate on them (§3.2.1), an
instrumentation pass that rewrites P to “protect” all sen-
sitive pointers, i.e., store them in a separate, safe memory
region and associate, propagate, and check their based-

3

150 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

on metadata (§3.2.2), and an instruction-level isolation
mechanism that prevents non-protected memory opera-
tions from accessing the safe region (§3.2.3). For perfor-
mance reasons, we handle return addresses stored on the
stack separately from the rest of the code pointers using
a safe stack mechanism (§3.2.4).

3.2.1 CPI Static Analysis

We determine the set of sensitive pointers using type-
based static analysis: a pointer is sensitive if its type
is sensitive. Sensitive types are: pointers to functions,
pointers to sensitive types, pointers to composite types
(such as struct or array) that contains one or more mem-
bers of sensitive types, or universal pointers (i.e., void*,
char* and opaque pointers to forward-declared structs
or classes). A programmer could additionally indicate,
if desired, other types to be considered sensitive, such
as struct ucred used in the FreeBSD kernel to store pro-
cess UIDs and jail information. All code pointers that a
compiler or runtime creates implicitly (such as return ad-
dresses, C++ virtual table pointers, and setjmp buffers)
are sensitive as well.

Once the set of sensitive pointers is determined, we
use static analysis to find all program instructions that
manipulate these pointers. These instructions include
pointer dereferences, pointer arithmetic, and memory
(de-)allocation operations that calls to either (i) corre-
sponding standard library functions, (ii) C++ new/delete
operators, or (iii) manually annotated custom allocators.

The derived set of sensitive pointers is over-
approximate: it may include universal pointers that never
end up pointing to sensitive values at runtime. For in-
stance, the C/C++ standard allows char* pointers to point
to objects of any type, but such pointers are also used for
C strings. As a heuristic, we assume that char* pointers
that are passed to the standard libc string manipulation
functions or that are assigned to point to string constants
are not universal. Neither the over-approximation nor the
char* heuristic affect the security guarantees provided by
CPI: over-approximation merely introduces extra over-
head, while heuristic errors may result in false violation
reports (though we never observed any in practice).

Memory manipulation functions from libc, such as
memset or memcpy, could introduce a lot of overhead in
CPI: they take void* arguments, so a libc compiled with
CPI would instrument all accesses inside the functions,
regardless of whether they are operating on sensitive data
or not. CPI’s static analysis instead detects such cases by
analyzing the real types of the arguments prior to being
cast to void*, and the subsequent instrumentation pass
handles them separately using type-specific versions of
the corresponding memory manipulation functions.

We augmented type-based static analysis with a data-
flow analysis that handles most practical cases of unsafe

pointer casts and casts between pointers and integers. If
a value v is ever cast to a sensitive pointer type within
the function being analyzed, or is passed as an argument
or returned to another function where it is cast to a sen-
sitive pointer, the analysis considers v to be sensitive as
well. This analysis may fail when the data flow between
v and its cast to a sensitive pointer type cannot be fully re-
covered statically, which might cause false violation re-
ports (we have not observed any during our evaluation).
Such casts are a common problem for all pointer-based
memory safety mechanisms for C/C++ that do not re-
quire source code modifications [34].

A key benefit of CPI is its selectivity: the number of
pointer operations deemed to be sensitive is a small frac-
tion of all pointer operations in a program. As we show
in §5, for SPEC CPU2006, the CPI type-based analy-
sis identifies for instrumentation 6.5% of all pointer ac-
cesses; this translates into a reduction of performance
overhead of 16 – 44× relative to full memory safety.

Nevertheless, we still think CPI can benefit from more
sophisticated analyses. CPI can leverage any kind of
points-to static analysis, as long as it provides an over-
approximate set of sensitive pointers. For instance, when
extending CPI to also protect select non-code-pointer
data, we think DSA [27, 28] could prove more effective.

3.2.2 CPI Instrumentation

CPI instruments a program in order to (i) ensure that all
sensitive pointers are stored in a safe region, (ii) create
and propagate metadata for such pointers at runtime, and
(iii) check the metadata on dereferences of such pointers.

In terms of memory layout, CPI introduces a safe re-
gion in addition to the regular memory region (Fig. 2).
Storage space for sensitive pointers is allocated in both
the safe region (the safe pointer store) and the regular
region (as usual); one of the two copies always remains
unused. This is necessary for universal pointers (e.g.,
void*), which could be stored in either region depend-
ing on whether they are sensitive at run time or not, and
also helps to avoid some compatibility issues that arise
from the change in memory layout. The address in regu-
lar memory is used as an offset to to look up the value of
a sensitive pointer in the safe pointer store.

The safe pointer store maps the address &p of sensi-
tive pointer p, as allocated in the regular region, to the
value of p and associated metadata. The metadata for p
describes the target object on which p is based: lower
and upper address bounds of the object, and a temporal
id (see Fig. 2). The layout of the safe pointer store is
similar to metadata storage in SoftBounds+CETS [35],
except that CPI also stores the value of p in the safe
pointer store. Combined with the isolation of the safe re-
gion (§3.2.3), this allows CPI to guarantee full memory
safety of all sensitive pointers without having to instru-

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 151

Code (RX) Heap (RW)

T1'

Unsafe Stacks (RW)

Safe Region
Safe Stacks (RW)Safe Pointer Store (RW)

value | upper | lower | id

Regular Region

T2' T3' T1 T2 T3
struct A

Figure 2: CPI memory layout: The safe region contains the
safe pointer store and the safe stacks. The location of a sensitive
pointer on the left (shaded) remains unused, while the value of
this pointer and its metadata are stored in the safe pointer store.
The safe stacks T1,T2,T3 have corresponding stacks T ′

1,T
′

2,T
′

3
in regular memory to allocate unsafe stack objects.

ment all pointer operations.
The instrumentation step changes instructions that op-

erate on sensitive pointers, as found by CPI’s static anal-
ysis, to create and propagate the metadata directly fol-
lowing the based-on definition in §3.1. Instructions that
explicitly take addresses of a statically allocated memory
object or a function, allocate a new object on the heap, or
take an address of a sub-object are instrumented to create
metadata that describe the corresponding object. Instruc-
tions that compute pointer expressions are instrumented
to propagate the metadata accordingly. Instructions that
load or store sensitive pointers to memory are replaced
with CPI intrinsic instructions (§3.2.3) that load or store
both the pointer values and their metadata from/to the
safe pointer store. In principle, call and return instruc-
tions also store and load code pointers, and so would
need to be instrumented, but we instead protect return
addresses using a safe stack (§3.2.4).

Every dereference of a sensitive pointer is instru-
mented to check at runtime whether it is safe, using the
metadata associated with the pointer being dereferenced.
Together with the restricted access to the safe region, this
results in precise memory safety for all sensitive pointers.

Universal pointers (void* and char*) are stored in ei-
ther the safe pointer store or the regular region, de-
pending on whether they are sensitive at runtime or not.
CPI instruments instructions that cast from non-sensitive
to universal pointer types to assign special “invalid”
metadata (e.g., with lower bound greater than the upper
bound) for the resulting universal pointers. These point-
ers, as a result, would never be allowed to access the safe
region. CPI intrinsics for universal pointers would only
store a pointer in the safe pointer store if it had valid
metadata, and only load it from the safe pointer store if it
contained valid metadata for that pointer; otherwise, they
would store/load from the regular region.

CPI can be configured to simultaneously store pro-
tected pointers in both the safe pointer store and regu-
lar regions, and check whether they match when loading
them. In this debug mode, CPI detects all attempts to hi-
jack control flow using non-protected pointer errors; in
the default mode, such attempts are silently prevented.
This debug mode also provides better compatibility with
non-instrumented code that may read protected pointers

(for example, callback addresses) but not write them.
Modern compilers contain powerful static analysis

passes that can often prove statically that certain memory
accesses are always safe. The CPI instrumentation pass
precedes compiler optimizations, thus allowing them to
potentially optimize away some of the inserted checks
while preserving the security guarantees.

3.2.3 Isolating the Safe Region

The safe region can only be accessed via CPI intrinsic
instructions, and they properly handle pointer metadata
and the safe stack (§3.2.4). The mechanism for achieving
this isolation is architecture-dependent.

On x86-32, we rely on hardware segment protection.
We make the safe region accessible through a dedicated
segment register, which is otherwise unused, and con-
figure limits for all other segment registers to make the
region inaccessible through them. The CPI intrinsics are
then turned into code that uses the dedicated register and
ensures that no other instructions in the program use that
register. The segment registers are configured by the pro-
gram loader, whose integrity we assume in our threat
model; we also prevent the program from reconfiguring
the segment registers via system calls. None of the pro-
grams we evaluated use the segment registers.

On x86-64, CPI relies on the fact that no addresses
pointing into the safe region are ever stored in the regular
region. This architecture no longer enforces the segment
limits, however it still provides two segment registers
with configurable base addresses. Similarly to x86-32,
we use one of these registers to point to the safe region,
however, we choose the base address of the safe region
at random and rely on preventing access to it through
information hiding. Unlike classic ASLR though, our
hiding is leak-proof: since the objects in the safe region
are indexed by addresses allocated for them in the regu-
lar region, no addresses pointing into the safe region are
ever stored in regular memory at any time during execu-
tion. The 48-bit address space of modern x86-64 CPUs
makes guessing the safe region address impractical, be-
cause most failed guessing attempts would crash the pro-
gram, and such frequent crashes can easily be detected
by other means.

Other architectures could use randomization-based
protection as well, or rely on precise software fault isola-
tion (SFI) [11]. SFI requires that all memory operations
in a program are instrumented, but the instrumentation is
lightweight: it could be as small as a single and opera-
tion if the safe region occupies the entire upper half of
the address space of a process. In our experiments, the
additional overhead introduced by SFI was less than 5%.

Since sensitive pointers form a small fraction of all
data stored in memory, the safe pointer store is highly
sparse. To save memory, it can be organized as a hash ta-

5

152 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ble, a multi-level lookup table, or as a simple array rely-
ing on the sparse address space support of the underlying
OS. We implemented and evaluated all three versions,
and we discuss the fastest choice in §4.

In the future, we plan to leverage Intel MPX [24] for
implementing the safe region, as described in §4.

3.2.4 The Safe Stack

CPI treats the stack specially, in order to reduce perfor-
mance overhead and complexity. This is primarily be-
cause the stack hosts values that are accessed frequently,
such as return addresses that are code pointers accessed
on every function call, as well as spilled registers (tempo-
rary values that do not fit in registers and compilers store
on the stack). Furthermore, tracking which of these val-
ues will end up at run time in memory (and thus need to
be protected) vs. in registers is difficult, as the compiler
decides which registers to spill only during late stages of
code generation, long after CPI’s instrumentation pass.

A key observation is that the safety of most accesses
to stack objects can be checked statically during com-
pilation, hence such accesses require no runtime checks
or metadata. Most stack frames contain only memory
objects that are accessed exclusively within the corre-
sponding function and only through the stack pointer
register with a constant offset. We therefore place all
such proven-safe objects onto a safe stack located in the
safe region. The safe stack can be accessed without any
checks. For functions that have memory objects on their
stack that do require checks (e.g., arrays or objects whose
address is passed to other functions), we allocate separate
stack frames in the regular memory region. In our expe-
rience, less than 25% of functions need such additional
stack frames (see Table 2). Furthermore, this fraction is
much smaller among short functions, for which the over-
head of setting up the extra stack frame is non-negligible.

The safe stack mechanism consists of a static analysis
pass, an instrumentation pass, and runtime support. The
analysis pass identifies, for every function, which objects
in its stack frame are guaranteed to be accessed safely
and can thus be placed on the safe stack; return addresses
and spilled registers always satisfy this criterion. For the
objects that do not satisfy this criterion, the instrumen-
tation pass inserts code that allocates a stack frame for
these objects on the regular stack. The runtime support
allocates regular stacks for each thread and can be imple-
mented either as part of the threading library, as we did
on FreeBSD, or by intercepting thread create/destroy, as
we did on Linux. CPI stores the regular stack pointer in-
side the thread control block, which is pointed to by one
of the segment registers and can thus be accessed with a
single memory read or write.

Our safe stack layout is similar to double stack ap-
proaches in ASR [6] and XFI [18], which maintain a

separate stack for arrays and variables whose addresses
are taken. However, we use the safe stack to enforce
the CPI property instead of implementing software fault
isolation. The safe stack is also comparable to language-
based approaches like Cyclone [25] or CCured [36] that
simply allocate these objects on the heap, but our ap-
proach has significantly lower performance overhead.

Compared to a shadow stack like in CFI [1], which
duplicates return instruction pointers outside of the at-
tacker’s access, the CPI safe stack presents several ad-
vantages: (i) all return instruction pointers and most local
variables are protected, whereas a shadow stack only pro-
tects return instruction pointers; (ii) the safe stack is com-
patible with uninstrumented code that uses just the regu-
lar stack, and it directly supports exceptions, tail calls,
and signal handlers; (iii) the safe stack has near-zero
performance overhead (§5.2), because only a handful
of functions require extra stack frames, while a shadow
stack allocates a shadow frame for every function call.

The safe stack can be employed independently from
CPI, and we believe it can replace stack cookies [14]
in modern compilers. By providing precise protection
of all return addresses (which are the target of ROP at-
tacks today), spilled registers, and some local variables,
the safe stack provides substantially stronger security
than stack cookies, while incurring equal or lower per-
formance overhead and deployment complexity.

3.3 Code-Pointer Separation (CPS)

The code-pointer separation property trades some of
CPI’s security guarantees for reduced runtime overhead.
This is particularly relevant to C++ programs with many
virtual functions, where the fraction of sensitive point-
ers instrumented by CPI can become high, since every
pointer to an object that contains virtual functions is sen-
sitive. We found that, on average, CPS reduces overhead
by 4.3× (from 8.4% for CPI down to 1.9% for CPS), and
in some cases by as much as an order of magnitude.

CPS further restricts the set of protected pointers to
code pointers only, leaving pointers that point to code
pointers uninstrumented. We additionally restrict the
definition of based-on by requiring that a code pointer be
based only on a control flow destination. This restriction
prevents attackers from “forging” a code pointer from a
value of another type, but still allows them to trick the
program into reading or updating wrong code pointers.

CPS is enforced similarly to CPI, except (i) for the
criteria used to identify sensitive pointers during static
analysis, and (ii) that CPS does not need any metadata.
Control-flow destinations (pointed to by code pointers)
do not have bounds, because the pointer value must al-
ways match the destination exactly, hence no need for
bounds metadata. Furthermore, they are typically static,
hence do not need temporal metadata either (there are

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 153

a few rare exceptions, like unloading a shared library,
which are handled separately). This reduces the size
of the safe region and the number of memory accesses
when loading or storing code pointers. If the safe region
is organized as a simple array, a CPS-instrumented pro-
gram performs essentially the same number of memory
accesses when loading or storing code pointers as a non-
instrumented one; the only difference is that the pointers
are being loaded or stored from the safe pointer store in-
stead of their original location (universal pointer load or
store instructions still introduce one extra memory access
per such instruction). As a result, CPS can be enforced
with low performance overhead.

CPS guarantees that (i) code pointers can only be
stored to or modified in memory by code pointer store
instructions, and (ii) code pointers can only be loaded by
code pointer load instructions from memory locations to
which previously a code pointer store instruction stored
a value. Combined with the safe stack, CPS precisely
protects return addresses. CPS is stronger than most CFI
implementations [1, 54, 53], which allow any vulnerable
instruction in a program to modify any code pointer; they
only check that the value of a code pointer (when used in
an indirect control transfer) points to a function defined
in a program (for function pointers) or directly follows
a call instruction (for return addresses). CPS guarantee
(i) above restricts the attack surface, while guarantee (ii)
restricts the attacker’s flexibility by limiting the set of lo-
cations to which the control can be redirected—the set
includes only entry points of functions whose addresses
were explicitly taken by the program.

To illustrate this difference, consider the case of the
Perl interpreter, which implements its opcode dispatch
by representing internally a Perl program as a sequence
of function pointers to opcode handlers and then calling
in its main execution loop these function pointers one
by one. CFI statically approximates the set of legitimate
control-flow targets, which in this case would include all
possible Perl opcodes. CPS however permits only calls
through function pointers that are actually assigned. This
means that a memory bug in a CFI-protected Perl in-
terpreter may permit an attacker to divert control flow
and execute any Perl opcode, whereas in a CPS-protected
Perl interpreter the attacker could at most execute an op-
code that exists in the running Perl program.

CPS provides strong control-flow integrity guarantees
and incurs low overhead (§5). We found that it prevents
all recent attacks designed to bypass CFI [19, 15, 9]. We
consider CPS to be a solid alternative to CPI in those
cases when CPI’s (already low) overhead seems too high.

4 Implementation
We implemented a CPI/CPS enforcement tool for
C/C++, called Levee, on top of the LLVM 3.3 com-

piler infrastructure [30], with modifications to LLVM li-
braries, the clang compiler, and the compiler-rt runtime.
To use Levee, one just needs to pass additional flags to
the compiler to enable CPI (-fcpi), CPS (-fcps), or safe-
stack protection (-fstack-protector-safe). Levee works
on unmodified programs and supports Linux, FreeBSD,
and Mac OS X in both 32-bit and 64-bit modes.

Levee can be downloaded from the project home-
page http://levee.epfl.ch, and we plan to push our
changes to the upstream LLVM.
Analysis and instrumentation passes: We imple-
mented the static analysis and instrumentation for CPI
as two LLVM passes, directly following the design
from §3.2.1 and §3.2.2. The LLVM passes operate on the
LLVM intermediate representation (IR), which is a low-
level strongly-typed language-independent program rep-
resentation tailored for static analyses and optimization
purposes. The LLVM IR is generated from the C/C++
source code by clang, which preserves most of the type
information that is required by our analysis, with a few
corner cases. For example, in certain cases, clang does
not preserve the original types of pointers that are cast
to void* when passing them as an argument to memset
or similar functions, which is required for the memset-
related optimizations discussed in §3.2.2. The IR also
does not distinguish between void* and char* (represents
both as i8*), but this information is required for our string
pointers detection heuristic. We augmented clang to al-
ways preserve such type information as LLVM metadata.
Safe stack instrumentation pass: The safe stack instru-
mentation targets functions that contain on-stack mem-
ory objects that cannot be put on the safe stack. For such
functions, it allocates a stack frame on the unsafe stack
and relocates corresponding variables to that frame.

Given that most of the functions do not need an un-
safe stack, Levee uses the usual stack pointer (rsp reg-
ister on x86-64) as the safe stack pointer, and stores the
unsafe stack pointer in the thread control block, which is
accessible directly through one of the segment registers.
When needed, the unsafe stack pointer is loaded into an
IR local value, and Levee relies on the LLVM register
allocator to pick the register for the unsafe stack pointer.
Levee explicitly encodes unsafe stack operations as IR
instructions that manipulate an unsafe stack pointer; it
leaves all operations that use a safe stack intact, letting
the LLVM code generator manage them. Levee performs
these changes as a last step before code generation (di-
rectly replacing LLVM’s stack-cookie protection pass),
thus ensuring that it operates on the final stack layout.

Certain low-level functions modify the stack pointer
directly. These functions include setjmp/longjmp and
exception handling functions (which store/load the stack
pointer), and thread create/destroy functions, which al-
locate/free stacks for threads. On FreeBSD we provide

7

154 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

full-system CPI, so we directly modified these functions
to support the dual stacks. On Linux, our instrumentation
pass finds setjmp/longjmp and exception handling func-
tions in the program and inserts required instrumentation
at their call sites, while thread create/destroy functions
are intercepted and handled by the Levee runtime.

Runtime support library: Most of the instrumentation
by the above passes are added as intrinsic function calls,
such as cpi ptr store() or cpi memcpy(), which are im-
plemented by Levee’s runtime support library (a part
of compiler-rt). This design cleanly separates the safe
pointer store implementation from the instrumentation
pass. In order to avoid the overhead associated with ex-
tra function calls, we ensure that some of the runtime
support functions are always inlined. We compile these
functions into LLVM bitcode and instruct clang to link
this bitcode into every object file it compiles. Functions
that are called rarely (e.g., cpi abort(), called when a CPI
violation is detected) are never inlined, in order to reduce
the instruction cache footprint of the instrumentation.

We implemented and benchmarked several versions of
the safe pointer store map in our runtime support library:
a simple array, a two-level lookup table, and a hashtable.
The array implementation relies on the sparse address
space support of the underlying OS. Initially we found it
to perform poorly on Linux, due to many page faults (es-
pecially at startup) and additional TLB pressure. Switch-
ing to superpages (2 MB on Linux) made this simple ta-
ble the fastest implementation of the three.

Binary level functionality: Some code pointers in bina-
ries are generated by the compiler and/or linker, and can-
not be protected on the IR level. Such pointers include
the ones in jump tables, exception handler tables, and the
global offset table. Bounds checks for the jump tables
and the exception handler tables are already generated
by LLVM anyway, and the tables themselves are placed
in read-only memory, hence cannot be overwritten. We
rely on the standard loader’s support for read-only global
offset tables, using the existing RTLD NOW flag.

Limitations: The CPI design described in §3 includes
both spatial and temporal memory safety enforcement
for sensitive pointers, however our current prototype im-
plements spatial memory safety only. It can be easily
extended to enforce temporal safety by directly applying
the technique described in [35] for sensitive pointers.

Levee currently supports Linux, FreeBSD and Mac
OS user-space applications. We believe Levee can be
ported to protect OS kernels as well. Related technical
challenges include integration with the kernel memory
management subsystem and handling of inline assembly.

CPI and CPS require instrumenting all code that ma-
nipulates sensitive pointers; non-instrumented code can
cause unnecessary aborts. Non-instrumented code could

come from external libraries compiled without Levee, in-
line assembly, or dynamically generated code. Levee can
be configured to simultaneously store sensitive pointers
in both the safe and the regular regions, in which case
non-instrumented code works fine as long as it only reads
sensitive pointers but doesn’t write them.

Inline assembly and dynamically generated code can
still update sensitive pointers if instrumented with appro-
priate calls to the Levee runtime, either manually by a
programmer or directly by the code generator.

Dynamically generated code (e.g., for JIT compila-
tion) poses an additional problem: running the generated
code requires making writable pages executable, which
violates our threat model (this is a common problem for
most control-flow integrity mechanisms). One solution
is to use hardware or software isolation mechanisms to
isolate the code generator from the code it generates.
Sensitive data protection: Even though the main focus
of CPI is control-flow hijack protection, the same tech-
nique can be applied to protect other types of sensitive
data. Levee can treat programmer-annotated data types
as sensitive and protect them just like code pointers. CPI
could also selectively protect individual program vari-
ables (as opposed to types), however it would require re-
placing the type-based static analysis described in §3.2.1
with data-based points-to analysis such as DSA [27, 28].
Future MPX-based implementation: Intel announced
a hardware extension, Intel MPX, to be used for
hardware-enforced memory safety [23]. It is proposed as
a testing tool, probably due to the associated overhead;
no overhead numbers are available at the time of writing.

We believe MPX (or similar) hardware can be re-
purposed to enforce CPI with lower performance over-
head than our existing software-only implementation.
MPX provides special registers to store bounds along
with instructions to check them, and a hardware-based
implementation of a pointer metadata store (analogous to
the safe pointer store in our design), organized as a two-
level lookup table. Our implementation can be adapted
to use these facilities once MPX-enabled hardware be-
comes available. We believe that a hardware-based CPI
implementation can reduce the overhead of a software-
only CPI in much the same way as HardBound [16] or
Watchdog [33] reduced the overhead of SoftBound.

Adopting MPX for CPI might require implementing
metadata loading logic in software. Like CPI, MPX also
stores the pointer value together with the metadata. How-
ever, being a testing tool, MPX chooses compatibility
with non-instrumented code over security guarantees: it
uses the stored pointer value to check whether the origi-
nal pointer was modified by non-instrumented code and,
if yes, resets the bounds to [0,∞]. In contrast, CPI’s guar-
antees depend on preventing any non-instrumented code
from ever modifying sensitive pointer values.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 155

5 Evaluation
In this section we evaluate Levee’s effectiveness, effi-
ciency, and practicality. We experimentally show that
both CPI and CPS are 100% effective on RIPE, the most
recent attack benchmark we are aware of (§5.1). We eval-
uate the efficiency of CPI, CPS, and the safe stack on
SPEC CPU2006, and find average overheads of 8.4%,
1.9%, and 0% respectively (§5.2). To demonstrate prac-
ticality, we recompile with CPI/CPS/ safe stack the base
FreeBSD plus over 100 packages and report results on
several benchmarks (§5.3).

We ran our experiments on an Intel Xeon E5-2697
with 24 cores @ 2.7GHz in 64-bit mode with 512GB
RAM. The SPEC benchmarks ran on an Ubuntu Precise
Pangolin (12.04 LTS), and the FreeBSD benchmarks in
a KVM-based VM on this same system.

5.1 Effectiveness on the RIPE Benchmark

We described in §3 the security guarantees provided by
CPI, CPS, and the safe stack based on their design; to
experimentally evaluate their effectiveness, we use the
RIPE [49] benchmark. This is a program with many dif-
ferent security vulnerabilities and a set of 850 exploits
that attempt to perform control-flow hijack attacks on the
program using various techniques.

Levee deterministically prevents all attacks, both in
CPS and CPI mode; when using only the safe stack, it
prevents all stack-based attacks. On vanilla Ubuntu 6.06,
which has no built-in defense mechanisms, 833–848 ex-
ploits succeed when Levee is not used (some succeed
probabilistically, hence the range). On newer systems,
fewer exploits succeed, due to built-in protection mech-
anisms, changes in the run-time layout, and compatibil-
ity issues with the RIPE benchmark. On vanilla Ubuntu
13.10, with all protections (DEP, ASLR, stack cookies)
disabled, 197–205 exploits succeed. With all protections
enabled, 43–49 succeed. With CPS or CPI, none do.

The RIPE benchmark only evaluates the effectiveness
of preventing existing attacks; as we argued in §3 and
according to the proof outlined in Appendix A, CPI ren-
ders all (known and unknown) memory corruption-based
control-flow hijack attacks impossible.

5.2 Efficiency on SPEC CPU2006 Benchmarks

In this section we evaluate the runtime overhead of CPI,
CPS, and the safe stack. We report numbers on all SPEC
CPU2006 benchmarks written in C and C++ (our pro-
totype does not handle Fortran). The results are sum-
marized in Table 1 and presented in detail in Fig. 3.
We also compare Levee to two related approaches, Soft-
Bound [34] and control-flow integrity [1, 54, 53].

CPI performs well for most C benchmarks, however it
can incur higher overhead for programs written in C++.
This overhead is caused by abundant use of pointers to

Figure 3: Levee performance for SPEC CPU2006, under three
configurations: full CPI, CPS only, and safe stack only.

Safe Stack CPS CPI
Average (C/C++) 0.0% 1.9% 8.4%
Median (C/C++) 0.0% 0.4% 0.4%
Maximum (C/C++) 4.1% 17.2% 44.2%
Average (C only) -0.4% 1.2% 2.9%
Median (C only) -0.3% 0.5% 0.7%
Maximum (C only) 4.1% 13.3% 16.3%

Table 1: Summary of SPEC CPU2006 performance overheads.

C++ objects that contain virtual function tables—such
pointers are sensitive for CPI, and so all operations on
them are instrumented. Same reason holds for gcc: it
embeds function pointers in some of its data structures
and then uses pointers to these structures frequently.

The next-most important source of overhead are libc
memory manipulation functions, like memset and mem-
cpy. When our static analysis cannot prove that a call
to such a function uses as arguments only pointers to
non-sensitive data, Levee replaces the call with one to a
custom version of an equivalent function that checks the
safe pointer store for each updated/copied word, which
introduces overhead. We expect to remove some of this
overhead using improved static analysis and heuristics.

CPS averages 1.2–1.8% overhead, and exceeds 5% on
only two benchmarks, omnetpp and perlbench. The for-
mer is due to the large number of virtual function calls
occurring at run time, while the latter is caused by a
specific way in which perl implements its opcode dis-
patch: it internally represents a program as a sequence of
function pointers to opcode handlers, and its main execu-
tion loop calls these function pointers one after the other.
Most other interpreters use a switch for opcode dispatch.

Safe stack provided a surprise: in 9 cases (out of

9

156 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

19), it improves performance instead of hurting it; in
one case (namd), the improvement is as high as 4.2%,
more than the overhead incurred by CPI and CPS. This
is because objects that end up being moved to the regular
(unsafe) stack are usually large arrays or variables that
are used through multiple stack frames. Moving such
objects away from the safe stack increases the locality
of frequently accessed values on the stack, such as CPU
register values temporarily stored on the stack, return ad-
dresses, and small local variables.

The safe stack overhead exceeds 1% in only three
cases, perlbench, xalanbmk, and povray. We studied
the disassembly of the most frequently executed func-
tions that use unsafe stack frames in these programs and
found that some of the overhead is caused by inefficient
handling of the unsafe stack pointer by LLVM’s register
allocator. Instead of keeping this pointer in a single regis-
ter and using it as a base for all unsafe stack accesses, the
program keeps moving the unsafe stack pointer between
different registers and often spills it to the (safe) stack.
We believe this can be resolved by making the register
allocator algorithm aware of the unsafe stack pointer.

In contrast to the safe stack, stack cookies deployed
today have an overhead of up to 5%, and offer strictly
weaker protection than our safe stack implementation.

The data structures used for the safe stack and the safe
memory region result in memory overhead compared to
a program without protection. We measure the memory
overhead when using either a simple array or a hash ta-
ble. For SPEC CPU2006 the median memory overhead
for the safe stack is 0.1%; for CPS the overhead is 2.1%
for the hash table and 5.6% for the array; and for CPI the
overhead is 13.9% for the hash table and 105% for the
array. We did not optimize the memory overhead yet and
believe it can be improved in future prototypes.

In Table 2 we show compilation statistics for Levee.
The first column shows that only a small fraction of all
functions require an unsafe stack frame, confirming our
hypothesis from §3.2.4. The other two columns con-
firm the key premises behind our approach, namely that
CPI requires much less instrumentation than full memory
safety, and CPS needs much less instrumentation than
CPI. The numbers also correlate with Fig. 3.

Comparison to SoftBound: We compare with Soft-
Bound [34] on the SPEC benchmarks. We cannot fairly
reuse the numbers from [34], because they are based on
an older version of SPEC. In Table 3 we report numbers
for the four C/C++ SPEC benchmarks that can compile
with the current version of SoftBound. This comparison
confirms our hypothesis that CPI requires significantly
lower overhead compared to full memory safety.

Theoretically, CPI suffers from the same compatibil-
ity issues (e.g., handling unsafe pointer casts) as pointer-
based memory safety. In practice, such issues arise

Benchmark FNUStack MOCPS MOCPI
400 perlbench 15.0% 1.0% 13.8%
401 bzip2 27.2% 1.3% 1.9%
403 gcc 19.9% 0.3% 6.0%
429 mcf 50.0% 0.5% 0.7%
433 milc 50.9% 0.1% 0.7%
444 namd 75.8% 0.6% 1.1%
445 gobmk 10.3% 0.1% 0.4%
447 dealII 12.3% 6.6% 13.3%
450 soplex 9.5% 4.0% 2.5%
453 povray 26.8% 0.8% 4.7%
456 hmmer 13.6% 0.2% 2.0%
458 sjeng 50.0% 0.1% 0.1%
462 libquantum 28.5% 0.4% 2.3%
464 h264ref 20.5% 1.5% 2.8%
470 lbm 16.6% 0.6% 1.5%
471 omnetpp 6.9% 10.5% 36.6%
473 astar 9.0% 0.1% 3.2%
482 sphinx3 19.7% 0.1% 4.6%
483 xalancbmk 17.5% 17.5% 27.1%

Table 2: Compilation statistics for Levee: FNUStack lists what
fraction of functions need an unsafe stack frame; MOCPS and
MOCPI show the fraction of memory operations instrumented
for CPS and CPI, respectively.

Benchmark Safe Stack CPS CPI SoftBound
401 bzip2 0.3% 1.2% 2.8% 90.2%
447 dealII 0.8% -0.2% 3.7% 60.2%
458 sjeng 0.3% 1.8% 2.6% 79.0%
464 h264ref 0.9% 5.5% 5.8% 249.4%

Table 3: Overhead of Levee and SoftBound on SPEC programs
that compile and run errors-free with SoftBound.

much less frequently for CPI, because CPI instruments
much fewer pointers. Many of the SPEC benchmarks
either don’t compile or terminate with an error when in-
strumeted by SoftBound, which illustrates the practical
impact of this difference.

Comparison to control-flow integrity (CFI): The av-
erage overhead for compiler-enforced CFI is 21% for
a subset of the SPEC CPU2000 benchmarks [1] and 5-
6% for MCFI [39] (without stack pointer integrity). CC-
FIR [53] reports an overhead of 3.6%, and binCFI [54]
reports 8.54% for SPEC CPU2006 to enforce a weak
CFI property with globally merged target sets. WIT [3],
a source-based mechanism that enforces both CFI and
write integrity protection, has 10% overhead1.

At less than 2%, CPS has the lowest overhead among
all existing CFI solutions, while providing stronger pro-
tection guarantees. Also, CPI’s overhead is bested only
by CCFIR. However, unlike any CFI mechanism, CPI
guarantees the impossibility of any control-flow hijack
attack based on memory corruptions. In contrast, there

1We were unable to find open-source implementations of compiler-
based CFI, so we can only compare to published overhead numbers.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 157

Figure 4: Performance overheads on FreeBSD (Phoronix).

exist successful attacks against CFI [19, 15, 9]. While
neither of these attacks are possible against CPI by con-
struction, we found that, in practice, neither of them
would work against CPS either. We further discuss con-
ceptual differences between CFI and CPI in §6.

5.3 Case Study: A Safe FreeBSD Distribution

Having shown that Levee is both effective and efficient,
we now evaluate the feasibility of using Levee to protect
an entire operating system distribution, namely FreeBSD
10. We rebuilt the base system—base libraries, devel-
opment tools, and services like bind and openssh—plus
more than 100 packages (including apache, postgresql,
php, python) in four configurations: CPI, CPS, Safe
Stack, and vanilla. FreeBSD 10 uses LLVM/clang as its
default compiler, while some core components of Linux
(e.g., glibc) cannot be built with clang yet. We integrated
the CPI runtime directly into the C library and the thread-
ing library. We have not yet ported the runtime to kernel
space, so the OS kernel remained uninstrumented.

We evaluated the performance of the system using the
Phoronix test suite [41], a widely used comprehensive
benchmarking platform for operating systems. We chose
the “server” setting and excluded benchmarks marked
as unsupported or that do not compile or run on recent
FreeBSD versions. All benchmarks that compiled and
worked on vanilla FreeBSD also compiled and worked
in the CPI, CPS and Safe Stack versions.

Fig. 4 shows the overhead of CPI, CPS and the safe-
stack versions compared to the vanilla version. The
results are consistent with the SPEC results presented
in §5.2. The Phoronix benchmarks exercise large parts of
the system and some of them are multi-threaded, which
introduces significant variance in the results, especially
when run on modern hardware. As Fig. 4 shows, for
many benchmarks the overheads of CPS and the safe
stack are within the measurement error.

Benchmark Safe Stack CPS CPI
Static page 1.7% 8.9% 16.9%
Wsgi test page 1.0% 4.0% 15.3%
Dynamic page 1.4% 15.9% 138.8%

Table 4: Throughput benchmark for web server stack
(FreeBSD + Apache + SQLite + mod wsgi + Python +Django).

We also evaluated a realistic usage model of the
FreeBSD system as a web server. We installed Mezza-
nine, a content management system based on Django,
which uses Python, SQLite, Apache, and mod wsgi. We
used the Apache ab tool to benchmark the throughput of
the web server. The results are summarized in Table 4.

The CPI overhead for a dynamic page generated by
Python code is much larger then we expected, but con-
sistent with suspiciously high overhead of the pybench
benchmark in Fig. 4. We think it might be caused by the
use of some C constructs in the Python interpreter that
are not yet handled well by our optimization heuristics,
e.g., emulating C++ inheritance in C. We believe the per-
formance might be improved in this case by extending
the heuristics to recognize such C constructs.

6 Related Work
A variety of defense mechanisms have been proposed to-
date to answer the increasing challenge of control-flow
hijack attacks. Fig. 5 compares the design of the different
protection approaches to our approach.

Enforcing memory safety ensures that no dangling or
out-of-bounds pointers can be read or written by the ap-
plication, thus preventing the attack in its first step. Cy-
clone [25] and CCured [36] extend C with a safe type
system to enforce memory safety features. These ap-
proaches face the problem that there is a large (unported)
legacy code base. In contrast, CPI and CPS both work
for unmodified C/C++ code. SoftBound [34] with its
CETS [35] extension enforces complete memory safety
at the cost of 2× – 4× slowdown. Tools with less over-
head, like BBC [4], only approximate memory safety.
LBC [20] and Address Sanitizer [43] detect continu-
ous buffer overflows and (probabilistically) indexing er-
rors, but can be bypassed by an attacker who avoids the
red zones placed around objects. Write integrity testing
(WIT) [3] provides spatial memory safety by restricting
pointer writes according to points-to sets obtained by an
over-approximate static analysis (and is therefore limited
by the static analysis). Other techniques [17, 2] enforce
type-safe memory reuse to mitigate attacks that exploit
temporal errors (use after frees).

CPI by design enforces spatial and temporal memory
safety for a subset of data (code pointers) in Step 2 of
Fig. 5. Our Levee prototype currently enforces spatial
memory safety and may be extended to enforce temporal
memory safety as well (e.g., how CETS extends Soft-

11

158 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Attack step Property Mechanism Stops all control-flow hijacks?

①

Memory Safety SoftBound+CETS [34, 35]
BBC [4],
LBC [20], ASAN [43],
WIT [3]

Yes
No: sub-objects, reads not protected
No: protects red zones only
No: over-approximate valid sets

116%
110%
23%

7%

②
Code-Pointer
Integrity
(this work)

CPI
CPS
Safe Stack

Yes
No: valid code ptrs. interchangeable
No: precise return protection only

8.4%
1.9%
~0%

③

Randomization ASLR [40], ASLP [26]
PointGuard [13]
DSR [6]
NOP insertion [21]

No: vulnerable to information leaks
No: vulnerable to information leaks
No: vulnerable to information leaks
No: vulnerable to information leaks

~10%
10%
20%

2%

④

Control-Flow
Integrity

Stack cookies
CFI [1]
WIT (CFI part) [3]
DFI [10]

No: probabilistic return protection only
No: over-approximate valid sets
No: over-approximate valid sets
No: over-approximate valid sets

~2%
20%

7%
104%

⑤
Non-Executable
Data

HW (NX bit)
SW (Exec Shield, PaX)

No: code reuse attacks
No: code reuse attacks

0%
few %

⑥

High-level
policies

Sandboxing (SFI)
ACLs
Capabilities

Isolation only
Isolation only
Isolation only

varies
varies
varies

Corrupt data

pointer

Modify a

code pointer …

… to address of

gadget/shellcode

Execute injected

shellcode

Exec. available

gadgets/func.-s

Control-flow

hijack

Use pointer by

indirect call/jump

Use pointer by

return instruction

Avg. overhead

Figure 5: Summary of control-flow hijack defense mechanisms aligned with individual steps that are necessary for a successful
attack. The figure on the left is a simplified version of the complete memory corruption diagram in [46].

Bound). We believe CPI is the first to stop all control-
flow hijack attacks at this step.

Randomization techniques, like ASLR [40] and
ASLP [26], mitigate attacks by restricting the attacker’s
knowledge of the memory layout of the application in
Step 3. PointGuard [13] and DSR [7] (which is similar to
probabilistic WIT) randomize the data representation by
encrypting pointer values, but face compatibility prob-
lems. Software diversity [21] allows fine-grained, per-
instance code randomization. Randomization techniques
are defeated by information leaks through, e.g., memory
corruption bugs [45] or side channel attacks [22].

Control-flow integrity [1] ensures that the targets of
all indirect control-flow transfers point to valid code lo-
cations in Step 4. All CFI solutions rely on statically
pre-computed context-insensitive sets of valid control-
flow target locations. Many practical CFI solutions sim-
ply include every function in a program in the set of
valid targets [53, 54, 29, 47]. Even if precise static
analysis was be feasible, CFI could not guarantee pro-
tection against all control-flow hijack attacks, but rather
merely restrict the sets of potential hijack targets. In-
deed, recent results [19, 15, 9] show that many exist-
ing CFI solutions can be bypassed in a principled way.
CFI+SFI [52], Strato [51] and MIPS [38] enforce an even
more relaxed, statically defined CFI property in order to
enforce software-based fault isolation (SFI). CCFI [31]
encrypts code pointers in memory and provides secu-
rity guarantees close to CPS. Data-flow based techniques
like data-flow integrity (DFI) [10] or dynamic taint anal-
ysis (DTA) [42] can enforce that the used code pointer
was not set by an unrelated instruction or to untrusted
data, respectively. These techniques may miss some at-
tacks or cause false positives, and have higher perfor-
mance costs than CPI and CPS. Stack cookies, CFI, DFI,
and DTA protect control-transfer instructions by detect-

ing illegal modification of the code pointer whenever it
is used, while CPI protects the load and store of a code
pointer, thus preventing the corruption in the first place.
CPI provides precise and provable security guarantees.

In Step 5, the execution of injected code is prevented
by enforcing the non-executable (NX) data policy, but
code-reuse attacks remain possible.

High level policies, e.g., restricting the allowed sys-
tem calls of an application, limit the power of the at-
tacker even in the presence of a successful control-flow
hijack attack in Step 6. Software fault isolation (SFI)
techniques [32, 18, 11, 50, 52] restrict indirect control-
flow transfers and memory accesses to part of the ad-
dress space, enforcing a sandbox that contains the attack.
SFI prevents an attack from escaping the sandbox and al-
lows the enforcement of a high-level policy, while CPI
enforces the control-flow inside the application.

7 Conclusion
This paper describes code-pointer integrity (CPI), a way
to protect systems against all control-flow hijacks that
exploit memory bugs, and code-pointer separation, a re-
laxed form of CPI that still provides strong guarantees.
The key idea is to selectively provide full memory safety
for just a subset of a program’s pointers, namely code
pointers. We implemented our approach and showed that
it is effective, efficient, and practical. Given its advan-
tageous security-to-overhead ratio, we believe our ap-
proach marks a step toward deterministically secure sys-
tems that are fully immune to control-flow hijack attacks.

Acknowledgments
We thank the anonymous reviewers and our shepherd
Junfeng Yang for their valuable input. We are grate-
ful to Martin Abadi, Herbert Bos, Miguel Castro, Vijay
D’Silva, Ulfar Erlingsson, Johannes Kinder, Per Larsen,
Jim Larus, Santosh Nagarakatte, and Jonas Wagner for

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 159

Atomic Types a ::= int | p∗
Pointer Types p ::= a | s | f | void
Struct Types s ::= struct{ . . . ;ai : idi; . . .}

LHS Expressions lhs ::= x | ∗lhs | lhs.id | lhs−>id

RHS Expressions rhs ::= i | & f | rhs+ rhs | lhs | &lhs

| (a) rhs | sizeof(p) | malloc(rhs)

Commands c ::= c;c | lhs = rhs | f () | (∗lhs)()

Figure 6: The subset of C used in Appendix A; x denotes local
statically typed variables, id – structure fields, i – integers, and
f – functions from a pre-defined set.

their valuable feedback and discussions on earlier ver-
sions of the paper. This work was supported by ERC
Starting Grant No. 278656, a Microsoft Research PhD
fellowship, a gift from Google, DARPA award HR0011-
12-2-005, NSF grants CNS-0831298 and CNS-1319137,
and AFOSR FA9550-09-1-0539.

A Formal Model of CPI
This section presents a formal model and operational se-
mantics of the CPI property and a sketch of its correct-
ness proof. Due to the size and complexity of C/C++
specifications, we focus on a small subset of C that illus-
trates the most important features of CPI. Due to space
limitations we focus on spatial memory safety. We build
upon the formalization of spatial memory safety in Soft-
Bound [34], reuse the same notation, and extend it to
support applying spatial memory safety to a subset of
memory locations. The formalism can be easily extended
to provide temporal memory safety, directly applying the
CETS [35] mechanism to the safe memory region of the
model. Fig. 6 gives the syntax rules of the C subset we
consider in this section. All valid programs must also
pass type checking as specified by the C standard.

We define the runtime environment E of a program
as a triple (S,Mu,Ms), where S maps variable identifiers
to their respective atomic types and addresses, a regu-
lar memory Mu maps addresses to values (denoted as v
and called regular values), and a safe memory Ms maps
addresses to values with bounds information (denoted as
v(b,e) and called safe values) or a special marker none.
The bounds information specifies the lowest (b) and the
highest (e) address of the corresponding memory object.
Mu and Ms use the same addressing, but might contain
distinct values for the same address. Some locations
(e.g., of void∗ type) can store either safe or regular value
and are resolved to either Ms or Mu at runtime.

The runtime provides the usual set of memory oper-
ations for Mu and Ms, as summarized in Table 5. Mu
models standard memory, whereas Ms stores values with
bounds and has a special marker for “absent” locations,
similarly to the memory in SoftBound’s [34] formaliza-
tion. We assume the memory operations follow the stan-
dard behavior of read/write/malloc operations in all other

Operation Semantics
readu Mu l return Mu[l]
writeu Mu l v set Mu[l] = v
reads Ms l return Ms[l], if l is allocated; return none otherwise
writes Ms l v(b,e) set Ms[l] = v(b,e), if l is allocated;

do nothing otherwise
writes Ms l none set Ms[l] = none, if l is allocated;

do nothing otherwise
malloc E i allocate a memory object of size i in both E.Mu and

E.Ms (at the same address); fail when out of memory

Table 5: Memory Operations in CPI

sensitive int ::= false

sensitive void ::= true

sensitive f ::= true

sensitive p∗ ::= sensitive p

sensitive s ::=
∨

i∈fields of s

sensitive ai

Figure 7: The decision criterion for protecting types in CPI

respects, e.g., read returns the value previously written to
the same location, malloc allocates a region of memory
that is disjoint with any other allocated region, etc..

Enforcing the CPI property with low performance
overhead requires placing most variables in Mu, while
still ensuring that all pointers that require protection at
runtime according to the CPI property are placed in
Ms. In this formalization, we rely on type-based static
analysis as defined by the sensitive criterion, shown
on Fig. 7. We say a type p is sensitive iff sensitive p=
true. Setting sensitive to true for all types would make
the CPI operational semantics equivalent to the one pro-
vided by SoftBound and would ensure full spatial mem-
ory safety of all memory operations in a program.

The classification provided by the sensitive crite-
rion is static and only determines which operations in a
program to instrument. Expressions of sensitive types
could evaluate to both safe or regular values at runtime,
whereas expressions of regular types always evaluate to
regular values. In particular, according to Fig. 7, void∗
is sensitive and, hence, in agreement with the C specifi-
cation, values of that type can hold any pointer value at
runtime, either safe or regular.

We extend the SoftBound definition of the result of an
operation to differentiate between safe and regular values
and left-hand-side locations:

Results r ::= v(b,e) | v | ls | lu | OK | OutOfMem | Abort

where v(b,e) and v are the safe (with bounds informa-
tion) and, respectively, regular values that result from a
right hand side expression, lu and ls are locations that re-
sult from a safe and regular left-hand-side expression, OK
is a result of a successful command, and OutOfMem and
Abort are error codes. We assume that all operational se-
mantics rules of the language propagate these error codes
up to the end of the program unchanged.

Using the above definitions, we now formalize the op-

13

160 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

erational semantics of CPI through three classes of rules.
The (E, lhs) ⇒l ls : a and (E, lhs) ⇒l lu : a rules spec-
ify how left hand side expressions are evaluated to a
safe or regular locations, respectively. The (E,rhs) ⇒r
(v(b,e),E ′) and (E,rhs)⇒r (v,E ′) rules specify how right
hand side expressions are evaluated to safe values with
bounds or regular values, respectively, possibly modify-
ing the environment through memory allocation (turning
it from E to E ′). Finally, the (E,c)⇒c (r,E ′) rules spec-
ify how commands are executed, possibly modifying the
environment, where r can be either OK or an error code.
We only present the rules that are most important for the
CPI semantics, omitting rules that simply represent the
standard semantics of the C language.

Bounds information is initially assigned when allocat-
ing a memory object or when taking a function’s address
(both operations always return safe values):

address(f) = l

(E,& f)⇒r (l(l,l))

(E,rhs) = i
malloc E i = (l,E ′)

(E,malloc(i))⇒r (l(l,l+i),E
′)

Taking the address of a variable from S if its type is
sensitive is analogous. Structure field access operations
either narrow bounds information accordingly, or strip it
if the type of the accessed field is regular.

Type casting results in a safe value iff a safe value is
cast to a sensitive type:

sensitive a′

(E,rhs)⇒l v(b,e) : a

(E,(a′)rhs)⇒r (v(b,e),E)

¬sensitive a′

(E,rhs)⇒l v(b,e) : a

(E,(a′)rhs)⇒r (v,E)

(E,rhs)⇒l v : a

(E,(a′)rhs)⇒r (v,E)

The next set of rules describes memory operations
(pointer dereference and assignment) on sensitive types
and safe values:

sensitive a
(E, lhs)⇒l ls : a∗
reads(E.Ms)ls = some l′(b,e)
l′ ∈ [b,e−sizeof(a)]

(E,∗lhs)⇒l l′s : a

sensitive a
(E, lhs)⇒l ls : a∗
reads(E.Ms)ls = some l′(b,e)
l′ �∈ [b,e−sizeof(a)]

(E,∗lhs)⇒l Abort

sensitive a
(E, lhs)⇒l ls : a
(E,rhs)⇒r v(b,e) : a
E ′.Ms = writes(E.Ms)ls v(b,e)

(E, lhs = rhs)⇒c (OK,E ′)

These rules are identical to the corresponding rules of
SoftBound [34] and ensure full spatial memory safety of
all memory objects in the safe memory. Only operations
matching those rules are allowed to access safe memory

Ms. In particular, any attempts to access values of sensi-
tive types through regular lvalues cause aborts:

sensitive a
(E, lhs)⇒l lu : a∗

(E,∗lhs)⇒l Abort

sensitive a
(E, lhs)⇒l lu : a

(E, lhs = rhs)⇒c (Abort,E)

Note that these rules can only be invoked if the value of
the sensitive type was obtained by casting from a regu-
lar type using a corresponding type casting rule. Levee
relaxes the casting rules to allow propagation of bounds
information through certain right-hand-side expressions
of regular types. This relaxation handles most common
cases of unsafe type casting; it affects performance (in-
ducing more instrumentation) but not correctness.

Some sensitive types (only void∗ in our simplified
version of C), can hold regular values at runtime. For ex-
ample, a variable of void∗ type can first be used to store
a function pointer and subsequently re-used to store an
int∗ value. The following rules handle such cases:

sensitive a
(E, lhs)⇒l ls : a∗
reads(E.Ms)l = none

readu(E.Mu)l = l′

(E,∗lhs)⇒l l′u : a

sensitive a
(E, lhs)⇒l ls : a
(E,rhs)⇒r v : a
E ′.Mu = writeu(E.Mu) l v
E ′.Ms = writes(E.Ms) l none

(E, lhs = rhs)⇒c (OK,E ′)

Memory operations on regular types always access
regular memory, without any additional runtime checks,
following the unsafe memory semantics of C.

¬sensitive a
(E, lhs)⇒l l : a∗
readu(E.Mu)l = l′

(E,∗lhs)⇒l l′u : a

¬sensitive a
(E, lhs)⇒l l : a
(E,rhs)⇒r v : a
E ′.Mu = writeu(E.Mu) l v

(E, lhs = rhs)⇒c (OK,E ′)

These accesses to regular memory can go out of bounds
but, given that readu and writeu operations can only
modify regular memory Mu, it does not violate memory
safety of the safe memory.

Finally, indirect calls abort if the function pointer be-
ing called is not safe:

(E, lhs)⇒r ls : f∗

(E,(∗lhs)())⇒c (OK,E ′)

(E, lhs)⇒r lu : f∗

(E,(∗lhs)())⇒c (Abort,E)

Note that the operational rules for values that are safe
at runtime are fully equivalent to the corresponding Soft-
Bound rules [34] and, therefore, satisfy the SoftBound
safety invariant which, as proven in [34], ensures mem-
ory safety for these values. According to the sensitive
criterion and the safe location dereference and indirect
function call rules above, all dereferences of pointers that
require protection according to the CPI property are al-
ways safe at runtime, or the program aborts. Therefore,
the operational semantics defined above indeed ensure
the CPI property as defined in §3.1.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 161

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In ACM Conf. on Computer
and Communication Security, 2005.

[2] P. Akritidis. Cling: A memory allocator to mitigate
dangling pointers. In USENIX Security Symposium,
2010.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing memory error exploits with
WIT. In IEEE Symp. on Security and Privacy, May
2008.

[4] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy Bounds Checking: An Efficient and
Backwards-compatible Defense Against Out-of-
bounds Errors. In USENIX Security Symposium,
2009.

[5] G. Altekar and I. Stoica. Focus replay debugging
effort on the control plane. USENIX Workshop on
Hot Topics in Dependability, 2010.

[6] S. Bhatkar, E. Bhatkar, R. Sekar, and D. C. Duvar-
ney. Efficient techniques for comprehensive pro-
tection from memory error exploits. In USENIX
Security Symposium, 2005.

[7] S. Bhatkar and R. Sekar. Data Space Randomiza-
tion. In Intl. Conf. on Detection of Intrusions and
Malware, and Vulnerability Assessment, 2008.

[8] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.
Jump-oriented programming: a new class of code-
reuse attack. In ACM Symp. on Information, Com-
puter and Communications Security, 2011.

[9] N. Carlini and D. Wagner. Rop is still dangerous:
Breaking modern defenses. In USENIX Security
Symposium, 2014.

[10] M. Castro, M. Costa, and T. Harris. Securing soft-
ware by enforcing data-flow integrity. In Symp.
on Operating Systems Design and Implementation,
2006.

[11] M. Castro, M. Costa, J.-P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In
ACM Symp. on Operating Systems Principles,
2009.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R.
Sadeghi, H. Shacham, and M. Winandy. Return-
oriented programming without returns. In ACM
Conf. on Computer and Communication Security,
2010.

[13] C. Cowan, S. Beattie, J. Johansen, and P. Wa-
gle. PointguardTM: protecting pointers from buffer
overflow vulnerabilities. In USENIX Security Sym-
posium, 2003.

[14] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: Automatic adaptive detec-
tion and prevention of buffer-overflow attacks. In
USENIX Security Symposium, 1998.

[15] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Mon-
rose. Stitching the gadgets: On the ineffectiveness
of coarse-grained control-flow integrity protection.
In USENIX Security Symposium, 2014.

[16] J. Devietti, C. Blundell, M. M. K. Martin, and
S. Zdancewic. Hardbound: Architectural support
for spatial safety of the c programming language. In
Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, 2008.

[17] D. Dhurjati, S. Kowshik, and V. Adve. SAFE-
Code: enforcing alias analysis for weakly typed
languages. SIGPLAN Notices, 41(6):144–157, June
2006.

[18] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system ad-
dress spaces. In Symp. on Operating Systems De-
sign and Implementation, 2006.

[19] E. Göktaş, E. Athanasopoulosy, H. Bos, and G. Por-
tokalidis. Out of control: Overcoming control-flow
integrity. In IEEE Symp. on Security and Privacy,
2014.

[20] N. Hasabnis, A. Misra, and R. Sekar. Light-weight
bounds checking. In IEEE/ACM Symp. on Code
Generation and Optimization, 2012.

[21] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler,
and M. Franz. Profile-guided automated software
diversity. In IEEE/ACM Symp. on Code Generation
and Optimization, 2013.

[22] R. Hund, C. Willems, and T. Holz. Practical timing
side channel attacks against kernel space aslr. In
IEEE Symp. on Security and Privacy, 2013.

[23] Intel Architecture Instruction Set Exten-
sions Programming Reference. http:

//download-software.intel.com/sites/

default/files/319433-015.pdf, 2013.

[24] Intel. Introduction to Intel memory protec-
tion extensions. https://software.intel.com/en-
us/articles/introduction-to-intel-memory-
protection-extensions, July 2013.

15

162 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[25] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of
C. In USENIX Annual Technical Conf., 2002.

[26] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Ad-
dress space layout permutation (ASLP): Towards
fine-grained randomization of commodity softwar.
In Annual Computer Security Applications Conf.,
2006.

[27] C. Lattner and V. Adve. Automatic Pool Alloca-
tion: Improving Performance by Controlling Data
Structure Layout in the Heap. In ACM Conf. on
Programming Language Design and Implementa-
tion, 2005.

[28] C. Lattner, A. Lenharth, and V. Adve. Mak-
ing Context-Sensitive Points-to Analysis with Heap
Cloning Practical For The Real World. In ACM
Conf. on Programming Language Design and Im-
plementation, 2007.

[29] J. Li, Z. Wang, T. K. Bletsch, D. Srinivasan, M. C.
Grace, and X. Jiang. Comprehensive and ef-
ficient protection of kernel control data. IEEE
Transactions on Information Forensics and Secu-
rity, 6(4):1404–1417, Dec. 2011.

[30] The LLVM compiler infrastructure. http://

llvm.org/.

[31] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and
D. Boneh. Cryptographically enforced control
flow integrity. http://arxiv.org/abs/1408.1451, Aug.
2014.

[32] S. McCamant and G. Morrisett. Evaluating sfi for a
cisc architecture. In USENIX Security Symposium,
2006.

[33] S. Nagarakatte, M. M. K. Martin, and
S. Zdancewic. Watchdog: Hardware for safe
and secure manual memory management and
full memory safety. In Intl. Symp. on Computer
Architecture, 2012.

[34] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. SoftBound: Highly Compatible and
Complete Spatial Safety for C. In ACM Conf. on
Programming Language Design and Implementa-
tion, 2009.

[35] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. CETS: Compiler Enforced Tempo-
ral Safety for C. In Intl. Symp. on Memory Man-
agement, 2010.

[36] G. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe retrofitting of
legacy software. ACM Trans. on Programming
Languages and Systems, 27(3):477–526, 2005.

[37] Nergal. The advanced return-into-lib(c) ex-
ploits. Phrack, 11(58):http://phrack.com/
issues.html?issue=67&id=8, Nov. 2007.

[38] B. Niu and G. Tan. Monitor integrity protection
with space efficiency and separate compilation. In
ACM Conf. on Computer and Communication Se-
curity, 2013.

[39] B. Niu and G. Tan. Modular control-flow integrity.
In ACM Conf. on Programming Language Design
and Implementation, 2014.

[40] PaX-Team. PaX ASLR (Address Space Lay-
out Randomization). http://pax.grsecurity.

net/docs/aslr.txt, 2003.

[41] Phoronix. Phoronix test suite. http://www.

phoronix-test-suite.com/.

[42] E. J. Schwartz, T. Avgerinos, and D. Brumley. All
you ever wanted to know about dynamic taint anal-
ysis and forward symbolic execution (but might
have been afraid to ask). In IEEE Symp. on Security
and Privacy, 2010.

[43] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. AddressSanitizer: A Fast Address San-
ity Checker. In USENIX Annual Technical Conf.,
2012.

[44] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on
the x86). In ACM Conf. on Computer and Commu-
nication Security, 2007.

[45] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address
space layout randomization. In IEEE Symp. on Se-
curity and Privacy, pages 574–588, 2013.

[46] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK:
Eternal war in memory. IEEE Symp. on Security
and Privacy, 2013.

[47] C. Tice, T. Roeder, P. Collingbourne, S. Check-
oway, Ú. Erlingsson, L. Lozano, and G. Pike. En-
forcing forward-edge control-flow integrity in gcc
& llvm. In USENIX Security Symposium, 2014.

[48] A. van de Ven and I. Molnar. Exec Shield.
https://www.redhat.com/f/pdf/rhel/

WHP0006US_Execshield.pdf, 2004.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 163

[49] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar,
and W. Joosen. RIPE: Runtime intrusion prevention
evaluator. In Annual Computer Security Applica-
tions Conf., 2011.

[50] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In IEEE Symp. on Security
and Privacy, 2009.

[51] B. Zeng, G. Tan, and Ú. Erlingsson. Strato: A retar-
getable framework for low-level inlined-reference
monitors. In USENIX Security Symposium, 2013.

[52] B. Zeng, G. Tan, and G. Morrisett. Combining
control-flow integrity and static analysis for effi-
cient and validated data sandboxing. In ACM Conf.
on Computer and Communication Security, 2011.

[53] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical Con-
trol Flow Integrity & Randomization for Binary Ex-
ecutables. In IEEE Symp. on Security and Privacy,
2013.

[54] M. Zhang and R. Sekar. Control flow integrity for
COTS binaries. In USENIX Security Symposium,
2013.

17

