
Experiences with
Specification-based Intrusion Detection?

P. Uppuluri and R. Sekar

Department of Computer Science
SUNY at Stony Brook, NY 11794.

E-mail: {prem,sekar}@cs.sunysb.edu

Abstract. Specification-based intrusion detection, where manually specified pro-
gram behavioral specifications are used as a basis to detect attacks, have been pro-
posed as a promising alternative that combine the strengths of misuse detection
(accurate detection of known attacks) and anomaly detection (ability to detect
novel attacks). However, the question of whether this promise can be realized in
practice has remained open. We answer this question in this paper, based on our
experience in building a specification-based intrusion detection system and exper-
imenting with it. Our experiments included the 1999 DARPA/AFRL online evalu-
ation, as well as experiments conducted using 1999 DARPA/ Lincoln Labs offline
evaluation data. These experiments show that an effective specification-based IDS
can be developed with modest efforts. They also show that the specification-based
techniques live up to their promise of detecting known as well as unknown at-
tacks, while maintaining a very low rate of false positives.

1 Introduction

With the growing number of attacks on network infrastructures, the need for techniques
to detect and prevent attacks is increasing. Intrusion detection refers to a broad range of
techniques that defend against malicious attacks. Intrusion detection techniques gener-
ally fall into one of the following categories: misuse detection, anomaly detection and
specification-based detection. The main advantage of misuse detection is that it can ac-
curately detect known attacks, while its drawback is the inability to detect previously
unseen attacks. Anomaly detection, on the other hand, is capable of detecting novel
attacks, but suffers from a high rate of false alarms . This occurs primarily because pre-
viously unseen (yet legitimate) system behaviors are also recognized as anomalies, and
hence flagged as potential intrusions.

Specification-based techniques have been proposed as a promising alternative that
combine the strengths of misuse and anomaly detection. In this approach, manually
developed specifications are used to characterize legitimate program behaviors. As this
method is based on legitimate behaviors, it does not generate false alarms when unusual
(but legitimate) program behaviors are encountered. Thus, its false positive rate can
be comparable to that of misuse detection. Since it detects attacks as deviations from
legitimate behaviors, it has the potential to detect previously unknown attacks.

? This research is supported in part by Defense Advanced Research Agency (DARPA) under
contract number F30602-97-C-0244 and by an NSF grant CCR-0098154.

Although the promise of specification-based approach has been argued for some
time, the question of whether these benefits can be realized in practice has remained
open. Some of the questions that arise in this context are:

– How much effort is required to develop program behavioral specifications? How do
these efforts compare with that required for training anomaly detection systems?

– How effective is the approach in detecting novel attacks? Are there classes of at-
tacks that can be detected by specification-based techniques that cannot be detected
by anomaly detection or vice-versa?

– Can it achieve false alarm rates that are comparable to misuse detection?

We provide answers to the above questions in this paper, based on our experience
in building a specification-based intrusion detection system and experimenting with it.
Our experiments included (a) the 1999 DARPA/AFRL online evaluation, (b) the 1999
DARPA/Lincoln Labs offline evaluation data, and (c) several locally-developed exper-
iments. These experiments show that an effective IDS can be developed with modest
specification development efforts, of the order of tens of hours for a many security-
critical programs on Solaris. Moreover, these efforts need to be undertaken just once
for each operating system – further customization on the basis of individual hosts or
installations seems to be unnecessary. This contrasts with anomaly detection systems
that typically need training/tuning for each host/system installation.

Our experiments show that the specification-based techniques live up to their promise
of detecting known as well as unknown attacks, while maintaining a low rate of false
positives. In particular, we were able to detect all the attacks without any false positives
in the online evaluation. In the offline evaluation, we could detect 80% of the attacks
using specifications that characterized legitimate program behaviors. The remaining
20% of the attacks did not cause program (or system) misbehavior, and it is debatable
whether they constitute attacks at all. Nevertheless, we were able to easily model these
attacks as misuses. Augmented with these misuse specifications, our system was able
to achieve 100% detection with no false alarms in the offline evaluation as well.

The rest of this paper is organized as follows. We begin with an overview of our
specification-based intrusion detection technique in Section 2. Following this, we de-
velop a methodology for specification development in Section 3. In Section 4, we report
our experimental results. Section 5 further analyzes our results. Finally, we summarize
our conclusions in Section 6.

2 Background

In [15, 1] we described our approach to specification based intrusion detection. Central
to our approach is the observation that intrusions manifest observable events that deviate
from the norm. We extend the current state of the art in event-based intrusion detection
by developing a domain-specific language called behavioral monitoring specification
language (BMSL) [15]. BMSL enables concise specifications of event based security-
relevant properties. These properties can capture either normal behavior of programs
and systems, or misuse behaviors associated with known exploitations.

2SHUDWLQJ�6\VWHP�.HUQHO

6\VWHP�&DOO�,QWHUFHSWRU

3DFNHW�,QWHUFHSWRU

1HWZRUN�3DFNHWV

6\VORJ�
0RQ�

3� 3Q�������������

�'HWHFWLRQ

(QJLQH6\
VO

RJ
�5

X
QW

LP
H�

6\VFDOO�5
X QWLP

H

3NW�5 X QWLPH�6\V

Fig. 1. Runtime view of the system. P1, ..., Pn are processes; Syslog Mon is a system log watcher.

In our approach, we compile BMSL specifications into efficient detection engines
(DE) [15]. For network packets, BMSL specifications are based on packet contents, and
for system calls, BMSL specifications are based on system calls and the values of sys-
tem call arguments. In both contexts, BMSL supports a rich set of language constructs
that allow reasoning about not only singular events, but also temporally related event
sequences. In this paper, we are concerned only with system call events.

The overall architecture of our intrusion detection/response system is shown in Fig-
ure 1. For a given event stream such as packets or system calls, an interceptor compo-
nent placed in the stream provides efficient interception of raw events. The interceptors
deliver raw event streams to a runtime environment (RTE) associated with each stream.
Typically, a single detection engine monitors each defended process.

Note that in the figure, we show a runtime environment for system calls, one for
network packets, and another for log file entries. The log file entries are made by a
syslog monitor program (syslog mon). Although our specification based approach is
capable of processing event data from such diverse sources, the discussion in the rest of
this paper pertains only to system call events.

2.1 Behavior Modelling Specification Language (BMSL).

BMSL is a core language that we have designed for developing security-relevant behav-
ior models. Specifications in BMSL consist of rules of the form pat → action, where
pat is a pattern on event sequences, otherwise known as histories; and action specifies
the responses to be launched when the observed history satisfies pat. Observe that we
typically initiate responses when abnormal behaviors are witnessed; thus, pat compo-
nents of rules usually correspond to negations of properties of normal event histories.

System Call Events. In the context of system calls, we define two events corresponding
to each system call. The first event, which is given the same name as that of the system
call, corresponds to the invocation of the system call. The arguments to the event are
exactly the set of arguments to the system call. The second event corresponds to the
return from the system call, and its name is obtained by suffixing exit to the name
of the system call. The arguments to the exit event include all of the arguments to the
system call, plus another argument that captures the return value from the system call.

Note that the system call entry and exit events always occur in pairs. To minimize
clutter, we use the convention that a system call entry (or exit) event can stand for both
the entry and exit events.

The pattern language: Regular Expressions over Events (REE). As a language that
captures properties of (event) sequences, our pattern language draws on familiar con-
cepts from regular expressions. It extends these concepts from sequences of characters
to events with arguments.

The simplest REE pattern captures single-event occurrences (or non-occurrences):
– occurrence of single event: e(x1, ..., xn)|cond is satisfied by the (single-event) his-

tory e(v1, ..., vn) if cond evaluates to true when variables x1, ..., xn are replaced
by the values v1, ..., vn.

– occurrence of one of many events: E1||E2|| · · · ||En, where each Ei captures an
occurrence of a single event, is satisfied by a history H if any one of E1, ..., En is
satisfied by H .

– event nonoccurrence: !(E1||E2|| · · · ||En) is satisfied by H if none of E1, ..., En

are satisfied by H . Here again, E1, ..., En denote an event pattern of the form
e(x1, ..., xn)|cond.

These primitive event patterns can be combined using temporal operators to capture
properties of event sequences as follows:

– sequencing: pat1; pat2 is satisfied by H1H2 if H1 and H2 satisfy pat1 and pat2
respectively.

– alternation: pat1 || pat2 is satisfied by H if H satisfies pat1 or pat2.
– repetition: pat∗ is satisfied by H1H2 · · ·Hn where each Hi satisfies pat.

When a variable occurs multiple times within a pattern, an event history will satisfy
the pattern only if the history instantiates all occurrences of the variable with the same
value. For instance, the pattern e1(x); e2(x) will not be satisfied by the event history
e1(a)e2(b), but will be satisfied by e1(a)e2(a). This ability of REE’s to remember event
argument values (for later comparison with arguments of subsequent events) makes
them much more expressive than regular languages. Their expressive power is in fact
comparable to that of attribute grammars rather than regular grammars.

Based on the notion of satisfaction defined above, we define the notion of an event
history H matching a pattern p: we say that H matches p if any suffix of H matches p.
If we need to anchor the match (i.e., constrain the match to occur from the beginning of
the history H), then we introduce a special event begin at the beginning of the pattern.
All histories begin implicitly with the event begin.

Actions. As is well known in the context of finite-state automata, some pattern-matching
operations are conveniently stated using regular expressions, while there are others that
are more amenable to a state-machine formulation. The same holds true in the case
of our behavior specifications as well, so our language permits explicit introduction of
state variables. These variables may be assigned in the action component, or tested in
the pattern component of a rule.

In addition to variable assignments, the action component of a rule may invoke
external functions that are provided by the RTE. These functions can be used to invoke

response actions that are aimed at preventing and/or containing damage due to an attack.
External functions can also be used to express computations that are not easily described
in BMSL, but can be coded in a general-purpose programming language such as C++.

2.2 Example Specifications

As a first example, we illustrate a pattern that restricts a process from making a certain
set of system calls:
execve||connect||chmod||chown||creat||sendto||mkdir → term()

Note that we have omitted system call arguments, as they are not used elsewhere in the
specification. (Sometimes, we will use “...” to denote unused event arguments.) Also
note that in this example, an external function term() is being used to terminate a
process that makes one of these disallowed system calls. Other response actions, such
as aborting the disallowed system call, or logging a message, are also possible.

As a second example, consider the following specification that restricts the files that
a process may access for reading or writing:
admFiles = { "/etc/utmp","/etc/passwd"}

open(f, mode)|(realpath(f)6∈admFiles || mode6=O RDONLY) → term()

Here, the auxiliary function realpath is used to convert a filename into a canonical
form that does not make use of the special characters “.” and “..,” or symbolic links.

To illustrate the use of sequencing operators, consider the following pattern that
asserts that a program never opens and closes a file without reading or writing into it.
Before defining the pattern, we define abstract events that denote the occurrence of one
of many events. Occurrence of an abstract event in a pattern is replaced by its definition,
after substitution of parameter names, and renaming of variables that occur only on the
right-hand side of the abstract event definition so that the names are unique.

openExit(fd) ::= open exit(..., fd) || creat exit(..., fd)

rwOp(fd) ::= read(fd) || readdir(fd) || write(fd)

openExit(fd);(!rwOp(fd))*;close(fd) → · · ·

Although regular expressions are not expressive enough to capture balanced parenthe-
sis, note that the presence of variables in REE enables us capture the close system
call matching an open. Note that such matching open and close operations cannot be
captured even by context-free grammars.

3 Specification development

Our approach for specification development consists of the following steps:

1. Developing generic specifications: Generic specification is a specification that is
parameterized with respect to system calls as well as their arguments. By appro-
priately instantiating these parameters, such specifications can be used to monitor
almost any program.

2. Securing program groups: In this step, we strengthen generic specifications for
classes of programs that have similar security implications, e.g., all setuid pro-
grams, all daemons, etc.

3. Developing application-specific specifications: Some programs, such as servers
that can be accessed from remote sites, will likely be attack targets more frequently
than other programs. For such applications, we can increase the effectiveness of the
intrusion detection system by developing more precise specifications.

4. Customizing specifications for an operating system/site: Specifications obtained
from the previous steps are customized to accommodate variations in operating
systems, and also any site specific security policies.

5. Adding misuse specifications: It is likely that the detection of some attacks requires
knowledge about attacker behavior. In such cases, a pure specification-based ap-
proach (wherein only legitimate program behaviors are specified) may not be suf-
ficient. Therefore, one can augment such pure specifications with misuse patterns
that can capture features of specific attacks.

We note that in progressing from step 1 to step 5, we are developing more and more
precise specifications of the behavior of a program. Less precise specifications mean
lower specification development effort, but can negatively impact the effectiveness of
the approach in terms of missed attacks as well as increased false alarms. More precise
specifications increase the effectiveness of the system at the cost of increased specifica-
tion development effort. We discuss these tradeoffs further in the next section. Below,
we proceed to describe the five steps mentioned above in greater detail.

3.1 Step 1: Developing generic specifications

The first step in the development of generic specifications is to group system calls of
similar functionality. This allows us to consider a smaller number of system call groups
(few tens) while writing specifications, rather than dealing with a few hundred system
calls. Grouping of system calls also helps in developing portable specifications, because
the role of each of these groups tends to be constant across different operating systems,
even though the system calls within the groups may be different.

For the purpose of developing generic specifications, we have identified 23 groups,
further organized into 9 categories. Below, we provide a selected subset of these 23
groups, drawn from five categories. The complete listing can be found in [3].

– File Access Operations
• WriteOperations(path): This group includes system calls such as open (with

open for write option) and creat that change the contents of a file named path.
• ReadOperations(path): This group includes system calls which perform read

operations on a file specified in the parameter path.
• FileAttributeChangeOps(path): This group includes system calls such as

chgrp and chmod.
• FileAttributeCheckOps(path): System calls which check file attributes (e.g.,

permissions and modification times) are included in this group.
– Process Operations

• ProcessCreation: This group includes system calls fork and execve which
create or execute a new process.

• ProcessInterference: These are system calls such as kill which enable one
process to alter the course of execution of another process.

1. WriteOperations(path)|path ∈ fileWriteList → term()
2. ReadOperations(path)|path ∈ fileReadList → term()
3. (FileAttributeChangeOps(path)|path ∈ fileAttributeChangeList

→ term()
4. execve(prog)|prog ∈ fileExecList → term()
5. ProcessInterference → term()
6. (ConnectCalls || AcceptCalls) → term() /* Remove for clients/servers */
7. (Privileged) → term()
8. SetResourceAttributes → term()

Fig. 2. Sample generic specifications

– Network Calls
• ConnectCalls: These are system calls made by a client to connect to a server.
• AcceptCalls: These system calls are made by a server to accept a connection.

– Setting resource attributes: These are system calls which set or change resource
attributes such as scheduling algorithms and scheduling parameters.

– Privileged Calls: Includes system calls such as mount and reboot that require root
privileges to run.

Based on the above classification, we have developed a generic specification as
shown in Figure 2. It is parameterized with respect to (a) the definition of which system
calls are in the each of the system call groups mentioned above, and (b) lists of files that
may be read or modified by a program. Of these, the definition of (a) will be provided
in step 4. File lists are given certain default values in the generic specification, and will
be further refined in steps 2 through 4.

3.2 Step 2: Securing program groups

Certain groups of programs have similar security properties. We can exploit these com-
monalities to develop specifications that can be reused among programs within the
group. For instance all setuid to root programs should be restricted from opening or
changing attributes on arbitrary files, and executing arbitrary programs. This can be
achieved by customizing the file lists used in the generic specification. (The customized
lists obtained in this manner for the entire group of setuid programs may have to be
further refined for individual programs in Step 4.)

Most setuid programs expect arguments (provided either through the command line
or through environment variables) of a bounded size. Hence we add the following rule
to the specification for setuid programs:
execve(path,argv,envp)|checkSize(path,argv,envp,max) → term()

The function checkSize checks if the path argument size is less than the system-
defined constant PATH MAX, and that each of the command-line and environment ar-
guments are of size less than max. The parameter max may have to be customized for
individual programs.

As another example, consider server programs that perform user-authentication. In
such programs, a large number of failed login attempts within a short period of time is

considered abnormal behavior. The discussion below is set in the context of the telnet
server, but is applicable to other programs such as FTP as well. Note that programs such
as telnet restrict users to a small number of login attempts (usually three), after which
the server terminates. Thus, in order to make a large number of login attempts, a user
would have to cause many instances of telnetd to be spawned in succession, with
each instance restricting the user to a small number of attempts. Therefore, we develop
the following rule for the inetd superserver, which counts the number of telnetd
instances spawned by inetd within a short period of time.

execve(prog)|prog = "in.telnetd" && tooManyAttempts() →

log("too many failed logins")

We are currently adding better language support for capturing the notion of “too many
occurrences within a short time,” based on our earlier work in network intrusion de-
tection [14]. Meanwhile, for the purpose of the experiments described in this paper,
we have relied on an external function tooManyAttempts, whose implementation was
provided in C, to capture this notion.

Note that the above rule simply counts the number of telnetd instances spawned,
without any consideration of whether these instances led to a failed login or not. We
therefore add the following rule to the telnetd specification, which resets all of the
counters involved whenever a successful login is completed, which is signified by the
execution of a setuid or setreuid system call.

(setuid || setreuid) → resetAttempt()

Currently, our approach for customizing specifications is based on manual editing. Lan-
guage support for such customization is a topic of current research.

3.3 Step 3: Developing application-specific specifications

We can further refine specifications for individual applications in order to provide better
security, especially for network servers. Figure 3 shows a partial specification for an
FTP server (ftpd). (See [15] for a more complete model that contains five additional
rules.) Our starting point for this model was the documentation provided in FTP manual
pages. From there, we identified the principal security-related system calls made by
ftpd and plausible sequencing orders for their execution to obtain the model. For ftpd,
completion of user login is signified by the first setreuid system call executed, and
this userid is stored in loggedUser by the first rule. Similarly, the name of a client
host is extracted from a return argument when the getpeername system call exits,
and remembered in clientIP by the second rule. The third and fourth rules restrict
the behavior of the ftp server based on whether user login has been completed or not.
Rules 5 and 7 capture properties that must be generally adhered to by servers such as
ftpd: they must permanently reset their userid using setuid (rule 5), and any file
opened with superuser privileges must be explicitly or implicitly closed (rule 7) before
executing other programs1. Rule 6 captures the property that when ftpd resets its userid
to 0 (i.e., superuser in UNIX) it must do so for executing a small set of operations that

1 These two rules could have been made part of the specification for the group of server programs
such as telnet and ftp, but we did not do so for the experiments reported in this paper.

1. (!setreuid)*;setreuid(r,e) → loggedUser := e
2. (!getpeername)*;getpeername exit(fd,sa,l) →

clientIP := getIPAddress(sa)
/* Access limited to certain system calls before user login. */
3. (!setreuid())*;ftpInitBadCall() → term()
/* Access limited to certain other set of system calls after user login is completed. */
4. setreuid();any()*;ftpAccessBadCall() → term()
/* Userid must be set to that of the logged in user before exec. */
5. (!setuid(loggedUser))*;execve → term()
/* Resetting userid to 0 is permitted only for executing a small subset of system calls. */
6. setreuid(r,0);ftpPrivilegedCalls*;!(setreuid(r1,loggedUser)

|| setuid(loggedUser)||ftpPrivCalls) → term()
/* A file opened with root privilege is explicitly closed, or has close-on-exec flag set. */
7. (open exit(f, fl, md, fd)|geteuid()=0);(!close(fd))*;

(execve|!closeOnExec(fd)) → term()
8. connect(s, sa)|((getIPAddress(sa) != clientIP)

&& (getPort(sa) 6∈ ftpAccessedSvcs)) → term()

Fig. 3. A (partial) specification for ftpd.

deal with binding to low-numbered ports. Finally, rule 8 restricts ftpd from connecting
to arbitrary hosts.

This specification was developed using the principle of least privilege, without pay-
ing any attention to previously known attacks on ftpd. It is interesting to note that in
spite of this, the partial model would in fact detect known attacks such as FTP bounce
(CERT advisory CA-97.27), FTP Trojan Horse (CERT advisory CA-94.07) and race
conditions in signal handling (CERT advisory CA-97.16). None of these attacks would
be detected by the generic specification alone.

3.4 Step 4: Customizing specifications for an OS/Site

In this step, we do the following:

– Define system calls that fall under each group determined in Step 1. We will also
define system calls that are included in any groups that may have been defined
explicitly for the purpose of writing an application-specific specification, e.g., the
ftpPrivilegedCalls in the FTP specifications.

– Refine the lists of files that are used in generic or application-specific specifica-
tions. We perform this refinement by running the program and logging the list of
files it accesses using the specifications. For instance, the programs on Solaris write
into the /devices/pseudo/pts* files, whereas on Linux they do not. So /de-

vices/pseudo/pts* is removed from the fileWriteList mentioned in Step 1.
– Add site specific security policies. These are policies which restrict certain policies

that are normally allowed by an application. For instance, users of anonymous ftp
may not be allowed to write into the ftp directory.

3.5 Step 5: Adding Misuse rules to specifications

Certain attacks can be detected only based on knowledge about specific attack behavior.
For instance, even a small number of login failures using the user name guest usually
indicates an attack. In contrast, small number of failures are not that unusual with other
user names, as users frequently mistype or forget their passwords. Knowing that an
attacker is likely to try cracking the guest account is thus crucial for detecting such
attacks. Note that this knowledge pertains to attacker behavior, rather than the behavior
of the program itself. As such, it is hard to develop (normal) behavior specifications
that can accurately detect this attack. However, it is possible to encode this knowledge
about attacker behavior as misuse rules that are designed to capture typical actions of
an attacker. With misuse rules in place, we can detect such attacks accurately.

We note that our pattern language BMSL is well-suited for capturing normal as
well as misuse rules. However, we note that reliance on such misuse rules should be
minimized, as they need to be updated when new attack behaviors are discovered.

4 Experimental Results

In this section we discuss our experimental results obtained on the 1999 DARPA/Lincoln
Laboratories offline evaluation [10]. We also briefly summarize the results we obtained
in the 1999 DARPA/AFRL online evaluation.

Lincoln Labs recorded program behavior data using the Basic Security Module
(BSM) of Solaris, which produces an audit log containing data in BSM format. We
used BSM audit records that corresponded to system calls. Each such record provides
system call information (such as its name, a subset of arguments and return value), as
well as process-related information (such as process id, userid and groupid of the pro-
cess). In addition, specific records contain source and destination IP-address and port
information. The BSM audit records are well documented in [11].

In order to use the BSM data, we had to develop a runtime environment that would
parse the BSM audit logs, and feed the events into the detection engine component
shown in Figure 1. Development of such an RTE had not been undertaken until the end
of year 2000. Therefore, our experiments were conducted after Lincoln Labs had pub-
lished the results of 1999 evaluation, including information about the attacks contained
in the evaluation data. This factor enabled us to focus our initial specification develop-
ment effort on programs involved in attacks, as opposed to all programs. Specifically,
we developed specifications for 13 programs: in.ftpd, in.telnetd, eject, ffb-
config, fdformat, ps, cat, cp, su, netstat, mail, crontab and login. All other
programs were monitored using generic specifications with default values for various
file lists. Note, however, that several programs such as init, and several daemons such
as crond were not audited, and hence could not be monitored. We were planning to
expand the number of program-specific specifications to include more setuid programs,
but found that the above list already included over 50% of the setuid programs present in
the evaluation data, with or without attacks on them. The complete list of specifications
developed for this experiment can be found at [4].

4.1 Specification development

The specifications were developed using the five step process of Section 3.
– Step 1: We developed generic specifications shown in Figure 2.
– Step 2: We refined the generic specification for two important program groups,

namely, setuid programs and daemon processes.
– Step 3: We developed application-specific specifications for FTP and telnet servers.

(Actually, our work was one of porting specifications for these programs that were
originally written for a Linux environment.)

– Step 4: We added site-specific security policies to these specifications. One such
policy was stated explicitly by Lincoln Labs: that files in the directory secret

should not be accessed using cp and cat. There were also some implicit policies,
e.g., anonymous ftp users should not write files into the directory ˜ftp, nor should
they read or write files in hidden directories. In step 4, we also populated various file
list parameters of the generic and application-specific specifications for the setuid
programs, daemons and network servers. Finally, we defined a default value for the
file lists so that the generic specification can be used with all programs that did not
have a customized specification.

– Step 5:

4.2 Results

According to the result data provided by Lincoln Labs, 11 distinct attacks were repeated
to generate a total of 28 attack instances. It turned out that two of these attacks were
not actually present in the data due to corruption of the BSM files during the times
when these two attack instances were carried out. One other instance (namely, the set
up phase of the HTTPtunnel attack) was not visible in the BSM data. Offsetting these,
there were five additional instances of the attack phase of the HTTPtunnel attack. Thus,
the total number of attacks present in the data was 30.

Table 4 summarizes the 11 attack types and 30 instances of these attacks that were
present in the data. The table specifies the number of instances of the attack in the
data and the number of instances detected using the specifications developed till step
4 and step 5. Most attacks were discovered at the end of step 4. A few attacks could
not be legitimately characterized as deviations from normal behavior. In these cases,
we developed misuse specifications to detect the attacks (step 5 of the specification
development effort). At this point, all of the attacks could be detected. The last row
of the table specifies the total number of instance of all the attacks and the percentage
detected after step 4 and step 5.

The percentages shown in the figure refer to the percentage of attack types detected,
rather than attack instances. For every attack type, all instances were identical, so it
makes more sense to count the fraction of attack types detected rather than attack in-
stances.

Most of the attacks were relatively simple, and were detected without any problem
by our system. This was in spite of the fact that little effort had been put into developing
program-specific behavioral specifications. In the next subsection, we discuss some of
the noteworthy attacks in the data, and comment on how they were detected by our
system.

Percent instances detectedAttack Name Number of instances
after Step 4 after Step 5

Fdformat 3 100% 100%
Ffbconfig 1 100% 100%

Eject 1 100% 100%
Secret 4 100% 100%

Ps 4 100% 100%
Ftpwrite 2 100% 100%

Warez master 1 100% 100%
Warez client 2 100% 100%
Guess telnet 3 100% 100%
HTTP tunnel 7 0% 100%

Guest 2 0% 100%
Total 30 82% 100%

Fig. 4. Attacks detected in BSM data

4.3 Description of selected attacks and their detection

Buffer overflows There were four buffer overflow attacks on eject, fdformat, ffbconfig
and ps programs. The attacks on the first three programs exploited a buffer overflow
condition to execute a shell with root privileges. The specification we used to monitor
setuid to root programs could easily detect these attacks by detecting oversized argu-
ments and the execution of a shell. In addition, a violation was reported when the buffer
overflow attack resulted in execution of an unexpected program (shell).

The ps attack was significantly more complex than the other three buffer overflow
attacks. For one thing, it used a buffer overflow in the static area, rather than the more
common stack buffer overflow. Thus, the argument size rule does not detect this attack.
Second, it used a chmod system call to effect damage, rather than the more common
execve of a shell program. Nevertheless, chmod operation is itself unusual, and it is
not permitted by our generic specification (except on certain files). Thus, detection of
this attack was straightforward.

Site specific property A policy indicating that all files in the directory /export/home/secret/
are secret and cannot be moved out of the directory by programs such as cp and cat was
published by Lincoln labs. By adding this policy in step 4, we were able to detect vio-
lations of this policy and hence flag these attacks.

Ftp-write attack The ftp-write attack is a remote to local user attack that takes ad-
vantage of a common anonymous ftp misconfiguration. The ∼ftp directory and its
subdirectories should not be owned by the ftp account or be in the same group as the
ftp account. If any of these directories are owned by ftp or are in the same group as the
ftp account and are not write protected, an intruder will be able to add files (such as a
.rhosts file) and eventually gain local access to the system. We could detect this attack
easily due to the site-specific policy that no file could be written in ∼ftp directory.

Warez attacks During this attack, a warezmaster logs into an anonymous FTP site
and creates a file or a hidden directory. In warezclient attack, the file previously down-

loaded by the warezmaster is uploaded. This attack could be easily captured by the
specifications which encoded the site-specific policy of disallowing any writes to the
∼ftp directory.

Guess Telnet This is similar to a dictionary attack, where the attacker makes repeated
attempts to login by guessing the password. The behavioral specification for telnetd,
had a specification which limited the number of login attempts and flagged an attack,
when the number exceeded 3.

Guest The guest attack is not amenable to detection using a specification of nor-
mal behavior because of the fact that the detection of the attack requires the knowl-
edge that attackers commonly try the user/password pairs of guest/guest and
guest/anonymous. The attacks simulated by Lincoln Labs involve only two such at-
tempts, with the second attempt ending in a successful login. We therefore encoded
this knowledge about attacker behavior in our specifications, and were then able to de-
tect all instances of the guest attack. Note that a related attack, namely the guess telnet
attack, can be detected by a positive specification, as discussed earlier. To detect the
guest attack, we used the system call chdir to directory /export/home/guest as
the marker to indicate a guest login. After 2 or more login attempts a chdir to the file
/export/home/guest was flagged as an attack.

HTTPtunnel The HTTP tunnel attack is the most questionable of all attacks. This at-
tack involves a legitimate system user installing a program that periodically connects
to a remote attacker site, using a connection initiated by the UNIX cron daemon and
sends confidential information to the site. As per the configuration of the victim system,
the user (i.e., attacker) in this case was allowed to add cron jobs, and was also allowed
to connect to remote sites. Since legitimate user may have used these facilities to peri-
odically download legitimate information such as news and stocks, and there is no easy
way to rule out these as the reasons for installation of the HTTP tunnel software, we
could not develop a normal behavioral specification. Therefore, we developed a misuse
specification that captures the periodic invocation of a program by cron such that this
invocation results in a connection to a remote server.

Periodic invocation of a program by cron can be identified by the marker sys-
tem call fork. However, since crond was not audited, the fork system call made by
crond was not present in the BSM data. But all subsequent system calls made by the
child process of crond were present. However, there is no idntification of where this
child process came from, which makes it impossible in our setting, to associate any
specifications with the child process. To work around this problem, we observed that
the children of crond execute a sequence of system calls not seen elsewhere. We used
this sequence as a marker, and made it a part of the generic specification that would
be used to monitor all processes. Our misuse specification for HTTPtunnel is shown in
Figure 5. Function raiseFlag sets a global flag to 1, as soon as the cron process starts.
The cron process then forks and execs. In rule 2, setFlag sets the global flag to 2
after the fork(). When the cron job initiates a connection, rule 3 flags an attack.

The set up phase of the HTTPtunnel attack was not visible in the BSM data, since
some of the data that is crucial for the set up phase was not recorded in the BSM logs.

In particular, the setup phase involves installing a new crontab file that contains an entry
for period invocation of the HTTPtunnel attack, but the file contents are not recorded in
the BSM audit logs.

/* To run a cron job, crond forks children which immediately execute the following system call sequence. */
1. open(a1,a2,a3);ioctl(a4,a5,a6);close(a6);setgroups(a7,a8);

setgroups(a7,a8);open(a9,a10,a11);ioctl(a12,a13,a4);
close(a6);setgroups(a14,a15);open(a17,a18,a19);
fcntl(a20,a21,a22); close(a6);close(a6);creat(a23,a24);
fcntl(a20,a21,a22);close(a6);fcntl(a20,a21,a22);close(a6);
close(a6);chdir(a30);close(a6);close(a6);
execve(a25,a26,a27) → setFlag(1);

/* The child then forks and execve’s the process it has to run. */
2. fork()|checkFlag()=1 → setFlag(2);
/* If the process spawned by crond connects to a remote host we log an attack. */
3. connect(a1,a2,a3)|checkFlag()=2 → log(‘‘illegal connect’’)

Fig. 5. Specifications to detect connection of a cron job to a remote host.

False Alarms No false alarms were reported by our method on the BSM data. This
result strengthens our claim that specification-based approaches produce very few false
positives. It also shows that the test data did not particularly stress our IDS. When tested
against a more sophisticated or comprehensive attack data, our system would likely lead
to a higher rate of false positives.

5 Discussion

5.1 Effectiveness of our approach

Without including the misuse specifications, we could detect 80% of the attacks with
0% false positives. After including the misuse specifications we could detect 100% of
all attacks with 0% false positives. While this result would surely not hold against a
more sophisticated attack data, it does demonstrate the high “signal-to-noise ratio” that
can be achieved by our specification-based approach.

It might be argued that our results would not have been as good if we had partic-
ipated in the evaluation, since we would not have known all of the attack instances
present in the data. We point out, however, that we achieved similar results in the 1999
online evaluation, where we entered the evaluation with no knowledge about the attacks
that they were going to subject our system to. We did not even have the ability to rerun
the attacks if we were to encounter any difficulties or bugs in our IDS. But this result
is not without its own caveats: the online evaluation involved only three distinct at-
tack types. The attack types, however, were significantly more complex than the offline
evaluation, as they were designed to stress our IDS.

5.2 Development effort

We found that very general specifications seem to be sufficient for detecting a majority
of the attacks. In fact, many attacks produce violations of multiple rules, thus suggesting
that the attacks may be detectable with even less effort in specification development than
we expended. The initial development of generic specifications, which was undertaken
for the AFRL online evaluation, was about 12 man hours and it resulted in 9 rules
and 12 lines of code in BMSL. Behavioral specifications for applications such as ftpd
took a longer time. In particular for ftpd we developed 14 rules [15] which were 18
lines of code in BMSL. However as we mentioned earlier, the sophistication of this
specification was hardly necessary for detecting the attacks in the data. Thus, typical
application-specific specifications need not be that exhaustive.

As described earlier in Section 4.1, the specifications for setuid to root programs
required a few modifications to the generic specification. It took us about 6 man hours
to refine and customize the specifications. Here too, a higher degree of effort is needed
in the beginning, i.e., the development of specifications for the first one or two setuid
programs. Most of the specifications developed were not dependent on any particular
implementation of UNIX operating system, so the effort required for subsequent pro-
grams was only in making minor changes in the file and process lists. These changes
took as low as 10 minutes per program. Projecting from these results we can state that
customizing specifications for new programs will not involve much effort. In fact, not-
ing that there are only several tens of daemon programs and setuid programs, and only
a handful of server programs, the total amount of effort required for specification de-
velopment is in the range of a few tens of man hours, which we consider to be quite
acceptable.

Another way to look at the development effort is to compare the specification de-
velopment effort with that needed for training anomaly detection systems. We note that
production of training data (by a human) for anomaly detection systems is resource-
intensive. It is very important to ensure that the training data encompasses almost all
legitimate behaviors, which is difficult, and typically requires manual intervention on a
program by program basis. Moreover, it may be necessary to cross check and manually
verify that the anomaly detector did not end up learning artifacts in the training data, as
opposed to learning features that were pertinent to the normal operation of a program.
In addition, trained data is usually specific to a particular installation of an operating
system. Considering these factors, we believe that it would be hard to do better than
few tens of man hours for training with respect to several tens of programs.

5.3 Portability

We had initially developed our specifications for Linux operating system. However to
test attacks in BSM data we had to port them to Solaris. We found that except for Step
5, the specifications did not require any modifications. The effort required for step 5
was also modest: of the order of 10 to 30 minutes per program. Here again, the effort
required for the first one or two programs was higher, of the order of one or two hours.
Subsequent programs took much lesser effort, of the order of 10 minutes per program.

We point out that accurate measurement of development effort is very hard for the
following reasons. First, the development effort will be reduced if we followed the
methodology outlined earlier in this paper. However, this methodology evolved as a
result of our experiences, and hence, our specification development efforts were higher
towards the early part of our experiments. Second, our ability to develop and debug
specifications improves gradually with experience. Thus, a task that took us days to
complete initially would now take hours.

5.4 Novel attacks and false positive rates

As shown in Table 4, over 80% of the attacks could be detected without encoding any
attack-specific information into the specifications. Viewed differently, all of these at-
tacks are “unknown” to our system. The relatively high detection rate supports our
claim that specification-based approaches are good at detecting unknown attacks. The
low rate of false alarms supports our claim that specification based approaches can de-
tect novel attacks without having to sacrifice on the false alarm front.

Perhaps the notion of “unknown” attacks is better defined in the context of the online
evaluation, where we really had no knowledge of the attacks that our system was going
to be subjected to. In the online evaluation, we did not encode any misuse rules, and
hence all detections were based on normal behavior specifications. In this context, our
system detected all of the three attacks launched during this evaluation, once again with
zero false alarms.

We emphasize once again that neither the offline nor the online evaluation stressed
the capabilities of our IDS. If they had, we would have an experimental basis to compare
the ability of the specification-based approach for detecting new attacks as compared
with anomaly detection approaches. Nevertheless, we wish to point out some differ-
ences, based on the way the two approaches operate.

– A learning-based approach learns a subset of all legitimate behaviors of a program –
this subset corresponds to those behaviors that were actually exhibited by a program
during training. To eliminate false-positives, we must ensure that all legitimate be-
haviors are exercised during training. In practice, this turns out to be the problem of
ensuring that all program paths are exercised. As is well-known in software testing,
achieving 100% coverage of all program paths is essentially impossible due to the
astronomical number of paths in a program. As such, some rarely traversed paths
are never learnt, leading to a fair number of false positives.
A specification is aimed at capuring a superset of possible behaviors of a program.
As such, there is no inherent reason to have false positives, except due to specifica-
tion errors.

– The superset-subset argument above also indicates that there may be some behav-
iors that are outside of the legitimate behaviors of a program, but within the super-
set captured by a specification. Exploits that involve such behaviors will be missed
by a specification-based approach, while they can be captured by a learning based
approach.

– There exist a significant number of attacks that can detected by specification based
approaches that are difficult or impossible to detect using anomaly detection. This
occurs for two main reasons:

• For certain latent errors, the learning-based approach essentially learns that ex-
ecution of a security-relevant error is normal. Viewed alternatively, exploitation
of the error to inflict intrusion does not lead to any change in the behavior of the
program containing the error. This class of errors is fairly extensive in scope,
and includes the following:
∗ race conditions in file access
∗ opening files without appropriate checks
∗ leaving temporary files containing critical information

A specification can constrain the program execution so that it does not take
actions that leave opportunities for exploitation. We routinely add specifica-
tions that protect against the above kinds of errors to most programs. (We note,
however, that none of these types of attacks were present in the 1999 offline
evaluation, although they are reported frequently enough by CERT [2].)

• Existing anomaly detection approaches based on system calls generally ignore
system call argument values. This makes it difficult to detect many attacks
where normal behavior is distinguishable from attacks only in terms of such
argument values. Examples of such attacks include:
∗ executing /bin/sh instead of ls
∗ writing to /etc/passwd instead of some other file

Based on our analysis of the attacks reported by CERT [2], over 20% of the attacks
reported in the period 1993 to 1998 fall in this category of attacks not detectable by
anomaly detectors.

– Anomaly detectors typically need to be trained/tuned for each host/site. In con-
trast, our specifications seem to dependent only on an operating system distribution,
rarely requiring any customization for individual hosts/sites.

6 Conclusions

1. Our specification-based approach is very effective. It was able to detect 80% of
the attacks with only positive behavior specifications. Since these specifications
did not incorporate any knowledge about attacks or attacker behavior, this experi-
ment demonstrates the effectiveness of the specification-based approaches against
unknown attacks.

2. Very general specifications seem to be sufficient for detecting a majority of the
attacks. In fact, many attacks produce violations of multiple rules, thus suggesting
that the attacks may be detectable with even less effort in specification development
than what we put into it.

3. Users of our approach can trade increased specification development efforts against
decreased probability of successful attacks. This is borne by the fact that by invest-
ing some additional effort, we were able to detect all of the attacks included in the
BSM data.

4. By combining specifications of legitimate program behaviors with some misuse
specifications, 100% detection rate could be achieved with 0% false positive rates.
While this result would likely not hold against a more sophisticated attack data,
it does demonstrate the high “signal-to-noise ratio” that can be achieved by our
specification-based approach.

5. Our specification-based approach is typically able to provide additional attack re-
lated information that can be used to pinpoint the attack, e.g., execution of a disal-
lowed program, access to certain privileged operations, access to disallowed files,
etc.

References

1. T. Bowen et al, Building Survivable Systems: An Integrated Approach Based on Intru-
sion Detection and Confinement, DISCEX 2000.

2. CERT Coordination Center Advisories 1988–1998,
http://www.cert.org/advisories/index.html.

3. Classification of system calls using security based criteria,
http://seclab.cs.sunysb.edu/ prem/classifbody.html.

4. Specifications used for 1999 DARPA offline evaluation,
http://seclab.cs.sunysb.edu/˜prem/specs.html.

5. S. Forrest, S. Hofmeyr and A. Somayaji, Computer Immunology, Comm. of ACM
40(10), 1997.

6. T. Fraser, L. Badger, M. Feldman, Hardening COTS software with Generic Software
Wrappers, IEEE Symposium on Security and Privacy, 1999.

7. A.K. Ghosh, A. Schwartzbard and M. Schatz, Learning Program Behavior Profiles for
Intrusion Detection, 1st USENIX Workshop on Intrusion Detection and Network Mon-
itoring, 1999.

8. A.K. Ghosh, A. Schwartzbard, A study in using Neural Networks for Anamoly and
Misuse Detection, USENIX Security Symposium, 1999.

9. C. Ko, Execution Monitoring of Security-Critical Programs in a Distributed System:
A Specification-Based Approach, Ph.D. Thesis, Dept. Computer Science, University of
California at Davis, 1996.

10. R. Lippmann, J.W. Haines, D. Fried, J. Korba and K. Das, The 1999 DARPA Off-line
evaluation Intrusion Detection Evaluation, Computer Networks, 34, 2000.

11. SunSHIELD Basic Security Module Guide, http://docs.sun.com.

12. P. Porras and R. Kemmerer, Penetration State Transition Analysis:A Rule based Intru-
sion Detection Approach, Eighth Annual Computer Security Applications Conference,
1992.

13. F. Schneider, Enforceable Security Policies, TR 98-1664, Department of Computer Sci-
ence, Cornell University, Ithaca, NY, 1998.

14. R. Sekar, Y. Guang, T. Shanbhag and S. Verma, A High-Performance Network Intrusion
Detection System, ACM Computer and Communication Security Conference, 1999.

15. R. Sekar and P. Uppuluri, Synthesizing Fast Intrusion Prevention/Detection Systems
from High-Level Specifications, USENIX Security Symposium, 1999.

