
Towards More Usable Information Flow Policies for
Contemporary Operating Systems

Wai Kit Sze, Bhuvan Mital and R. Sekar
Stony Brook University
Stony Brook, NY, USA

ABSTRACT
There has been a resurgence of interest in information flow based
techniques in security. A key attraction of these techniques is that
they can provide strong, principled protection against malware, re-
gardless of its sophistication. In spite of this advantage, most ad-
vances in information flow control have not been adopted in main-
stream operating systems since a strict application of information
flow can limit system functionality and usability. Permitting dy-
namic changes to subject labels, as proposed in the low-watermark
model, provides better usability. However, it suffers from the self-
revocation problem, whereby read/write operations on already open
files are denied because the label of the subject performing these
operations has been downgraded. While most applications deal
gracefully with security failures on file open operations, they are
unprepared to handle security violations on subsequent reads/writes.
As a result, subject downgrades may lead to crashes or malfunc-
tion. Even those applications that deal with read/write errors may
still leave output files in a corrupted or inconsistent state since write
permissions were taken away in the midst of producing an output
file. To overcome these drawbacks, we propose a new approach
for dynamic downgrading that eliminates the self-revocation prob-
lem. We show that our approach represents an optimal combina-
tion of functionality and compatibility. Our experimental evalua-
tion shows that our approach is efficient, incurring an overhead of
a few percentage points, is compatible with existing applications,
and provides strong integrity protection.

1. Introduction
Operation Aurora [2] and Stuxnet [7] signified the arrival of an

era of targeted attacks by sophisticated malware. Their pace has
only quickened in the past two years, as malware attack campaigns
are revealed on major organizations at alarmingly regular intervals.

Security in contemporary operating systems such as Windows
and various flavors of UNIX is based on discretionary access con-
trol (DAC) that relies on userids. It suffers from the well-known
weakness that DAC cannot distinguish a malicious user from a ma-
licious program. As a result, if a legitimate user happens to run a
malicious program, this program can co-opt all of the user’s privi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT’14, June 25–27, 2014, London, Ontario, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2939-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2613087.2613110.

leges to defeat or circumvent system security. Worse, malware need
not even be executed by the user in most cases, as it can take the
form of malicious data that hijacks a vulnerable benign application.
According to Trend Micro [29], at least 70% of targeted malware
attacks compromised victim systems using non-executable content
such as PDF or JPEG.

The weaknesses of userid-based DAC has prompted a resurgence
of interest in mandatory access control (MAC) [17, 4, 13, 26, 30,
6, 5, 14, 18, 28, 8]. Information-flow approaches such as the Biba
model [4] are particularly attractive in the context of malware threats,
as they can prevent low-integrity (untrusted and potentially mali-
cious) data or code from ever influencing high-integrity data or ap-
plications. It not only prevents malware from directly corrupting
important system files, but also stops indirect attacks that operate
by corrupting some intermediate data consumed by other high in-
tegrity processes that can update important system files.

A drawback of the Biba model is that its strict separation be-
tween high and low-integrity objects and subjects, which impacts
its usability. Consider a utility application such as a word-processor
that needs to operate on both high and low integrity files. It would
be necessary to have two versions of every such application, one for
operating on high-integrity files and another for low-integrity files.
It is cumbersome to install and maintain two versions of every ap-
plication. Worse, a user needs to be careful in selecting the correct
version of an application for each task — choosing a high-integrity
version of an application for processing low-integrity files (or vice-
versa) will lead to security failures and/or application crashes.

The low-watermark policy [4] can avoid these drawbacks of the
strict policy by permitting subject integrity to be downgraded at
runtime. In particular, this policy allows applications to be in-
voked with high integrity, and the integrity level to be downgraded
if the application subsequently reads a low integrity object. Fraser
[8] argues eloquently why low watermark policy provides signif-
icantly better compatibility with existing software as compared to
the strict model. However, prior to this project, the low watermark
policy was not very popular because of the self-revocation prob-
lem [8]. Specifically, consider a subject that has already opened a
high integrity file for writing. If this subject subsequently opens
a low integrity file for reading, it is downgraded. At this point,
the subject cannot be permitted to write the high integrity file any
more. Applications expect and handle security failures when open-
ing files, but once opened, they assume that subsequent read and
write operations will not fail. When this assumption is invalidated,
applications may malfunction or crash.

The LOMAC project [8] does not attempt to solve the self-revo-
cation problem in its entirety, but focuses on two common instances

†This work was supported in part by grants from NSF (CNS-
0831298, CNS-1319137) and AFOSR (FA9550-09-1-0539).



that involve pipes and shared memory abstractions. Pipes are par-
ticularly nasty, because downgrading of one process in a pipeline
can prevent it from writing to the pipe, which in turn will cause
the next process in the pipeline to fail because it does not get any
input. LOMAC avoids this problem by permitting pipe communi-
cations only within a UNIX process group, and ensuring that all
processes within this group are at the same level. This notion of a
group is further extended to include all processes that share mem-
ory. Since all processes within a group are at the same level at all
times, there is no need to restrict communication among them, and
hence pipes and shared memory operations don’t ever have to be
denied. Unfortunately, self-revocation problem still remains when
dealing with files, as well as other IPC mechanisms such as sockets.

In this paper, we propose a more general solution to the self-
revocation problem in all cases. Our specific contributions are:

• We develop a model (Section 2) to compare different integrity
policies in terms of their functionality (i.e., the behaviors that
they permit) and failure compatibility (i.e., ability to map secu-
rity failures newly introduced by the policy into those that are
already handled by an application). We show that among these
policies, low-watermark policy is the best in terms of function-
ality, but the worst in terms of compatibility.

• We then define a new policy, called Self-Revocation-Free Dy-
namic Downgrading (SRFD) that combines the best features of
different information flow policies.

• We present a design for enforcing SRFD on contemporary oper-
ating systems. (See Section 3.) Our design uses a novel con-
straint propagation technique to identify file open operations
that introduce a potential for future self-revocations, and denies
them. Our design is general, and avoids self-revocation involv-
ing files as well as interprocess communication.

• We formally show that SRFD eliminates self-revocations. We
also show that unless future inter-process communications can
be predicted accurately, it is not possible to improve on the func-
tionality of SRFD without incurring self-revocation.

• We present an implementation of SRFD on Ubuntu Linux 13.10
in Section 4. Our experimental evaluation (Section 5) shows
that our implementation is fast, incurring a maximum overhead
under 6% and average overhead below 2% across several macro-
benchmarks. The evaluation also demonstrates that SRFD pro-
vides very good compatibility, while thwarting malware attacks.

An open source implementation of SRFD can be found at [27].

2. Model
In this section, we consider information-flow policies that are

commonly used in the context of integrity preservation: strict in-
tegrity policy and (two flavors of) dynamic downgrading policy.
We propose a model to compare these security policies. Specifi-
cally, we show that a policy that supports dynamic downgrading of
subjects provides better functionality than the strict integrity model.
However, more functionality does not always translate to better
compatibility or user experience. We therefore formalize the notion
of compatibility, and proceed to define a new dynamic downgrad-
ing policy that provides an optimal combination of functionality
and compatibility among the commonly-used integrity policies.

We model process execution in terms of the sequence of actions
A = A1 . . . An performed by a process. Each action Ai can be:

• an invocation (I), typically, the execution of another program;

• an observation (O), typically, a file read operation; or

• a modification (W ), typically, a file write operation.

In order to simplify terminology and description, we consider
only two integrity levels in this paper: high (Hi) and low (Lo). Ob-
jects (typically files) as well as subjects (processes) have one of
these integrity levels.

DEFINITION 1 (INTEGRITY-PRESERVING EXECUTIONS). Such
executions ensure that the content of all high integrity objects are
derived entirely from other high integrity objects and subjects.

A strong integrity-preservation policy, such as the Biba’s strict in-
tegrity policy and the low-watermark policy, will ensure that all
executions are integrity preserving. In particular, this means that
low-integrity data and programs cannot influence the contents of
integrity-critical (data or program) files on the system. Today’s re-
mote exploits and malware attacks all rely on modifying critical
files using data or code from untrusted sources, and hence can be
definitively blocked by enforcing these integrity policies, provided
we ensure that only data/code from trustworthy sources is given a
high integrity label.

When a security policy is enforced, it can alter an execution se-
quence in one of two ways. First, it can disallow an operation Ai,
denoted as /Ai. There are several possibilities here, including (a)
silent suppression of Ai, (b) suppressing Ai and returning an error
to the process performing this operation, and (c) replacing Ai with
another allowable action. In the rest of this paper, we primarily
focus on the alternative (b).

A second avenue for the enforcement engine is to downgrade a
subject before Ai, denoted ↓Ai. Note that such a downgrade may
be an internal operation within a reference monitor enforcing the
policy, and hence we may not explicitly show it in some instances.

Executions without any failed operations are called permitted or
successful executions, while the rest are called failed executions.
The more execution sequences that a security policy permits, the
less functionality will be lost as a result of security policy enforce-
ment. This leads to the following definition comparing the func-
tionality supported by security policies.

DEFINITION 2 (FUNCTIONALITY). A security policy P1 is said
to be more functional than P2, denoted P1 ⊇F P2, if and only if
every execution sequence permitted by P2 is also permitted by P1.

Note that functionality defines a partial order on security policies,
and hence two policies could be incomparable in terms of func-
tionality. By permitting more executions, a more functional policy
would seem to provide weaker security than a less functional pol-
icy, thus capturing the tension between functionality and security.

2.1 Integrity policies
We can now classify actions into two categories: high integrity

actions (AH ) that can be performed by high integrity subjects, and
low integrity actions (AL) that can be performed by low integrity
subjects. Specifically, AH includes all actions except read-down
(OL), i.e., read a low-integrity input, and invoke-down (IL), i.e.,
executing a program that has low integrity. AL includes all actions
except write-up (WH ). Note that IH is permitted in AL because
we interpret it as the execution of a high integrity file within a low
integrity subject. (In contrast, the term “invoke-up” is used in Biba
model to refer to the execution of a high integrity subject.)

Integrity-preserving execution sequences can be achieved by con-
fining high integrity processes to perform only AH , and low in-
tegrity processes to perform only AL. Since WH exists only in
AH and OL exists only in AL, it is clear that low-integrity objects
and subjects cannot affect high-integrity objects.

Since we want to protect the integrity of critical files, revisions to
to object integrity levels are disallowed in most systems. However,
subject integrity label can be revised down as long as the down-



Hi Lo

AH = {OH ,WH ,WL, IH}
AL = {OH , OL,WL, IL}

ALAH

OL

IH

IL

Figure 1: State machine for integrity-preserving executions.

graded subject is restricted to perform AL after the downgrade.
This leads to the following variants that all preserve integrity.

No Downgrading (ND). This policy, which corresponds to the
Biba strict policy, permits no privilege revision (NPR): labels are
statically assigned to subjects and objects, and they cannot change.
With this strict interpretation, every program has to be labeled as
high or low integrity, and a high integrity program cannot be used
to process low integrity data, even if all outputs resulting from such
use flow only to low-integrity files or low-integrity subjects.

Eager downgrading (ED). This policy permits subject labels to
be downgraded, but only when executing another process. This
approach, also called privilege revision on invocation (PRI), allows
more executions as compared to the no-downgrading policy. With
the PRI policy, a subject wishing to operate on low-integrity files
should know ahead of time (i.e., prior to execution) that it needs to
consume low-integrity file, and drop its privilege before execution.
This is why we call it eager downgrading.

Lazy downgrading (LD). The final policy is the low watermark
policy for subjects, where downgrades can happen before any ob-
serve operation, or an invoke operation. We call it lazy (or just-in-
time) downgrading since downgrading operation would typically
be delayed until the very last step, which must be the consumption
of a low-integrity input.

Figure 1 shows a simple state-machine model that captures the
above three policies. With the ND policy, none of the transitions
between H and L states are available. With the ED policy, only
the transitions on IL and IH are enabled. Note that while it is
mandatory to transition to Lo on IL, IH may or may not cause a
transition to Lo. When it does, it corresponds to the use of a high-
integrity application to process low-integrity data.

With the LD policy, only the IL and OL transitions from Hi
to Lo are enabled. There is no need to make a transition from
Hi to Lo on IH , as the downgrade can be deferred until the next
operation to read low-integrity data. As a result, LD avoids one
of the difficulties of ED, namely, the need to predict ahead of time
whether a certain process will need to read low-integrity data.

2.2 Comparing functionalities of integrity policies
It is easy to see the motivation for the LD policy: when the ac-

tions performed by an application are disallowed, it can lead to
errors and failures, and hence loss of functionality. In contrast,
downgrading has the potential to permit the application to continue
to provide its function. In fact, we can formally state:

THEOREM 3. LD ⊃F ED ⊃F ND

Proof: This theorem simply states that LD is strictly more func-
tional than ED, which, in turn, is more functional than ND. From
the definition of the three policies, and Figure 1, it is easy to see that
all three policies accept the same set A∗L of execution sequences
for low-integrity subjects. (We are using a regular expression syn-
tax to succinctly capture the set of execution sequences permitted
by a policy.) Thus, we can limit our comparisons to the execu-

tion sequences permitted for high-integrity subjects. Note that ND
accepts only sequences of the form A∗H for high subjects. ED ac-
cepts (IL|IH)A∗L for subjects started with high, in addition to the
set A∗H . Finally, LD accepts A∗H(IL|OL)A

∗
L, which is a strict su-

perset of sequences accepted by ED.

2.3 Compatibility
Increased functionality does not always translate to a better user

experience, or better compatibility with existing software. Self-
revocation is a prime example of the compatibility problem posed
by LD, an approach that maximizes functionality over other in-
tegrity policies. In contrast, ED provides less functionality as com-
pared to LD, but is intuitively perceived as being more compatible.

Self-revocation occurs when a subject is initially granted access
to a resource, but this access is revoked subsequently; and the re-
vocation is the result of some of the other actions performed by
the subject itself. More concretely, self-revocation manifests itself
as follows in the context of file system APIs provided by modern
operating systems: a process successfully opens a file, but a sub-
sequent write operation using that file handle is denied. Although
self-revocation is more commonly identified with failures of writes,
it can also happen on read operations. In both cases, self-revocation
raises several compatibility issues:

• The file system API is designed to perform security checks on
open operations, but not on reads and writes. As a result, there
is usually no way to even communicate a security failure to
the subject performing the read or write1. Thus, security fail-
ures have to be mapped into other failures that can occur on
reads/writes, such as an attempt to read a file before opening
it. Such remapping has obvious drawbacks because applications
may misinterpret the error code and respond inappropriately.

• Even if an error code is returned on reads and writes, many ap-
plications may not check them at all. This is because failures
of these operations are rare and unexpected, so many applica-
tions may not contain code for checking these error cases, or
undertaking any meaningful error recovery.

• Even if the application checks the error and undertakes recovery,
data loss or corruption may be unavoidable at this point. Con-
sider an application that was updating a file. If its write access
is taken away when it is half-way through the update, that may
lead to the file being truncated, leading to data loss, inconsis-
tency or corruption.2

For this reason, we develop the following notion of failure-compati-
bility, or simply, compatibility of security policies.

DEFINITION 4 (COMPATIBILITY). We say that a security policy
P is compatible if all actions disallowed by it can return a valid
permission failure error to the subject.

With contemporary file APIs, this means that a compatible policy
would deny open’s but not reads/writes. We show that in terms of
compatibility, the results are inverted from that of functionality:

THEOREM 5. LD is not failure-compatible, whereas ND and
ED are both failure compatible.

Proof: Recall that for subjects that start at low integrity, all three
policies allows A∗L. It is clear that this sequence permits the same

1For instance, on UNIX, there are no error codes related to permis-
sions that can be returned by read and write system calls.
2With buffered I/O, even the data that an application believes to
have written prior to the self-revoking action may be lost — such
data may be held in the program’s internal buffers, which may be
flushed much later, at which point, the write system call would fail.



set of operations throughout, so self-revocation is not possible. For
high integrity subjects, ND accepts A∗H — again, the set of oper-
ations permitted remain constant throughout the subject’s lifetime,
and hence there will be no self-revocation. For ED, the sequences
accepted are of the form A∗H or A∗L. For each alternate, it is easy
to see that all of the actions permitted towards the beginning of the
sequence are also permitted later on, once again ruling out the pos-
sibility of self-revocation. Finally, we have already explained how
LD suffers from self-revocation.

2.4 Maximizing functionality and compatibility
The results above lead to the following question: can there be

an approach that is preferable in terms of both functionality and
compatibility? Our answer in this paper is affirmative. We begin
by positing the existence of a new dynamic downgrading policy
that combines LD’s functionality with the compatibility of ED.

DEFINITION 6 (SELF-REVOCATION-FREE DOWNGRADING).
SRFD accepts the same set of execution sequences as LD. Every
sequence that is modified by LD is also modified by SRFD, but un-
like LD, SRFD only modifies (i.e., denies) open operations.

So, the next natural question is whether SRFD is realizable. Con-
ceptually, we can synthesize execution sequences accepted/modified
by SRFD from the acceptance and modification actions of LD as
follows. If LD accepts a sequence, then SRFD will accept the same
sequence. If LD modifies a sequence, let Ai be the first write op-
eration denied by LD. SRFD will identify the open operation Aj

preceding Ai that caused LD to downgrade the subject, and then
SRFD will deny Aj .

Noting that LD denies only write operations on high-integrity
files, this means that SRFD needs to predict whether a subject will
perform future writes on any of the currently open file descriptors
for accessing high-integrity files. If so, SRFD should not permit
the subject to open any low-integrity file. In this manner, SRFD
can prevent the subject from downgrading itself, and hence will not
have to deny writes on one of these descriptors in the future.

This raises the final question: how can a reference monitor pre-
dict future actions of a subject? Often, questions regarding future
behavior are answered by assuming that any thing that can happen
will indeed happen. We formalize this by characterizing a class
of programs that transfer data along every possible communication
channel between communicating processes, and show that for this
class, SRFD can indeed be realized.

Another way to characterize our result is as follows. Unless an
oracle for predicting future behavior of a set of communicating pro-
cesses exists, one cannot improve over the functionality of the de-
sign presented in the next section without risking self-revocation.

3. Our approach
Our approach represents a hybrid between ND that refuses to

ever downgrade a subject, and LD which downgrades at the first
open of a low-integrity file. The key idea is to deny these open oper-
ations when a subject already holds open file descriptors that write
to high-integrity files. This task is simple enough for stand-alone
subjects, but challenges arise when considering processes that in-
teract with each other.

Note that many applications involve processes that communicate
via pipes, sockets, shared memory and other IPC mechanisms. If
we look at each process in isolation and allow one of them to be
downgraded, it is possible that a future read by another process
would have to be denied, since it is reading an output of the down-
graded process. Since the goal of our approach is to avoid denials

of reads/writes, it would seem that we need better mechanisms to
keep track of open file descriptors across collections of processes.

A simple approach to deal with collections of communicating
processes is to treat them as a single unit, and downgrade them
as a unit. LOMAC [8] uses this approach to avoid self-revocation
due to IPC within a UNIX process group. However, this approach
does not recognize the one-way nature of pipe-based communica-
tion, and hence would needlessly downgrade an upstream process
when a downstream process opens a low-integrity file. To avoid
this, it would seem that we need a mechanism to keep track of all
output files held open by processes that are downstream from each
process. Since this information is different for each process, keep-
ing track of it can be messy as well as expensive, especially if the
number of processes (or number of open files) grows large.

To overcome these problems, we develop a new approach that
is based on propagating constraints about downgradability of pro-
cesses. In particular, we keep track of the highest integrity of any
output file that is held open by a process and any of the processes
that it writes to. We call this min_lbl and propagate it “upstream”
through pipes and other communication mechanisms. The result is
an approach that relies on maintaining/propagating just this single
quantity (min_lbl) for each process, instead of having to propagate
a large amount of information concerning open file descriptors.

We now proceed to describe the key abstractions in our design
and our constraint propagation mechanism. Although we have lim-
ited ourselves to just two integrity levels, the design described be-
low is quite general and can support any lattice of integrity labels.
While our design is fully compatible with unmodified COTS appli-
cations, it does provide features that can be utilized by information-
flow-aware applications to provide improved functionality. One
such feature enables an application to explicitly request that it not
be downgraded below a certain level. In particular, this means that
any attempt to open files at a lower integrity than this specified level
should be denied. Another feature allows trusted applications3 to
request selective, fine-grained exceptions to the information-flow
policy. Although we do not discuss these features in depth in this
paper due to space constraints, we point out that fully working sys-
tems need a handful of key administrative and helper applications
that rely on these features.

3.1 Abstractions
Our design uses three entities: Objects, Subjects and Handles.

Objects. Objects consist of all storage and inter-process com-
munication abstractions on an OS: files, pipes, sockets, message
queues, semaphores, etc. These objects are divided into two cat-
egories: file-like and pipe-like. There is a fundamental difference
between these classes. File-like objects are persistent, and have a
fixed label assigned to them. Any data read from the file has this
label, and writes to the file don’t change the label. (The informa-
tion flow policy ensures that any subject writing to it has a equal
or higher label.) For a file-like object, the label of data read from
it will be the same as that of data written into it. In contrast, for a
pipe-like object, the label of data read from the object representing
one end of the pipe is the same as the label of data written to the
object representing the other end of the pipe (called a peer object).
Examples of pipe-like objects include UNIX pipes and sockets.

Subjects and SubjectGroups. Subjects correspond to threads.
Since the OS-level mechanisms used in our framework cannot me-
diate information flows that take place via shared memory, subjects

3These are applications that have been written carefully so as to
protect themselves from low-integrity data, and hence can operate
on them while retaining their high integrity.



that share memory are grouped into SubjectGroups. The idea is
that all subjects within a SubjectGroup will have the same security
label at any time.

Handles. Handles provide a level of indirection between sub-
jects and objects. They serve to link together objects and subjects
that have an information flow relationship. There is a many-to-one
mapping between handles and subjects, and many-to-one mapping
between handles and objects.

Handles are conceptually similar to file descriptors, but there are
some differences as well, e.g., a handle is unidirectional: a handle
provides either a read or a write capability. (Obtaining both requires
two handles.) The label of a read-handle is given by the label of the
object that it reads from, while the label of a write-handle is given
by the label of the subject holding the handle. When read (or write)
operation takes place, the label of the handle will be passed to the
corresponding subject (or object).

3.2 Information Flow Policies
A current label (current_lbl) field is associated with each ob-

ject and subject, and it provides the basis for policy enforcement.
In particular, no flow will be permitted from a source to a destina-
tion unless the source’s current label is greater than or equal to that
of the destination.

INVARIANT 7. Any information flow from an entity A to an-
other entity B must satisfy current_lbl(A) ≥ current_lbl(B).

Instead of denying the operation when the above invariant does not
hold, our system will attempt to dynamically downgrade the label
of the destination. Since the model presented so far restricts down-
grading to subjects, B must be a subject, and downgrade occurs
when it reads from a handle A. B can protect itself from undesir-
able downgrades by setting its minimum label (called min_lbl).
In particular, downgrading of current_lbl won’t be attempted
unless the following invariant holds after the downgrade:

INVARIANT 8. ∀B, current_lbl(B) ≥ min_lbl(B).

Since we do not downgrade the labels of file-like objects, their
min_lbl will be the same as their current_lbl. For subjects
and pipe-like objects, min_lbl is determined by constraint prop-
agation, as described further in Section 3.4. Finally, handles do
not have an independent value for their current label and minimum
label; instead, these are derived from the corresponding values of
objects and subjects associated with a handle.

Combining the above two invariants, we can say that our ap-
proach will permit information flow from A to B in all cases where
current_lbl(A) ≥ min_lbl(B). Since self-revocation occurs
precisely when such a data transfer is denied, we can say:

OBSERVATION 9. A read (or write) operation that transfers data
from an entity A to another entity B will be denied in our approach
only if current_lbl(A) < min_lbl(B).

3.3 Forward information flows
Figure 2 illustrates the flow of information between objects and

subjects via handles. In this figure, solid lines represent actual flow
of information. There are two subjects S1 and S2. Flow of infor-
mation between these two subjects occurs via a socket object O1

(which is pipe- like), and a file object O2.
Flow of information via file objects is simpler than that of pipe-

like objects. In particular, an object created by a subject receives
the label of that subject. This flow is handled by propagating the
current label of subject S2 to its write handle WH2, and then from
WH2 to the object O2. (If the object is already present, then its
current_lbl should be less than or equal to that of the subject

SOCKET

OBJECT

SOCKET

OBJECT

OBJECT

FILE

S2S1 O21

RH21

RH3

WH12 RH12

RH2

O2

WH2

WH21

O12

Flow of current_lbl
Flow of min_lbl

Figure 2: Illustration of Information Flow in our Framework

writing to it, and no propagation would be needed.) If S1 subse-
quently reads from the object O2, the label of O2 will flow into
S1.

Since a socket is a pipe-like object representing two distinct flows,
we split it into two objects: O12 that represents information flow
from S1 to S2, and O21 that represents the information flow from
S2 to S1. S1 uses a read-handle RH21 and a write-handle WH12

to read from and write into the socket, while S2 uses RH12 and
WH21 respectively for the same purpose.

It is important to clarify the role of open versus read opera-
tions. Specifically, when a file is opened for reading, the file’s
current_lbl flows from the file to the handle. But since no data
has yet been read by the subject, the propagation of current_lbl
from the handle to the subject does not take place until the first
read operation. (A similar comment applies to write operations
as well.) This distinction between open and read operations is
made for pipe-like objects as well, except that there are many open-
like system calls, including pipe, connect and accept.

Delaying current_lbl propagation serves an important pur-
pose: shells (e.g., bash) often open files for file redirection, and
set up pipes for use by its child processes. The shell process does
not perform any reads/writes on these objects. By deferring any
downgrades until the first read, we prevent the shell from having
to downgrade itself. Such a downgrade of shell’s label is disastrous,
as it prevents the shell from ever running high-integrity commands.

We note that for memory-mapped files, reads may happen im-
plicitly when memory is read, and hence we don’t support delayed
propagation of labels as described above.

3.4 Constraint propagation
As noted earlier, self-revocation is avoided in our approach by

propagating constraints on min_lbl. Figure 2 shows constraint
propagation using dashed lines. Note that constraints propagate in
the reverse direction of information flow.

Note that min_lbl represents the minimum label that needs to be
maintained by a subject A. Any entity B from which information
can flow to A needs to maintain a label higher than min_lbl(A) or
else the flow from B to A may have to be cut-off. Since such cut-
offs lead to self-revocation, we want to prevent them. This is ac-
complished by propagating min_lbl(A) to any handle from which
A reads; and from this handle to the associated object; and so on.
In other words, by propagating min_lbl in the inverse direction of
information flow, we can ensure that every data producer upstream
will be able ensure the integrity level required by A.

Whereas the forward flow of labels is normally delayed until an
explicit read or write operation, constraint propagation is instanta-
neous, i.e., when a channel (representing file or pipe-like commu-
nication) for information flow from entity A to another entity B is
opened, B’s min_lbl is propagated immediately to A. Because of



Invariant 8, this propagation will fail if A’s current label is already
less than min_lbl(B). In this case, the open operation is denied.

It is important to note that min_lbl is a quantity that is derived
through constraint propagation. It should not be thought of as a
variable whose value is increased each time a new communication
channel is established. For this reason, min_lbl can either increase
or decrease during the lifetime of a subject. Increases happen when
a subject opens a new output handle, while decreases happen when
a subject closes an output handle.

Due to constraint propagation, the following invariant holds:

INVARIANT 10. If there is an information flow path (shown by
solid lines in Figure 2) from A to B, min_lbl(A) ≥ min_lbl(B).

Since constraint propagation increases a min_lbl value for an
entity only if there is a constraint that requires it to be that high,
and since files are the only entities that have a hard requirement for
their min_lbl values, we can make the following observation:

OBSERVATION 11. For an entity A, let B1, ..., Bk be all the
open output files reachable from A while following the informa-
tion flow paths. Then min_lbl(A) will be the maximum among
min_lbl(B1), ..., min_lbl(Bk).

This observation follows readily from our declarative definition of
constraints and their propagation.

3.5 Properties
THEOREM 12. There will be no self-revocations in our approach.

Proof: The proof is by contradiction. Suppose that a self-revocation
takes place on a read or write operation that transfers data from A
to B. From Observation 9, self-revocation can happen only when
current_lbl(A) < min_lbl(B). Together with Invariant 8, this
implies that min_lbl(A) < min_lbl(B). However, note that it is
invalid to issue a read or write operation before setting up the infor-
mation flow path between A and B. (In this case, the path happens
to be of length 1.) From Invariant 10, the condition min_lbl(A) ≥
min_lbl(B) must also hold, thus leading to a contradiction.

DEFINITION 13 (FLOW-INDETERMINATE PROGRAMS). A set of
programs are said to be flow-indeterminate if for any set of com-
municating processes running them, the following condition holds:
for every communication path p between any two processes, there
will be data transfer operations that cause data to flow from the
beginning to the end of this path.

Flow-indeterminacy simply formalizes the idea that programs
may exhibit any possible pattern of communication that is consis-
tent with their current set of open file descriptors; and that there is
no simple yet general way to delineate likely communications from
those that are unlikely/impossible.

THEOREM 14. For flow-indeterminate programs, any policy
that accepts any execution rejected by SRFD will suffer from self-
revocation.

Proof: For an execution sequence rejected by our approach,
consider the first operation Ai that is denied. From the descrip-
tion of the approach in Section 3.4, Ai must be an open opera-
tion that would have created a path from entity A to B such that
current_lbl(A) < min_lbl(B). Now, suppose that there exists
a correct integrity policy P that permits this open operation. Then,
because of the properties of flow-indeterminate programs, it can be
seen that there will be a subsequent operation that transfers data
from A to B. This will either have to be denied, or it will cause
current_lbl(B) to fall below min_lbl(B). The former case
corresponds to self-revocation, thus completing the proof. In the

latter case, from Observation 11, it can be seen that there is some
output file Bi whose min_lbl is higher than current_lbl(B).
Also, from properties of flow-indeterminate programs, there will
be an actual data flow from B to Bi, which will cause the output
file Bi’s label to fall below its minimum value. This is not per-
missible in the model, and hence the more permissive policy P is
simply invalid. Thus, in either case, we have established that the
functionality offered by SRFD cannot be increased without risking
self-revocation.

Thus, for flow-indeterminate programs, we have shown that our
approach allows the same successful executions as any other valid
information-flow policy that is free of self-revocations. Thus, it
represents the maximal functionality achievable without any self-
revocations.

4. Implementation
We have implemented SRFD design as described in the previous

section. Our implementation uses Linux Security Module (LSM)
framework, and works on Ubuntu 13.10. Our code is primarily
in the form of handlers for various LSM hooks. Although Linux
kernel no longer allows loadable modules to use LSM hooks, there
are work-arounds available [1] that we relied on. Structuring the
system as a loadable module eases development and debugging,
especially in the early stages of prototype development.

LSM hooks are used to enforce information flow policies, per-
form dynamic downgrading, and to track and maintain min_lbl
constraints. Our implementation also uses an user-level component
to provide some usability enhancing features, e.g., notifying users
when a process is downgraded and shadowing accesses to prefer-
ence files for low integrity processes. By maintaining separate pref-
erence files for high and low integrity processes, SRFD prevents
processes from downgrading automatically due to consuming low
integrity preference files. Note that these features do not allow a
process to bypass kernel enforcement.

The overall size of our implementation is shown in Figure 3.

C Header Python Total
Kernel Code 3844 865 - 4709
Userland code 643 142 57 842
Total 4487 1007 57 5561

Figure 3: Implementation size

4.1 Subjects, Objects, and Handles
SRFD maps threads to subjects. Threads of the same process be-

long to the same subject group. Within the kernel, these correspond
to task_structs. Since LSM does not provide hooks to track
process creation directly, our prototype relies on cred_∗ hooks in-
stead. For each subject group, SRFD maintains information such
as integrity level and a list of handles.

Objects are mapped into inodes in the kernel. Our implemen-
tation maintains and updates object-related information, including
labels, handles associated with each object, and constraints. LSM
hooks on inodes are used for creating objects on demand, and deal-
locating objects when they are no longer needed. For file objects,
integrity labels are stored on the disk using extended attributes pro-
vided by the file system.

Handles are similar to file descriptors but represent an
unidirectional information flow between exactly one subject and
one object. SRFD relies on LSM hooks such as file_open,
inode_permission and d_instantiate to maintain handles.



Simple Simple Simple Simple Simple Select Select Pipe AF_UNIX Process Process Geometric
syscall read write stat open/ 10 500 latency latency fork+ fork+ mean

close fd’s fd’s exit /bin/sh -c
unprotected 0.375 0.477 0.517 1.104 2.591 0.624 8.935 12.854 8.812 235.4 1830

protected 0.376 0.526 0.580 1.122 5.867 0.624 8.958 13.994 9.785 249.8 1963
Overhead (%) 0.09% 10.28% 12.15% 1.62% 126% -0.1% 0.26% 8.87% 11.04% 6.08% 7.27% 12%

Figure 4: lmbench Performance overhead

When an object is associated with a subject (as a result of a file
open, pipe or socket creation), the object will be attached to the
subject via at least one handle. When the association is broken, e.g.,
due to a close operation, the corresponding handle is destroyed.

4.2 Constraint propagation
When a subject A opens a file O for writing (or a socket con-

nection with another process), constraints from the file (or target
process) have to be propagated in the inverse direction of infor-
mation flow, as described in Section 3.4. The open operation is
permitted if the invariants regarding current_lbl and min_lbl
can be satisfied after this propagation.

Note that constraint propagation can involve circular dependen-
cies as illustrated in Figure 2. To deal with cycles, we use a fix-
point algorithm for constraint propagation. To detect a fixpoint,
our algorithm stores the previous value of min_lbl in a variable
called last_min_lbl. It then updates the value of min_lbl of
A to be the maximum of last_min_lbl and the label of the file
O. If min_lbl(A) = last_min_lbl(A) then a fixpoint has been
reached, and our algorithm stops. If not, then the same process
is used to propagate the new value of A’s min_lbl to each of the
subjects S1, . . . , Sn that output to A, and the process continues. If
any of the propagation steps fail because it results in a min_lbl
exceeding the value of current_lbl, then the open operation is
denied, and the values of min_lbl restored.

The same fixpoint algorithm is used even if A performs a close
rather than an open. The only difference is that instead of comput-
ing the maximum of A’s min_lbl and that of the new object being
opened, we recompute min_lbl as the maximum of the labels of
all the currently open write handles of A. However, in the pres-
ence of cycles, this simple algorithm will not always compute the
least fixpoint. For this reason, our algorithm will retry constraint
propagation from scratch before denying an open request. Note
that (a) this retry step is unnecessary if no close operations have
taken place since the last retry, and (b) constraint propagation itself
is unnecessary for processes that are already at low integrity.

LSM provides no hooks on close operation: SRFD is not noti-
fied when a process closes a file. As a result, SRFD may have stale
information regarding files opened. This requires SRFD to walk
through the file descriptor table to prune out outdated handles when
recomputing constraints. SRFD optimizes this by recomputing the
constraints only when the current constraints cannot be satisfied.

4.3 Tracking subjects
Processes inherit a lot of rights from their parents, e.g., ability to

write to a file. SRFD needs to be aware of these inherited rights to
protect against self-revocation of these rights.

When a new process is created, SRFD duplicates the book-keeping
information associated with the parent to the child. This approach
automatically captures the communication between parent and child
that happen using mechanisms such as pipes. The most common
use of pipes occur in the context of shell processes, where the par-
ent first creates a pipe with a readable-end and a writable-end. It
then creates two child processes. At this point, the parent and chil-
dren can all read and write from the pipes, so there is cyclic depen-

dency between them. As a result, any constraint propagation will
result in all three processes having the same min_lbl. However, in
the next step, parent shell will close the two ends of the pipe, and
then the first child will close the readable end of the pipe, while
the second child will close the writable end of the pipe. After these
close operations, there can be no flow between the children and
the parent shell. Moreover, no information can flow from the sec-
ond child to the first child. All of this is handled by our constraint
propagation algorithm, which will correctly allow the second child
to be downgraded (if necessary) without having to downgrade the
first child or the parent.

4.4 Limitations
Our current prototype does not enforce its policies on operations

relating to capabilities, file mount points, signals, message queue,
and semaphores. In particular, low integrity processes performing
these operations are not restricted. We also simply denies lower
integrity processes to ptrace on higher integrity processes. We have
left out these aspect since our experiments did not make use of
these system calls. A complete implementation should also mediate
these operations by propagating labels. It is part of our ongoing and
future work to mediate them all.

For sockets, our prototype handles Unix domain sockets because
the two ends of the socket connection are within the control of the
OS. For sockets in the internet domain, their other end is typically
outside the control of the OS. Hence SRFD does not attempt to
enforce any policies on such internet sockets.

5. Evaluation

5.1 Performance
We evaluate the performance of our SRFD system using micro-

as well as macro-benchmarks. All the evaluations are performed on
a Ubuntu 13.10 VMware virtual machine allocated with one VCPU
AMD Opteron Processor 4228 HE (2.8GHz) and 1GB RAM.

As a micro-benchmark, we use lmbench, which measures the
overhead for making individual system calls. Figure 4 shows the
overheads of our system for different classes of system calls. Note
that the overheads are modest: the geometric mean is about 12%,
and the arithmetic mean is 16%. Note that if we exclude open
and close, which are typically less frequent than other calls such
as read/write, the overheads are much smaller — less than 5%.

It is natural for open and close to have higher overheads be-
cause of constraint propagation, but that does not explain a dou-
bling of execution time. It occurs in our prototype because LSM
does not provide hooks for close, and as a result, our implementa-
tion has to walk through the list of open file descriptors while prop-
agating constraints. In contrast, because there can be no failures on
read and write, no additional checking is needed, and the only work
is to blindly copy current_lbl from the source to destination.

Micro-benchmarks help to understand and explain the the over-
heads of kernel-based defenses such as ours, but they tend to over-
estimate the overheads because most applications spend only a mi-
nority of their time in the kernel. Macro-benchmarks are better at
estimating overheads experienced by real users in practice. For this



Unprotected Protected
Time (s) Overhead

400.perlbench 554.41 -0.21%
458.sjeng 865.29 -0.23%

462.libquantum 1032.35 -0.23%
471.omnetpp 543.24 0.27%

473.astar 738.29 0.16%
433.milc 875.47 -0.14%
Average 0.04%

Figure 5: SPEC2006 Overhead (showing top 6), ref input size

Protected
Overhead

Openssl -0.08%
dpkg -b coreutils 2.93%
dpkg -b am-utils 1.22%
Firefox 4.89%
Postmark 5.74%

Figure 6: Overhead on other benchmarks

reason, we used several macro-benchmarks, including the CPU-
intensive SPEC 2006 and openssl, file-system intensive Postmark,
and commonly used programs such as browsers and software builds.

From Figures 5 and 6, it is clear that overheads on CPU-intensive
programs such as SPEC and openssl are negligible — the overheads
are below measurement errors/noise.

Package builds, which represent a combination of CPU and I/O
load, show a slightly higher overhead of 1% to 3%. Specifically,
our benchmark built Debian Linux packages for coreutils and
am-utils from source code. Another mixed load consists of Fire-
fox, whose overhead was measured using pageloader, a bench-
marking tool from Mozilla. Top 3000 Alexa sites were prefetched
in this experiment so as to eliminate the effects of network latency.
(If this was not done, then the overheads will be even smaller.) The
overhead experienced was 5%.

Finally, the I/O-intensive Postmark was configured to create
500 files with size between 500 bytes and 500 Kbytes. The over-
head reported was 6%.

5.2 Experience
As noted in the introduction, our work is motivated by a con-

tinuing trend in sophisticated and adaptive malware attacks, and
our desire to provide principled defenses against them. Existing
approaches rely on techniques such as sandboxing a few key appli-
cations such as browsers and email readers that have the most expo-
sure to malware. While sandboxing these applications can prevent
some attacks, e.g., those that try to mount a code injection attack on
an email reader (or other document viewers invoked by a browser),
more sophisticated attacks can often get around these defenses. For
instance, users may save a document on their desktop, and subse-
quently open it with their favorite document editor/viewer applica-
tion. Since the application is typically not sandboxed in this usage
scenario, the attack can succeed. In contrast, an information-flow
based approach would mark such files as untrusted, and regardless
of the number of applications that process them, or how many in-
termediate steps they go through, untrusted files will always be op-
erated on by low integrity processes. Since such processes can only
output low integrity files, and cannot modify high integrity files or
interfere with high-integrity subjects, their attempts to compromise
system integrity will continue to fail.

Although these theoretical benefits of information-flow based in-
tegrity protection are well-known, these techniques have not found
widespread use on modern operating systems as they often pose
compatibility challenges. In this section, we walk through sev-
eral illustrative and common usage scenarios to demonstrate that
SRFD can work well on contemporary operating system distribu-
tions, without posing major compatibility problems. Naturally, our
focus will be on illustrating features specific to SRFD, as opposed
to information-flow based techniques in general.

In these scenarios, we assume that the default OS installation
consists of only high-integrity files; and that low integrity files enter
the system when it begins to be used, and new files are created by
untrusted subjects. We assume that browsers and email readers are
run as low integrity processes.

5.2.1 Self-revocations involving files, pipelines and sockets
The scenarios discussed here illustrate the benefits of accurate

information-flow dependency tracking in SRFD, and how that per-
mits us to provide more functionality as compared to previous ap-
proaches (specifically, LOMAC [8]), while avoiding self-revocation.

One of the challenges in SRFD is to track communications be-
tween processes. This can be nontrivial when a deep pipeline is
involved. Consider the command:

cat lowI | grep... | sed | ... | sort | uniq » highI

It is necessary to propagate labels across the pipeline to ensure
that information from low-integrity file lowI is prevented from
contaminating a high integrity file highI. Opportunities for self-
revocation abound, especially if the shell opens highI before cat

gets a chance to open lowI. Even otherwise, self-revocation is pos-
sible since intermediate commands such as grep may begin execu-
tion as high integrity processes, and then be prevented from reading
their input pipes, or they may be downgraded and prevented from
writing on their output pipes. LOMAC [8] avoids self-revocation
on pipes by downgrading process groups at a time — in this case,
all processes in the pipeline will be part of the same process group.

SRFD accurately captures information flow dependencies be-
tween the processes in the pipeline, and can avoid self-revocation,
while preserving usability. In particular, depending on the order
in which processes are scheduled, cat may be permitted to down-
grade. In this case, SRFD will deny the open operation on highI.
Alternatively, if highI is opened first, SRFD will deny cat’s at-
tempt to open lowI.

Another example that illustrates the strength of SRFD is:

cat high1 | tee high2 | lowP

where lowP is a low integrity utility program. SRFD will run this
pipeline successfully: both cat and tee will be remain at high
integrity, and be able to output to high integrity file high2, while
lowP will run at low integrity. LOMAC requires all processes in
the pipeline to be at the same level, and hence cannot run this.

SRFD supports sockets, and can avoid self-revocation on pro-
cesses that make use of these features. When a server program
has a high integrity file opened for writing, SRFD will deny con-
nections from a low integrity client, as the establishment of such a
connection would violate the constraints on min_lbl. Moreover,
any client that is already connected to such a server will be pre-
vented from opening a low integrity file, or connecting to any other
low-integrity process. LOMAC will experience self-revocation.

5.2.2 Commonly used applications
SRFD is implemented on a Ubuntu 13.10 desktop system. This

system runs a large number of applications and servers, including a
number of daemons, X-server, GNOME desktop environment, and



so on. All these applications work with SRFD, but this is unsur-
prising: in our tests, these applications did not access low integrity
files, and so SRFD does not constrain them in any way.

In the same manner, applications that don’t modify high integrity
files will run without any problems, as SRFD imposes no con-
straints on them. Most complex applications can be run this way —
for instance, we run web browsers and email readers in this mode.

Most command-line programs can run as high or low integrity
without any problems. Common utilities such as tar, gzip, make,
compilers, and linkers can be run without any problems on low
integrity files. Composing these command line applications using
pipelines works as described in the preceding section. Thus, we
focus the rest of this section on more complex GUI applications
that need to access a combination of low and high integrity files.

Document viewers. Document viewers such as evince and
Acrobat Reader can be used in SRFD without any issues. These
programs can be used to open high and low integrity documents si-
multaneously. However, once the viewer has opened a low integrity
file, it will not be able to overwrite a high integrity file.

Editors. GUI editors (e.g., gedit, OpenOffice, GIMP) impose ad-
ditional challenges for dynamic downgrading systems like SRFD.
When users select files to edit using file selection dialogs, applica-
tions tend to open every file to generate a preview, regardless of the
integrity of the files. When users open a directory containing low
integrity files, the editors will automatically be downgraded to low
integrity even if the users did not intend to open low integrity files.

To prevent editors from downgraded accidentally, we can allow
editors to be downgraded only when demanded by users. We can
rely on the “implicit-explicit” mechanism suggested in [28] to iden-
tify file accesses that are requested explicitly by users, and only
allow editors to be downgraded on opening these files. Other low
integrity files can be denied when accessed implicitly.

Media Editors. We consider media editors (e.g., f-spot and au-
dacity) separately because they usually do not modify the original
media files directly. Instead, they edit copies of the media files. As
a result, these media editors can be used without usability issues.

5.2.3 Defense against malware
We downloaded a rootkit ark from [3]. The tar file was la-

beled as low integrity when downloaded into the system by a web
browser. The user then untars the file by invoking tar. SRFD
started tar as a high integrity process, with current_lbl = Hi,
min_lbl = Lo because it has no constraints on its output files and it
has not been contaminated with any low integrity information. tar
started by loading libraries like ld.so.cache and libc− 2.17.so.
The tar process was then downgraded to low integrity when read-
ing the rootkit tar file. tar process then spawned gzip as low
integrity to decompress the file. After decompressing, the tar pro-
cess continued to untar. All of the new files created are automati-
cally labeled as low integrity.

With these integrity labels in place, SRFD can easily preserve
system integrity. Specifically, system directories are labeled as high
integrity and hence system utility rootkits cannot be placed in the
system directories. However, it is possible for users to acciden-
tally invoke these rootkits by placing them in some user-specific
search paths. SRFD protects the system integrity by downgrading
processes when these rootkits are executed or used, including ex-
ecutions by root processes. Hence, when a user process executes
a low integrity binary or loads library, the process will be down-
graded and is prevented from damaging system integrity.

SRFD also intercepts LSM hooks related to kernel modules. Low
integrity kernel modules cannot be loaded even by root processes.

6. Related Work
A number of related works, including classical work on infor-

mation flows and integrity protection were discussed in the intro-
duction and the main body of the paper. We focus this section on
related works that haven’t been discussed before, and on providing
a more in-depth comparison of works that are most closely related.

LOMAC [8] argues that a central reason for non-adoption of con-
ventional information flow techniques is that of compatibility. They
consider information flow systems that support privilege revision
(such as dynamic downgrades) and those that don’t, and conclude
that former class provides increased compatibility.

They point out that policies such as low-watermark policy had
not received much attention because of the self-revocation prob-
lem. They proceeded to address this problem in a particularly com-
mon case, namely, the pipelines created by shell processes. As
noted earlier, their solution relied on the shell’s use of UNIX pro-
cess groups to run each pipeline, and ensuring that all processes
within such a group had identical integrity labels. In this manner,
there will never be a need to restrict communications within a pro-
cess group, and thus self-revocation involving pipes is prevented.
They remark that they “cannot entirely remove this pathological
case without also removing the protective properties of the model.”
Indeed, the solution they present does not attempt to address revo-
cations involving files, sockets, etc. Our work is inspired by their
comments, and shows that it is in fact possible to retain the security
benefits of integrity protection, as well as the compatibility benefits
of privilege revision without incurring the cost of self-revocation.

Promoting early failure, as we do in this paper, is not the only
way to solve the self-revocation problem. An alternative approach
is to build recovery mechanisms to “roll back” failed executions.
This is not always easy to do in general. One-way isolation [24]
supports roll back as the default choice, while providing primitives
to commit executions that the user determines to be secure. How-
ever, it is problematic to rely on users to decide what is secure. Not
only does it demand considerable time, effort and skill on the part
of users, but also suffers from the fact that users could be easily
fooled. Thus, roll-back techniques coupled with automated pro-
cedures for determining secure executions are needed. Such auto-
mated procedures require full specification of what is secure — this
itself is too difficult a task to be accomplished in general. However,
it may be possible to specify detailed and accurate policies for se-
cure execution in special cases. One example of this is the secure
software installation [25] work, where a policy for determining se-
cure installations was specified and checked automatically.

Roll-back based approaches complement our work. In particular,
a complete SRFD system needs to support secure installation of
untrusted code, and a technique such as SSI [25] can do this for us.

There has been a resurgence of interest in information-flow con-
trol in the last several years. Some of the techniques start off
from classical centralized information-flow techniques, while oth-
ers have targeted decentralized information flow control (DIFC).
UMIP [14], IFEDAC [18], PPI [26] and PIP [28] belong to the
first category. Another common thread among these approaches
is that they target contemporary OSes, specifically, Linux. UMIP,
IFEDAC and PPI all support dynamic downgrading of subject la-
bels (i.e., LD). UMIP and IFEDAC do not address the problem of
self-revocation, perhaps expecting that the applications will have
mechanisms to deal with the problem. PPI relies on training for
determining whether a certain access should be denied, or result in
subject downgrade. Thus, it can eliminate some downgrades where
training suggests that it will lead to failures. PIP uses early down-
grading (ED) and hence does not suffer from self-revocation prob-
lem. However, as noted earlier, ED restricts functionality over LD



— thus, PIP avoids self-revocation at the cost of increased security
failures. Furthermore, PIP relies on userid for policy enforcement,
and hence cannot support low integrity root processes.

Some of the works that pursue the DIFC model include HiS-
tar [30] and Asbestos [6], which redesign the operating systems to
provide finer-granularity information flow control. Flume [13] pro-
vides DIFC within the context of standard OS abstractions. All of
these works require nontrivial application or OS modifications in
order to take advantage of information flow control. Changes to
cope with self-revocations would be a small part of these modifica-
tions, and so self-revocation is not explicitly treated in these works.

Schneider [22] formulates enforceable security policies using
the formalism of security automata. These automata make transi-
tions that are entirely based on a subject’s own operations, such as
open’s, read’s and write’s. Whereas these automata can only accept
or reject an execution sequence, Ligatti et al [16] proposed a more
powerful automata called edit automata that could also suppress
or modify a subject’s actions. We also use automata to compare
different downgrading schemes for information flow systems, but
the transitions in our automata are not only dependent on the sub-
ject’s actions, but also the state of the file system. This is because
whether an operation opens a high or low integrity file is a function
of the file system state. Indeed, Ligatti et al [16] explicitly spec-
ify that security properties in their model are those that are purely
functions of the operation sequence.

Policy-based confinement [5, 10, 11, 17, 21, 23] has been stud-
ied and widely deployed as a defense against malicious code. A
runtime monitor allows or denies actions of processes based on
a pre-defined policy. Depending on the enforcement mechanism
used, the implementation can be tricky [9, 12] due to TOCTTOU
attacks. The most difficult part of applying these techniques is to
have a good policy to identify bad behaviors [19]. A policy that
is too permissive would let malicious programs to compromise the
system, while a policy that is restrictive would impair usability.

Isolation [15, 25, 24, 20] is another commonly used technique
to protect system integrity. By running potentially malicious code
in an isolated environment, the host system integrity can be pre-
served. It is simpler than policy-based confinement because there is
no application-specific policy required. All resources are isolated.
A main drawback of isolation is fragmentation of the file system
namespace into several distinct “isolated” namespaces. When a
user wants to access a file, they first need to recall which container
has this file. Moreover, if they want to combine information across
multiple containers, it is not only cumbersome, but opens an avenue
for malicious code or data in one container to infect another.

7. Conclusion
We categorized information flow policies into No Downgrading

(ND), Eager Downgrading (ED) and Lazy Downgrading (LD). We
proposed a formal model to compare these information flow poli-
cies in terms of functionality and compatibility. Our model shows
that LD is more functional than ED, which, in turn, is more func-
tional than ND. However, LD poses compatibility problems due
to self-revocation, whereas ND and ED do not suffer from this
drawback. We therefore proposed SRFD, which combines LD’s
functionality with the compatibility of ED. We formally showed
that SRFD does not suffer from self-revocation. We also showed
that unless an oracle was available to predict future behaviors of
programs, it is not possible to further improve SRFD, i.e., accept
more executions without compromising integrity or risking self-
revocation. Our prototype shows that SRFD provides very good
performance, and can support a variety of benign usage scenarios
while providing principled defense against malware attacks. We

believe that this work represents a promising step that can con-
tribute to some mainstream adoption of information-flow based in-
tegrity protection techniques. To further this cause, we are releasing
the source code for our prototype [27].

8. References

[1] Akari, http://akari.sourceforge.jp/.
[2] Operation Aurora,

http://en.wikipedia.org/wiki/Operation_Aurora.
[3] Packet Storm, http://packetstormsecurity.com.
[4] K. J. Biba. Integrity Considerations for Secure Computer Systems. In

Technical Report ESD-TR-76-372, USAF Electronic Systems
Division, Hanscom Air Force Base, Bedford, Massachusetts, 1977.

[5] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and
V. Gligor. SubDomain: Parsimonious Server Security. In LISA, 2000.

[6] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and
Event Processes in the Asbestos Operating System. In SOSP, 2005.

[7] N. Falliere, L. Murchu, and E. Chien. W32. Stuxnet Dossier. White
paper, Symantec Corp., Security Response, 2011.

[8] T. Fraser. LOMAC: Low Water-Mark Integrity Protection for COTS
Environments. In S&P, 2000.

[9] T. Garfinkel. Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools. In NDSS, 2003.

[10] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A Delegating
Architecture for Secure System Call Interposition. In NDSS, 2004.

[11] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A Secure
Environment for Untrusted Helper Applications (Confining the Wily
Hacker). In USENIX Security, 1996.

[12] K. Jain and R. Sekar. User-Level Infrastructure for System Call
Interposition: A Platform for Intrusion Detection and Confinement. In
NDSS, 2000.

[13] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information Flow Control for Standard OS
Abstractions. In SOSP, 2007.

[14] N. Li, Z. Mao, and H. Chen. Usable Mandatory Integrity Protection
for Operating Systems . In S&P, 2007.

[15] Z. Liang, W. Sun, V. N. Venkatakrishnan, and R. Sekar. Alcatraz: An
Isolated Environment for Experimenting with Untrusted Software. In
TISSEC 12(3), 2009.

[16] J. Ligatti, L. Bauer, and D. Walker. Edit Automata: Enforcement
Mechanisms for Run-Time Security Policies. International Journal of
Information Security, 4(1-2):2–16, 2005.

[17] P. Loscocco and S. Smalley. Meeting Critical Security Objectives
with Security-Enhanced Linux. In Ottawa Linux symposium, 2001.

[18] Z. Mao, N. Li, H. Chen, and X. Jiang. Combining Discretionary
Policy with Mandatory Information Flow in Operating Systems. In
TISSEC 14(3), 2011.

[19] C. Parampalli, R. Sekar, and R. Johnson. A Practical Mimicry Attack
Against Powerful System-Call Monitors. In ASIACCS, 2008.

[20] S. Potter and J. Nieh. Apiary: Easy-to-Use Desktop Application Fault
Containment on Commodity Operating Systems. In USENIX
conference on USENIX annual technical conference, 2010.

[21] N. Provos. Improving Host Security with System Call Policies. In
USENIX Security, 2003.

[22] F. B. Schneider. Enforceable Security Policies. In TISSEC 3(1), 2000.
[23] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C.

DuVarney. Model-Carrying Code: A Practical Approach for Safe
Execution of Untrusted Applications. In SOSP, 2003.

[24] W. Sun, Z. Liang, V. N. Venkatakrishnan, and R. Sekar. One-Way
Isolation: An Effective Approach for Realizing Safe Execution
Environments. In NDSS, 2005.

[25] W. Sun, R. Sekar, Z. Liang, and V. N. Venkatakrishnan. Expanding
Malware Defense by Securing Software Installations. In DIMVA,
2008.

[26] W. Sun, R. Sekar, G. Poothia, and T. Karandikar. Practical Proactive
Integrity Preservation: A Basis for Malware Defense. In S&P, 2008.

[27] W. K. Sze and B. Mital. Self-Revocation Free Downgrading (SRFD).
http://www.seclab.cs.sunysb.edu/seclab/srfd.

[28] W. K. Sze and R. Sekar. A Portable User-Level Approach for
System-wide Integrity Protection. In ACSAC, 2013.

[29] TrendLabs APT Research Team. Spear-Phishing Email: Most
Favored APT Attack Bait. 2012.

[30] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
Information Flow Explicit in HiStar. In OSDI, 2006.

http://akari.sourceforge.jp/
http://en.wikipedia.org/wiki/Operation_Aurora
http://packetstormsecurity.com
http://www.seclab.cs.sunysb.edu/seclab/srfd

	1 Introduction
	2 Model
	2.1 Integrity policies
	2.2 Comparing functionalities of integrity policies
	2.3 Compatibility
	2.4 Maximizing functionality and compatibility

	3 Our approach
	3.1 Abstractions
	3.2 Information Flow Policies
	3.3 Forward information flows
	3.4 Constraint propagation
	3.5 Properties

	4 Implementation
	4.1 Subjects, Objects, and Handles
	4.2 Constraint propagation
	4.3 Tracking subjects
	4.4 Limitations

	5 Evaluation
	5.1 Performance
	5.2 Experience
	5.2.1 Self-revocations involving files, pipelines and sockets
	5.2.2 Commonly used applications
	5.2.3 Defense against malware


	6 Related Work
	7 Conclusion
	8 References

