
Comprehensive Integrity Protection for Desktop Linux

Wai Kit Sze and R. Sekar
Stony Brook University
Stony Brook, NY, USA

ABSTRACT
Information flow provides principled defenses against malware. It
can provide system-wide integrity protection without requiring any
program-specific understanding. Information flow policies have
been around for 40+ years but they have not been explored in to-
day’s context. Specifically, they are not designed for contemporary
software and OSes. Applying these policies directly on today’s
OSes affects usability. In this paper, we focus our attention on an
information-flow based integrity protection system that we imple-
mented for Linux, with the goal of minimizing usability impact.
We discuss the design decisions made in this system and provide
insights on building usable information flow systems.

1. Introduction
Information flow has been proposed 40+ years ago for integrity

protection. While these systems [2, 5, 9, 12, 3, 6, 7, 4] can pro-
vide principled protections against malware, they are rarely used
in practice. This is because these systems often require (1) chang-
ing OSes to enforce information flow policies, and/or (2) rewriting
applications to handle new security failures. These requirements
limit practical adoption of information flow systems. In this paper,
we discuss the techniques in making them usable. Our discussion is
based on PIP [11], an information flow system focused on usability.
Increased usability results from increased application compatibil-
ity, combined with the ability to preserve user experience on con-
temporary OSes that do not support integrity protection. We also
propose some demo scenarios to show how our techniques work.

In Section 2, we give a brief overview of PIP. In Section 3, we
focus on information flow policies that can improve usability. We
describe a technique to distinguish between different types of files,
and applying different policies based on these types. We also dis-
cuss how to deal with programs that need to handle high and low
integrity data simultaneously. We summarize the implementation
of PIP in Section 4. Demo scenarios and evaluation are presented
in Section 5 and 6 respectively. Related works are presented in
Section 7. The paper concludes in Section 8.

The main goal of this demo paper is to illustrate techniques to
improve usability of information flow based integrity protection.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT’14, June 25–27, 2014, London, Ontario, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2939-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2613087.2613112.

2. Architecture Overview
Basic information flow policy for preserving system integrity is

no-write-up and no-read-down. Low integrity processes are not
allowed to modify high integrity files while high integrity processes
are not allowed to read low integrity files.

PIP is a portable information flow system that has been imple-
mented on Linux and BSD systems. It consists of three main com-
ponents: existing multi-user support from OSes, a library, and a
helper process. We provide an overview on the system architecture
here. Details about the system can be found in [11].

PIP relies on existing multi-user support for labeling integrity
and enforcing no-write-up on low integrity processes. For sim-
plicity, we consider two integrity levels: high integrity (benign)
and low integrity (untrusted). Low integrity subjects are run with a
newly created userid called untrusted. By default, these untrusted
processes have no permission to modify user data. This provides a
robust enforcement of no-write-up policy.

No-read-down policy is enforced by a library. Although library
enforcement is subject to bypass attacks, note that we are applying
it only to benign processes. Such processes run benign code from
trustworthy sources, and operate on benign data. It is therefore rea-
sonable to assume that they will not actively seek to subvert policy
enforcement, and hence library-based enforcement is reasonable.

To obtain a fully working system, a handful of administrative
and utility applications need to be trusted, i.e., they should be able
to consume untrusted input while continuing to have high integrity.
Section 3.5 discusses these applications.

The basic policy outlined so far focuses on preserving integrity,
but not usability of programs. For instance, untrusted processes
may not be able to read user data as they are treated as a different
user on the system. This is where the helper process component
comes in: it runs with the privileges of the current user — also
called logged user, and provides a mechanism for untrusted pro-
cesses to request controlled access to the user’s files. It will allow
user files to be opened in read-only mode, and creating files in user
directories.

By default, our system only protects integrity, and does not tar-
get confidentiality. However, it is possible to enhance the helper
process and the rest of the system to enforce stricter policies.

3. Improving usability

3.1 Fine-grained policies
Traditional UNIX file permissions does not provide sufficient

granularity that enables processes of the untrusted user to have read

†This work was supported in part by grants from NSF (CNS-
0831298, CNS-1319137) and AFOSR (FA9550-09-1-0539).

access to all the files of the logged user. This deficiency can be rec-
tified using Access Control Lists (ACL) on Linux. However, this
interferes with normal use of file permissions, e.g., a manual per-
mission change can negate the ability of untrusted code to access
user files. Moreover, many applications are unaware of ACLs and
may run into compatibility problems, e.g., they may be using stat

or eaccess to check permissions. Finally, ACLs can only allow or
deny accesses, but cannot support more complex policies, such as
redirecting access to a shadow copy of a high-integrity file. For this
reason, PIP uses library and helper process to fine-tune the coarse-
grained policy captured by the DAC permission.

3.2 Policy Inference for File Accesses
The basic information flow policy focuses on preserving integrity,

but not usability. PIP improves usability by supporting multiple
policies. Instead of simply allowing or denying an access, PIP also
supports shadowing. Shadowing is crucial for improving usabil-
ity of untrusted processes: some files need to be read and written
whenever a program is executed. Labeling these files as high in-
tegrity will prevent untrusted processes from using these files. La-
beling them as untrusted will prevent benign processes from using
them. Using only allow and deny policies break either benign or
untrusted processes. Shadowing maintains two independent copies
of the same file and transparently redirects accesses to the file copy
based on the integrity of the process. This allows programs to be
used as both benign and untrusted.

PIP does not apply shadowing to resolve all file access denials.
This is because shadowing of data files causes confusion. Without
realizing it, a user may accidentally invoke an untrusted application
to edit a high integrity data file. With shadowing, this will work,
but subsequently, if the user tries to view the file, a benign viewer
will be redirected to the benign, unmodified copy, and the user is
left confused as to what happened to the edits he/she made. For
this reason, PIP uses the following technique to determine if a file
represents a data access or a preference file, and applies different
policies.

3.3 Determining file type
PIP relies on file type to determine what policies to apply. Fig-

ure 1 shows the file types in PIP. Code and configuration files are
easy to identify based on how they are accessed. However, prefer-
ence files and data files cannot be identified via permission. An im-
portant distinction that PIP relies on is how these files are accessed.
Data files are specified explicitly by users, while preference files
are accessed by programs implicitly.

File type Permission Access
code R–X -

configuration files R– – Implicit
preference files RW– Implicit

data RW– Explicit

Figure 1: File types in PIP

Implicitly accessed files are those that are not specified explicitly
by users. PIP identifies these files by exclusion: the set of files
accessed by the application but are not explicitly specified.

Typically, users specify data file accesses in these ways:

• arguments when executing the program

• environment variables

• file names returned by a file selection widget, which captures
file names selected by a user from a file dialog box

Identifying explicitly accessed files can be posed as a taint-track-
ing problem with taint sources listed. Taint propagates in PIP ac-
cording to the following rule: when a tainted directory is opened,
all the file names inside the directory are marked as tainted. Every
file access made by the application is then matched against the set
of tainted values to identify explicitly accessed files. Implicitly ac-
cessed files are those that do not match with the tainted values. PIP
relies on Aho-Corasick [1] algorithm to track and identify tainted
values efficiently.

With information on whether a file is accessed implicitly by pro-
grams or explicitly by users, different policies can be applied to
serve users better. While this section focuses on describing how
this “implicit-explicit” technique can be used to infer file types and
hence be used for shadowing policy, this technique can also be ap-
plied to limit the trust on programs that need to handle high and
untrusted simultaneously (Section 3.5).

3.4 uudo Inference
By design, PIP does not allow subjects to change their integrity

labels. PIP is a Privilege Revision on Invoke (PRI) system and it
does not suffer from the problem of self-revocation [4]. Hence PIP
avoids causing failures that applications cannot handle gracefully.
In PIP, a benign (high integrity) process can read and write into
high integrity files and write into untrusted files, but not read from
untrusted files. On the other hand, an untrusted process can read
and write untrusted files, but it can only read high integrity files.
Since it does not allow subject integrity to change, a process has
to decide ahead of time what integrity level it wants to be. uudo

is a program that PIP provides to let users (and benign subjects)
execute a program as untrusted.

Instead of requiring users to specify the integrity level for ev-
ery program executed, PIP relies on uudo inference to infer what
integrity level a process should be executed with. It involves pre-
dicting what files a program will use when executed: if users want
to use a program with untrusted files, the process should be exe-
cuted with userid untrusted to avoid violating the security policy.
On the other hand, if no untrusted files are involved, the process
can be executed with high integrity. By design, an incorrect choice
of integrity level only affects usability, but not system integrity.

PIP determines the required integrity level of a process based on
a simple technique. If any of the arguments or environment vari-
ables corresponds to a low integrity file, PIP would execute the
program as untrusted. We found that this simple technique is very
helpful because data are typically specified as program’s input ar-
guments. For instance, a lot of command line programs are not
interactive and input files need to be specified as arguments. Even
for GUI programs, they also accept input arguments to specify files
to be opened. File explorers (e.g., nautilus) then act as front ends
to interact with users: double-clicking on the icons cause them to
be executed with file path arguments.

This technique, however, fails if files to be opened depend on the
interaction with the programs. Since files to be accessed are not
known when deciding process integrity, PIP cannot infer the use of
uudo if high integrity programs are invoked without arguments.

3.5 Trusted programs
Applications that are designed to handle data from various sources

simultaneously require special handling in information flow sys-
tems as this violates the basic information flow policy. We provide
a discussion on how these applications are handled in PIP, so as to
balance integrity protection and usability.

Web browsers.
We designated Firefox to protect itself from network inputs and

inputs from local files selected using a file dialog by the user. Files
selected by user using a file dialog are mainly used for uploading.
These files are identified by the “implicit-explicit” mechanism de-
scribed in Section 3.3, preventing Firefox from using untrusted
files as non-data inputs. To ensure that downloaded files are associ-
ated with the right integrity labels, we developed a Firefox addon,
which uses a database to map domains to integrity levels.

As a second alternative, we dedicated an instance of the web
browser for benign sites. Using policies, the benign instance can
be restricted from accessing untrusted sites. In PIP, we manually
defined a whitelist of benign sites. A better alternative would use
whitelists provided by third parties. Instead of blocking users from
visiting untrusted sites, we can invoke the untrusted browser in-
stance to load the pages directly.

Email clients.
Email clients introduce untrusted data into the system through

message headers, content, and attachments. Our approach is to
trust the email reader to protect itself from untrusted sources. How-
ever, attachments are given labels corresponding to the site from
which the attachment was received. We developed an addon for
Thunderbird for this purpose. However, the current email pro-
tocol (SMTP) does not protect against spoofing. To provide trust-
worthy labeling, we could either rely on digital signatures (when
present), or on the chain of SMTP servers that handled the email.
Such spoof-protection has not yet been implemented.

Software Installation.
Our system relies on correct integrity labeling when new files are

introduced into the system. Of particular concern is the software
installation phase, especially because this phase often requires ad-
ministrative privileges. Solutions have previously been developed
for securing software installation, such as SSI [8]. We are imple-
menting an approach similar to SSI to protect the software installa-
tion phase and to label files introduced during the installation. PIP
can then enforce the policies at run time based on the labels.

X-Server and DBus.
Malicious X-clients can abuse X-server APIs to harm other X-

clients. One approach we provide is to redirect untrusted X-clients
to Xephyr, a nested X-server. Another alternative uses X-security-
extensions to designate untrusted processes as untrusted X-client,
to restrict/disable accesses to certain X resources. Since this option
trusts the X-server, it is not as secure as the first alternative, but
integrates smoothly in terms of user experience.

We are also trusting DBus and some service daemons to handle
requests from untrusted processes. For instance, we allow untrusted
processes to send desktop notifications and play sounds. Same as
X-server, we trust these applications to handle requests from un-
trusted processes, but not for consuming untrusted files.

File utilities.
Files belonging to different integrity levels co-exist. Utilities

such as mv, cp, tar, find, grep, and rm may need to handle files
of high integrity and untrusted at the same time. We designated
these file utilities as able to protect themselves when dealing with
untrusted data such that their functionalities can be preserved.

Instead of trusting these utilities to consume any untrusted data,
PIP can further reduce the set of files by relying on the “implicit-
explicit” technique described in Section 3.3. When users invoke a
command, data files are specified as input arguments1.

1When globbing is used in shell command, the shell process will
expand it to the set of file names matching the pattern.

LOC
C header Other

Ubuntu +PCBSD Ubuntu +PCBSD Both
Shared 2208 130 737 27 39
helper 703 16 106
uudo 68 52

library 2206 163 492 30 74
Total 5185 361 1335 57 113

Figure 2: Code complexity on Ubuntu and PCBSD

A side effect of making these utilities as trusted is that their out-
puts have high integrity labels. This is not desirable for applica-
tions like cp and tar as integrity labels on original files are lost.
We solved this problem by setting appropriate flags to preserve the
integrity information. This is relatively easy as the integrity infor-
mation is encoded as group ownership in PIP.

4. Implementation
We implemented the system on Ubuntu 10.04. A prototype is

also developed for PCBSD 8.2. Figure 2 summarizes the imple-
mentation complexity. +PCBSD corresponds to the additional num-
ber of lines of code required in order to support PCBSD. Shared
corresponds to code shared across multiple components.

5. Usage/Demo Scenario
Here are some scenarios to illustrate the usability of PIP.

Watching a movie.
We opened a movie torrent from an untrusted website. Firefox

downloaded the file to the temporary directory and labeled it as
untrusted. The default BitTorrent client, Transmission, was in-
voked as untrusted to start downloading the movie into the Down-
load directory. Once the download completed, we double-clicked
the movie to view it. vlc was started as untrusted to play the movie.
Realizing that the movie had no subtitles, we located subdownloader
for downloading subtitles. Since our installer considers Ubuntu’s
universe repository as untrusted, the application was installed as
untrusted, and hence operated only in untrusted mode. We searched
and found a match. Clicking on the match resulted in launching an
untrusted Firefox instance. We went back to subdownloader to
download the subtitle, and then loaded this file into vlc to continue
watching the movie.

Compiling programs from students.
Some students submit their programming assignments. Teach-

ing assistants for the course need to download their projects, ex-
tract them, compile them and execute the binaries in order to grade
the assignments. In this experiment, we considered an attack that
creates a backdoor by appending ssh key to authorized_keys so
that a malicious student can break into TA’s machine later.

With protection from PIP, when the TA received the submission
as an attachment, it was marked untrusted. As the code was un-
packed, compiled and run, this “untrusted” label stayed with it. So,
when the code tried to append a public key, it was stopped.

Resume template.
We downloaded a compressed resume template from the Inter-

net. When we double clicked on the tgz file, FileRoller, the
default archive manager started automatically as untrusted because
the file was labeled as untrusted by Firefox. We extracted the files
to Documents directory. We then opened the file with texmaker by
selecting “Open With”, since texmaker was not the default handler
for tex file. texmaker was started as untrusted and we started edit-
ing the file. We then compiled the latex file and viewed the dvi

Document
Readers

Adobe Reader, dhelp, dissy, dwdiff, evince, F-spot,
FoxitReader, Geegle-gps, jparse, naturaldocs, nfoview,

pdf2ps, webmagick
Editor/
Office/

Document
Processor

Audacity, Abiword, cdcover, eclipse, ewipe, gambas2,
gedit, GIMP, Gnumeric, gwyddion, Inkscape, labplot, lyx,

OpenOffice, Pitivi, pyroom, R Studio, scidavis, Scite,
texmaker, tkgate, wxmaxima

Games asc, gbrainy, Kiki-the-nano-bot, luola, OpenTTD,
SimuTrans, SuperTux, supertuxkart, Tumiki-fighters,

wesnoth, xdemineur, xtux
Internet cbm, evolution, dailystrips, Firefox, flickcurl, gnome-rdp,

httrack, jdresolve, kadu, lynx, Opera, rdiff, scp,
SeaMonkey, subdownloader, Thunderbird, Transmission,

wbox, xchat
Media aqualung, banshee, mplayer, rhythmbox, totem, vlc

Shell-like bochs, csh, gnu-smalltalk, regina, swipl
Other apoo, arbtt, cassbeam, clustalx, dvdrip, expect, gdpc,

glaurung, googleearth, gpscorrelate-gui, grass, gscan2pdf,
jpilot, kiki, otp, qmtest, symlinks, tar, tkdesk, treil,

VisualBoyAdvance, w2do, wmmon, xeji, xtrkcad, z88

Figure 3: Software tested

document with evince by clicking on the “View DVI” button in
texmaker. We then viewed pdf and AdobeReader was automati-
cally invoked as untrusted. The document was rendered properly.

Stock charting and analysis.
We wanted to study trend of a stock and we searched the Internet

about how to analyze. We came across a tutorial on an unknown
website with a R script. We installed R and downloaded the script.
When we started R, we found that it is a command line environ-
ment and is not so user-friendly for beginners. We then installed
RStudio, a front-end for R, from a deb file we found on another
unknown website. Our installer installed RStudio as untrusted be-
cause Firefox labeled the deb file as untrusted. After we started
RStudio, we loaded the script and realized that it required several R
libraries. We installed the missing R libraries. These libraries were
installed in a shadow directory since R implicitly accessed the li-
brary directory. After installing the libraries, we generated a graph.
We saved the graph in the Pictures directory, and edited the graph
with GIMP.

6. Evaluation
We tested about 100 software packages spanning multiple cate-

gories listed in Figure 3. All of these programs can run as benign,
as well as untrusted. They all worked without any problems or per-
ceptible differences. Usability of these programs depends on the
type of programs. We focus our discussion on usability for the first
two categories. More detailed discussions can be found in [11].

Benign document readers can only open high integrity files. Un-
trusted readers have no restriction in opening. We believe this does
not affect usability because these document readers are usually in-
voked via file explorers (e.g., double-clicking an icon in nautilus).
Our uudo inference technique (Section 3.4) can infer the required
integrity level. A difference between benign and untrusted docu-
ment readers is when performing a “SaveAs”: Benign readers can
create high integrity copies while untrusted readers can only create
low integrity copies.

When invoking editors via file explorers, usability is preserved
because PIP can infer reliably the files to be edited. However, ed-
itors can violate information flow policies when they are used to
edit both high and low integrity files simultaneously. Usability de-
pends on what integrity the editors are in. Benign editors cannot
open low integrity files. On the other hand, untrusted editors tend
to open high integrity files in read-only mode automatically when
they cannot open them in writable-mode.

7. Related Work
Since the Biba [2] integrity model proposed, researchers have

been working to improve usability of information flow systems.
Low-water-mark is an extension to the Biba model that allows en-
tities to downgrade from higher integrity to lower, such that more
usage scenarios can be supported. LOMAC [4] improves on the
low-water-mark model to address self-revocation problems.

Instead of focusing on usability, Decentralized Information Flow
Control (DIFC) systems (HiStar [12], Flume [5], and Asbestos [3])
extend functionalities by allowing applications to create their own
labels. This model, however, requires applications (or even the OS)
to be rewritten in order to take advantage of the system.

UMIP [6], PPI [9] and IFEDAC [7] are more recent systems de-
veloped for Linux OS and compatible with existing applications.
However, they do not address the usability issues discussed here.

8. Conclusion
PIP system being demonstrated provides systematic integrity pro-

tection for Linux. This paper presented the PIP system architecture,
and describes in some depth the challenges posed by traditional in-
formation flow techniques, and the techniques we developed in PIP
to address them. We also proposed some demo scenarios to illus-
trate how the techniques we introduced are useful in improving us-
ability. PIP has been tested with hundreds of software packages. It
is an open-source project, with the source-code as well as a virtual
machine image being downloadable from our website [10].

9. References
[1] A. V. Aho and M. J. Corasick. Efficient String Matching: An

Aid to Bibliographic Search. In Communications of the ACM
18(6), 1975.

[2] K. J. Biba. Integrity Considerations for Secure Computer
Systems. In Technical Report ESD-TR-76-372, USAF
Electronic Systems Division, Hanscom Air Force Base,
Bedford, Massachusetts, 1977.

[3] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris. Labels and Event Processes in the Asbestos
Operating System. In SOSP, 2005.

[4] T. Fraser. LOMAC: Low Water-Mark Integrity Protection for
COTS Environments. In S&P, 2000.

[5] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information Flow Control for
Standard OS Abstractions. In SOSP, 2007.

[6] N. Li, Z. Mao, and H. Chen. Usable Mandatory Integrity
Protection for Operating Systems . In S&P, 2007.

[7] Z. Mao, N. Li, H. Chen, and X. Jiang. Combining
Discretionary Policy with Mandatory Information Flow in
Operating Systems. In TISSEC 14(3), 2011.

[8] W. Sun, R. Sekar, Z. Liang, and V. N. Venkatakrishnan.
Expanding Malware Defense by Securing Software
Installations. In DIMVA, 2008.

[9] W. Sun, R. Sekar, G. Poothia, and T. Karandikar. Practical
Proactive Integrity Preservation: A Basis for Malware
Defense. In S&P, 2008.

[10] W. K. Sze. Portable Integrity Protection System (PIP).
http://www.seclab.cs.sunysb.edu/seclab/pip.

[11] W. K. Sze and R. Sekar. A Portable User-Level Approach for
System-wide Integrity Protection. In ACSAC, 2013.

[12] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making Information Flow Explicit in HiStar. In OSDI, 2006.

http://www.seclab.cs.sunysb.edu/seclab/pip

	1 Introduction
	2 Architecture Overview
	3 Improving usability
	3.1 Fine-grained policies
	3.2 Policy Inference for File Accesses
	3.3 Determining file type
	3.4 uudo Inference
	3.5 Trusted programs

	4 Implementation
	5 Usage/Demo Scenario
	6 Evaluation
	7 Related Work
	8 Conclusion
	9 References

