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ABSTRACT
Despite decades of sustained effort, memory corruption at-
tacks continue to be one of the most serious security threats
faced today. They are highly sought after by attackers,
as they provide ultimate control — the ability to execute
arbitrary low-level code. Attackers have shown time and
again their ability to overcome widely deployed countermea-
sures such as Address Space Layout Randomization (ASLR)
and Data Execution Prevention (DEP) by crafting Return
Oriented Programming (ROP) attacks. Although Turing-
complete ROP attacks have been demonstrated in research
papers, real-world ROP payloads have had a more limited
objective: that of disabling DEP so that injected native code
attacks can be carried out. In this paper, we provide a
systematic defense, called Control Flow and Code Integrity
(CFCI), that makes injected native code attacks impossible.
CFCI achieves this without sacrificing compatibility with
existing software, the need to replace system programs such
as the dynamic loader, and without significant performance
penalty. We will release CFCI as open-source software by
the time of this conference.

1. INTRODUCTION
Despite decades of sustained effort, memory corruption at-

tacks continue to be one of the most serious security threats
faced today. Memory corruptions are sought after by attack-
ers as they provide ultimate control — the ability to execute
low-level code of attacker’s choice. This factor makes them
popular in targeted as well as indiscriminate attack cam-
paigns.

The popularity of data execution prevention (DEP) stems
from its ability to block (the highly sought-after) arbitrary
code execution capability. This is one of the reasons why
it became the most widely deployed security feature despite
its well-known weakness against code reuse attacks such as
return-to-libc [42]. Subsequent to its deployment, attack-
ers have become increasingly skilled at attacks that reuse
existing code in order to bypass DEP. Introduction of Re-
turn Oriented Programming (ROP) [51] vastly expanded the
scope of code-reuse attacks. By crafting small snippets of
existing code (called “gadgets”), attackers could perform ar-
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bitrary (i.e., Turing-complete) computation. While Turing
completeness is an attractive property that is often the topic
of research papers, real-world ROP attacks have had a more
limited objective: stringing together a small set of gadgets
to bypass DEP.

Control flow integrity (CFI) [16] is a well-known counter-
measure against control-flow hijack attacks. Such attacks
typically rely on memory corruption vulnerabilities to over-
write code pointers, e.g., return addresses on the stack, or
variables containing function pointers. CFI thwarts most
such attacks by constraining the targets of indirect control-
flow transfers to be consistent with a statically computed
control-flow graph. Many research efforts have demonstrated
that CFI can be implemented within a compiler [46, 44] or
on binaries [66, 63], and moreover, can be applied to large
and complex software packages such as web browsers [57].

ROP attacks, as originally proposed, require repeated sub-
version of control-flows, and moreover, use indirect branches
that target the midst of instructions. As a result, they can
be stopped by CFI. However, recent research efforts have
shown that stealthy ROP attacks can be devised that use
only those targets that are permitted by CFI [25, 32]. These
attacks rely on the limited precision of practical CFI tech-
niques, e.g., the ability of returns to target any instruction
that follows a call instruction. In addition, researchers have
developed many evasive ROP attacks [31, 22] that thwart
other types of ROP defenses as well.

A natural approach for defeating these stealthy ROP at-
tacks is finer-granularity CFI. Unfortunately, increased pre-
cision typically leads to false positives, especially on com-
plex applications — false positive mitigation was the rea-
son why coarse-grained CFI approaches were proposed in
the first place. Moreover, precise static analyses required
for finer granularity CFI are difficult to achieve on binaries,
thus precluding its application to low-level code written in
assembly and third-party libraries. Finally, fine granularity
CFI won’t stop all ROP because of precision loss inherent
in CFI approaches, either due to static analysis [16], or due
to the need to support dynamic loading [66, 63, 46].

The above discussion leads to the conclusion that while
measures can be developed to make ROP harder, they are
unlikely to be eliminated as a means for code-reuse attacks.
We therefore propose a hybrid approach that not only tar-
gets the means, but also the effects targeted by real-world
ROP. The one effect targeted by all real-world ROP attacks
that we are aware of, as well as the stealthy attacks pro-
posed against CFI techniques, is that of executing injected
native code. In other words, these are all code-reuse-to-
code-injection (CRCI) attacks. This is because real-world
ROPs have to overcome a range of difficulties:

• Limited variety of gadgets. Due to defenses such as ALSR,
frequent software updates, customized compiler optimiza-
tions, version changes and others, some gadgets are elim-
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inated, while the location of others is unknown, and re-
quires significant effort to locate. This limits the range of
attacks possible.

• Payload sizes are typically limited. The maximum size of
ROP payload is limited by the specifics of exploit con-
text. An analysis of the popular Metasploit framework
demonstrates this limit: the average maximum payload
across 946 vulnerabilities was only 1332 bytes [29]. This
constrains the length of ROP chain.

As such, it becomes impractical to achieve the entire at-
tacker’s objective in the code-reuse phase of the attack. In-
stead, attackers use ROP to disable DEP1. Based on this
observation, we develop Control Flow and Code Integrity
(CFCI), an effective countermeasure to CRCI attacks.

1.1 CFCI Property and Approach
The DEP mechanism provided on today’s platforms is tar-

geted at native code injection attacks, but is secure only
against a weak attacker model. In particular, it is ineffective
against attackers that can carry out nontrivial code reuse
attacks. We therefore develop a stronger defense that pre-
vents escalation of attacks from code-reuse to code-injection
(CRCI). Specifically, our approach enforces the following:

• A program can load only a specified set of executable files.

• Only legitimate instructions in these files can ever be ex-
ecuted.

• No change can be made to any instruction during runtime.

The first property is ensured by enforcing a code loading
policy that prevents attackers from loading/launching arbi-
trary code. The monitor allows an executable program to
have flexible policies to support program debugging, test-
ing and running in special contexts. The second property
is ensured by a non-bypassable state model that governs
module loading logic. This state model is protected by the
underlying CFI and other techniques, and defeats low level
memory attacks that try to subvert code-loading logic. The
last property is achieved using code instrumentation that
handles legitimate code modifications requests without re-
ally modifying the executable code pages.

Together, these properties make native code injection im-
possible. We note that techniques such as write-protecting
binary files (or code-signing) serve to preserve the integrity
of code on the disk, but are not intended to protect code
integrity in main memory. Our approach thus provides an
important missing piece to ensure end-to-end code integrity.

We call our approach Control Flow and Code Integrity
(CFCI), highlighting the fact that it ensures the integrity of
all code, together with control-flows within the code. This
contrasts with existing CFI techniques that do not consider
most attacks on code integrity:

• CRCI attacks can modify memory protection to either
overwrite existing code or make non-code (i.e., data pages
containing attacker provide payload) executable.

• CRCI attacks can load malicious or vulnerable libraries.

• Loader subversion attacks can load malicious code by ex-
ploiting vulnerabilities in the dynamic loader.

A more complete list of possible attacks thwarted by CFCI
appears in Section 2.

While CFCI aims to ensure code integrity, control flow

1Such an ROP payload typically needs to make a system call to
add execute permission to a data page.

integrity as an underlying feature ensures that the policies
enforced by CFCI can’t be bypassed. Code integrity prop-
erty, in turn, protects control-flow integrity by preventing
CFI checks from being bypassed by newly introduced native
code.

1.2 Contributions
Our system achieves code as well as control-flow integrity

without restricting applications, or requiring the replace-
ment of system software such as the system loader or the
standard libraries. Specifically, our contributions are:

• An effective code integrity primitive for COTS binaries
that defeats real-world ROP attacks by eliminating the
possibility of DEP bypass in general. It is compatible with
complex COTS binaries, and does not requires changes
to system software such as the loader or compilers. It
works with statically-linked as well as dynamically-linked
binaries. Finally, it can defeat powerful adversaries that
have compromised multiple execution threads.

• A secure library loading/unloading state model that en-
sures that every code segment is correctly identified and
mapped for execution, and that these code segments are
never writable. An important aspect of our design is the
simplicity of this model, which increases confidence in its
correct enforcement of policies for secure loading. More-
over, our approach does not require either trusting or mod-
ifying the dynamic loader.

• A library loading policy that ensures that all loaded mod-
ules have previously been transformed to enforce CFI.
Moreover, library search paths and/or individual libraries
can be limited for each application to prevent loading of
unauthorized libraries.

• Low performance overhead. Our approach adds a small
overhead over the base platform (PSI [64]) for application
start-up, and very low overheads at runtime.

• COTS binary friendly SFI protection. Although there
have been several x86 implementations of SFI [30, 60, 37,
62], they all required some level of compiler support. To
our knowledge, the approach presented in this paper has
the best compatibility for existing COTS software.

2. THREAT MODEL AND ATTACKS
Our threat model considers remote attackers that are able

to interact with network-facing applications. In particular,
attackers in our threat model can:

• defeat ASLR using information leakage (or other) attacks,

• hijack more than one thread in the victim process using
code reuse attacks, and

• use these attacks to either (a) read/write/execute arbi-
trary memory of the victim process, subject to page pro-
tection settings, or (b) load new code, e.g., malicious or
vulnerable libraries.

Below, we list the possible attacks that may be carried out
by such attackers. Most of these attacks rely on data corrup-
tion and/or code-reuse attacks that remain possible despite
protections such as CFI, ASLR and DEP.

2.1 Direct Attacks
In this case, the exploit code directly invokes the neces-

sary system calls such as mmap to map new code into mem-
ory, mprotect to change execute permissions and exec to
launch executables. Since most operating systems do not



block these attacks, many current exploits rely on this ap-
proach.

2.2 Loader Subversion Attacks
Successful CRCI attacks can be launched even if counter-

measures are deployed against direct attacks: even if privi-
leges relating to code loading are taken away from the ap-
plication code, the loader code that is part of the process
needs to be able to exercise these privileges. Attackers can
thus gain these privileges by subverting the loader.

2.2.1 Code-reuse attacks
These are the simplest forms of loader subversion, invok-

ing functions within the loader for mapping memory pages
for execution, or making executable memory writable.

Loading malicious libraries. If an attacker has previ-
ously stored a malicious library on the victim system, then
she can use a code reuse attack to load this library.

There is a common misconception that statically linked bi-
naries are immune to such attacks. In reality, even statically
linked code on Linux needs some dynamic loading capabili-
ties to perform start-up initialization such as TLS (thread-
local storage) setup, stack cookies, and parsing vDSO2. Hence
they contain some internal functions such as _dl_map_object,
_dl_open and _dl_open _worker that can be utilized by an
attacker to load malicious libraries.

Turning on stack executability. A common assumption
for many security defenses is the existence of DEP, which
is also the first obstacle for attackers. However, on Linux,
this assumption can be invalidated by invoking a function
_dl_make_stack_executable in the loader3.

2.2.2 Data corruption attacks
Library hijacking attacks. Executable files specify the
libraries they depend on, but not the search path used to
locate these libraries. Recent vulnerability reports [8, 6, 7]
indicate that by subverting the search path, attackers can
load malicious libraries. Search path can also be controlled
using environment variables such as LD_PRELOAD, LD_AUDIT,
LD_LIBRARY_PATH, or search path features like: $ORIGIN, and
RPATH. Equally important, memory corruption attacks can
modify search path related data structures, thus overriding
the original path setting.

Leveraging these attack vectors, attackers can load unex-
pected libraries in place of original libraries [1, 11]. This may
lead to privilege escalation attacks [10, 4, 9, 5]. On Win-
dows, FireEye reports [56] an increasing use of the WinSxS
side-by-side assembly feature [15] to load malicious libraries,
bypassing normal search for libraries in typical directories
containing DLLs.

Malformed ELF binaries. Like any complex piece of
software, the dynamic loader is bound to contain vulnera-
bilities [2]. Malformed binaries are one of the best ways to
trigger them [3, 12]. It has been reported that malformed
relocation data can be used to circumvent code-signing on
certain Apple iOS versions [13]. Researchers have also doc-
umented more general attacks, showing how malformed re-
location information can be utilized to perform arbitrary
operations [53].

Corrupting loader data. Some binaries require the loader

2vDSO is a dynamic library exported by the Linux kernel to sup-
port fast system calls.
3Stack executability is a “feature” that is available to support
GCC nested functions, a legacy feature.

to perform relocation. It is possible to exploit this capa-
bility to modify existing code. In particular, we found an
attack that first corrupts the relocation flag, then replaces
the relocation table and symbol table with forged versions by
overwriting loader data structures in memory. A subsequent
code reuse attack, involving a call to the loader function for
performing relocation, resulted in a successful attempt to
modify already loaded code. Note that some details of our
attack is similar with a previous paper [53].

We note that this attack is available not only on glibc,
but also other loader implementations such as those pack-
aged with bionic libc for Android (before 4.3), uClibc for
embedded systems and other POSIX-compliant libc such as
musl-libc.

2.2.3 Attacks based on data races
Several potential opportunities exist through which an at-

tacker controlled thread can modify loader data while it is
being used and/or modified by the loader. We identify three
of the most attractive avenues in this regard:

• File descriptor race: In order to load a library, the loader
first performs an open on the file to obtain a file descriptor
fd, and then uses fd in an mmap operation to map the
code and data pages into program memory. An attacker’s
thread can race with the loader to change the file pointed
by fd. This can be accomplished using system calls such
as dup2.

• Racing to corrupt data segments used during loading: Data
segments in the library are loaded with write-permission
enabled. An attacker’s thread can race with the loader to
corrupt parts of this data that contain ELF segment infor-
mation. When this corrupted data is used by the loader
to load code segments, the loader may end up doing the
attacker’s bidding.

• Racing during relocation: Binaries that rely on text re-
location provide another opportunity. Specifically, dur-
ing the time of relocation, the loader maps the executable
pages for writing. An attacker’s thread can now overwrite
the code being patched by the loader.

2.2.4 Text Relocation Attack
Through our experiment, we found a new code injection

attack using relocation metadata. In particular, we find
that adding a text relocation flag can fool the loader into
“repatching” the executable sections of a library. Moreover,
by corrupting the loader’s data structures, we could replace
the original relocation table and symbol table with forged,
malicious tables. When the loader performed relocation us-
ing these forged tables, it resulted in a code injection attack.

This attack is available not only on typical Linux distribu-
tions, but also other loader implementations such as those
packaged with bionic libc for Android, uClibc for embedded
systems and other POSIX-compliant libc such as musl-libc.
It affects not only Linux, but also iOS (before v7.1) and
Android (before v4.3). Further details of the attack can be
found in our technical report [67]

3. SYSTEM DESIGN
To defeat the kind of attacks described in the previous sec-

tion, we develop a security primitive for code loading which
ensures that a process executes only the native code that it
is explicitly authorized to execute. Our design ensures the
integrity of all code from the binary file to its execution.



While the design of CFCI is independent of underlying CFI,
our implementation builds on the static binary instrumen-
tation platform PSI [65], which implements BinCFI [66].

CFCI secures the loader using a small reference monitor
that operates by intercepting key operations relating to code
loading. This reference monitor is based on a state model of
a loader described below.

3.1 Loader State Model
Our state model captures the essential steps involved in

loading a binary and setting up various code sections con-
tained in it. It does not rely on non-essential characteristics
that may differ across loaders, and hence is compatible with
different dynamic loaders, including eglibc, uClibc, musl-
libc and bionic-libc. The key operations performed by most
dynamic loaders on UNIX are:

• Step 1: Open a library file for read.

• Step 2: Read ELF metadata. (This metadata governs the
rest of the loading process.)

• Step 3: Memory-map the whole ELF file as a read-only
memory region.

• Step 4: Remap each segment of the ELF file with the
correct offset and permission.

• Step 5: Close the library file.

Calls to system functions used by the loader to perform these
operations are rewritten by CFCI so that they are forwarded
to the state model, which checks these operations against a
policy, and if permitted by the policy, forwards them to the
original system functions. All checks are performed using
binary instrumentation. Note that the underlying CFI en-
forcement ensures that none of these checks can be bypassed.

Note also that our policies need to maintain some state,
and this state needs to be protected from attacks by compro-
mised execution threads within the vulnerable process. We
describe in Section 3.5 our design of this protected memory.

Figure 1 illustrates the state model and summarizes the
enforcement actions in each step of the model. This state
model ensures the following properties:

• Only allowed libraries can be loaded into memory address
space. These libraries may be specified using their full
path names. Alternatively, the policy could permit loads
from specified directories.

• Each segment in the module must be loaded in the correct
location as specified in the ELF metadata.

• An executable segment is never mapped with write per-
missions. Moreover, any memory page that was ever writable
will never be made executable.

• No two segments can overlap, nor can there be an overlap
between a segment and any previously mapped (and still
active) memory page.

3.2 State Model Enforcement
CFCI maintains the current state of an ongoing load, and

permits only those operations that are legal in that state.
For simplicity, the state model serializes file loading, i.e., one
library cannot be loaded until the completion of loading of
a previous library. The state model handles some common
errors that can occur during a file load, such as errors in
opening of files, obtaining enough memory and/or address
space for mapping.

3.2.1 Checking library open operation

End?

Verify ELF Header 
Parse ELF metadata

Remap each  ELF 
Segment

mmap the whole ELF file

Open ELF File

Close ELF File

Valid ELF?

check model state
check library  policy

verify elf header

figure out all segment 
info: offsets, permission

figure out the base addr

check file descriptor
map whole file readonly

check against seg info

check if overlap

update bookkeeping

check file descriptor

update model state

check file descriptor

ELF Library Loading Procedure State Model for Library Loading

copy name to safe mem

Figure 1: State Model for Module Loading

CFCI intercepts calls made by the loader to open files for
the purpose of loading libraries. It first copies the file name
into protected memory, and this copy is passed onto the sys-
tem call to preclude TOCTTOU attacks. The actual check
on file name validity is deferred until the file open operation
returns with success. At this point, the file descriptor value
is also copied into protected memory for use in subsequent
stages of the state model.

Ideally, the policy will ensure that all loaded libraries are
from a predefined set. However, in practice, the exact set of
libraries needed may not be known until runtime, especially
for many graphical programs. To simplify policies for such
applications, CFCI can permit loading of files from specified
directories such as /lib and /usr/lib/*.

We configured PSI to load only libraries transformed for
CFI. If a process attempts to load an untransformed library,
PSI transforms it before loading.

3.2.2 Checking operations to map files into memory
Note that mmap operations that load libraries into mem-

ory are based on file descriptors rather than file names. A
table in protected memory is used to maintain associations
between file names and file descriptors, and is populated by
the state model in Step 1. Any attack that invalidates this
association can compromise the library loading policy, and
hence CFCI guards against such invalidation. Ultimately,
any such invalidation must happen through a call to close4,
so our state model intercepts this operation, and deletes the
corresponding file-descriptor from its table. This prevents
any subsequent use of that descriptor in mmap operations.

3.2.3 Checking segment boundaries
The read operation of the loader in Step 2 is intercepted

and modified so that its results will be stored into protected
memory. CFCI then parses this ELF metadata to obtain in-
formation about segments and where they should be loaded.
A copy of this data is then returned to the loader.

In Step 4, the information saved about segment offsets

4Functions such as dup also end up calling close.



Global Translation Table

………...

original code

new code & data

OC

OD

CD

T

empty space

…… …...

execu-
table

libc.so

ES

GTT data G

empty space ES

original data
relro RO

Figure 2: Layout of Memory Map Table

will be used to validate requests to map segments of the
library into memory. In particular, CFCI ensures that each
code segment is mapped at the offset specified in the ELF
header, it is never mapped with write permissions, and that
the segment does not overlap any other segment. As a result,
even if attackers corrupt the loader’s data structures holding
ELF metadata, they will not be able to circumvent CFCI.

3.3 Code Integrity Enforcement
Our state model ensures that code is safely loaded from

disk to memory. To ensure its continued integrity, CFCI
maintains a table of relevant memory segments as shown
in Figure 2, and enforces policies on operations that modify
their permissions. This table consists of several segments, in-
cluding the original code (non-executable), the original data,
(new) instrumented code (executable) and data. Note that
“relro” is a special data region that contains important code
and data pointers. It is first made writable by the loader,
then“patched”and then made read-only. The following poli-
cies are enforced on these segments:

• No changes, or make read-only: This policy is applied
to original code (OC), new code and data (CD), memory-
mapped data used by CFCI (G), and virtual DSO (VDSO
— used to support fast system calls).

• Cannot make executable: This policy applies to original
data (OD) (unless JIT is enabled — see Section 3.6), and
empty space (ES).

• One-time writable: Original code with text relocation
(OCT) and relro data (RO) can be writable (but not ex-
ecutable). However, once it is writable, it can only be
changed back to read-only (non-executable).

3.3.1 Compatibility with Code Patching
There are legitimate reasons to modify code after it is

loaded, e.g., text relocation. Text relocation allows pro-
grams to run in any memory location by updating the code
pointers at runtime. This code patching does not violate
our policy since only (non-executable) original code will be
patched. In order to execute correctly, the transformed code
needs to make use of this patched-up constant value. This
is accomplished as shown in Figure 3. Suppose that the
original code moves a constant to the eax register, and this
constant is fixed up during the text relocation phase. The

Original Code:
mov $const, %eax

... ...

Transformed Code:
call _next

_next: pop %eax

add $offset, %eax

mov (%eax), %eax

Figure 3: Patching for Text Relocation

transformed code retrieves this constant value using PC-
relative addressing. Specifically, it first uses that call/pop
sequence to retrieve the PC-value into eax. Then it adds an
offset that captures the distance between the original and
transformed versions of the instruction being transformed.
Note that now, eax will point to the location of the patched-
up constant value. The last step in the transformed code is
to load the contents of this location into eax.

Using the above transformation, transformed code with
text relocation could be correctly executed. Note that our
transformation defeats the primary objective of text reloca-
tion, namely, avoiding the overhead of PIC code. We accept
this as a reasonable trade-off for achieving compatibility, es-
pecially because text relocations not frequently used.

3.4 Library Loading Policy
Library loading policy ensures that each executable can

only load a set of dependent libraries. For some high-profile
applications, identifying the specific set of libraries may be
well worth the effort. Tools such as ldd can be effective for
statically enumerating the library set, especially for command-
line applications. For many other applications, however, this
strict policy can impact usability:

• Identifying the set of all required libraries can be diffi-
cult, both due to the large number of libraries loaded by
many applications, and because this list can vary across
localities and configurations.

• Tasks such as debugging require alternative libraries to
be loaded.

To address these, we permit a more relaxed policy that al-
lows libraries to be loaded from a specified set of directories.

To support tasks such as debugging, it is often necessary
to use environmental variables such as LD_LIBRARY_PATH and
LD_PRELOAD to change the loading path or add additional
dependencies. Our policy is flexible enough to handle these
needs, since different policies can be applied to the same
application run by different users and/or in different running
environments.

In particular, LD_LIBRARY_PATH and LD_PRELOAD values
will be checked by our specially designed library (details in
Section 4) at load time, and unauthorized values that violate
library loading policy will be rejected.

3.5 Protected Memory
Among SFI approaches [37, 60, 62, 30], the most efficient

one for our platform (32-bit x86) relies on segmentation.
Segmentation is also available for 32-bit applications on 64-
bit x86 processors, and is the option currenly used by NaCl.

CFCI SFI design is similar to vx32 [30]. At the time of
loading an executable, CFCI reserves a region of memory
to be protected by segmentation. Specifically, we set aside
the top few MBs of the lower 3GB of address space for SFI
protection. This means that the base address of segments



such as ds, es and ss will be 0, and the limit will be some-
thing like 0xbfbfffff. Using a base address of zero provides
maximum compatibility with existing code, as it avoids any
need to adjust pointers in memory, or when passing data to
the kernel.

By default, the OS maps the program stack at a high ad-
dress, and often, this may overlap with the region we want to
set aside. To resolve this conflict, CFCI relocates the stack
at process startup time, and then sets aside the high mem-
ory region for SFI protection. Next, CFCI initializes the
segments. Note that segment descriptors are maintained in
two tables in kernel space, LDT and GDT. Our implemen-
tation uses index 7 in GDT, which is currently unused, to
set up protected thread-local storage that can be used by
instrumentation, and index 8 to access unprotected mem-
ory. A system call policy is put in place to prevent further
modifications to these entries.

For 64-bit applications on the x86-64 architecture, we use
randomization to realize protected memory. CFCI ensures
that protected memory accesses could only be done through
the unused TLS register (%gs)5 with offset. Since segment
base address is stored in kernel, memory leaks can’t be used
to reveal the location of protected memory, thus strength-
ening our randomization based defense.

3.6 Support for Dynamic Code
Runtime changes to code may take place either due to the

loading/unloading of libraries, or due to the use of just-in-
time (JIT) compilation. The design described so far already
supports the first case of dynamic code. The second case,
namely JIT code, poses some difficulties, and we explain
below how compatibility with JIT can be obtained.

For best performance, many existing JIT compilers gener-
ate executable binary code in writable memory. This enables
code to be updated very quickly. However, such an approach
is inherently insecure under the threat model we consider, as
an attacker that can corrupt memory can simply overwrite
this code with her own code. For this reason, use of such
JIT compilers is not advisable in this threat environment.
Nevertheless, if compatibility with such JIT environment is
desired, it can be supported by CFCI. Naturally, code pages
generated by such a JIT compiler cannot be protected from
modifications, but our design can continue to offer full pro-
tection for the rest of the code. This is achieved by marking
JIT code region in a table and transforming JIT code at run-
time. All control flows targeting JIT code will be redirected
to its corresponding instrumented code where all indirect
control transfers in JIT code will be checked.

A more secure approach for JIT support is one that avoids
the use of writable code pages. Recent research work [55]
have proposed a practical and efficient JIT code genera-
tion approach that eliminates writable code pages. This is
achieved by sharing the memory that holds JIT code across
two distinct address spaces (i.e., processes). Code genera-
tion happens in one of these address spaces, called software
dynamic translator (SDT), where the page remains writable
but not executable. JIT code execution happens in the sec-
ond address space, regarded as an untrusted process, where
the page is just readable and executable.

CFCI is compatible with this secure JIT code generator
design as well. Each time new code is generated in the SDT
process, it is instrumented by CFCI.

5In x86-64, %gs register is not used by the glibc

JIT code tends to change frequently, and the changes are
typically small and localized. To obtain full benefits of JIT
code, instrumentation needs to be performed in an incre-
mental fashion. This requires some fine-tuning in the SDT
to ensure that CFCI works correctly. However, since the
source code of secure dynamic code generator [55] is not
available, we have not pursued this incremental design yet.

4. IMPLEMENTATION
The state model and library loading policy are imple-

mented using code instrumentation on the dynamic loader
(ld.so). We have instrumented code logic in ld.so that is
used for code loading. In addition, we have instrumented
all the system calls that are located in ld.so, libc.so and
libpthread.so. All the checks added by instrumentation
will redirect control to a specially designed library loaded
ahead of time. To ensure this library is loaded ahead of
all other dependent libraries, we use the environment vari-
able LD_PRELOAD. Note that this library is independent of
any modules including even the loader or libc. This ensures
that the state model, library loading policy and system call
monitor will work immediately when the library is loaded.

To protect the special library from control flow and data
attacks, our design marks the entries in memory map table
that corresponds to location of the special library as empty.
Thus any subverted code pointers targeting the library will
crash the program once used. To further protect our library
from data attacks, our checks only use protected memory
mentioned in Section 3.5. Finally, our special library uses
its own stack in protected memory.

5. EVALUATION
We implemented our system CFCI on top of an open

source CFI tool, PSI [64]. Our test environment is Ubuntu
12.04 LTS 32bit, with Intel i5 CPU and 4GB memory.

5.1 CPU Intensive Benchmark
Since CFCI does not introduce significant additional op-

erations at runtime, one would expect that it does not intro-
duce significant overhead. Specifically, the only additional
overhead of CFCI is due to policies on operations for mem-
ory mapping or protection, and file-related operations such
as open, close and read. Since these operations are relatively
infrequent in comparison with the number of instructions
executed, and since the policy checks themselves are quite
simple, we would expect the overhead to be small.

To validate this assessment, we evaluated CFCI with SPEC
2006 (Figure 4) using the reference dataset. The overall
overhead of CFCI we observed is 14.37%, which is an addi-
tion of just 0.17% over that of our base platform PSI.

Note that PSI has a higher overhead than its initial system
BinCFI. This is because PSI disables some optimizations in
BinCFI such as “violating transparency” and profile-based
optimization (AT.3).

5.2 Micro-benchmark for Program Loading
Runtime overheads arise chiefly from the following: (1)

larger size of instrumented binaries, (2) checks performed in
the context of the state model, and (3) checking of library
loading policies. Almost all of these overheads occur at the
time of loading a library, so we focus on load-time overhead
in this experiment. We wrote a small program that loads
a number of randomly chosen libraries. We measured the
runtime needed to load the original version and compared



Attack Type Detail Blocked? Reason of Rejection

ROP-CVE-2014-1776 direct alloc executable area and jump Y syscall policy

ROP-CVE-2014-1761 direct launch malicious executable Y syscall policy

ROP-CVE-2014-0497 direct change page permission, download exe and launch it Y syscall policy

ROP-CVE-2012-1875 direct make heap executable Y syscall policy

CVE-2013-3906 direct alloc executable data and jump Y syscall policy

CVE-2013-0977 ldr.data malformed binary with overlapping segments Y state model

CVE-2014-1273 ldr.data malformed binary with text relocation Y state model

CVE-2010-3847 ldr.data library hijacking using $ORIGIN in LD AUDIT Y library loading policy

CVE-2010-3856 ldr.data library hijacking on LD AUDIT Y library loading policy

CVE-2011-1658 ldr.data library hijacking using $ORIGIN in RPATH Y library loading policy

CVE-2011-0570 ldr.data Untrusted search path vulnerability in Adobe Reader Y library loading policy

ROP-CVE-2013-3906 ldr.cr load malicious library Y library loading policy

PoC: attack-lder-1 ldr.cr code injection via corrupted reloc table and sym table Y state model

PoC: attack-lder-2 ldr.cr code injection via making stack executable Y syscall policy

PoC: attack-lder-3 ldr.cr loading malicious library by calling d lopen Y library loading policy

Figure 7: Effectiveness Evaluation of CFCI
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Figure 5: Micro Benchmark Evaluation of CFCI

it with that for loading the instrumented versions6. Fig-
ure 5 demonstrates that the overhead grows linearly with
the number of libraries loaded. On average, the overhead
of CFCI on a library load is 150%. While this may seem
considerable, it should be kept in mind that this is a mi-
crobenchmark, and the actual overheads, when the overall
execution time is considered, is much smaller.

5.3 Commonly Used Linux Applications
Since only code allocation and deallocation will generate

performance overhead, we focus our evaluation on program
startup when large number of modules get loaded. The re-
sults are shown in Figure 6, where the base load time is
in seconds. Note that PSI has observable startup overhead
(147% on average) because this phase is not optimized. The

6Note that we instrumented all libraries when testing transformed
binary.

Program Base PSI Added CFCI # of
Name load overhead overhead loaded

time (over base, %) (over base, %) libraries
vim 0.140 34 8 96
evince 0.336 222 8 103
lyx 0.484 89 10 152
lynx 0.052 38 2 15
wireshark 0.684 224 18 114
nautilus 0.080 900 16 178
acroread 0.972 280 7 82

Figure 6: Startup Overhead on Typical Applications

additional overhead generated by CFCI is small — ranging
from 2% to 18%, with an average of 8%. Note that many of
these programs load more than 100 shared libraries each.

5.4 Running with Dynamic Code
To demonstrate compatibility with dynamic code, we used

LibJIT [14], an actively maintained JIT engine similar to the
LLVM backend. To make LibJIT compatible with CFCI,
we force LibJIT to generate only non-writable code. To
evaluate our performance overhead for LibJIT, we reuse an
open source benchmark tool [19]. The benchmark tool is a
simple program that computes the greatest common divisor
(GCD). LibJIT allows dynamic functions to be invoked di-
rectly (LibJIT-fast). Our evaluation shows that CFCI over-
head is 14.6%. This overhead includes about 10% overhead
incurred for runtime code transformation.

5.5 Effectiveness Evaluation
Although CFI bypass technique is emerging as shown in

recent research work [25, 32], real-world exploits have not
been designed with CFI in mind. Therefore, running those
exploits won’t show the benefits of CFCI. For this reason,
our effectiveness evaluation uses a combination of manual
analysis based on studying the relevant CVE reports, and
proof-of-concept exploits that we created ourselves. This
evaluation is summarized in Figure 7.

According to our threat model in Section 2, we classify all
attacks into direct attacks (direct), loader data corruption
attacks (ldr.data), and loader code reuse attacks (ldr.cr).
From Table 7, it is clear that all types of attacks are defeated.
In particular, our system call policy prevents all direct at-
tacks that try to manipulate code permission or launch ma-
licious binaries. For loader subversion attacks such as search
path corruption, our library loading policy properly defeats



Policy for Adobe Reader:

ALLOW libc.so.6 /lib/i386-linux-gnu/

REJECT libc.so.6 *

ALLOW libpthread.so.0 /lib/i386-linux-gnu/

REJECT libpthread.so.0 *

ALLOW libselinux.so.1 /lib/i386-linux-gnu/

REJECT libselinux.so.1 *

ALLOW * /lib/i386-linux-gnu/

/usr/lib/*

/opt/Adobe/Reader9/Reader/

intellinux/lib

/usr/lib/i386-linux-gnu/*

/usr/lib

REJECT * *

Figure 8: Library Loading Policy for Adobe Reader

all disallowed modules being loaded from unintended paths.
More advanced attacks such as code reuse attacks targeting
the loader are stopped by our loader state model.

5.5.1 Case study: Library policy for Adobe Reader
As described in Section 2, an attacker may attempt to

load a malicious library by specifying it by name, or by
corrupting the load path (“library hijacking”). CFCI blocks
these attacks using policies to limit the load path, as well as
the specific libraries that may be loaded by an application.
To illustrate these policies, consider Figure 8 which shows
our policy for Adobe Reader, a favorite target for library
loading attacks [8, 6, 7].

In addition, the example also illustrates the flexibility pro-
vided in our policy language. It is possible to allow or deny
loads of specific libraries, or permission can be granted based
on the directory from which a library is loaded. Moreover,
policies can be stricter for some libraries. Figure 8 uses a
stricter policy for low-level libraries libc.so, libpthread.so
and libselinux.so, forcing them to be loaded from a spe-
cific file in a specific directory.

5.5.2 Case study: Library policy for static binary
It is a common misconception that static binaries won’t

have any ability to load libraries. Our experiments prove
otherwise. We wrote a small, statically-linked program that
contains a traditional buffer overflow vulnerability. We then
crafted an exploit for this vulnerability. Instead of calling
dlopen, a function that is unavailable in statically linked
binaries, our exploit redirected control to _dl_open, an in-
ternal function statically linked from loader. This function
was passed the name of a library in /tmp. Our exploit re-
sulted in a successful load of this library. Along with the
library, dependent libraries such as libc.so and ld.so were
also loaded! Finally, the initialization function of the mali-
cious library was executed.

Our default policy for library loading stopped this attack,
as it prevents loads of libraries outside standard directories
for libraries.

5.5.3 Case study: Text relocation attack
In order to evaluate code-reuse and data corruption at-

tacks on the loader, we implemented a proof-of-concept ex-
ploit that leverages text relocation.

Our exploit code is implemented as a piece of native code.
This helps us avoid the complications of crafting valid ROP
attacks in the presence of CFI. Full details of the attack is
described in [67]. Our experiments shows that this exploit
is very robust and works on any dynamically linked ELF

programs.
We then attempted the exploit in the presence of CFCI.

The attack was detected and blocked by our loader state
model.

5.5.4 Case study: Making stack executable
Similar to relocation attack, we wrote a simple proof-of-

concept exploit that makes the stack executable, and then
jumps to the stack. In glibc 2.15, the loader function for
making the stack executable makes two sanity checks. The
first one checks that the caller’s address is within the loader,
while the second one checks the consistency of __libc_stack
_end. Bypassing the first check is easy — simply using a
return address in loader would suffice; when the function is
finished, it will go back to a gadget inside the loader and
can be arranged to jump back to the call site. Bypassing
the second check requires the attacker to corrupt a global
variable in ld.so, which is easy once ASLR is bypassed. In
sum, our exploit code bypassed these two checks and made
the stack executable.

When run in the presence of CFCI, this exploit is blocked
by our policies. Specifically, the attempt made by the exploit
to make an empty region (ES) executable was denied by this
policy.

Defeating this attack is important despite the fact that
PSI alone could already defeat it. This is because other
underlying CFI implementation may rely on DEP. For in-
stance, Abadi CFI [16] requires stack to be non-executable
to prevent jump-to-stack attack that has valid ID in payload.

6. RELATED WORK
Memory corruption defenses and CFI. Memory cor-
ruption attacks have been the most important targets for
attackers. The most complete defense against these at-
tacks would be based on bounds-checking [34, 59, 61, 17,
39]. Unfortunately, these techniques introduce considerable
overheads, while also raising significant compatibility issues.
LBC [33] achieves lower overheads while greatly improv-
ing compatibility by trading off the ability to detect non-
contiguous buffer overflows. Code pointer integrity (CPI)
[35] significantly reduces overheads by selectively protecting
only those pointers whose corruption can lead to control-flow
hijacks.

The most widely deployed defenses against memory cor-
ruption have been based on randomization [47, 21, 36, 20,
38, 18, 23, 26]. Unfortunately, randomization techniques
have been repeatedly proven to be vulnerable against deter-
mined adversaries [27, 52, 54, 18]. In addition, some of the
above techniques have limitations when applied to large and
complex applications due to difficulties in static analysis [20,
38], or performance [26]. Nevertheless, the wide deployment
of ASLR, together with DEP has raised the bar for exploit
development. To bypass DEP, today’s exploits employ a
code reuse attack as a prelude to code injection. This code
reuse attack phase has now become the new battlefield for
many low level attacks and defenses.

Control flow integrity [16] provides a foundation for
defending against code-reuse attacks. Several recent research
efforts [66, 63, 49, 24] can significantly restrict an attacker’s
ability to launch code reuse attacks. Unfortunately, CFI-
permitted gadgets may still be enough to achieve DEP by-
pass and launch a code injection attack [25, 32, 31, 22]. Even
fine-grained CFI approaches [46, 57, 43, 58] have been shown
to be bypassable [28].



A substantial fraction of the defense techniques described
above, including all bounds-checking techniques, and fine-
grained randomization [21, 20, 23] and fine-grained CFI [46,
57, 43] operate only on source code. In particular, low-level
code that relies on inline assembly will not be protected. Fi-
nally, any code that is available only in binary form cannot
be protected. Unfortunately, even if a single module is not
compiled for bounds-checking, no security guarantees can be
provided for any code. Thus, the “weakest link” can poten-
tially derail the entire the application. In contrast, CFCI’s
protection extends to all code, regardless of the language in
which it is written, or the compiler used to compile it.

Code integrity. Nanda et. al. [41] proposes an approach to
detect foreign code in Windows. They enforce a code loading
policy inside the kernel. Their implementation is based on
BIRD [40]. Similarly, Seshadri et. al. [50] proposes a code
loading policy for OS kernel. Their policy is enforced by a
tiny hypervisor.

MIP [45] and MCFI [46] also incorporate some code in-
tegrity features, implemented using policy checks on mmap

and mprotect. However, their policy is weak in that it
only aims to ensure existing code is never writable and ex-
ecutable. Moreover, the policy is insufficient to overcome
challenges of dynamic loader and code patching. Attack-
ers can divert control flow to dynamic loader or loader code
statically linked into a code module to bypass their policy.

Securing loaders. Realizing the importance of prevent-
ing abuse of code loading privileges, Payer et.al. [48] devel-
oped TRuE, a system that replaces the standard loader with
their secure version. The need to replace the system loader
poses challenges for real-world deployment, as OS vendors
are reluctant to change core platform components. There
is a strong interdependence between the loader and glibc,
and as a result, a replacement of the loader also requires
changes to the glibc package. Another difficulty with their
approach is that the secure loader achieves security in part
by restricting the functionality of the loader. Our approach
avoids these drawbacks by permitting continued use of the
standard loader. Security is achieved by a small and inde-
pendent policy enforcement layer that operates outside the
loader, and simply checks the security-relevant operations
made by the loader.

Writing secure loaders is a very difficult task, as demon-
strated by the numerous vulnerabilities reported in produc-
tion loaders [3, 12, 13, 4, 5, 9]. Thus, trusting the complete
loader codebase for code integrity leads to a large trusted
computing base (TCB). In contrast, CFCI implementation
uses a very small reference monitor whose size is no more
than 300 lines, including C and x86 assembly code. In com-
parison, a typical dynamic loader is 28KLoC.

7. CONCLUSIONS
In this paper, we presented an effective countermeasure

against the threat of ROP attacks. Our approach is based
on the observation that the goal of real-world code-reuse
attacks is to disable DEP and launch a native code injection
attack. Our defense combines coarse-grained control-flow
integrity with a comprehensive defense against native code
injection in order to defeat these attacks. Our approach
tracks code loading process through every step, and ensures
that code integrity is preserved at every step. Consequently,
it can ensure a strong property that only authorized (native)
code can ever be executed by any process protected by our

system, CFCI. A key benefit of our approach is that its
security relies on a relatively simple state model for loading,
and a few simple system call policies. It is fully compatible
with existing applications as well libraries and loaders, and
does not require any modifications at all. CFCI introduces
almost no additional overheads at runtime over CFI, making
it a promising candidate for deployment.
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[32] E. GÃűkta, E. Athanasopoulos, H. Bos, and
G. Portokalidis. Out of control: Overcoming control-flow
integrity. In S&P, 2014.

[33] N. Hasabnis, A. Misra, and R. Sekar. Light-weight bounds
checking. In ACM CGO, 2012.

[34] R. W. M. Jones, P. H. J. Kelly, M. C, and U. Errors.
Backwards-compatible bounds checking for arrays and
pointers in c programs. In AADEBUG, 1997.

[35] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song. Code-pointer integrity. In OSDI, 2014.

[36] L. Li, J. E. Just, and R. Sekar. Address-space
randomization for windows systems. In ACSAC, 2006.

[37] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In USENIX Security, 2006.

[38] V. Mohan, P. Larseny, S. Brunthalery, K. W. Hamlen, and
M. Franz. Opaque control-flow integrity. In NDSS, 2015.

[39] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
SoftBound: highly compatible and complete spatial memory
safety for c. In PLDI, 2009.

[40] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh. BIRD:
binary interpretation using runtime disassembly. In CGO,
2006.

[41] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh. Foreign code
detection on the windows/x86 platform. In ACSAC, 2006.

[42] Nergal. The advanced return-into-lib(c) exploits: PaX case
study. Phrack Magazine, 2001.

[43] B. Niu and T. Gang. Per-input control-flow integrity. In
CCS, 2015.

[44] B. Niu and G. Tan. RockJIT: Securing just-in-time
compilation using modular control-flow integrity.

[45] B. Niu and G. Tan. Monitor integrity protection with space
efficiency and separate compilation. In CCS, 2013.

[46] B. Niu and G. Tan. Modular control-flow integrity. In
PLDI, 2014.

[47] PaX. Address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt, 2001.

[48] M. Payer, T. Hartmann, and T. R. Gross. Safe loading - a
foundation for secure execution of untrusted programs. In
S&P, 2012.

[49] J. Pewny and T. Holz. Control-flow Restrictor:
Compiler-based CFI for iOS. In ACSAC, 2013.

[50] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny
hypervisor to provide lifetime kernel code integrity for
commodity oses. In SOSP, 2007.

[51] H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In CCS,
2007.

[52] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In CCS, 2004.

[53] R. Shapiro, S. Bratus, and S. W. Smith. ”weird machines”

in elf: A spotlight on the underappreciated metadata. In
USENIX WOOT, 2013.

[54] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code reuse:
On the effectiveness of fine-grained address space layout
randomization. In S&P, 2013.

[55] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski.
Exploiting and protecting dynamic code generation. In
NDSS, 2015.

[56] A. Stewart. DLL side-loading: A thorn in the side of the
anti-virus industry, 2014. http:
//www.fireeye.com/resources/pdfs/fireeye-dll-sideloading.pdf.

[57] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
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