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Abstract
Previous defenses against untrusted COTS software have
been focused primarily on stand-alone applications. We
develop a new approach in this paper that enables these
defenses to be applicable to the context of shared-memory
extensions (SMEs) available in the form of binaries, such
as browser plug-ins that have become very popular in the
last few years. Central to our approach is a new technique
for secure attributionof sensitive operations to an SME or
its host application. This enables selective confinement of
an untrusted SME’s actionswithout having to restrict the
activities of its (trusted) host application.Our approach
requires no modifications to SMEs or their host applica-
tions, and does not require source-code access. It is robust
against maliciously crafted SMEs that actively attempt to
evade our defenses. Our experimental evaluation shows
that the approach is effective with contemporary plug-in
architectures and several SMEs, and introduces relatively
low overheads.

1 Introduction
Users are increasingly relying on untrusted software in
their daily activities such as viewing documents and im-
ages, listening to music, watching video, instant messag-
ing, multimedia communication, file-sharing, and playing
games. The explosive increase in malware, which often
hides in software from untrusted sources, highlights the
need for secure execution techniques for such software.

Previous techniques for securing untrusted code have
been focused mainly on stand-alone applications.System-
call based policy enforcement techniques[34, 3, 23, 28]
are based on limiting an untrusted application’s system
calls and their parameters.Information-flow based in-
tegrity techniques[5], which have experienced a resur-
gence of late [18, 15, 31], are based on labeling the out-
puts of untrusted applications with low integrity, and en-
suring that low-integrity data cannot flow into (and hence
influence) the operation of benign applications. Unfor-
tunately, these techniques do not address the emerging
trends towards plug-in and module-based software archi-
tectures, where the behavior of a (benign) application is
extended by addingsoftware extensionsto it. Examples
of such shared-memory extensions (SMEs) include:

• browser plug-ins for viewing various document for-
mats, multimedia, presentations and animations,

• libraries for image decoding and display,
• audio and video codecs,
• Photoshop (or GIMP) image processing filters, and

add-ons to packages such as Office, Gaim, Apache etc.

We develop an approach in this paper that enables exist-
ing untrusted code containment techniques to be applied
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to SMEs. Our technique is able to selectively confine the
actions performed on behalf of an untrusted plug-in with-
out restricting the actions performed by the host applica-
tion. Our approach is designed for contemporary plug-in
architectures such as those of today’s web browserswith-
out needing any code changesor access to their source
code. It does not require an understanding of the seman-
tics of (potentially complex) host/extension interface, nor
does it make strong assumptions about the host applica-
tion’s ability to defend itself from attacks mounted by a
plug-in (including attacks that simply involve calling host
API functions with malicious arguments). Yet, it is strong
enough to work against malicious plugins that employ ac-
tive evasion techniques, and practical enough to secure
many of today’s plug-ins. Finally, it imposes only modest
performance overheads in practice.

1.1 Challenges of Securing SMEs
The central challenge in extending application confine-
ment mechanisms to SMEs is that of distinguishing the ac-
tions of the SME (which need to be confined) from those
of the host application (which should not be confined, or
else we risk breaking the host application). Such discrim-
ination is hard because an SME can hide malicious ac-
tivities by “tricking” its host application into doing their
bidding. For instance, an SME may:

• subvert the control-flow of its host application by mod-
ifying the code pointers used by the host application,
including function pointers, return addresses, etc.

• corrupt host application data, including file names, data
buffers, etc. As a result, an SME can control which files
are opened by the host, and what data is written to them.

• employ a slew of powerful stealth and evasion tactics
that are available in a shared memory environment,
e.g., incorporate memory errors that make it difficult
to analyze or predict an SME’s behavior, modify the
data structures (say, the runtime stack) used to attribute
security-sensitive operations to the plug-in or its host,
incorporate and/or exploit concurrency bugs, etc.

• perform attacks that violate low-level assumptions
made in binary code, e.g., modifying registers (or
call-return semantics) in a manner that violates the
platform-defined application-binary interface (ABI).
For instance, a modification to the stack pointer will al-
low an SME to exert considerable control over the con-
trol flow within benign code after a return from SME.

Since the basis of many of the above attacks is shared
memory, some research efforts such as XFI [11] have been
built over memory isolation. Unfortunately, although
memory isolation provides an important primitive for se-
curing untrusted SMEs, it also negates many of the pri-
mary advantages of plug-in architectures. Specifically:
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• SMEs are popular because they can exchange complex
data structures easily. The host-extension interface can
use aggregate data structures that contain multiple level
of pointers to memory regions allocated at different
points in the code of the extension or the host. Enforc-
ing memory isolation require the scope of legitimate ac-
cesses (e.g., which pointers will be accessed, how many
levels of indirection will be followed, etc.) to be identi-
fied in advance by a programmer. The host and/or SME
code needs to be redesigned/modified so that all share-
able data is allocated within shared memory regions, or
is explicitly copied at the SME/host boundary. More-
over, any data residing in a shared region becomes sus-
ceptible to attacks by a malicious SME.
The scope of this problem is magnified in the context of
large and complex host-application APIs. For instance,
browser plug-ins on Linux can access the Netscape
plug-in API [4] as well as APIs provided by the C and
C++ standard libraries, GUI libraries, etc.; altogether, a
plug-in can access a few to several thousand functions.

• Memory isolation does not prevent attacks on host-API
functions that involve maliciously-crafted arguments.
The host API functions need to perform adequate san-
ity checks on their arguments to protect against these
attacks. Given the large size of the host-API men-
tioned above, it becomes far too cumbersome to iden-
tify which functions can be safely exposed to untrusted
extensions, and if so, with what parameter values.
Moreover, existing host-extension APIs have been de-
signed for flexibility and programmability, with the as-
sumption that extensions are benign. Hence, for many
API calls, it may be difficult to predict the security ram-
ifications or identify ways to limit them.

It is clear from this discussion that in the context of com-
plex and large host-API interfaces such as those used in
web browsers, isolation-based approaches require signifi-
cant effort to modify existing host applications and plug-
ins in order to make them secure. Moreover, even after
expending this effort, these modifications and validation
checks can not easily be correlated with higher level se-
curity objectives, e.g., preventing SMEs from controlling
data that is ultimately transmitted over the network.

For these reasons, our approach does not rely on isola-
tion or validation checks at the SME/host boundary. In-
stead, we develop anefficienttaint-tracking technique to
label and track data “controlled” by an SME, and en-
force confinement policies on any system-calls whose in-
vocations or arguments are controlled in this way. Since
system-call APIs are much smaller (consisting of a few
hundred functions), and have been designed with secu-
rity objectives in mind, specification and enforcement of
policies at this interface is significantly simplified as com-
pared to the host/SME interface. Moreover, our approach
enables system-call (or information-flow) policies appli-

cable to a stand-alone untrusted application to be reused
for an SME providing the same functionality.

1.2 Contributions
• Analysis of the range of threats posed by SMEs.In Sec-

tion 2, we present a comprehensive analysis of the dif-
ferent ways an SME can compromise the integrity of its
host application. Previous dynamic information-flow
tracking techniques, including those that applied taint-
tracking to malware [39, 10], do not address this range
of threats. In contrast, we develop taint-tracking tech-
niques that are secure in this environment.

• Secure attribution.In Section4, we present a secure
technique for attributing the actions of an application
to the SME or the host application. This attribution
technique provides the basis for containment policies,
described in Section4.5. The salient features of our
attribution technique are as follows.
– We present an simple and elegant technique for at-

tributing control flow context to the host or the SME.
– We present a novel technique for defeating race con-

dition attacks, where untrusted code attempts to ex-
ploit the time interval between data and metadata up-
dates to corrupt taint-tracking. Our technique avoids
the use of locks and to provide an efficient solution.

– We provide an concise analysis of low-level evasion
techniques that may be employed by malicious code.
We describe several new techniques designed to de-
feat such evasion attacks.

• Analysis of protection provided by secure attribution.
In Sections4 and5, we justify why our techniques can
effectively mitigate the threats described in Section2.

• Efficient and robust binary instrumentation framework.
Unlike previous taint-tracking techniques that required
source-code access [36] or relied on dynamic binary
instrumentation techniques that have high overheads
[22, 24], our approach is based on static binary rewrit-
ing. Moreover, we achieved this efficiency without
making optimistic assumptions such as those made in
[25] that do not hold in the context of untrusted SMEs.

• Experimental evaluation of effectiveness.We have built
a prototype, called SafeBind, that embodies our ap-
proach. As described in Section7, SafeBind is robust
enough to deal with moderately large programs such as
Firefox and Konqueror, and incurs modest overheads
(10% to 30%) under realistic deployment scenarios.
The downside of a conservative approach such as ours
is the possibility of false positives. Our experiments
show that for many commonly used plug-ins, our ap-
proach can avoid false positives.

2 Threat Model and Related Assumptions
In this paper, the term “untrusted SME” refers to plug-
ins obtained from untrusted sources. We assume that only
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the binary code for the host application and the SMEs are
available. The SME may take the form of one or more
libraries that are linked (either statically or dynamically)
with the host application code to form an executable that
runs within a user-level process.

Our goal is to defend the integrity1 of a host system
from an SME that purports to provide some benign func-
tionality, but turns out to be malicious. We take a conser-
vative approach that ensures that untrusted SMEs won’t
violate integrity, but in doing so, may have to reject some
benign SMEs, e.g., an SME that incorporates code obfus-
cation that prevents disassembly2. Although our current
implementation does not support dynamic code genera-
tion, it is relatively easy to do so: our instrumentation,
which is currently performed statically, needs to be per-
formed at runtime to newly generated code before it is
run.

For the sake of concreteness, we assume that confine-
ment policies will be stated in terms of system calls that
can be accessed by the SME, the value and the taint asso-
ciated with each of their parameters, and (in case of sys-
tems that support file integrity labels) the integrity labels
of objects accessed by the system call. We assume that
the goal of a malicious SME writer is to execute system
calls that violate this policy. An SME may achieve this
by “controlling” the flow of execution that invokes a vio-
lating system call, or by “controlling” the parameter val-
ues provided to a violating system call. (Being unable to
identify operations effected by the host program on be-
half of the SME leads to the commonly known “confused
deputy” problem.) Our defense, based on taint-tracking,
defeats such attacks by (a) using a conservative attribution
technique that identifies any such “control” attempt; and
(b) by preventing evasion and subversion of taint-tracking
and attribution logic.

A malicious SME has the following choices in terms
of possible approaches for evasion and/or subversion of
higher-level integrity policies:
• Subverting program control-flow. Untrusted code may

subvert program flow of the trusted host by corrupting
function pointers, and return addresses to directly exe-
cute sensitive operations, or execute host code that in
turn invokes sensitive operations. Moreover, corrup-
tion of its own code pointers may allow an SME to
inject new code or execute code that may be hidden
from disassemblers by obfuscation. Extensions may

1Although information-flow based techniques such as the one devel-
oped in this paper can handle both confidentiality and integrity policies,
our primary focus in this paper is on integrity. As a result, wedon’t han-
dle SMEs that manipulate highly confidential data, such as an untrusted
password manager extension to a browser.

2Malware analysis techniques do need to cope with obfuscation,
since it is routinely employed by malware. However, our goals do no
require support or analysis of malware, so our approach is designed to
detect code features that can defeat our instrumentation andpolicy en-
forcement techniques, and mark the corresponding SME as unsafe.

also use system features such as signals, exceptions,
andlongjmp to transfer control to unintended code.

• Corrupting host application data.An SME may di-
rectly corrupt host application data that is stored within
the process address space. It may start from one of the
pointers contained in the data structures passed by the
host application to the SME, and traverse down several
levels of pointers to identify candidate data structures
that can be corrupted — such corruption attacks are
easy in the context of APIs designed for benign exten-
sions, (e.g., the Netscape API [4]) where the exchanged
interface data structures contain several pointers to ob-
jects owned by the host application. Even if no useful
data (or pointers) are explicitly passed into an SME,
it may still be able to find critical host data structures
based on knowledge about the location of global vari-
ables, or by scanning the stack or the heap. Finally, in-
stead of using its own code to perform data corruption,
an SME may utilize a host API function (or a snippet
of host code) to do the actual copying.

• Evading taint-tracking. Dynamic taint analysis tech-
niques can accurately reason about explicit flows, i.e.,
dataflows that take place via the assignment of a tainted
value to a variable. However, data may flow as a result
of implicit flowsthat cannot be detected without using
static analysis. Unfortunately, it is difficult to perform
implicit flow analysis in binaries due to their low-level
nature, and the use of address arithmetic, pointer in-
direction, and so on. As a result, implicit flows have
been ignored by previous dynamic taint analysis tech-
niques, including those used in the context of malware
analysis [10, 39]. Although this is acceptable in the
context of trusted code, where it is reasonable to as-
sume the absence of significant “covert channels” due
to implicit flows, it is trivial for malicious code to use
implicit flows for propagating large amounts of data.
(See [33] or [6] for examples.) We therefore rely on a
conservative approach that taints all writes within un-
trusted SME code, while making less conservative as-
sumptions on the trusted host application code.

• Circumvention or subversion of instrumentation logic.
An inline reference monitoring approach such as ours,
where the instrumentation resides within the same ad-
dress space as untrusted code, is subject to following
types of attacks: (a) corruption of instrumentation data,
(b) bypassing instrumentation code, (c) invalidating as-
sumptions made by instrumentation code, and (d) ex-
ploiting program logic to confuse attribution.
– Metadata corruption. With a taint-tracking based

defense, a malicious SME can defeat detection if it
modifies critical data structures while ensuring that
the corresponding taint tags do not reflect this change.

∗ Direct metadata corruption.To achieve this, an
SME may attempt to overwrite the taint tags either
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directly, or by “tricking” the host code to overwrite
the taint tags.

∗ Race-conditions. With a binary instrumentation
technique such as ours, there is a small window
time between data updates and taint tag updates.
This makes race condition attacks possible in a
multi-threaded application. In a write/write race,
an SME may race with a benign thread so that the
data update reflects the data written by the SME
thread, while the taint tags reflect the data written
by the benign thread. In a read/write race, a benign
thread reads the taint tags preceding a data update
by an SME thread, while the data read reflects this
update.

– By-passing instrumentation code.An SME may at-
tempt to subvert instrumentation by jumping into the
middle or the end of instrumentation code. Alterna-
tively, it may attempt to return to a different loca-
tion than that of the call, with the intent of bypassing
additional checks that are inserted at the original re-
turn site to ensure safety of return values. This class
of threats falls under the general class oflow-level
control-flow integritythreats.

– Invalidating assumptions made by instrumentation
code. A binary instrumentation approach typically
assumes that all of the code respects the application-
binary interface (ABI), which specifies restrictions
on register usage, function-calling conventions, etc.
For example, it specifies that certain registers (called
“callee saved registers”) are left unmodified across a
function call. Similarly, each thread is expected to
have its own stack that is disjoint from other thread-
stacks, and the global/heap memory. In anABI attack,
an SME violates these constraints in order to confuse
the defense mechanisms, and/or to modify data (e.g.,
data in a callee-saved register) without being noticed
by the instrumentation mechanism.

– Exploiting program logic within trusted code to con-
fuse action attribution.Included in this class are at-
tacks that exploit control dependences and implicit
flows in trusted code.

3 Basic Instrumentation Techniques

3.1 Static Binary Instrumentation
The first step in instrumentation is that of disassembling a
binary. Robust disassembly of so-called stripped binaries
continues to be an active area of research. Kruegel et al
[16] have described a combination of static analysis and
statistical techniques that have been shown to be robust
even in the presence of some degree of obfuscation in pro-
grams. Unfortunately, their techniques cannot guarantee
accurate disassembly of all code. More recently, Nanda et
al [21] developed a robust disassembly technique that is
suitable for instrumenting binaries. Their approach uses a

quasi-static disassembly approach, where most parts of an
executable are disassembled (and instrumented) statically,
while a small part of the code that cannot be statically dis-
assembled is instrumented at runtime. This approach can
work well with our technique, but since the focus of this
paper is not on disassembly techniques, we have simpli-
fied our implementation task by assuming that the binary
contains information about entry points of all functions,
at which point the simpler techniques from [37, 26] can
be employed. We do not assume the availability of any
additional symbol table or debug information.

After disassembly, our technique constructs the con-
trol flow graph for each function, and records all its entry
points. Next, it performs the actual instrumentation, intro-
ducing code for taint-tracking and other security checks.
This instrumentation typically introduces one or more ad-
ditional taint computation instructions for each instruction
in the original binary. As a result, function bodies ex-
pand, requiring them to be relocated. If the code uses
function pointers, they may continue to point to the orig-
inal code version. Hence the original version cannot be
deleted [21], but needs to be modified so that any target
address that is reachable using an indirect control-flow
transfer will now contain a jump to the corresponding lo-
cation in the instrumented version. The rest of instructions
in the original code are replaced with an invalid opcode in
order to detect implementation bugs, as well as evasion
attacks based on executing uninstrumented code.

Our instrumentation framework is designed to handle
large COTS binaries such as those of Firefox and Kon-
queror browsers, and Apache server and modules. It
is robust in the face of typical compiler optimizations
such as frame pointer omission and tail calls, as well
as hand-written assembly3. It can also handle position-
independent code (PIC), C++ exceptions, UNIX signals,
and so on,without making many assumptions about the
compilers involved. Additional details on our static instru-
mentation techniques, including an explanation of how we
handle these features, can be found in [25].

3.2 Instrumentation for Taint-Tracking
As done in some of the previous works on taint-tracking
[36], we maintain the taint information in an arraytag.
For a locationl, tag[l] indicates if this location is tainted
or not. Tag space could be allocated statically, or using an
on-demand allocation as in [36]. We associate 8 bits of
taint with each 32-bit word.

In addition to memory, taint bits need to be maintained
for each register. For the purposes of this discussion, it is
useful to think of this data as being stored invirtual regis-
ters. In the code snippets in Figure1, we use a virtual reg-
isterr t to store the taint associated with a CPU register
r. Additional virtual registersVR1 throughVR3 will be

3Many popular applications such as Firefox and GIMP, as well as
many media codecs, make use of hand-coded assembly.
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mov eax, VR1
mov ecx, VR2
lahf
mov eax, VR3
lea [ebp+0x1c], eax
shr 0x2, eax
mov ebp t, cl
or [eax+tag], cl
or ebx t, cl
mov cl, [eax+tag]
mov VR3, eax
sahf
mov VR2, ecx
mov VR1, eax

add ebx, [ebp+0x1c]

Figure 1: Instrumentation
for trusted code.

mov eax, VR1

lahf
mov eax, VR3
lea [ebp+0x1c], eax
shr 0x2, eax

mov 0x1, [eax+tag]
mov VR3, eax
sahf

mov VR1, eax

add ebx, [ebp+0x1c]

Figure 2: Instrumentation
for untrusted code.

used for address computation (i.e., computing the location
of tag[l] from l) and taint-tag computation. Since virtual
registers will ultimately be realized using memory, the in-
strumentation shown in Figure1 uses them like a memory
operand rather than a register operand. Virtual registers
are saved in thread-specific storage that is accessed using
standard OS conventions. (Unlike LIFT [24], we do not
rely on the availability of unused processor registers for
implementing taint-tracking; instead, our technique real-
izes virtual registers using main memory.)

Figure1 shows the basic taint-tracking instrumentation
for an instruction that adds theebx register to memory
locationebx+0x1c, leaving the result in memory. The
first step is to saveeax, ecx and CPU condition flags
so that they could be used for computations in the instru-
mentation code. Theneax is used to compute the ad-
dress where the taint tags of the memory operand are lo-
cated. In the trusted code, which does taint propagation,
we treat the data accessed using a pointer to be tainted
if the pointer itself is tainted. This is whycl, which is
used to compute the taint tag of the result of the add oper-
ation, is initialized with the tag of the pointerebp. Next,
we compute the logical “or” of this value with the taint of
the two operands toadd. The result is then stored as the
taint of the destination operand,[ebp+0x1c]. Finally,
the original values of the flags and registers are restored,
and the originaladd instruction is inserted into the instru-
mented code.

Since constants have a taint tag of zero, binary opera-
tions involving constants need not update the taint tag at
all. A few exceptions that require special handling are in-
struction patterns of “xor reg, reg” or “sub reg, reg” which
are pervasively used to clear a register, complex instruc-
tions such as string instructions which logically imple-
ment the semantics of more than one basic instruction, and
instructions that have implicit operands such as “leave”.

4 Secure Attribution and Policy Enforcement
In this section, we first develop asecure control attri-
bution technique (see Section4.1) to classify the current

control flow to one of three contexts: (a) plug-in, (b) host
application, or (c) a host-application function called by a
plug-in. We then develop asecure data attributiontech-
nique that states whether the value of a data item (e.g.,
a system call parameter) is entirely under the control of
the host, or has been significantly influenced by the SME.
We begin by summarizing the differences between taint-
tracking for benign and untrusted code. Following this,
we address evasion attacks outlined in Section2, includ-
ing metadata races (Section4.3) and low-level evasion
attacks (Section4.4). As described in Section4.5, dif-
ferentsystem-call based sandboxingpolicies can be en-
forced based on this attribution, thereby enabling SME
operations to be sandboxed without having to restrict op-
erations being performed by the host application.

4.1 Instrumentation for Control Attribution
One obvious technique for control attribution is to exam-
ine the return addresses on the stack. Unfortunately, this
technique is insecure since a malicious SME can corrupt
or spoof stack contents. Although secure attribution tech-
niques have been developed in the context of Java, this
relies on the type-safety of the language. In contrast, we
develop a technique for secure attribution on COTS bina-
ries. Our technique uses two context flagsCt andCu as
follows:

• Ct is set whenever the instruction currently being exe-
cuted is within the body of a trusted function.

• Cu is set whenever the current control flow is directly
determined by untrusted code, e.g., when untrusted
code is currently active on the runtime stack.

We use a simple and elegant instrumentation technique to
updateCt andCu that avoids runtime operations to scan
the stack or to determine whether callee addresses belong
to trusted or untrusted code. This simplifies the instru-
mentation and makes it efficient. Specifically:

• Ct is set at the beginning of each trusted function, and
immediately after anycall instruction in its body. It is
reset at the beginning of every untrusted function, and
immediately following all calls within its body.

• Cu is set at the beginning of each untrusted function
and immediately following everycall in its body. It
is reset at the end of each untrusted function.

• Cu is also set whenever a call is made within trusted
code using a tainted pointer, and is reset on return.

Note that untrusted code can directly exercise control over
execution flow by executing its own instructions or by
calling other functions within trusted or untrusted code.
In these cases, it is clear thatCu will be set. It can indi-
rectly control the flow of execution by corrupting a func-
tion pointer used by the trusted code. From the above
description, it is clear thatCu will be set in this case as
well. Other ways for untrusted code to directly control the
flow of execution are: (a) corruption of return addresses
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used by trusted code, (b) jumping past instrumentation,
(c) jumping into runtime generated code (which has not
been instrumented), and (d) using exceptions and/or sig-
nals to effect control-flow transfers. All of these attempts
are prevented by control-flow integrity checks described
in Section4.4. As a result, we conclude that the above
instrumentation can be used to securely attribute current
control-flow context of any thread:

• Ct = false, Cu = true: execution is entirely under
the control of untrusted code

• Ct = true, Cu = false: execution is entirely under
the control of trusted code, and

• Ct = true, Cu = true: trusted code is executing on
behalf of untrusted code.

Cu andCt are accessible within policies, thus enabling
different policies to be enforced in different contexts.
They are stored in thread specific memory, and is pro-
tected from direct corruption, much like the other data
structures used by the instrumented code.

4.2 Taint-Tracking in Untrusted Code

The primary basis for control and data attribution is taint-
tracking. The instrumentation for untrusted code per-
forms “taint propagation” as described in Section3.2.
The source of taint is all data written by the untrusted
code. Note that this conservative approach is more appro-
priate for untrusted code as compared to other choices,
e.g., treating constants as untainted. An approach that
treats constants as untainted would not detect an attack
where security-critical data is overwritten by a malicious
SME with a constant value, e.g., a variable with a value
/bin/login is overwritten by/bin/sh.

As shown in Figure2, the instrumentation for untrusted
code is simpler than that of trusted code: any write by the
untrusted code causes the corresponding taint tag to be
set. Thus, the constant “1” is moved into the correspond-
ing tag location instead of performing any taint compu-
tations. No metadata accesses are needed for read opera-
tions performed by untrusted code.

We note that the conservative approach of tainting all
writes by SME effectively thwarts any attempts to evade
dynamic taint analysis using implicit flows. In particu-
lar, it does not matter whether data written by untrusted
code is implicitly or explicitly dependent on tainted data
(or even independent of tainted data), as data written by
untrusted SMEs is always marked tainted.

4.3 Instrumentation to Handle Metadata Races

The instrumentation described above performs data and
metadata updates in separate instructions. If two concur-
rent threadsB (“benign”) andM (“malicious”) update the
same data, it is possible thatM ’s data update will occur
afterB’s, while M ’s metadata update precedes that ofB.
As a result of such a write/write race, the data and its asso-

ciated metadata could be out of sync. Similarly, there can
be a read/write race, whereB reads metadata just before
it is updated byM , but reads the data updated byM .

The narrow window of time between data and metadata
updates makes the likelihood of successful race attack to
be very low. However, malicious threads may introduce
data races on purpose in order to exploit metadata races.
By repeatedly racing with a benign thread, a malicious
thread may be able to increase the probability of a suc-
cessful attack to a considerable value.

An obvious approach to eliminate such races is to use
locks to ensure that data and metadata updates occur
atomically. However, given that every memory update in-
volves a metadata update, such an approach will have a
major performance impact. We have therefore developed
a new lock-free techniquefor to address data/metadata
races. Our technique is based on the following assump-
tions:

• If a race condition leads to benign data being labeled
as tainted, that is acceptable. However, tainted data
should never be labeled benign. The latter condition is
identified as the “dangerous condition”DC in the dis-
cussion below. The reasoning for allowing the former
condition is that in the context of non-malicious SMEs,
data/metadata races should be rare; and if they do oc-
cur, then they lead to a denial-of-service rather than an
integrity violation.

• Races involving multiple benign threads are not ex-
ploitable by an SME. The reasoning here is that a data-
metadata race implies a race condition on the data in-
volved in the access. Such race conditions lead to
erroneous (or unpredictable) behavior, and hence be-
nign code will typically incorporate some logic to avoid
them. While it is possible that some race conditions
may still be present in production code, they are likely
to be rare, and moreover, it is unclear that an SME can
intentionally exercise them. Hence we don’t consider
multi-way races involving multiple benign threads.

The first key idea in our lock-free technique is to perform
data and metadata updates in different orders for read and
write operations within benign code: (1) read operations
will read the metadata after the data read, while (2) write
operations will write metadata before the data. The sec-
ond key idea is that (3) within untrusted code, metadata
will be updated once before a data write, and then again
after the data write. We now argue that these techniques
eliminate the dangerous conditionDC identified above.

• Write-Write races . In this case, both the benign thread
B, and the untrusted threadU , write to the same mem-
ory location. If both threads write “unsafe” or “1” taint,
then there is no issue. However, ifB writes a “0”, it
intends to write benign data in the location whereU
writes untrusted data simultaneously. ForDC to oc-
cur, (i) U ’s data write must follow that ofB. Note that
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our instrumentation (2) ensures that (ii)B’s metadata
update will precede its data update, and instrumenta-
tion (3) ensures that (iii)U will update metadata once
after its data update. Putting together the ordering con-
straints (i) through (iii), it is easy to see that whenever
U ’s data update follows that ofB, at least one ofU ’s
metadata updates will follow that ofB, thus avoiding
DC.

• Read-Write races. Since untrusted code neverreads
metadata, such a race condition involves a write oper-
ation byU and a read operation byB. By (3), U up-
dates metadata with a “1” before and after its data write.
So, the only possible way forDC to occur is if (i)B’s
metadata read precedes the first metadata update byU ,
and (ii) B’s data read followsU ’s data update. How-
ever, this is not possible as our instrumentation (1) en-
sures thatB’s metadata read will follow its data read,
and hence either (i) or (ii) cannot hold, thus avoiding
DC.4

Thus, we conclude thatDC can never arise, ensuring that
our taint-tracking instrumentation is safe against race at-
tacks perpetrated by an SME thread.

4.4 Defending Against Low-Level Evasion Attacks

4.4.1 Control-Flow Integrity (CFI) Restrictions

A malicious SME may attempt to evade our policies by
jumping past the instrumentation code that enforces these
policies, or updates data (such as theCu andCt flags or
the taint information) used in these policies. To prevent
this, we define and enforce the following CFI criteria.

CFI criteria for untrusted code. Our instrumentation
enforces the following CFI properties:

• All intra-procedure transfers of control are to the begin-
ning of one of the basic blocks in the same procedure.
Attacks involving jumps to the middle of instructions,
or to instructions inserted during instrumentation are
thus thwarted. In addition, during the instrumentation,
the absence of implicit control-flow transfer instruction
(such as software interrupts) is verified.

• All inter-procedural control-flow transfers are to valid
function entry points, which are required to be aligned
as specified by the ABI.

• All return instructions return to legitimate return points,
although the calls and returns need not match. Returns
that cross trust boundaries require additional care, and
are described separately.

4We did not consider the case where the taint was “1” after the pre-
write metadata update byU , but became “0” beforeB read it. For this
to happen, a third thread must have updated the metadata, and moreover,
this thread should be benign as a “0” can be written only by benign
threads. Thus, for this condition to occur, there should be athree-way
race involving two benign threads and a malicious thread. However,
this conflicts with our assumption that races involving multiple benign
threads are either not present or not exploitable.

CFI criteria for trusted code.
• Direct control-flow transfers are not checked within

trusted code: they are assumed to be satisfied since we
trust this code, and expect that it was compiled with a
benign compiler.

• For indirect control transfers, the instrumentation en-
sures that the pointer involved in indirection is un-
tainted, or otherwiseCu is marked set. Moreover, it is
ensured that the transfer goes to the beginning of some
function within trusted or untrusted code.

• Return addresses should not be tainted — this can hap-
pen only due to corruption by untrusted code, and hence
execution is aborted if this is detected.

CFI criteria for SME/Host interface. All control trans-
fers across the host-extension interface require a stricter
enforcement. We detect all such transfers either during
our static transformation, or using runtime range checks
on the control pointers used in indirect control transfer in-
structions and returns.

For cross-interface control transfer, SafeBind ensures
that calls and returns match, and that the ESP is left re-
stored across the interface. This is to prevent the untrusted
code from using the return address or the ESP to arbi-
trarily choose its control transfer location. Note that the
taint associated with the return address and ESP can not be
trusted. For instance, when control returns from a trusted
routine back to an untrusted routine, since the return ad-
dress will always be tainted. The same is true forESP
when control return from untrusted code to trusted code.

To ensure that such critical state is preserved across in-
terface procedure calls, our enforcement uses an auxiliary
protected stack which strictly copies these values to and
from the main stack. This auxiliary stack also forms the
basis of other ABI conformance described subsequently.

CFI criteria regarding exceptional flows. SafeBind
also deals with signals, setjmp/longjmp in C, and C++
exceptions (which uses setjmp/longjmp based implemen-
tation on our platform). SafeBind trusts all signal han-
dler registration made in the trusted code, but ensures that
untrusted code registers valid function start addresses in
its code as signal handlers. This is sufficient to ensure
that the attribution for control usingCu andCt works as
expected. Setjmp/Longjmp are C functions and do not re-
quire special handling. The attack that involves corrupting
the control pointer used by longjmp is handled by our CFI
restrictions — untrusted code can only return to valid re-
turn points when using longjmp. As indicated in Section
4.1, this will immediate set theCu flag. Similarly, such an
attack will disallow arbitrary control transfers into points
in trusted code.

Instrumentation for enforcing CFI criteria. When
the control-flow target is statically known, enforcement
amounts to a check that is performed at instrumentation
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time. Otherwise, instructions are inserted into the code to
perform this check. To implement this, we make use of
a bit-valued arrayCFT that is indexed by code address.
CFT [A] is set iff A is a valid control flow target. Since
code addresses are aligned on 4-bytes on most systems,
CFT array will only require1/32th of the total code size.

4.4.2 Runtime ABI-conformance checks
Similar to CFI, ABI semantics is assumed to be preserved
by trusted code, but is explicitly enforced on untrusted
code. As per our tainting technique, it is simple to see that
violation of most ABI conventions, such as ensuring that
“callee-save” registers are left unchanged, are harmless
when they happen entirely within untrusted code. How-
ever, ABI semantics needs to beexplicitly enforced when
control transfer takes place from a trusted to untrusted
context and then back. This is ensured using additional
instrumentation at points where trusted code calls un-
trusted code. This instrumentation explicitly saves callee-
save registers before the call and restores them afterwards.
Note that the alternative of relying on the taint status of
callee-saved registers does not work: since they are saved
and restored by untrusted code, their values would always
be tainted, even when the original values assigned to them
by trusted code are preserved. As described above, a pro-
tected auxiliary stack is used for saving these registers.

As part of ABI requirement, runtime validity checks are
performed onESP before calls from untrusted to trusted
code — specifically, on the x86 we check that ESP is in
the thread’s stack region and is below the value at the time
of last entry in the untrusted code. It should also be clear
that the protected auxiliary stack ensures thatESP is left
restored for all returns from untrusted code explicitly, dis-
allowing usage of such callee-saved registers as means to
violate integrity in trusted callers.

We point out that previous works [10, 39] don’t treat the
full range of attacks against attribution mechanisms, and
are hence vulnerable to some of the above attack avenues.

4.5 Specifying and Enforcing Security Policies
In our framework, security policies can be enforced at the
point of invocation of any function within the host system.
A security policy is a predicate with the following inputs:
• the function being invoked and its parameters5

• the taint associated with each of the parameters
• the control attribution flagsCu andCt.
While it is possible to develop a high-level policy lan-
guage that takes these inputs, that is not the goal of this
paper. We assume that high-level policies may be com-
piled into a piece of code, and provide the ability to in-
terpose this code before and/or after the call to each host
function for which a policy is specified.

5If the function uses global variables that are relevant for policy en-
forcement, then, from the perspective of policies, they too are considered
as parameters to the function.

We believe that the framework presented so far can
support a range of security policies for confining un-
trusted SMEs, while providing a level of flexibility, power,
and ease of policy development that is similar to previ-
ous works on securing stand-alone untrusted applications.
However, for brevity, we only discuss system-call poli-
cies below. A system call can be attributed to an exten-
sion if Cu is set, or if any of the arguments to the system
call are tainted. System calls attributed to the host are un-
constrained, whereas a specified system-call policy can be
enforced on the rest. Moreover, if a sandboxing policy is
available for a stand-alone version of the extension that
offers the same function, we can reuse the same policy.

This basic approach can be further refined, e.g., to ig-
nore taint on system-call arguments that don’t impact se-
curity, or to attribute certain system calls to the host when
bothCu andCt are set. Moreover, if some extension API
functions are known to perform adequate input validation,
then we can untaint the arguments to such functions at the
point of call. (This is often referred to asendorsement.)

5 Effectiveness Against Threat Model
We now analyze the techniques described in the previous
section with respect to the threats described in Section2.

• Subverting program control-flow. This was already ad-
dressed in Section4.1.

• Corrupting host application data.All data written by
the untrusted code is tainted. In addition, all static data
in the extension, which is typically a shared library, is
initialized as tainted. Moreover, if an SME uses a host
function to copy some data into its intended target data
structure, it needs to pass in the location of this destina-
tion using a parameter, or by modifying a global vari-
able used by the host. In either case, our taint-tracking
technique will mark the destination as tainted, thus en-
suring that in all cases, a security policy based on taint-
edness of system call arguments cannot be subverted by
corrupting host application data.

• Evading taint-tracking. We already pointed out that
evasion techniques such as the use of implicit flows
cannot thwart our conservative tainting technique that
marks all data written by untrusted code as tainted.

• Circumvention or subversion of instrumentation logic.
– Metadata corruption.

∗ Direct metadata corruption.This is prevented us-
ing the technique described in [36]6. This tech-
nique can be used to protect all metadata, including
the tagmap and all other data used by the instru-

6Note that any instructions in (trusted or untrusted) code that writes
into any memorym will be preceded by an instruction that updates
tag[m]. If tag[l] is left unmapped for all locationsl that we want to
protect from direct access by the (trusted or untrusted) code, then any
such access will cause a memory exception, causing the programto be
aborted.
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mentation code, such as theCu andCt tags.

∗ Race-conditions.We previously established in Sec-
tion 4.3 that metadata races cannot be exploited to
defeat our technique.

– By-passing instrumentation code.The control-flow
integrity checks described in Section4.4were specif-
ically designed to defeat these attacks.

– Invalidating assumptions made by instrumentation
code.Our ABI enforcement techniques (Section4.4)
were designed to address these threats.

– Exploiting program logic within trusted code to con-
fuse action attribution.The most powerful subver-
sion mechanism involves corrupting pointers (or ar-
ray indices) used by trusted code so that they point
to data sources or destinations chosen by the SME.
This mechanism is already thwarted by our current
technique, since it marks any data read or written us-
ing a tainted pointer to be tainted. This leaves only
conditional dependences and implicit flows within
trusted code as the only means for evading data at-
tribution. While one cannot rule out the possibility
that these may be exploited, we point out that existing
work on taint-based attack detection [22, 36, 24] does
not consider this covert channel to pose a significant
threatsince we are dealing with trusted code.More-
over, this avenue requires attackers to findexploitable
control dependences or implicit flows within trusted
code, and craft an attack to exploit them. To further
limit the attacker’s choices we plan to consider incor-
porating limited forms of control dependence track-
ing on benign code. (However, we do not consider
implicit flows within trusted code as a serious threat.)

6 Optimization

Performance is critical for realizing a practical system that
relies on heavy instrumentation such as fine-grained taint
tracking. Instrumentation for taint propagation is the most
significant factor, and hence is the focus of our optimiza-
tion techniques. The best known overheads for binary-
based taint-tracking on CPU-intensive benchmarks has
been achieved in our previous work [25] (90% to 180%).
However, this performance is obtained using optimiza-
tions that are not sound in the context of untrusted code.
In particular, it relies on a number of optimizations that
assume that local variables of one procedure won’t be ac-
cessed by another procedure unless their addresses are ex-
plicitly passed as parameters. A malicious SME can de-
feat the taint-tracking mechanism by intentionally violat-
ing this assumption. We have therefore developed alterna-
tive optimizations, as described below, that were explicitly
designed to be sound in the face of untrusted code.

movd eax, xmm0
movd xmm1, eax
movd esi, xmm1
test 0xa, al
jz L1
or 0x8, al
L1: add ebx, edx
cmp ebx, 0
lahf
test 0x42, al
lea [ebp+0x1c], esi
shr 2, esi
setnz [tagmap+esi]
sahf
mov ebx, [ebp+0x1c]
movd xmm1, esi
movd eax, xmm1
movd xmm0, eax
je 0x40000

Figure 3: Instrumented code
after liveness optimization.

movd eax, xmm0

add ebx, edx
cmp ebx, 0

movb 0,
[ebp+0x801c]

mov ebx,
[ebp+0x1c]

movd xmm0, eax
je 0x40000

Figure 4: Fastpathver-
sion.

6.1 Low-level Optimizations

Inline code-instrumentation requires maintaining dif-
ferent execution contexts between application and
taint-tracking code. Additional registers to perform
instrumentation-related computations need to be saved
prior to each instrumentation snippet and restored after-
wards resulting in expensivecontext switches. The basic
taint instrumentation adds 10 to 20 instructions for each
instruction in the original code that needs taint-tracking.
Worse, about 10 additional memory references are added
for each original memory reference. To improve perfor-
mance, we developed the following optimizations.

• Reducing register usage through instruction selection.
– Using CPU flags to perform taint computation.Our

initial instrumentation in Figure1 needed 3 physical
registers for realizing the virtual registers, plus an-
other register to hold a pointer to the thread-specific
register taint data. We reduced this by 1 register
by using the CPU flag register for intermediate taint
computation.

– Packing register taint and saved CPU flags into one
register. By packing the taint for all CPU registers
into a 8-bit quantity, and using the remaining bits in
a 32-bit register for saving CPU flags, we further re-
duced the number of registers to just 2.

• Reducing memory accesses by using rarely used XMM
registers. XMM (eXtended Multi-Media) registers
are unused in most programs, so we utilized them
as a scratchpad for saving general-purpose registers
needed for computation. Although XMM registers do
not provide a significant performance boost over L1-
cache (which approximates the speed of accessing fre-
quently used memory locations), they are a win in
multi-threading code because these registers are thread-
specific, and thus eliminate the virtual register needed
to hold the base of thread-specific store. When XMM
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registers are used by the application itself, we resort to
memory resident scratchpads. thread-specific store.

6.2 Higher Level Optimizations
In this section, we describe several higher level optimiza-
tions that we have adapted from previous works to en-
sure that they are sound in the context of untrusted code.
We have implemented them, and have obtained significant
performance boost as a result of these optimizations.

Liveness optimizations This optimization is aimed at re-
ducing the context switch overhead by improving the se-
lection of physical registers that are used as virtual regis-
ters. It is conceptually similar to those used in previous
works such as [24]. However, as compared to dynamic
rewriting systems, our liveness analysis is more efficient
as it is applied across basic blocks.

Currently, we have used a simple strategy — we di-
vide each application code basic block into sub-blocks
such that each sub-block has at least two unused registers.
These registers can be used for taint computation. Their
values need to be saved only once per sub-block instead of
once every instruction. We also eliminate need for saving
and restoring conditional code register when it is unused
subsequently.

After the low-level optimizations and liveness opti-
mization, the instrumented code size comes down as
shown in Figure3. In this figure, the instructions are
shown in bold-face underlined are the original instruc-
tions, and the rest correspond to our instrumentation. The
instrumentation is simplified for ease of understanding,
eliminating out-of-order tainting for preventing races, and
ignoring extra instructions for misaligned accesses. Also
note that we cover only the taint-tracking instrumentation
here, and don’t show CFI, ABI or other instrumentations.

Generating multiple code versionsSimilar to [24], and
as described in [25], we generate afastpathandslowpath
versions of the code for each function. The slowpath ver-
sion is unchanged from before the optimization. The fast-
path assumes that all registers are untainted, which means
that the output of every instruction will be untainted as
well. As a result, taint-related instrumentation can be
avoided on the fastpath except for memory loads (where
a check for taintedness is made and control transferred
to the slowpath version in that case) and memory stores
(where a zero value is stored intotag.) Figure4 illustrates
the fastpath optimization.

7 Implementation and Evaluation

SafeBind currently works on Ubuntu Linux desktop envi-
ronments. Much like previous static transformation sys-
tems [17, 37], it has two major subcomponents — a bi-
nary analysis subcomponent and a static transformation
subcomponent. The analysis subcomponent is written
from scratch using C++, uses Intel’s XED library compo-

nent from Pin [19] in its x86 specific backend for decod-
ing. The transformation subcomponent uses LEEL [37]
for ELF editing, XED for higher level information about
operand usage, andnasm assembler for encoding.

We evaluated our system in a practical online deploy-
ment setting on typical host applications such as web
browsers and web servers. All our experiments were con-
ducted on an Intel Pentium M equipped with 1.6GHz pro-
cessor, 512MB RAM, and running Linux kernel version
2.6.17. We tested our transformation system systemati-
cally with a series of tests on variety of programs ranging
from Linux utilities like cp, gzip to large applications
such asgimp-2.2, gaim, pdftops, vlc xmms, Fire-
fox (56K functions, 5 MLOC) and all the needed libraries
of the KDE 3.5.6 platform (over 2 MLOC).

7.1 Effectiveness
The primary goal of these experiments was to show that it
is relatively easy to apply well-known policies for stand-
alone applications to their plug-in counterparts. In most
of our experiments, we had to make no changes to the
sample policies, with requirement for some adjustments
to be made when the host performs certain actions on be-
half of the plugin. We believe that our approach is appli-
cable to popular web applications such as browsers, email
clients allow multiple extension mechanisms, given nearly
all these applications allow full binary code execution via
shared library plugins. To give an estimate of the extent of
usage of SMEs, we point out that for Mozilla Firefox on
Windows platform alone, there are 130 MIME types sup-
ported, with 78 plugins to handle these mime types. We
were able to identify (by mere inspection of the shipped
package or public package desciptions) that at least 52
new shared libraries could be attributed to these packages,
not considering Firefox “extensions” that may contain bi-
nary code in addition to scripts written in other sandboxed
languages such as Javascript. Our primary target in policy
enforcement experiments were two popular web browsers
– Konqueror and Mozilla Firefox, and a web server. We
show experiments on plugins of different sizes and func-
tionality.

Konqueror kpdf PDF viewer plugin. We considered
the plugin version of the core of the KPDF viewerlibkpdf-
part.soas untrusted. We used existing policies for a stand-
alone document viewer that were developed in the con-
text of our model-carrying code work [28, 27]. This pol-
icy allows arbitrary file reads, while restricting file writes
to a small set of files that were “owned” by the appli-
cation (e.g., KPDF preference files). This policy does
not permit the extension to make any network reads and
writes, which achieves the intended goals of operation in
the browser. These policy restrictions were imposed on
system calls that had tainted arguments, or were made
with the context flagCu set. For system calls where none
of these conditions hold, no restrictions were applied. As
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Frame Rate Standard CPU Overhead (%)
24 fps Cinema film 10.7
25 fps PAL progressive 10.8

29.97 fps NTSC progressive 10.8
50 fps PAL 19.9

59.94 fps NTSC 28.1
60 fps Monitor framerate 30.1

Figure 6: Summary of Micro Test benchmarks for VLC
media player transformed as untrusted

a result, browser functionality wasn’t restricted in any way
by this policy.

Firefox with VLC media player plug-in. We used a pol-
icy developed in [23] for a stand-alone media player (“km-
player”) to the VLC plug-in. This policy restricts the
player to make network accesses to a local DNS server
and to remote web sites, but disallows writes to any files,
with the exception of its preference files.

Firefox with only MPEG decoding library. Libmpeg is
used for decoding mpeg images and is widely used on
desktop applications. We used this in conjunction with
Firefox to view streaming video online. We allowed the
library to make connection to the display server, and re-
stricted all data from the library to a single external inter-
face for display, namely, a unix domain socket connecting
to the X server. No other tainted data was allowed in any
other system calls. The normal functioning of the browser
(as well as that of MPEG library) was unaffected.

Firefox with ALSA sound library. We used a com-
monly used sound library libalsa.so on Linux, which is
shared by many web applications running in the browser
for streaming audio. We restricted it to use the sound de-
vice interface on our system, and allowed read/writes to
this interface. Once again, the policy could be enforced
without impairing the functionality of any component.

Apachemod config log module. In this experiment
we took the case of another extension that is less trusted
than its host system, specifically, a logging extension of
the Apache web server that logs web server requests files
in a specified (“logs”) directory. As a policy for this plu-
gin, we restrict writes of data controlled by this module to
files in the “logs” directory only.

7.2 Performance
Our performance tests were focussed on evaluating over-
heads observed under realistic deployment scenarios for
plug-ins. Instrumentation times were roughly comparable
to the build times of the components transformed.

Apache. The trasnformed Apache server was connected
to a client machine by a 100 Mbps link. We configured
100 clients to query web pages of different sizes using

WebStone 2.5 benchmark. When the size of web pages
was increased from 2K to 16K, the overheads decreased
from a maximum of 28% to 0.6% on slowpath, and from
7% to 0.2% on the fast path, averaged over 5 runs. This
is because as page size increases the server becomes more
IO bound than CPU bound. The code size overhead is
higher for the fastpath version because two versions of
the code are generated.

Firefox. For this test, we used a benchmark tool from
Mozilla Corp. used internally for performance testing.
It uses a script that displays 350 web pages sequentially.
The web pages are selected to including various features
of the web page contents such as CSS, JavaScript, images,
animations and so on. We measured the native CPU over-
heads, and as in the case of Apache, overheads for the
optimized slowpath and fastpath versions of transformed
Firefox code. On optimized slowpath, we measured a
CPU overhead of 17.3 % while on the fastpath version
of the code we measured 6.1 %, averaged over 4 runs.

Movie Player. We ran VLC media player, configured to
not drop any late frames, in order to measure if there was
any latency in viewing a movie file. We instrumented
VLC as untrusted, along with with all the mpeg codec
libraries. The elapsed time of the test movie files was
unaffected, and no perceivable deterioration video quality
was observed. To confirm this, we performed a series of
micro benchmarks to measure the interframe latency for
the VLC player for commonly used frame rates summa-
rized in 7.2. In all cases, the elapsed time of the samples
remained unchanged. Both the mean interframe latency
(speed of video delivery) and the frame jitter (measured
by the standard deviation of interframe latencies) showed
almost no change after instrumentation – at most 1%(and
often negative) increase, which could be due to experi-
mental error.

For untrusted transformation on VLC player, we mea-
sured a CPU overhead increasing from 10.7% (24 fps file)
to 30.1% (60 fps file) as the frame rate increases, with an
average of 18.4 % slowdown over the uninstrumented ver-
sion over 6 runs. The code size increased by a factor of
2.74x.

7.3 Defense against malware

Experimental evaluation of the defensive capabilities of
SafeBind against real-world malware is complicated by
two factors. First, due to our choice of platform, namely,
Linux, we could not find any shared-memory malware.
We addressed this complication by using stand-alone mal-
ware that is available on Linux, and packaging them into
plug-ins. The second (and more important) complication
is that existing malware has been developed in an environ-
ment where there are no practical defenses against shared-
memory threats. Hence such malware deploy techniques
that can be very easily detected, and hence do not satis-
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Apache Results Firefox Results
2K 3K 4K 8K 16K ∆CodeSize

Slowpath 28.5% 13.9% 0.8% 1.1% 0.6% 6.8x
FastPath 7.1% 3.6% 0.0% 0.5% 0.2% 10.3x

CPU Ov. ∆CodeSize
Slowpath 17.3% 7.1x
FastPath 6.1 % 10.5x

Figure 5: CPU Overheads and code size increase for (Left) Apache : Server Throughput Reduction on Apache web
server for various web page sizes (in K) and total code size increase. (Right) Firefox : CPU Performance for loading
350 pages from disc, and total code size increase.

factorily test the capabilities of our defense. We address
this complication by developing malware with features
designed to evade our defenses.

We point out that the above complications in malware
evaluation should not be a reason for concern. The confi-
dence in defense against malware should be based on the
principled analyses provided in the paper, rather than tests
involving malware samples that simply do not incorpo-
rate any evasion techniques. At best, these tests involving
malware simply provide another test case that provides
evidence regarding the correctness (and robustness) of our
implementation. For this reason, the emphasis of our eval-
uation has been on usability and performance of benign
plug-ins rather than malicious ones.

Specifically, for evaluation, we used existing malware
of other kinds and ported them as a PDF viewer Firefox
plugin. We set a default policy for several plugins disal-
lowing network activity, allowing file I/O to PDF viewer’s
owned files, and disallowing any tainted system calls in
trusted context outside the untrusted scope. We tested
8 malware from [1] which consists over existing Linux
backdoors and rootkits, and SafeBind was able to detect
all these malware. For instance, malware such as Black-
hole attempts to executeexecve a shell prompt which
is prohibited by our default policy. Similarly, user level
rootkit functionality displayed by malware such as bobkit,
tuxkit and lrk5 was detected by SafeBind, disallowing the
actions to overwrite system utility files such as/bin/ps
outside the policy’s allowed domain.

In addition to these, we evaluated our defense against
other techniques that are common in malware, or related
to plugins we consider by crafting or own integrity violat-
ing “malware”. Specifically, the techniques we employed:

• Subversion by overwriting the .dtor section entries,
function pointer overwrites, embedding exploits in
code such as buffer overflows/heap overflows, making
network calls to attacker’s remote host to fetch data in
host buffers, overwriting critical system files and pref-
erence files. SafeBind was able to thwart all of these
stealthy attacks that take advantage of the large shared
address space.

• Self-modifying code and Unpacking code
Note, by default our mechanism prevents execution of
code generated on the fly or any self-modifications to

code, since only code that is disassembled is allowed
to be executed. This policy thwarted several existing
malware samples that employ disassembly techniques,
unpacking techniques and so on. SafeBind correctly
detected these and flagged them as malicious

• Plugins injecting code from remote users.
Several plugins such as Flash player and PDF viewer
have recently been subjected to untrusted inputs that
cause them to be corrupted and behave maliciously. In
many such attacks, code injection is a first step which is
thwarted by our default policy. Certain malicious plu-
gins may purport benign intent, hiding such malicious
behavior [6] until a remote attacker uses them for its
own controlled action. SafeBind successfully thwarts
such malware.

7.4 False Positives

In many of the experiments described in the above sec-
tion, SafeBind incurs no false positives, i.e., none of the
system calls made in the trusted context had tainted argu-
ments. For instance, with Firefox/VLC we observed no
false positives. This is because these plug-ins primarily
read input data (or parameters) from their host, but their
subsequent actions simply involve making system calls
themselves, without involving Firefox code. Some false
positives were initially observed with Firefox/PDF, Fire-
fox/ALSA and Firefox/MPEG. On closer examination,
we found that these involved certain benign system calls
such as gettimeofday, schedsetaffinity, and read/write op-
erations involving files opened by the plug-in. Hence we
relaxed the policy to permit these operations.

To a certain extent, the lack of false positives is ex-
plained by the fact that dataflows in the higher level host
code are not closely intertwined with the dataflows in the
plug-in. Instead, most dataflows involve the plug-in and
the general purpose (but still trusted) libraries providedby
the platform, such as the C++ library, glibc, KDE library
and so on. As a result, we observe tainted data being pro-
cessed in library calls made by untrusted code, but other-
wise we don’t often see the use of tainted data. For plug-
ins that involve close interactions with the browser code,
there is reason to expect that there will be more false posi-
tives. They will need to be addressed using a combination
of validation checks and endorsements (see below), and

12



refinement of policies (e.g., gettimeofday example.)
There was a point when we did experience some false

positives due tomalloc, when a buffer freed by un-
trusted code is subsequently returned by an malloc-call
made by trusted code. To eliminate this false positive,
it is necessary to develop a wrapper forfree (and re-
lated routines) that first checks its argument for validity
(i.e., it was a buffer that was previously allocated and has
not yet been freed), and the untaints the pointer before re-
turning it to the free list. The discussion above reflects
the false positives observed after the inclusion of such a
wrapper. It is easy to see that reuse of shared resources (or
buffers) across trusted and untrusted code can lead to false
positives in general, and need to be handled using such
endorsements. Our experience to data provides evidence
that need for manual effort for developing such wrappers
will be relatively infrequent.

8 Related Work
Securing ExtensionsSFI[35] is a language-based tech-
nique to provide higher performance memory protection
at finer granularity than is possible with OS-based tech-
niques. Nooks[32] and follow-on works such SafeDrive
[40] aim do memory region based policies at different
granularity, but discovering these regions can be quite in-
volved when dealing with complex data structures. Their
work target is mainly kernel extensions, and the focus is
fault isolation and recovery from error-prone extensions,
but not protection from malicious ones.

The closest research to our work is XFI [11], which
builds on some of the ideas from SFI and control-flow in-
tegrity (CFI) [2]. It is designed to work in user space as
well as kernel space. It targets applications where there
exists a narrow interface between trusted and untrusted
code, with memory sharing limited to a few contiguous
ranges. It handles some of the low-level attacks that our
technique aims to handle. However, SafeBind shows how
to achieve high-level security objectives on simple as well
as complex extensions (e.g., browser plug-ins) that can
make system calls, or utilize large system libraries were
not considered by them. Second, our goals are different
from isolation based techniques – we address the practi-
cal problems that arise when there needs to be sharing.
Defining XFI policies for memory sharing, and for safe
usage of the large APIs used by such complex extensions
can be very cumbersome as opposed to policies at the nar-
row system call interface. In contrast, we have shown
that the approach developed in this paper can be applied
to complex extensions with relative ease. Moreover, our
taint-tracking approach makes more realistic assumptions
about vulnerabilities in trusted code — rather than assum-
ing that it can defend against arbitrary shared memory
changes (or input parameters provided to trusted func-
tions), our approach allows data provided by untrusted
code to be treated with adequate caution by tracking its

flow during execution. These arguments also hold true
against other extension isolation mechanisms such as Pal-
ladium [8].Recent works [9, 13] have proposed redesign-
ing the browser using isolation techniques ranging from
virtualization to process separation. Our technique based
on automatic rewriting and require no modifications to
the host, making them applicable to existing popular web
browsers and give strong guarantees even in cases of large
sharing.

Taint Tracking Information flow has been a topic of re-
search for a long time. Most research in the past decade
has been on static analysis based information-flow tech-
niques [20, 29, 14] that achieves non-interference [12].
Practical application of these techniques have required
significant programmer effort in the form program anno-
tations, and hence aren’t very practical for large-scale sys-
tems.

Fine-grained dynamic taint analysis has emerged re-
cently as a practical alternative to static-analysis based
information flow techniques. By focusing on explicit
flows that take place through assignments and by largely
ignoring control dependences and implicit flows, these
techniques have avoided the need for manual annota-
tions. However, they have suffered from significant per-
formance problems [22], or required architectural support
[7, 30]. The performance was improved significantly us-
ing a source-code transformation [36] instead of a binary
transformation.

There has been several recent works on using taint-
tracking to detect malware [10, 39]. In contrast to previ-
ous work, our techniques addresses the threat model and
is designed to defend against an adaptive malware author.
More recently, there has been offline analysis of hook-
ing behavior of malware[38] that does account for some
attacks perpetrated by the malware. However, these tech-
niques have focussed on offline behavior monitoring and
face different challenges when dealing with the adversary
than ours. SafeBind is designed to beefficientin an online
setting, and its goal is to allow benign extensions to oper-
ate while giving strong guarantees against host integrity
corruption.

More recently, [24] et al improved the performance of
binary taint tracking significantly. They rely on dynamic
binary translation rather than the static transformation ap-
proach used in our approach. This has enabled us to de-
velop several static analysis based optimizations that have
yielded significantly better performance than that reported
by them, improving the performance by a factor of two or
more. Another important improvement in our approach is
that it is multi-thread safe. Our previous work [25] has
provided considerable improvements in performance, but
it relies on optimizations that are unsafe in the context of
untrusted SMEs.
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9 Conclusion

In this paper we presented a new technique for secur-
ing untrusted software extensions. Our technique is able
to support both simple and complex extensions such as
browser plug-ins that use complex data structures and a
very large API to interact with its host application. We de-
veloped a new static binary transformation technique for
fine-grained taint-tracking, and presented several effec-
tive optimization techniques to improve its performance.
In spite of the powerful adversary model presented by a
malicious shared memory extension, we presented a sys-
tematic analysis to support our claim that they can be
selectively confined using security policies that are sim-
ilar to those used for stand-alone applications providing
the same functionality. Our techniques are robust enough
to be used on large applications such as the Firefox and
Konqueror browsers. They enable effective enforcement
of simple security policies to provide concrete assurances
about system integrity from untrusted plug-ins, without
unduly restricting the functionality of host application
code. Our experimental results suggest that performance
overheads can be kept low (about 20%) in realistic de-
ployment scenarios for these plug-ins, thus establishing
the practical value of the techniques presented in this pa-
per.
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