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ABSTRACT
Return-Oriented Programming (ROP) is an effective attack
technique that can escape modern defenses such as DEP.
ROP is based on repeated abuse of existing code snippets
ending with return instructions (called gadgets), as com-
pared to using injected code. Several defense mechanisms
have been proposed to counter ROP by enforcing policies
on the targets of return instructions, and/or their frequency.
However, these policies have been repeatedly bypassed by
more advanced ROP attacks. While stricter policies have
the potential to thwart ROP, they lead to incompatibilities
which discourage their deployment. In this work, we ad-
dress this challenge by presenting a principled approach for
ROP defense on COTS binaries. Our experimental evalu-
ation shows that our approach enforces a stronger policy,
while offering better compatibility and performance as com-
pared to previous research. Our prototype is compatible
with many real-world and low-level programs. On SPEC
2006 benchmark program, it adds just 4% overhead above
the base overhead of 13% imposed by PSI, the platform used
in our implementation.

1. Introduction
Programs written in C/C++ are not memory safe. Vul-

nerabilities such as buffer overflow, heap overflow and use-
after-free can be exploited by attackers to execute code of
their choice. Traditionally, attackers inject payload (called
shellcode) into the address space of a victim process, and
redirect control to this code. However, with widespread
deployment of Data Execution Prevention (DEP), injected
code is no longer executable, so attackers have come to
rely on code reuse attacks. Return-Oriented Programming
(ROP), which chains together a sequence of “gadgets” (code
sequences ending with return instructions), is the most pow-
erful and versatile among code reuse attacks. Its power
stems from the pervasiveness of returns in binary code. As
a result, there are sufficient gadgets in a reasonably large
binary to perform Turing-complete computation. Although
variants such as Jump-oriented programming have been pro-
posed, ROP remains by far the most dominant code reuse
attack, and the only kind used repeatedly in real-world at-
tacks. For this reason, this paper focuses on ROP attacks,
and develops a principled approach for defeating them.
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Code reuse attacks rely on repeated subversion of control-
flows in the victim program. Given the nature of instruction
sets on modern processors, such subversion is possible only
with indirect control flow transfer instructions. Control-flow
integrity (CFI) is a general technique for limiting control-
flow subversions by limiting the targets of such indirect con-
trol transfers. The idea of CFI is to restrict these targets
so that a program’s execution follows a control flow graph
(CFG) that is computed by a static analysis.

CFI defeats most ROP attacks since they tend to violate
the statically computed CFG. However, determined attack-
ers can overcome CFI [17, 14] — specifically, coarse-grained
CFI that is based on simple static analyses can be defeated.
In fact, researchers have shown that a Turing-complete set
of gadgets is available on sufficiently large applications even
when coarse-grained CFI is enforced [14].

Recognizing the weakness of coarse-grained CFI against
powerful adversaries, researchers have begun to develop tech-
niques for refining CFI policies. These techniques can be
broadly classified into those for narrowing down the target
of forward edges, which include indirect calls and indirect
jumps, and those for narrowing down the backward edges,
consisting of returns. Several forward edge techniques have
been developed recently [23, 43, 37, 48], and some of them
are already being deployed in production compilers such as
gcc and llvm [43]. This factor can greatly reduce the threat
of code reuse attacks based on repeated subversion of for-
ward edges, e.g., call-oriented programming [6, 39]. How-
ever, mitigating the subversion of backward edges remains
a challenge. Although techniques for constraining returns
have been known for well over a decade [8, 9], they have not
seen wide deployment due to compatibility and performance
concerns. It is this factor that motivates our work.

The essential characteristic of ROP is the repeated use of
return instructions. Thus, techniques for constraining re-
turns can be very effective in defeating ROP attacks. The
primary approach for confining returns is the shadow stack,
which relies on a second stack that maintains a duplicate
copy of every return address. Each call instruction is modi-
fied so that it stores a second copy of the return address on
the shadow stack. Before each return, the return address on
the top of the stack is compared with that atop the shadow
stack. A mismatch is indicative of an attack, and program
execution can be aborted before a successful control-flow hi-
jack. However, previous shadow stack solutions suffer from
one or more of the following drawbacks:

• Incompleteness. Many shadow stack schemes are based
on compilers [8, 12]. They do not protect returns in
hand-written assembly code from low-level libraries such
as glibc and ld.so that are invariably present in every
application. Also left unprotected are third-party libraries
made available only in binary code form. Moreover, un-
intended returns (See Section 2.1) could be used in ROP,
and these won’t be checked against the shadow stack.

• Incompatibility. In most complex applications, returns

http://dx.doi.org/10.1145/2818000.2818021


don’t always match calls. If these exceptional cases are
not correctly handled, they lead to false positives that
deter practical deployment of shadow stack approaches.

• Lack of systematic protection from all ROP attacks. None
of the previous approaches provide a systematic analysis
of possible hijacks of returns, and how these attempts are
thwarted. Indeed, most previous approaches incorporate
exceptions to the shadow stack policy in order to achieve
compatibility. A resourceful adversary can exploit these
policy exceptions to carry out successful ROP attacks.

In this paper, we develop a new defense against ROP that
overcomes these drawbacks. We provide an overview of our
approach below, and summarize our key contributions.

1.1 Approach Overview
Our approach is based on the following simple policy:

Return instructions should transfer control to intended
return targets.

With a static interpretation of “intention”, many existing
coarse-grained CFI schemes can be seen as enforcing this
policy. However, as discussed before, a static interpretation
affords far too many choices for return targets, allowing suc-
cessful ROP attacks to be mounted. We therefore take a
dynamic interpretation of intent. Specifically:

• The ability to return to a location is interpreted as a one-
time use capability. These capabilities are inferred from
and associated with specific parts of the program text,
e.g., a call instruction, or, a move instruction that stores
a function pointer on the stack, with the intent of using
this pointer as the target of a return. A return capability
is issued each time this program text is executed.

• These return capabilities must be used in a last-in-first-
out (LIFO) order. As the term “capability” suggests, not
every intended return needs to be taken. Unexercised re-
turns arise naturally due to exception unwinding, thread
exits, and so on. However, we require that those return
capabilities that are exercised do follow a LIFO order.

The LIFO property of return capabilities means that they
can be maintained on a stack, which we will refer to as the
return capability stack (RCAP-stack).

1.2 Contributions
We make the following contributions in this paper:

• Static analysis to handle non-standard returns: While the
intended returns of call instructions are obvious, nontriv-
ial applications include many non-standard returns that
don’t match any calls. Unlike previous approaches that
relied on manual annotations to handle them, we present
an automated static analysis technique that identifies (a)
non-standard returns, and (b) the intended targets of
these returns. Our analysis has been sufficient to han-
dle SPEC 2006 benchmarks as well as several complex
applications studied in our evaluation.

• Support for diverse threading mechanisms: In addition
to non-standard returns, multi-threaded programs pose
a challenge for shadow stack mechanisms. This is be-
cause shadow stacks have to be created and switched in
sync with thread creation and switching. This challenge
is exacerbated in complex applications because they may
use a variety of threading mechanisms. We present a
unified, threading-mechanism-independent approach for
maintaining per-thread RCAP-stack, and transparently

switching to the right RCAP-stack at runtime, based on
the value of stack pointer at the point of return.

• Strict enforcement: By discovering and always pushing
the intended target on RCAP-stack, we avoid the need
for “whitelisting” return instructions. By subjecting all
returns to a strict policy, we take away an attacker’s ca-
pability to abuse even a single return instruction in the
protected application.

• In-depth evaluation: Our evaluation demonstrates excel-
lent compatibility as well as protection against attacks.
The overhead of our solution is significantly lower than
previous techniques: just 3% over the base 14% overhead
posed by our platform PSI on SPEC 2006 benchmarks.

2. Background and Threat Model
2.1 ROP Attacks

Return-Oriented Programming (ROP) [40] is the most
prevalent form of code-reuse attack. It makes use of “gad-
gets,” i.e., existing code snippets ending with return instruc-
tions. A gadget used in a ROP attack could either be an
intended code sequence, or unaligned code, which refers to
unintended instruction sequence beginning from the middle
of an (intended) instruction. This is possible on variable-
length instruction-set architectures such as the x86.

To carry out a ROP-attack, it is necessary to subvert a
program’s intended control flow. We develop an effective
policy to break this step and hence prevent ROP attacks.

2.2 Control-Flow Integrity (CFI)
Control-flow integrity is an important primitive for secure

static instrumentation [50, 47], as it can limit control flows
so that instrumentation cannot be bypassed. Specifically,
control flows cannot go to (a) middle of instructions, or (b)
an instruction within (or immediately following) an inserted
instrumentation snippet. For this reason, we build our de-
fense, which is based on static binary instrumentation, on a
platform that already implements CFI, specifically, the PSI
platform [50].

2.3 Threat Model
We assume a powerful remote attacker that can exploit

memory vulnerabilities to read or write arbitrary memory
locations, subject to OS-level permission settings on mem-
ory pages. We assume the attacker has no local program
execution privilege or physical access to the victim system.

We assume DEP is enabled on the victim system and
therefore ROP is a necessity for payload construction. We
also assume that ASLR is deployed, but attackers can use
memory corruption vulnerabilities to leak the information
needed to bypass it without resorting to brute-force.

3. Inferring Intended Control Flow
As discussed earlier, we focus exclusively on return in-

structions. We do not attempt to further improve the (coarse-
grained) BinCFI policy [51] enforced on the remaining branch
types by our implementation platform, namely, PSI [50].

The first task in enforcing a stronger policy on returns is
to precisely infer program-intended control flow for each of
them. We develop a static analysis for this purpose. Specifi-
cally, our analysis identifies instructions that push addresses
that may later be used as the target for a return instruction.
As a fallback option, static analysis may be augmented with
manual annotations, but we have not had to do this so far.



0x146b4 movl %eax,(%esp)

0x146b7 ...

0x146bb ret $0xc

Figure 1: A non-standard return from ld.so

Based on the results of static analysis and/or annotations,
instrumentation is added to update RCAP-stack to keep
track of the return capabilities acquired by the program by
virtue of executing these instructions.

3.1 Calls
Most call instructions are used for function invocations

and therefore express an intent to return to the next instruc-
tion. However, it is up to the callee to decide whether the
return is actually exercised. For example, a call to exit()

will never return. Moreover, the call instructions themselves
may be used for purposes other than calling functions. For
instance, position-independent code (PIC) on x86 uses call
instructions to get the current program counter, from which
the base of the static data section is computed.

Unintended calls do not lead to compatibility problems
since we do not require all return capabilities to be used.
However, issuing unneeded capabilities can increase an at-
tacker’s options. To avoid this, we use a static analysis of
target code to determine if the return address generated by
a call is definitely discarded before being used by a return
instructions. In the simplest case, a discard will happen
through the use of a pop instruction that pops off the return
address at the top of the stack. More generally, the loca-
tion containing the return address may be overwritten, or
the stack pointer incremented to a value greater than this
location. If one of these properties holds on every execution
path starting at the target of the call, then we conclude that
the return address will not be used as the target of a return.

After identifying unintended calls, the remaining calls are
instrumented for storing the return address on RCAP-stack.
For unintended calls, the RCAP-stack is left unchanged.

3.2 Returns
Returning to a code location is permitted only if the pro-

gram possesses the capability to do so. We check RCAP-
stack for this capability. Typically, this capability originates
at the most recent call instruction, but there are instances
where the return address is pushed by other means. We call
such returns as non-standard returns.

One example of a non-standard return is shown in Fig-
ure 1. The return instruction (at 0x146bb) uses a return
address generated by a mov instruction (at 0x146b4) rather
than a call. This code snippet is taken from GNU’s dy-
namic loader, and the non-standard return is used for dy-
namic function dispatch after resolving a symbol. Specifi-
cally, when a function from another module is called for the
very first time, its execution traps to the dynamic loader for
symbol resolution. After the loader has resolved the address
for the function and cached the result in original module’s
Global Offset Table (GOT), control should be directed to
the called function. This is achieved by first moving the
function address (stored in eax register) to the top of stack
using a mov, and then issuing a return1, as shown in Figure 1.

Note that while this non-standard return achieves the ef-
fect of an indirect jump, it does so without using any register

1The argument 0xc to the ret instruction specifies the number
of additional bytes that should be popped off the stack.

(other than the stack pointer), and moreover, deallocates the
memory location used to store the target address.

As discussed in the next section, there are a number of
such non-standard returns, scattered in different modules.
Moreover, unlike a call, whose intended return address is
its successor, the intended target of non-standard return is
not immediately obvious. These factors motivate the static
analysis described below.

3.3 Static Analysis of Non-standard Returns
The distinction between a standard and non-standard re-

turn is the return address being used. The return address
used by a standard return is pushed by the call instruction
in its caller, and not modified in the callee. In contrast, re-
turn address used by a non-standard return is written to the
return address stack slot by a non-call instruction. Based on
this observation, we develop a static analysis that consists
of four main steps as discussed below.

Candidate snippet extraction. After a binary module is
disassembled, we build its CFG. We then perform a back-
ward scan on the CFG starting from each return instruction,
and going back by n instructions, with n = 30 in our imple-
mentation. These snippets are our candidates for analysis.

Each such snippet may contain multiple execution paths
to the return instruction. We analyze each path separately,
as this enables more accurate analyis. In particular, this ap-
proach avoids approximations that result from least upper
bound operations needed to handle path merges. However,
this approach introduces two problems. First, loops can lead
to an unbounded number of paths. We only consider paths
corresponding to zero and one iteration of such loops. As a
result, we may fail to discover some instances where an in-
struction inside a loop pushes a return address on the stack.
In theory, this could lead to a compatibility problem, but
in practice, it is very unlikely that such instructions occur
within a loop body. The second difficulty is that it is the-
oretically possible for a single instruction I to participate
in two distinct paths such that in the first path, I pushes
a value on the stack that would be used by the return in-
struction at the end of the snippet, while it does not do so
in the second path. Note that this (unlikely) scenario does
not lead to an incompatibility: if the second execution path
were to be taken at runtime, the return capability pushed
by I would simply not be used.

Semantic analysis. The second step is to analyze the se-
mantics of each snippet by performing an abstract inter-
pretation using an abstract domain similar to that used in
Reference [38]. At the beginning of each snippet, each reg-
ister is assigned a corresponding initial symbolic value. The
program state is updated based on the semantics of each ex-
ecuted instruction. At the end of each instruction, the ab-
stract value of each register (or memory location) will consist
of simple expressions consisting of constants and initial regis-
ter values. Since we are analyzing each execution path sepa-
rately, these expressions rarely involve approximations. Our
analysis includes a simple procedure for maintaining these
expressions in a canonical form, thereby enabling equivalent
expressions to be recognized in most instances.

Non-standard return identification. The next step is to
identify non-standard returns. After semantic analysis, the
value of stack pointer register before the return instruction
can be determined by an expression. Since it is the pointer
for the return address slot, if there is any memory write to



that location, a non-standard return is identified.

Intended control-flow inference. The last step of the
analysis is to infer the intended control flow for the non-
standard return. To that end, we need to first identify the
non-call instruction that stores the values used by the re-
turn. We call such an instruction as an RAstore. Such an
instruction can be identified from the contents of memory
and registers computed by our static analysis after each in-
struction in the snippet.

In the following section, we will describe real-world non-
standard return examples identified by our analysis.

3.3.1 Non-standard return examples
Previous shadow stack solutions rely on manual identifi-

cation and ad-hoc instrumentation to support non-standard
returns [15, 50, 12]. However, manual approaches are not
scalable, and/or can lead to false positives on large and
complex software. Figure 2 illustrates some of the more
prominent real-world non-standard returns identified by our
static analysis. In this figure, upper case register names
(e.g., EAX) denote initial symbolic values, while lower case
ones (e.g., eax) denote the current contents of registers or
memory. For easier illustration, each code snippet is sim-
plified to only include the last basic block. We omit the ef-
fects on floating point registers and segment registers. Note
that our analysis results do not change when the full code
snippets are used and when effects to non-general purpose
registers are captured.

The first example is the same one as shown in Figure 1.
Our analysis indicates that the return address comes from
eax. The analysis discovers the highlighted instruction as
the one that pushes the return address.

The second example comes from setcontext(3) function
of glibc. The single argument of setcontext is a pointer
to ucontext_t structure, which is loaded to eax at the first
instruction. Since the user context structure contains all
saved register information, most of the snippet code per-
forms the job of register restores. Particularly, the program
counter placed at offset 0x4c of ucontext_t was loaded to
ecx at loction 0x3fa81. And the push instruction at 0x3fa87
pushes it as return address onto stack, which is consumed
by the return instruction at the end of the snippet. This
non-standard return and the RAstore at 0x3fa87 are identi-
fied by our static analysis. Another similar case in function
swapcontext(3) from the same module, was also identified
(not shown in figure).

The third example is a snippet from one of the stack un-
winding functions in libgcc s.so.1. The code first stores edi,
the address of landing pad (handler code) which is previ-
ously computed, to the return address slot of next frame
(0x154cd). Therefore, the following return will redirect con-
trol to the landing pad. This example also demonstrates
the power of the analysis: the store to 0x4(%ebp,%esi,1)

at 0x154cd does not “look” like a return address overwrite,
however our static analysis is able to detect it. This is also an
example why simple pattern matching based non-standard
return identification would not work well.

Our last example is from an unwinding library libunwind.
The snippet is simple, and similar to the first example, but
used for implementing longjmp.

We note that although the non-standard return compati-
bility problem has been recognized by many in the literature
[15, 12], only the first and third of these four examples have

Code Snippet Semantics Equations

;; #1 /lib/ld-2.15.so eax = *(ESP+8)
0x146b0 popl %edx edx = *ESP
0x146b1 movl (%esp),%ecx ecx = *(ESP+4)
0x146b4 movl %eax,(%esp) esp = ESP + 4
0x146b7 movl 0x4(%esp),%eax *(ESP+4) = EAX
0x146bb ret $0xc ra = *esp

= *(ESP+4) = EAX
;; #2 /lib/i386-linux-gnu/libc.so.6
0x3fa73 movl 0x4(%esp),%eax eax = *(*(ESP+4)+64)
0x3fa77 movl 0x60(%eax),%ecx edx = *(*(ESP+4)+56)
0x3fa7a fldenvl (%ecx) ecx = *(*(ESP+4)+60)
0x3fa7c movl 0x18(%eax),%ecx ebx = *(*(ESP+4)+52)
0x3fa7f movl %ecx,%fs esi = *(*(ESP+4)+40)
0x3fa81 movl 0x4c(%eax),%ecx edi = *(*(ESP+4)+36)
0x3fa84 movl 0x30(%eax),%esp ebp = *(*(ESP+4)+44)
0x3fa87 pushl %ecx esp = *(*(ESP+4)+48)-4
0x3fa88 movl 0x24(%eax),%edi *(*(*(ESP+4)+48)-4)
0x3fa8b movl 0x28(%eax),%esi = *(*(ESP+4)+76)
0x3fa8e movl 0x2c(%eax),%ebp ra = *esp
0x3fa91 movl 0x34(%eax),%ebx = *(*(*(ESP+4)+48)-4)
0x3fa94 movl 0x38(%eax),%edx = *(*(ESP+4)+76)
0x3fa97 movl 0x3c(%eax),%ecx
0x3fa9a movl 0x40(%eax),%eax
0x3fa9d ret
;; #3 /lib/i386-linux-gnu/libgcc s.so.1
0x154cb movl %esi,%ecx eax = *(EBP-20)
0x154cd movl %edi,

0x4(%ebp,%esi,1) edx = *(EBP-16)
0x154d1 addl $0x10,%esp ecx = ESI+EBP+4
0x154d4 leal 0x4(%ebp,%ecx,1),%ecx edx = *(EBP-12)
0x154d8 movl -0x14(%ebp),%eax esi = *(EBP-8)
0x154db movl -0x10(%ebp),%edx edi = *(EBP-4)
0x154de movl -0xc(%ebp),%ebx ebp = *EBP
0x154e1 movl -0x8(%ebp),%esi esp = ESI+EBP+4
0x154e4 movl -0x4(%ebp),%edi *(ESI+EBP+4) = EDI
0x154e7 movl 0x0(%ebp),%ebp ra = *esp
0x154ea movl %ecx,%esp = *(ESI+EBP+4)
0x154ec ret = EDI
;; #4 /usr/lib/libunwind-setjmp.so eax = EDX
0x674 pushl %eax esp = ESP-4
0x675 movl %edx,%eax *(ESP-4) = EAX
0x677 ret ra = *esp

= *(ESP-4) = EAX

Figure 2: Code snippets and their analysis results

seen manual handling [15]. In contrast, our static analysis
systematically identifies all of them, and serves as a basis
for automatic instrumentation.

3.4 Discussion
Since that our static analysis is local, it can fail to identify

non-standard returns when the RAstore instruction is far
away from the return. If this assumption were to be violated,
we can address it by strengthening the analysis, or using
manual annotations. As mentioned before, we have not had
to do this so far in our implementation.

4. Enforcing Intended Control Flow
In this section, we describe our approach for enforcing

intended control-flow using static binary instrumentation.
A key component of our design is its support for standard
as well as “non-standard” threading mechanisms in order to
provide better compatibility with a wide range of software.
Finally, we describe the protection of the RCAP-stack to
ensure that the same mechanisms used to corrupt the main
stack cannot corrupt the RCAP-stack.

4.1 Instrumentation-based Enforcement
Intended control flow enforcement is realized by instru-

menting calls, RAstores and returns. Both calls2 and RA-

2As discussed earlier, we avoid instrumenting calls that are de-
termined never to return.



program 
stacks

hi_1 …
stack_range_array

cur
lo_1 rsp1 hi_2 lo_2 rsp2 hi_3 lo_3 rsp3

RCAP- 
stacks

Figure 3: Multiple RCAP-stacks for multiple stacks

stores are instrumented in the same manner: a copy of the
address being stored on the main stack is also pushed on
RCAP-stack.

Return instructions are instrumented to check the RCAP-
stack for the corresponding capability. Note that due to
normal program behaviors such as stack unwinding, the re-
quired return capability may not always be located at the
top of RCAP-stack. Similar to previous shadow stack pro-
posals, our design also pops non-matching capabilities from
the top of RCAP-stack until a capability that matches the
target location of the return is encountered. If such a capa-
bility is never found, then a policy violation is reported and
program execution aborted.

4.2 Multi-threading Support
The operating system allocates a separate stack for each

OS-visible thread. In addition, some applications may main-
tain multiple stacks at the user-level. This may be done to
implement user-level threads (e.g., using setcontext/get-
context family of system calls) , or for purposes such as
signal handling (e.g., using sigaltstack). Regardless of
the mechanism used, it is necessary to maintain a unique
RCAP-stack for each stack used by the application.

If the only threading mechanism in use consisted of OS-
visible threads, then there is a simple solution for maintain-
ing one RCAP-stack per main stack: the typical solution
used in previous shadow scheme techniques (e.g., [50]) is
to store the shadow stack pointer in thread-local storage
(TLS). However, this technique won’t work correctly in the
presence of user-level threading mechanisms. We therefore
develop a simple but uniform technique for supporting vari-
ous context-switching mechanisms transparently. This tech-
nique operates by recognizing changes to the stack pointer
value, and switching to the corresponding RCAP-stack.

Figure 3 illustrates the design. For each stack used by the
program, a RCAP-stack is maintained. The stack range array
is a global data structure used to keep the range information
for each stack. For the nth stack, its range information is
kept in hi n and lo n, while the corresponding RCAP-stack
pointer is rsp n. Variable cur is a pointer to address meta-
data associated with the current stack and RCAP-stack.

The current stack range information is updated at instru-
mentation of calls, returns and RAstores, based on %esp

value. However, if %esp is too far away from current stack
range, a stack switch is identified. A threshold value needs
to be defined for this scheme — we found that 256K worked
well in experiments. The stack range array is searched in
order to look for the target stack information. If such a
stack is not found, a new RCAP-stack is allocated on de-
mand, and its metadata is also created in stack range array.
After the right RCAP-stack is identified, pushes and checks
of return addresses can be performed.

Maintaining and updating global data structures can be

expensive because of the need to lock them before access.
To reduce the need for locking, we cache the range of the
current stack in TLS. A pointer to the current RCAP-stack
is also stored in TLS. Since most calls, returns and RAstores
don’t involve a switching of stacks, this design allows them
to be handled without accessing global storage, and hence
without the need for locking. When a switch is recognized,
the cached information is propagated from TLS to global
data structures, and the switching performed as before.

Although our approach is simple and can generally sup-
port diverse context-switching mechanisms, it has some lim-
itations: one issue is that although we can detect the use
of a new stack and associate a newly allocated RCAP-stack
with it, there is no way to determine if there are valid return
addresses already on the stack. Our solution is to require
programmer annotation for constructs that exhibit this be-
havior. In our experiments, this annotation has been needed
for just one operation, namely, the call to makecontext. Sec-
ond, if a stack is freed and reallocated, then we may end up
using a stale RCAP-stack. This won’t lead to false positives,
but very slightly increases the attacker’s abilities: attacks
can now return to one of the stale return addresses on the
RCAP-stack. Third limitation concerns JIT code: since our
implementation is based on off-line static analysis, it does
not currently support runtime-generated code.

4.3 RCAP-stack Protection
Since return capabilities are generated and consumed for

control flow authentication, their integrity needs to be en-
sured. In other words, RCAP-stack which stores return
capabilities should be protected. Otherwise, determined at-
tackers could use vulnerabilities to corrupt both the program
stack and RCAP-stack for control flow subversion.

We used the same approach as described in CFCI [52],
which has also been implemented on our platform PSI. In
short, the protection mechanisms are architecture-dependent.
For x86-32, we rely on segmentation for efficient protection,
and for x86-64, a randomization based approach is used.
The randomization approach ensures that the location of
RCAP-stack cannot be leaked.

5. Implementation
5.1 Static Analysis

The first step of static analysis is to extract candidate
snippets. We utilized PSI [50] for this purpose. Specifically,
PSI has a disassembly engine that is based on objdump, and
adds a layer of error detection and correction over it. It also
builds a CFG for the code disassembled. We traversed the
CFG backwards from each return instruction to collect code
snippets that were 30 instructions long.

For our static analysis, we need to accurately model the
semantics of each instruction. Specifically, we utilized a tool
by Hasabnis et al [21, 19] that lifts assembly to GCC’s inter-
mediate language called RTL. This tool is driven by GCC’s
architectural specifications, and can hence support all x86
instructions, as well as other ISAs supported by GCC.

Our lifting enables the semantics of each instruction to
be captured using a handful of RTL operations, e.g., arith-
metic operations, memory dereferencing, and assignment.
As a result, our static analysis can be implemented in an
architecture-neutral fashion. Moreover, is can side-step the
complexities posed by large instruction sets such as the x86.

RTL is a tree-structured language. To simplify analysis,



we flatten RTL into a sequence of triples, each consisting
of a destination and up to two source operands. Our static
analysis is performed on these triples. Since we analyze sin-
gle execution paths, the main step in the static analysis is
to substitute each register or memory location by the ex-
pression representing its previously computed value. This
expression is maintained in a canonical form by defining an
ordering on variables, and by performing constant-folding
and other arithmetic simplifications.

5.2 Binary Rewriting based Enforcement
Our shadow stack instrumentation is based on PSI [50]

and was implemented as a plugin. We chose PSI primarily
for two reasons. First, shadow stack needs to be built on top
of CFI to be effective against ROP attacks, and PSI offers
CFI as a primitive. Second, PSI is a platform for COTS
binary instrumentations and works on both executables and
shared libraries, and therefore aligns with our goal of instru-
mentation completeness.

Protecting the Dynamic Loader. Since the dynamic
loader ld.so is an implicit dependency for all dynamically
linked executables, it is also instrumented to prevent returns
from being misused. We ensured that memory protection for
RCAP-stack is set up before it is used by instrumentation.

Signal Handling. The static analysis discussed in Sec-
tion 3.3 is able to identify non-standard returns that con-
sume return addresses stored by program code. However,
return addresses can sometimes originate from the operat-
ing system. This is the case for UNIX signals. Once the
OS delivers a signal to a process, it invokes the registered
signal handler by switching context so that the user space
execution starts at the first instruction of the signal han-
dler. Prior to that, the OS puts the address of the sigreturn
trampoline on the stack, which is to be used as the return
address for the signal handler. Therefore, signal handler
will “return” to the sigreturn trampoline, whose purpose is
to trap back to the kernel. The kernel can proceed and re-
vert user program execution with saved context. Since the
returns for signal handlers (which are just normal functions)
are also instrumented, if the corresponding return capabili-
ties are not pushed onto RCAP-stack, signal delivery would
cause false positives.

Fortunately, PSI [50] already has a mechanism for signal
handler mediation. The platform intercepts all signal han-
dler registrations (using signal and sigaction system calls)
and registers wrappers for the signal handlers. Once a wrap-
per function is invoked by the OS, it transfers control to the
real signal handler after resolving its address. We use an
updated version of wrapper code so that it pushes the corre-
sponding return capabilities to RCAP-stack. (The wrapper
code is not instrumented, and the CFI policy configured to
ensure that it cannot be invoked by the application.)

5.3 Optimizing returns
Our shadow stack is built on top of a binary instrumenta-

tion system that requires code pointer translation. In par-
ticular, code pointers point to original code section, while
the instrumented code resides in a different section. As a
result, code pointer values need to be translated to the cor-
responding code locations in the instrumented code. This
step, called address translation, is a significant source of
runtime overhead because it requires a hash table lookup.
To improve the performance, we performed an optimization
that has also been used in some previous research works [36]:

Directory Linux Linux NSR FreeBSD FreeBSD NSR
NSR # module # NSR # module #

/lib 9 4 7 2
/usr/lib 41 23 0 0
/bin 6 1 7 2
/sbin 6 1 4 1
/usr/bin 26 7 0 0
/rescue N/A N/A 182 91
/opt 28 7 N/A N/A
total 116 42 213 98

Figure 4: Non-standard return (NSR) statistics

Module OS NSR Count

/lib/ld-2.15.so Linux 2
/lib/i386-linux-gnu/libc.so.6 Linux 2
/lib/i386-linux-gnu/libgcc s.so.1 Linux 4
/usr/bin/cpp-4.8 Linux 4
/usr/bin/g++-4.8 Linux 4
/usr/bin/gcc-4.8 Linux 4
/lib/libc.so.7 FreeBSD 3
/lib/libgcc s.so.1 FreeBSD 4
/usr/bin/clang FreeBSD 5

Figure 5: Non-standard returns in common modules

push both the original address and translated address on the
shadow stack for each call. At the time of return, we first
compare the return address on the main stack with the orig-
inal address on the shadow stack, and if they match, return
to the translated address on the shadow stack.

For calls, the translated return address is simply the ad-
dress of the instruction following the call instruction. How-
ever, RAstores push code pointers on the stack, so there is
no way to avoid address translation for them. Rather than
eagerly performing address translation at the RAstore, we
simply push a null value as the translated address. At a
return instruction, if the translated address has a null value,
we perform address translation at that point.

6. Evaluation
We evaluated the key aspects of our system using a wide

range of software on Linux and FreeBSD operating systems.
Below, we present our findings and results.

6.1 Compatibility
In this section, we evaluate the compatibility improve-

ment offered by our approach. We first present statistics on
the identification of non-standard returns, together with an
explanation for their prevalence. We then demonstrate the
improved compatibility by testing our instrumentation on
low-level and real-world software.

6.1.1 Non-standard Return Statistics
We ran our static analysis tool on executables and shared

libraries from an Ubuntu 12.04 32 bit Linux desktop distri-
bution, and a FreeBSD 10.1 32 bit desktop distribution. We
have identified hundreds of non-standard return instances
from different modules. Figure 4 shows the number of non-
standard return instances and the modules containing them
for different directories of Linux and FreeBSD.

To better understand the impact of non-standard returns
to shadow stack compatibility, we need to further zoom in
and see if they exist in widely used binary modules. Figure 5
shows the prevalence of non-standard returns in some of the
widely used modules.

6.1.2 Non-standard Return Summary



Type Software Size Description

Low-level libunwind 1.9 Run a test program unwinding its
own stack based on libunwind API

Low-level libtask 2.0 Run a tcp proxy that uses user level
threads API provided by libtask

Real-world scp 2.1 Copy 10 files to server
Real-world python 6.7 Run pystone 1.1 benchmark
Real-world latex 7.8 Compile 10 tex files to dvi
Real-world vim 9.1 Edit text file, search, replace, save
Real-world gedit 22 Edit text file, search, replace, save
Real-world evince 26 View 10 pdf files
Real-world mplayer 46 Play 10 mp3s
Real-world wireshark 58 Capture packets for 10 min

Figure 6: Low-level and real-world software testing

In this section, we summarize some of the most common
reasons for the prevalence of non-standard returns, based on
an analysis of our static analysis results.

1. Programming language design and implementation

In addition to subroutine abstraction, return instructions
can also be used to implement other control flow abstrac-
tions such as coroutines or light-weight threads. Under
these situations, they are used to transfer control between
contexts, and therefore do not match calls.

2. Operating system design and implementation

Operating systems also provide programmers various ab-
stractions to ease their job. These abstractions may use
return to implement control flow behavior across OS bound-
ary. UNIX signals, as discussed, are probably the most
prominent example in this category.

3. Optimization “tricks”

In the engineering of some software constructs, program-
mers tend to make “clever” uses of assembly instructions.
This also happens to return instructions.

6.1.3 Testing Low-level and Real-World Software
In order to further evaluate the compatibility of our ap-

proach, we tested it with some low-level libraries and real-
world software. For each binary module tested, we first
ran our static analysis to identify non-standard returns and
RAstore instructions. The results are then fed into our in-
strumentation module to generate hardened binaries. The
instrumented software is finally executed for testing. For
multi-threaded programs used in this evaluation, we used
Pin [28] for our testing.

Figure 6 shows the low-level and real-world software we
have tested, and how we tested them. The “Size” column
specifies the total mapped code size (in MB) of all modules
of the program. No incompatibilities were found on any
of these programs, demonstrating that our approach works
well even on low-level software. The total size of all software
tested in this evaluation is almost 200MB.

6.2 Protection
6.2.1 Security Analysis

Our system instruments all software modules including
executables, shared libraries, and dynamic loader. More-
over, it protects all backward edges including both standard
and non-standard returns. Return capabilities greatly re-
strict the scope of attacks possible. A coarse-grained CFI
permits any return to target any of the instructions follow-
ing a call in a program. In contrast, our approach limits
return to one of the return addresses that are already on the

RCAP-stack. Moreover, each time an attack makes use of
a return address other than the top entry on RCAP-stack,
the intervening entries are popped off, thus further reducing
the choice of possible targets for the next return.

Note that although JOP and COP gadgets can be used in
advanced code-reuse attacks, the vast majority of them still
rely on ROP gadgets [17, 14, 6, 18], and therefore can be
defeated by our system.

Stack Pivoting. In ROP attacks, controlling the stack is
the most important goal of the attacker. This is because,
(a) fake return addresses need to be prepared on stack so
that control flow can be repeatedly redirected in the manner
chosen by the attacker, and (b) the stack supplies the data
used in ROP computation.

Attackers basically have two choices to control the stack.
The first is to corrupt the stack, usually through a stack
buffer overflow. The second is to pivot the stack, i.e., hi-
jack the stack pointer to point to attacker controlled data.
Among these two, stack pivoting is more versatile because
vulnerabilities other than buffer overflow could be used. It
is also more convenient because the entire stack could be
controlled, without being limited by factors such as the lo-
cation of the vulnerable buffer, or the maximum length of
overflow.

Our system readily defeats ROP based on both stack cor-
ruption and stack pivoting. As the effectiveness for stack
corruption is clear, we focus on the latter. Specifically, in
a single RCAP-stack scheme, stack pivoting based ROP
is blocked because the required return capabilities won’t
be present on RCAP-stack. When multiple RCAP-stacks
are used, although stack pivoting could cause new RCAP-
stack creation, this does not compromise security as the new
RCAP-stack starts out with zero return capabilities on it.

Note that RCAP-stack protection is critical for defeating
stack pivoting. This is because in addition to stack pivoting,
the attacker could also craft and pivot an RCAP-stack by
corrupting the RCAP-stack pointer. While previous solu-
tions may be vulnerable to such attacks [15, 12], our system
is resistant because RCAP-stack pointer resides in protectd
memory as well.

TOCTTOU Threats. For standard returns, our instru-
mentation pushes return capability onto RCAP-stack at the
time of a call, i.e., the instant that return capability is issued.
This is different from schemes that push return capability
at function prologue [8, 12], and hence provide a (narrow)
window for TOCTTOU attacks.

However, we note that our instrumentation does have a
delay to store return capability in the case of a non-standard
return: i.e., it happens at RAstore instruction, rather than
return address generation instruction. This is due to limited
data flow tracking of our analysis, and is not an issue when
annotation is possible.

Storing return capability at a later time may give some
window for attackers, because they can modify the gener-
ated return capability before its store on both stacks. How-
ever, attacker capabilities for utilizing non-standard returns
is greatly limited because of the following two reasons. First,
CFI is still enforced as our base policy. Even if return capa-
bilities for non-standard returns can be altered by attackers,
it has to satisfy CFI at least, and therefore the forged capa-
bility can only grant transfer to instructions after calls. Sec-
ond, as shown in Section 6.1.1, there are limited number of
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Figure 7: CPU overhead of shadow stack systems on SPEC 2006

non-standard returns. Repeatedly corrupting return capa-
bilities before store, effectively chaining such limited gadgets
and bypassing CFI would be very difficult.

6.2.2 Experimental Evaluation of ROP Defense
We evaluated the effectiveness of our approach using two

real-world ROP attacks. Our first test was the ROPEME
attack [27], which exploits a buffer overflow vulnerability in
a test program. The attack is two-staged. In the first stage,
the attack uses a limited set of gadgets in non-randomized
executable code to leak out the base address of libc. This
enables the attacker to bypass ASLR as it relates to tar-
geting gadgets in libc. In the second stage of the attack,
ROPEME uses a payload consisting of a chain of libc gad-
gets. The stack is pivoted to this payload, and control is
transferred to libc gadgets. Our defense blocked the attack
at the first stage, because a backward edge control flow vio-
lation was identified when the vulnerable function returned
with an overwritten return address.

Our second test was to protect a vulnerable Linux hex
editor: HT Editor 2.0.20. A specially crafted long input
could overflow the stack and lead to ROP attack [1]. As
with the first attack, we detected the very first control flow
violation and successfully defeated this ROP attack as well.

6.3 Performance Overhead
We have measured the CPU overhead of our instrumen-

tation on SPEC 2006 benchmark. We tested on a x86-32
Linux machine because it is the only environment currently
supported by PSI [50]. For all the benchmarked programs,
we transformed all involved executables and shared libraries.
The results are presented in Figure 7, where an empty bar in
the histogram indicates an unavailable performance number.

We compare our performance with that of our base plat-
form PSI [50] and Lockdown [35], a recent dynamic instru-
mentation based shadow stack implementation. From Fig-
ure 7, we can see that the performance overhead of our sys-
tem is about 17% on average. Our optimization (Section 5.3)
accelerates several control-flow intensive benchmarks such
as 429.mcf and 447.dealll by 9% and 403.gcc, 458.sjeng,
471.omnetpp, and 453.povray by 5%. For the common set
of programs we had with Lockdown, our overhead is 13%
while theirs is about 24%.

Parallel shadow stack [12] achieves lower overhead by em-
ploying a variety of optimizations. They report overheads in
the range of 3.7% to 4.6%. Their approach does not operate

on binaries, but instead, on the assembly code produced by
a compiler. As a result, they avoid the overhead of address
translation. In addition, they do not enforce CFI. Consid-
ering these are the two major source of overhead for the
PSI platform we used, our added overhead of 4% makes our
performance comparable to theirs.

7. Related Work
Bounds-Checking. The most comprehensive defense for
memory corruption attacks is based on bounds-checking [24,
45, 46, 3, 29]. Unfortunately, these techniques introduce
considerable overheads, while also raising significant com-
patibility issues [42]. LBC [20] achieves lower overheads
while greatly improving compatibility by trading off the abil-
ity to detect non-contiguous buffer overflows. Code pointer
integrity [26] significantly reduces overheads by selectively
protecting only those pointers whose corruption can lead to
control-flow hijacks.

Control-Flow Integrity. Control-flow integrity can sig-
nificantly limit an attacker’s choices for diverting control
flow [2, 51, 49]. The modest performance overheads of these
techniques can be further significantly reduced using mod-
ern CPU features such as the Last Branch Record (LBR)
[34, 7]. The downside, however, is a looser policy that can
be more easily bypassed. Indeed, several researchers have
shown that in general, coarse-grained CFI techniques canbe
defeated [17, 14, 18, 6]. The biggest culprit behind this
weakness is the policy applied for returns, which typically
allows control to go back to any instruction that follows
a call. Shadow stack schemes such as ours eliminate this
weakness. The second major source of CFI weakness is the
large number of valid targets for indirect calls, especially in
C++ programs. Forward-edge CFI techniques [43] can sig-
nificantly narrow down these targets using information such
as function signatures.

G-Free [32] is a novel ROP defense technique that elimi-
nates unintended gadgets. It requires programs to be recom-
piled, and introduces a rewriting phase on the compiler’s
assembly code output. This phase ensures that the return
opcode will not occur in the middle of valid instructions.
To guard against the use of gadgets ending with intended
return instructions, G-Free “encrypts” return addresses by
XOR-masking with a secret key, but this scheme is weak
against adversaries that can leak return addresses on the
stack. Shadow stack approaches avoid this weakness.



Code Randomization. These techniques may be aimed at
randomizing the actual instruction content, or simply their
locations. Instruction-space randomization (ISR) [25, 4] is a
systematic technique for randomizing instruction content by
encrypting them. In practice, it has proved difficult to de-
velop encryption schemes that provide adequate performace
for ISR, while resisting attacks to reverse-engineer the key.
Consequently, recent efforts [33] have avoided encryption,
instead replacing an instruction with a functionally equiva-
lent one, or using techniques such as register reassignment.

Layout randomization, e.g., ASLR, can block ROP at-
tacks by making gadget locations unpredictable. Since coarse-
grained ASLR can often be defeated by leaking a single code
or data address, Bhatkar et al [5] developed fine-grained
techniques that randomly re-orders all data objects as well
as functions. Note that purely compile-time permutations
are ineffective, unless existing binary and patch distribution
models are changed: otherwise, the attacker will have access
to the same randomized binary as the victim. For this rea-
son, Bhatkar et al [5] use compile-time code transformations
to generate the information required for load-time random-
ization. More recent works such as binary stirring [44] and
ILR [22] can operate without compiler help, and moreover,
can reorder basic blocks rather than functions.

JIT-ROP attacks [41], which rely on memory disclosure
vulnerabilities to scan code sections, can defeat fine-grained
randomization by discovering gadgets at runtime. Several
recent works [13, 11] have developed defenses to JIT-ROP.

In general, randomization techniques can effectively block
unintended gadgets, but disrupting the use of gadgets be-
ginning at legitimate indirect control-flow targets (i.e., tar-
gets permitted by CFI schemes) can be difficult. One rea-
son is that programs store such targets in memory, thereby
making them vulnerable to information disclosure. Indeed,
most binary instrumentation techniques don’t change the
original values of code pointers, so information disclosure is
not even necessary with these schemes. A second reason is
that the targeted code has legitimate invokers that expect
a certain semantics from it, including the contents of regis-
ters, caller-callee conventions, and so on. This significantly
limits the scope of what is achievable using randomization
without breaking legitimate functionality. In any case, it
is safe to say that shadow stack schemes such as ours en-
force as strong a policy on returns as any other random-
ization scheme, and moreover, provide deterministic rather
than probabilistic protection.

Shadow Stack. Shadow stack schemes [16, 8] were first
proposed as a defense for stack smashing attacks. However,
only the legitimate returns were checked, so ROP attacks
using unintended returns were possible. CFI enforcement,
which prevents the use of unintended instructions, provides
one way to block this attack avenue. A second approach,
used in DBT-based techniques (e.g., ROPdefender [15]), is
to instrument all returns before their execution.

The benefits of shadow stack for strengthening CFI [2],
and to defeat ROP, have long been recognized. However,
its practical deployment has been limited by the prevalence
of non-standard returns that violate shadow stack checks.
While RAD [8] addressed the cases of longjmp and signals,
ROPdefender [15] identified two other non-standard uses:
C++ exceptions and lazy-binding of calls to shared library
functions. It handled them by manually identifying instruc-
tions that save a return address on the stack, and pushing

a copy on the shadow stack. Thus, their runtime policy
follows the return capability model used in our approach.

A drawback of ROPdefender was its significant runtime
overhead. Zhang et al [50] discuss how dynamic binary
instrumentation techniques, while displaying good perfor-
mance on SPEC benchmarks, tend to perform poorly on
large, real-world applications. Being based on static instru-
mentation, Zhang et al were able to achieve significantly
better performance than ROPdefender.

Lockdown [35] is a recent effort combining shadow stack
and CFI in dynamic instrumentation, while focusing on re-
ducing runtime overhead. However, unlike our approach,
they do not focus improving compatibility. Moreover, as
disscussed earlier, on the common benchmarks, our over-
head is about half of theirs.

Dang et. al surveyed existing shadow stack systems and
designed a “parallel shadow stack” scheme [12] to eliminate
the need for shadow stack pointer save and restore. They
avoided register clobbers in their intrumentation, applied
peephole optimizations, and achieved great performance. How-
ever, this comes with some trade-offs on security. In fact,
StackDefiler [10] describes an attack that leaks shadow stack
address. As a comparison, we maintain strong security by
enforcing CFI, protecting RCAP-stack, and precisely man-
aging return capabilities.

In summary, the primary contributions of this paper over
previous works are (a) the development of a systematic ap-
proach for identifying and handling non-standard returns
without the need for manual effort, (b) demonstrating that
this approach can handle complex and low-level binaries,
and (c) achieving low overheads.

Binary vs Source-code Based Defenses. Most of the
techniques discussed above, including bounds-checking [24,
45, 46, 3, 29, 20, 26], fine-grained CFI [43, 30, 31], and
many fine-grained randomization techniques [5, 11] and oth-
ers [32], are based on compilers and operate only on source
code. With such approaches, it is difficult to protect low-
level code that uses inline assembly, as well as third-party
code that only available in binary form. Unfortunately, se-
curity is usually dependent on the “weakest link,” and even
one unprotected module can render the defense bypassable.
In contrast, binary-based defenses extends to all code, re-
gardless of the programming language or the compiler.

8. Conclusions
In this paper, we presented a principled approach for ROP

defense. Our approach accurately infers and enforces pro-
gram intended control flow, which breaks one mandatory re-
quirement for ROP: repeatedly subverting control flows. To
that end, we developed static analysis techniques and uti-
lized static binary instrumentation for enforcement. Exper-
imental evaluations have shown that our approach provides
precise control flow guarantees, yet efficient and compatible
with real-world applications.
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