
On Supporting Active User Feedback in P3P

V.N. Venkatakrishnan

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: venkat@cs.uic.edu

Wei Xu

Department of Computer Science

Stony Brook University

Stony Brook, NY 11790-4400

Email: weixu@cs.sunysb.edu

Rishi Kant Sharda

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: rsharda@cs.uic.edu

Abstract— We propose an extension to the P3P framework that
enables a consumer and a web service to engage in active policy
negotiation. In addition, we discuss enforcement strategies for
negotiated consumer preferences.

Keywords: P3P, Web Service, Information Privacy, Policy

Negotiation, Policy Enforcement, User Feedback.

I. INTRODUCTION

The development of the world wide web as a platform for

electronic commerce, auctioning and social networking has

presented several challenges to end user privacy. Users are

presented with situations that require them to disclose (either

implicitly or explicitly) personal information to these web

based services. To increase consumer confidence, web sites

have made efforts to clearly display their policies regarding use

of private information. Unfortunately, such policy descriptions

are verbose and ridden with legal jargon, rendering them

ineffective in increasing consumer confidence in the privacy

of their personal information.

To address privacy concerns in web services, the Plat-

form for Privacy Preferences framework (P3P [1]) has been

proposed. P3P enables websites to express their terms of

use regarding privacy in a machine-readable format using a

standardized vocabulary. Ever since the standard was officially

published by the W3C (the WWW consortium) in 2002,

several leading websites have become P3P compliant (a list

can be found in [2]), and P3P is expected to be more widely

deployed in future. In addition, P3P has been adopted as the

de-facto standard for web-services privacy (WS-privacy) [3].

The original P3P approach (as defined by the P3P 1.1 draft)

follows a client-centric mechanism for checking a web site’s

privacy policy against a user’s privacy preferences. A P3P user

agent that runs on the client (usually, a browser extension)

retrieves the P3P privacy policy from a web service, and

checks it against the consumer’s privacy preferences. Agrawal

et al. [4] designed a server-centric P3P architecture mainly for

better performance and scenarios involving thin clients. In this

architecture, the consumer’s entire privacy preferences are sent

to the server and are matched with the web site’s P3P policy

at the server side.

Both the client and server based architectures can be exam-

ined from three key problem perspectives:

• Policy compatibility checking. This is the problem of

checking whether the client’s preferences match the web

service’s policy. For policy compatibility checking, a

client-centric architecture is far superior compared to a

server-centric one as the compatibility process runs en-

tirely in the client end under the purview of the consumer.

By contrast, in a server-centric approach, the consumer

needs to transmit her entire preferences to the server and

place much trust on the server to correctly match her

preferences. Such asymmetric placement of trust violates

the preferred security design principle of psychological

acceptability [5].

• Policy negotiation. Policy negotiation concerns the issue

of negotiating a new policy for the consumer in case of a

policy mismatch. Using a purely client-centric architec-

ture (such as the P3P original framework) it is impossible

to provide any support for policy negotiation. This is

because policy negotiation needs to engage the server

for supporting any possible changes to the policy after

a policy mismatch. A purely server-centric architecture

can deal with policy negotiation by trying to enforce the

consumer’s policy, which is discussed below.

• Policy enforcement. Policy enforcement concerns the

problem of enforcing any policy that is agreed between

the consumer and the web service. Policy enforcement

is inherently a server-based operation and hence requires

the participation of the server.

From the above discussion, it is clear that for reasons of

policy enforcement, participation from the server is needed,

and a client-side policy compatibility checking is more suitable

for psychological acceptability. Policy negotiation requires

participation from both client and the server. This naturally

leads us to an alternative architecture where the client and the

server share the following responsibilities: The client performs

policy compatibility checking, and the server performs policy

enforcement. Both the client and server are engaged in policy

negotiation. In this paper, we discuss the architecture of this

framework and examine the key design and implementation

issues in realizing this architecture.

Paper organization. The rest of the paper is structured as

follows: We first review the related work in Section II. In

Section III we use an example service to further motivate

the need for policy negotiation in P3P. Then we describe our

extensions to P3P for policy negotiation and enforcement in

Section IV. We conclude the paper in Section V.

II. RELATED WORK

A complete description about P3P and APPEL can be found

at [1] and [6]. Yu et al provided a formal semantics for P3P

in [7]. Several P3P and APPEL tools have been implemented.

The most notable P3P client implementations include AT&T

Privacy Bird [8] and the implementation of compact P3P

policies in the Microsoft Internet Explorer for cookie handling.

Many researchers have pointed out the limitations of P3P

and APPEL. Hogben ([9] [10]) noted the limitations of P3P in

areas such as vocabularies as well as the ambiguity of APPEL.

Agrawal et al [11] showed the limitations of APPEL in terms

of clarity and expressiveness with a set of examples, and

then proposed XPref, an XPath-based P3P privacy preference

language, to address these problems. Kolari et al [12] proposed

a different enhanced P3P privacy preference language called

Rei. They also noted the limitations of the trust model of

P3P and proposed an extensible trust model based on social

recommendations. Although the P3P extension presented in

this paper is based on APPEL, the similar technique can

be applied to other privacy preference languages as well.

Meanwhile, the proposed P3P extension can be complimentary

to other suggested P3P enhancements.

Automated trust negotiation[13] and privacy negotia-

tion [14] are well known concepts that have been studied in

broader settings. In this paper, we have provided a framework

for realizing such negotiation within the context of P3P, and

provide details and transition steps to incorporate the privacy

policy enforcement within the context of the P3P negotiation

framework.

We proposed a framework for building privacy-conscious

web services in our previous work [15]. The framework allows

negotiation and enforcement of privacy policies, but uses its

own protocol and is not based on P3P. In this paper, we have

borrowed some of the ideas from that framework, and have

applied them to P3P.

III. A MOTIVATING EXAMPLE

As a running example to facilitate our discussion, con-

sider a web service www.abcshop.com that provides shop-

ping services over the web. To improve user experi-

ence, the service uses an external “clickstream” service

www.hintsforclicks.com that aims to dynamically provide

shopping suggestions. It does so by collecting the user’s

browsing pattern and displaying suitable suggestions in the

same browser window, but in a separate browser frame. To

accomplish this, whenever the user clicks on a link, infor-

mation about this link is sent to the clickstream service,

which compares the current browsing pattern with its (internal)

database. This comparison generates suggestions on third-

party websites that are closely related to the current browsing

context such as sponsored links with similar products. These

external links are then inserted into a dynamically generated

web page, which is rendered in the current browser window.

Similar suggestions routinely appear during shopping visits on

e-commerce sites such as buy.com and amazon.com.

Since consumer information is now provided to the click-

stream service, the site privacy policy describes this practice.

Using P3P, the policy can be described using the data schemas

provided in the P3P vocabulary.

<STATEMENT>

<PURPOSE required="opt-out">

<individual-analysis/>

</PURPOSE>

<RECIPIENT><other-recipient/></RECIPIENT>

<RETENTION><stated-purpose/></RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.clickstream"/>

<DATA ref="#dynamic.http"/>

</DATA-GROUP>

</STATEMENT>

The (relevant portions of) P3P policy for abcshop.com

is shown above. It states that the web service collects

clickstream data and other http data when a user browses

their site. This is done for individual analysis (stated through

the PURPOSE tag) by some other third party clickstream

service, (through the RECIPIENT tag) which is has a different

policy than abcshop.com, suggesting that clickstream infor-

mation is disseminated to the third party. The visitor has the

option to opt-out of this data collection.

We now describe the P3P compliance checking process.

When the consumer receives the web site P3P policy, she

checks if these match her privacy preferences, which is done

using a P3P user agent (usually a browser extension). In our

example, the consumer’s privacy preferences on the use of

clickstream information is matched with abcshop.com’s P3P

policy. Consumer preferences are expressed in APPEL [6]. In

APPEL, the preferences are specified in a set of preference-

rules (called a rule-set) which can help a user agent (UA)

to make automated or semi-automated decisions regarding the

acceptability of a P3P policy.

In our example, the users considers her clickstream data as

private. as given by the APPEL ruleset given below.
<appel:RULE behavior="block" prompt="yes"

promptmsg="obligation:other-clickstream">

<p3p:POLICY>

<p3p:STATEMENT>

<p3p:PURPOSE>

<p3p:individual-analysis/>

</p3p:PURPOSE>

<p3p:DATA-GROUP>

<p3p:DATA ref="#dynamic.clickstream"/>

</p3p:DATA-GROUP>

<p3p:RECIPIENT>

<p3p:other-recipient/>

</p3p:RECIPIENT>

</p3p:STATEMENT>

</p3p:POLICY>

</appel:RULE>

The rule set specifies the behavior of the user agent with

respect to P3P policy. When a rule is matched (evaluated

TRUE), there are three possible outcomes, specified in the

same rule:

• request : the provided policy is acceptable.

• limited : the provided policy is somewhat acceptable.

• block : the provided policy is not acceptable.

A server-centric architecture of P3P requires the rule match-

ing to be performed at the server. Such a preference matching

process at the server end may not be acceptable to a conscious

user. The current client-centric architecture of P3P too does

not allow for negotiating a new policy when the original

policy conflicts with the user preferences. We note that such

Fig. 1. Privacy negotiation framework

conflicts are bound to occur in practice. For instance, web

sites provide a rich set of features to achieve greater levels of

quality of service. This is typically achieved by interacting

with several other entities to which consumer information

dissemination may be required. When consumers use such web

sites, conflicts between the user’s privacy preferences and the

web site P3P policy are likely to arise (in terms of disclosure

of information to other parties). When the likelihood of such

conflicts is frequent, web services will need to provide the user

with the functionalities that respect the user’s privacy prefer-

ences, possibly at a marginal cost of usability or functionality

for the user. In our example, the web service can render its

functionality without revealing the clickstreams of the user,

at the marginal cost of functionality (i.e., absence of useful

external link suggestions).

To support such privacy preferences, feedback from the

conflict resolution process needs to be provided to the web

service. This will allow the client to negotiate a new policy

with the server, if it is possible. In the previous example,

for instance, the user can let the web service know that her

privacy preference is to have “no clickstreams collected and

sent to an unrelated third-party.” The web service can then

use this feedback to provide a variation of its service that

does not render the browser frame that sends clickstreams to

the external third-party service.

In the case of the above example, P3P does not provide

support for a privacy conscious user who does not want to

reveal her browsing history to an external clickstream service.

Such feedback is currently accomplished outside of P3P,

by accommodating it as part of the website functionality.

This is done through opt-out text boxes and radio buttons

in which the user fills with her privacy preferences. When

such functionality is presented outside the P3P framework,

we lose all the advantages of having P3P as a standardized

and automated policy compliance mechanism for checking

privacy preferences. Without the automated P3P process, the

user needs to expend additional manual effort to ensure that

her privacy preferences are met, by analyzing the data provided

to the web site, searching for these options in the service web

pages that vary from one service to another, and opting out of

them. This manual process is also likely to be error-prone, and

therefore weakens P3P as an effective standardization effort.

We present a set of extensions to the P3P framework to

support active user feedback mechanisms that facilitate policy

negotiation and enforcement of the negotiated user prefer-

ences. In the following section, we describe the extensions

to components of the P3P framework to achieve active user

feedback mechanisms.

IV. DESCRIPTION OF THE EXTENSIONS

In this section, we outline a scheme for policy negotiation

in the P3P framework. As suggested in the introduction, this

will require changes to both the client and the server.

Figure 1 shows the interaction diagram that allows for

privacy negotiation between the client and the web service.

It shows the sequence of numbered messages exchanged

and corresponding actions during the negotiation phase. The

client (browser) is equipped with a User Agent (UA) which

is capable of matching P3P policies with user preferences

specified in APPEL. The input for this client is the User

Preference File which contains user preferences in APPEL.

We also introduce a new component on the server side, called

the Feedback Agent (FBA). The feedback agent maintains

the (per-user) policy on the server side. This policy (state)

is arrived by a sequence of negotiation messages exchanged

between the client and the web service. This policy state is

further used in during the feedback enforcement step (not

shown in the interaction diagram).

We now briefly explain the steps in the negotiation process

shown in the above figure. Steps 1-5 follow the usual P3P 1.1

specification, and are used for obtaining a P3P policy file from

a web service. In addition a ping message exchange (step 6,8

and 10) also occurs which tests the existence of the FBA. In

the absence of such a FBA, the interaction sequence resorts to

the original P3P specification. Once the presence of the FBA

is confirmed, the actual steps of negotiation begin, starting

with the client testing the policy against user preference and

generating feedback. In steps 9-15 the feedback is processed

by the FBA and changes to the policy state are made for

enforcement.

Although the figure shows only one iteration in such a ne-

gotiation, one can envision several iterations in the procedure,

as steps 9-15 can be repeated till the final negotiations, until

a common ground is reached. This is especially feasible if the

server can trade-off functionalities (that possibly adds a cost of

usability or functionality) for better privacy. However, we do

not discuss negotiations involving multiple iterations further

in this paper due to lack of space.

The new framework requires a few changes to the existing

P3P standard. Specifically, changes are required in the P3P

policy specification language, the user agent functionality,

creation and deployment of a feedback agent and finally,

modifications to the web service code. We discuss them in

the following section.

A. Extension to P3P policy specification

The location of the server-side feedback agent is not known

to a user agent. Although the agent can be made available at a

fixed relative URL from the policy, a better alternative is an ex-

tension to the P3P policy to specify the location of the server-

side feedback agent. We first note that every P3P policy has an

associated POLICY REF element. Therefore, POLICY-REF tag

can have an attribute that may be used to specify the feedback

URI (channel). This is done by specifying an additional

element FEEDBACK, by specifying the URI in it’s “about”

attribute. For example, a feedback channel specification may

appear as <FEEDBACK about="/P3P/Feedback/......">

If such an URI specification is absent, then the user agent

believes that the service does not support the negotiation

mechanism.

B. Client-side Changes

We point out that while certain information may strictly be

required in a web service’s policy, other pieces of information

may be purely optional. In the shopping scenario described

earlier, while it is required to request a user’s credit card

information and disclose this information to the credit card

company for billing, it is purely an optional functionality to

send the user’s clickstream to the third-party web service for

collecting browsing behavior. To specify such required and

optional behavior, we point out that the current P3P specifica-

tion language already has constructs available to specify such

behavior. Specifically, the required attribute (which allows

three values: always, opt-in and opt-out) for the PURPOSE

and RECIPIENT tags. The use of such optional information can

clearly be negotiable with the server.

When preference matching with APPEL specifications is

done, certain APPEL rules are matched. As noted above, only

the request rules are allowed. In case a limited or block

rule is matched, the same rule is encoded as a feedback

message for the web service. Such active user feedback

messages are encoded in the same preference language. The

procedure that performs the matching in the user agent needs

to be augmented to generate a collection of rules that compose

an active user feedback message. In an active user feedback

message, the desired privacy constraints are given as a collec-

tion of rules that deny data collection and/or dissemination.

For instance, in our running example, the APPEL specification

shown earlier results in an active feedback message, as it

blocks collection of any clickstream information, and therefore

conveys that no DATA items clickstreams should be disclosed

to any RECIPIENT that are do not share the same P3P policies.

To transmit the user feedback back to the server, the P3P

user agent invokes the service-side feedback agent defined

in the P3P policy. This is accessed using the URL that was

described earlier in the policy extension. The user agent posts

the user feedback as input to the server-side agent.

C. Server-side modifications

A service-side feedback agent accepts user feedback, partic-

ipates in the negotiation and delivers the final feedback to be

enforced to the associated web service instance. The existence

of this agent is crucial for processing the feedback delivered by

the user agent. The feedback is an APPEL ”block” or ”limited”

rule which was matched by the user agent and is interpreted

by the feedback agent.

We now discuss the construction of the feedback agent.

First, the feedback agent needs to have access to the same

session tracking mechanism of the server. Using this, it relates

the user feedback to the correct web service instance. It then

incorporates the results of the feedback into the policy to

produce a User Preference Matrix (UPM) that is kept

for each user by the server. The UPM is an access control

matrix that consists of (recipient, data-item) pairs. Each

entry in the UPM is a boolean value that suggests whether the

specified recipient can receive the corresponding data item. An

example UPM appears in Figure 2.

To create such a UPM, first the P3P policy is partitioned

into essential and optional fields. This can be done easily

by scanning the policy for the optional fields that have an

opt-out or opt-in value. Once such a partitioning is done,

the UPM is created by the FBA initially based on the P3P

policy and populated with flags which are necessary for

essential services. The construction of the UPM follows the

following steps:

1) Creation. For every piece of information to be collected

from the user for any purpose a column is added to the

UPM. For every different recipient (including ours) add

a row to the UPM. The matrix is initialized to all zeros.

2) Initialization. Initially, for all the essential and optional

data-services combinations the entry value of 1 is made.

3) Update. Upon receiving a feedback message from the

UA, updates are made to the entries that correspond only

to the optional items from the feedback message. These

are flipped from 1 or 0.

So far, we have discussed the procedure for negotiating a

policy between a user agent and a feedback agent. The entire

negotiation procedure can be summarized as follows:

• The server sends (on clients request) a P3P policy, now

specifying a feedback channel, for the User Agent(UA) to

clickstream http contact-info

ours 0 1 1

other-recipient 0 0 0

Fig. 2. An example of User Preference Matrix, which states that the user
does not want her privacy information, such as clickstream, http browsing
data, and contact information, to be collected and sent to external services.

communicate with the Feedback Agent(FBA). The FBA

has the capability to distinguish between various sessions

between different user agents.

• The user agent evaluates the P3P policy against the user

preferences. If a rule is matched, and is a limited or

block rule, it becomes a feedback message for the web

service and is sent to the FBA.

• After evaluating the feedback message from the UA, the

FBA makes updates to a User Preference Matrix (UPM)

and the P3P policy.

• During this update, the FBA ensures the minimum criteria

for essential services is not violated.

D. P3P-Aware Service Code

Once the P3P policy is negotiated between the User Agent

and the Feedback Agent, we need to make sure that the web

service does exactly as stated in the just negotiated P3P policy.

We note that enforcing an entire P3P policy in a web service

is a difficult task in general as P3P policy specification is not

suitable in its original form for direct enforcement. Here, we

propose a much restricted notion of enforcement, that of only

enforcing the user feedback preferences as part of a negotiated

P3P policy. We claim that this form of enforcement is feasible,

as web service providers already provide technical means for

consumers to specify their privacy requirements. Our proposal

only integrates such means into the P3P framework.

Similar to the P3P policy, each service code can also be

partitioned into two parts: essential and optional services. The

feedback preferences in a negotiated policy describe the user’s

choices on the optional services. The notion of enforcing

such user preferences corresponds to respecting the user’s

choices only on these optional services. This is done by

blocking the (optional) operations prohibited by the APPEL

messages that were provided as feedback, while providing

the essential services and any desired optional services. To

achieve this, provisions need to be built inside the service

code. These “hooks” place each optional operation inside a

boolean condition that is required to be true for executing that

operation. In fact, such checking code is common in existing

services that support opt-in or opt-out services, although it is

implemented outside of P3P. (The values used in the checking

condition usually come from user inputs through the service

user interface such as opt-out text boxes and radio buttons.)

In this section, we illustrate the creation of P3P-aware

service code in which the checking code for enforcing a user’s

preferences can take the negotiated P3P policy as its input. An

important idea in enforcement is our use of the User preference

Matrix, or UPM, that was introduced in the earlier section. The

UPM is used to pass the user’s preferences into the service

code and is thus used to control the execution of optional

services. Next, we describe the necessary manual steps to

modify existing service code to enable the use of UPM for

enforcement of the user’s privacy preferences.

Let us consider the shopping example service again. Below

is the code snippet of a possible implementation of the service,

in which a function named getLogInfo is defined to collect

the user clickstream information and send it to a clickstream

service.
// A function to collect user browsing data

// and notify a clickstream service

void getLogInfo() {

log += getUserIP();

log += getRequestTime();

log += getHTTPStatus();

clickstreamService.notify(log);

}

As the first step to enable a web service code with the P3P-

aware features, information needs to be maintained about oper-

ations (third party API’s or some internal functions) that per-

form external communication, and their associated variables

that represent data items that are disclosed to service partners.

An analysis of the web service structure is done and a mapping

is created which defines how the data items referenced in

the P3P policy and UPM can be mapped onto functions and

variables in the service code. This analysis is one-time and can

be performed manually or semi-automatically with the help of

code scanning tools. An example mapping for clickstream

is shown below:
<map>

<recipient name="other-recipient">

<data ref="clickstream">

<function name="getLogInfo">

<variable>log</variable>

</function>

</data>

</recipient>

...

</map>

The mapping file is maintained in an XML format, and

specifies functions and variables corresponding to each P3P

recipient (e.g. ours or other-recipient) and each refer-

enced P3P data item (e.g. clickstream). For instance, the

example mapping states that the function getLogInfo and the

variable log are used for the recipient other-recipient and

data item clickstream in the P3P policy.

To actually enforce the negotiated policy, the web service

code has to be modified so that every input/output (as well as

internal read/write) operation of the service is encapsulated in

a check that checks for secure information disclosure.

We can use the above mapping to help us to build the

new P3P-aware service code from the original code. The

mapping dictates how the relevant portions of the code need

to be modified and how the UPM should be consulted for

each modification. Specifically, we process each entry in the

mapping file as follows. We first locate the corresponding

lines in code, and then put in a condition check such that

the following items hold:

• In case the flags in the UPM suggest that this operation

(e.g. some third party operation) cannot be performed (as

per user preferences) then code is not executed.

• In case the flags suggest that the operation can be

performed but no user specific information can be

sent then the variables pertaining to them are assigned

junk/blank/null (whichever applies) values.

Only the code for optional services will be modified. The

code for essential services is not modified.

As an example, the modified getLogInfo in the P3P-aware

service code of the shopping service example looks something

like:
// A function to collect user browsing data

// and notify a clickstream service

void getLogInfo() {

if (UPM("other_recipient.clickstream") == 1) {

log += getUserIP();

log += getRequestTime();

log += getHTTPStatus();

clickstreamService.notify(log);

}

else {

log += "clickstream data collecting "

"not authorized by user";

}

}

We have kept the enforcement technique purposefully sim-

ple for easier transition. The design of the UPM is simple

enough to make this transition possible. More complex en-

forcement strategies such as the use of security automata [16]

are needed for enforcing more expressive feedback messages.

For example, such monitors are needed to enforce policies

such as “information is disclosed to either one of two recip-

ients but not both”. Having such more complex enforcement

schemes represent trade-offs in the expressiveness of the

enforcement mechanism versus its complexity. We will study

such monitors in our future work.

V. CONCLUSION

In this paper, we have proposed a P3P extension to support

active user feedback and thereby performs policy negotiation.

Our main contributions include:

• the introduction of a policy negotiation mechanism by

which a user can negotiate a P3P policy with a web site

based on her privacy preferences;

• the introduction of user preference matrix (UPM) which

bridges gap between the user preferred P3P policy and

the service code and thereby serves as a starting point for

enforcing P3P policy in the service code.

To adopt the proposed P3P extension, the following is a

summary of changes needed to be done on both the P3P

clients and servers: a) The P3P policy needs to be updated

to specify the user-configurable part of the policy; b) The

user agent needs to be updated to support the generation

and communication of active user feedback; c) A feedback

agent on the server needs to be introduced to process the user

feedback and populate the UPM; d) The service code needs to

be updated to enforce the user’s privacy preference as stated

in the UPM.

The proposed P3P extension can be deployed in an envi-

ronment that contains both the enhanced and original P3P-

enabled clients and servers for reasons of scalability and also

to enable a smoother transition. This P3P extension has been

designed so that the original P3P user agents can interact with

a web server enabled with the enhanced P3P for processing

P3P policies and policy reference files in a usual way. The P3P

extension mainly reuses the syntax available in the original

P3P specification for this purpose. Some additional syntax

introduced in the extension is presented as an optional features

in the original P3P. To provide the backwards compatibility,

each service code also runs in a “compatible” mode, in which

if the additional UPM inputs are not available, the service code

can switch back to non-P3P means such as HTML forms to

read a user’s choices on the optional functionalities provided

by the service.

Acknowledgments. We thank R. Sekar for his insightful sug-

gestions on an earlier draft. This research was supported in

part by NSF grant NSF CNS-0551660, a grant from Computer

Associates and an ONR grant N000140110967.

REFERENCES

[1] L. Cranor et al, The Platform for Privacy Preferences 1.1 (P3P1.1)

Specification, W3C working draft, February 2006.
[2] “P3P compliant web sites,” Internet web site, Updated June 2006,

http://www.w3.org/P3P/compliant sites.php3.
[3] Http://www.serviceoriented.org/ws-privacy.html.
[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Implementing P3P using

database technology,” in International Conference on Data Engineering

(ICDE), March 2003.
[5] J. Saltzer and M. Schroeder, “The protection of information in computer

systems,” proceedings of the IEEE, September 1975.
[6] L. Cranor et al, A P3P Preference Exchange Language 1.0 (APPEL1.0),

W3C working draft, April 2002.
[7] T. Yu, N. Li, and A. I. Antón, “A formal semantics for P3P,” in ACM

Workshop on Secure Web Services, October 2004.
[8] “Privacy bird,” Internet web site, http://www.privacybird.com.
[9] G. Hogben, “A technical analysis of problems with p3p v1.0 and possible

solutions,” position paper for W3C Workshop on the Future of P3P.
Available at http://www.w3.org/2002/p3p-ws/pp/jrc.html.

[10] G. Hogben, “Suggestions for long term changes to p3p,” position paper
for W3C Workshop on the Long Term Future of P3P. Available at
http://www.w3.org/2003/p3p-ws/pp/jrc.pdf.

[11] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “An XPath-based pref-
erence language for P3P,” in International World Wide Web Conference

(WWW), May 2003.
[12] P. Kolari, L. Ding, S. Ganjugunte, L. Kagal, A. Joshi, and T. Finin, “En-

hancing web privacy protection through declarative policies,” in IEEE

Workshop on Policy for Distributed Systems and Networks (POLICY

2005), June 2005.
[13] K. E. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis, “Protecting

privacy during on-line trust negotiation,” in 2nd Workshop on Privacy

Enhancing Technologies, April 2002.
[14] Carnegie Mellon University, “Privacy server protocol project,” Internet

System Laboratory, Robotics Institute and eCommerce Institute, School
of Computer Science. http://yuan.ecom.cmu.edu/psp/.

[15] W. Xu, V.N. Venkatakrishnan, R. Sekar, and I.V. Ramakrishnan, “A
framework for building privacy-conscious composite web services,”
in 4th IEEE International Conference on Web Services (Application

Services and Industry Track) (ICWS), September 2006.
[16] F. B. Schneider, “Enforceable security policies,” ACM Transactions on

Information and System Security (TISSEC), vol. 3, no. 1, 2001.

