
Practical Proactive Integrity Preservation:

A Basis for Malware Defense∗

Weiqing Sun R. Sekar Gaurav Poothia Tejas Karandikar

Department of Computer Science

Stony Brook University, Stony Brook, NY 11794

Abstract

Unlike today’s reactive approaches, information flow
based approaches can provide positive assurances about
overall system integrity, and hence can defend against
sophisticated malware. However, there hasn’t been
much success in applying information flow based tech-
niques to desktop systems running modern COTS op-
erating systems. This is, in part, due to the fact that a
strict application of information flow policy can break
existing applications and OS services. Another impor-
tant factor is the difficulty of policy development, which
requires us to specify integrity labels for hundreds of
thousands of objects on the system. This paper devel-
ops a new approach for proactive integrity protection
that overcomes these challenges by decoupling integrity
labels from access policies. We then develop an analy-
sis that can largely automate the generation of integrity
labels and policies that preserve the usability of applica-
tions in most cases. Evaluation of our prototype imple-
mentation on a Linux desktop distribution shows that it
does not break or inconvenience the use of most applica-
tions, while stopping a variety of sophisticated malware
attacks.

1. Introduction

Security threats have escalated rapidly over the past
few years. Zero-day attacks have become significant
threats, being delivered increasingly through seemingly
innocuous means such as web pages and documents.
Malware is rampant, being installed on millions of com-
puters around the Internet through implicit or explicit
software downloads from untrusted sources. Emer-
gence of cyber crime has led to increasingly stealthy
and sophisticated attacks and malware that can hide
from the best available defenses today.

Today’s malware defenses rely mainly on reactive
approaches such as signature-based scanning, behav-
ior monitoring, and file integrity monitoring. Un-
fortunately, attackers can easily modify the structure

∗This research is supported in part by an ONR grant
000140710928 and an NSF grant CNS-0627687.

and behavior of their malware to evade detection by
signature-based or behavior-based techniques. They
may also subvert system integrity monitoring tools us-
ing rootkit-like techniques. It is therefore necessary
to develop proactive techniques that can stop malware
before it damages system integrity.

Sandboxing is a commonly deployed proactive de-
fense against untrusted (and hence potentially mali-
cious) software. It restricts the set of resources (such as
files) that can be written by an untrusted process, and
also limits communication with other processes on the
system. However, techniques that regulate write-access
without restricting read-access aren’t sufficient to ad-
dress adaptive malware threats. Specifically, they do
not satisfactorily address indirect attacks, where a be-
nign application ends up consuming malware outputs
stored in persistent storage (e.g., files). For instance,
malware may modify the following types of files used
by a benign application:

• System libraries, configuration files or scripts. One
may attempt to eliminate this possibility by pre-
venting untrusted software from storing any files in
system directories, but this will preclude the use of
many legitimate (untrusted) applications that expect
to find their binaries, libraries and configuration files
in system directories. Alternatively, one can explic-
itly enumerate all the files in system directories that
are used by benign applications, but this becomes
a challenging task when we consider the number of
such files — for instance, a typical desktop Linux
distribution contains over 100K files in system direc-
tories. Errors may creep into such enumerations, e.g.,
one may leave out optional libraries (e.g., application
extensions such as Apache modules, media codecs,
etc.) or configuration/customization files, thereby in-
troducing opportunities for indirect attacks.

• User-specific customization files and scripts. Identi-
fying all user-specific scripts and customization files is
even harder: different applications use different con-
ventions regarding the location of user-specific cus-
tomization files. Moreover, some of these files may in
turn load other user files, or run scripts within user
directories. Static identification of all the files used



by a benign application may be very hard.

We observe that significant harm can result from
unauthorized modifications to user files. For in-
stance, by altering ssh keys file, malware may enable
its author to log into the system on which it is in-
stalled. By modifying a file such as .bashrc, e.g.,
by creating an alias for a command such as sudo,
malware can cause a Trojan program to be run each
time sudo is used. Worse, malware can first modify
a configuration file used by a less conspicuous be-
nign application, such as a word-processor. For in-
stance, it may replace the name of a word-processor
plug-in with a Trojan program that in turn modifies
.bashrc.

• Data files. Malware may create data files with ma-
licious content that can exploit vulnerabilities in be-
nign software. The recent spate of vulnerabilities
in image and document viewers, web browsers, and
word-processors shows that this is indeed a viable
approach. Malware may save these files where they
are conspicuous (e.g., on the desktop), using names
that are likely to grab user attention. When the user
invokes a benign viewer on the file, it will be com-
promised. At this point, malware can achieve its ob-
jectives using the privileges available to the viewer.

In contrast, we develop an approach in this paper that
aims to provide positive assurance about overall system
integrity. Our method, called PPI (Practical Proac-
tive Integrity protection), identifies a subset of objects
(which are typically files) as integrity-critical and a
set of untrusted objects. We assume that system in-
tegrity is preserved as long as untrusted objects are
prevented from influencing the contents of integrity-
critical objects either directly (e.g., by copying of an
untrusted object over an integrity-critical object) or
indirectly through intermediate files. In other words,
there should be no information flow from untrusted ob-
jects to integrity-critical objects.

Although information-flow based integrity preserva-
tion techniques date as far back as the Biba integrity
model [6], these techniques have not had much suc-
cess in practice due to two main reasons. First, these
techniques require every object in the system to be
labeled as high-integrity or low-integrity — a cum-
bersome task, considering the number of files involved
(more than 100K on typical Linux systems). Manual
labeling is prone to errors that can either damage sys-
tem integrity (by allowing an integrity-critical file to
be influenced by a low-integrity application) or usabil-
ity (by denying a legitimate operation as a result of
security violation). Secondly, the approach is not very
flexible, and hence breaks many applications. To over-
come this problem, many applications may need to be

designated as “trusted,” which basically exempts them
from the information flow policy. Obviously, an in-
crease in the number of trusted applications translates
to a corresponding decrease in assurance about overall
integrity.

As a result of the factors mentioned above,
information-flow based techniques have not become
practical in the context of contemporary operating sys-
tems such as Windows and Linux. In contrast, we have
been able to develop a practical information-flow based
integrity protection for desktop Linux systems by fo-
cusing on (a) automating the development of integrity
labels and policies, (b) providing a degree of assurance
that these labels and policies actually protect system
integrity, and (c) developing a flexible framework that
can support contemporary applications while minimiz-
ing usability problems as well as the need to designate
applications as “trusted.” Our experiments considered
a modern Linux Workstation OS together with numer-
ous benign and untrusted applications, and showed
that system usability is preserved by our technique,
while thwarting sophisticated malware.

1.1. Goals of Approach

• Provide positive assurances about system integrity
on a contemporary Workstation, e.g., a Linux Cen-
tOS/Ubuntu desktop consisting of hundreds of be-
nign applications and tens of untrusted applications.
Integrity should be preserved even if untrusted pro-
grams run with root privileges.

• Effectively block rootkits and most other malware.
Most malware, including rootkits and spyware,
should be detected when they attempt to install
themselves, and removed automatically and cleanly.
Stealthier malware should be detected when they at-
tempt to damage system integrity, and can be re-
moved at that point. We do not address malware
that can operate without impacting system integrity,
e.g., a P2P application that transmits user data to a
remote site when it is explicitly invoked by a user.

• Be easy to use, for end-users as well as system ad-
ministrators. Usability encompasses the following:

– Preserve availability of benign applications, specif-
ically, provide a certain level of confidence that be-
nign applications would not fail due to security vi-
olations during their normal use.

– Minimize administrator effort by automating the
development of file labels and integrity policies.

– Eliminate user prompts. Security mechanisms that
require frequent security decisions from users don’t
work well in practice for two reasons. First, users
get tired and don’t cooperate. Second, these user



interactions become the basis for social engineering
attacks by malware writers.

• Reduce reliance on trusted applications so as to pro-
vide better overall assurance.

1.2. Salient Features

The principal elements of our approach that enables us
to achieve the above goals are summarized below:

• Flexible decomposition of high-level policies into
low-level policies. Traditional approaches for
information-flow based integrity, such as the Biba in-
tegrity model [6], associate a label with an object (or
subject) at the time of their creation, and this la-
bel does not change during the lifetime of the object
or subject. In other words, these labels effectively
define the access policies: a subject is permitted to
read (write) an object only if the subject’s integrity is
equal to or lower (equal to or higher) than that of the
object. In contrast, we distinguish between labels,
which are a judgment of the trustworthiness of an
object (or subject), from policies that state whether
a certain read or write access should be permitted.
Based on this separation, our approach (described in
Section 2) allows integrity levels of objects or subjects
to change over their lifetime. Moreover, “read-down”
and “write-up” conflicts are resolved differently for
different objects and subjects. These factors pro-
vide flexibility in developing low-level policies that
preserve system integrity without unduly impacting
usability.

• Automated analysis for generating enforceable poli-
cies. Given the large number of objects (hundreds of
thousands) and subjects (thousands), manual setting
of policies for every object/subject pair is impracti-
cal. In Section 3, we therefore develop techniques
that utilize an analysis of access patterns observed
on an unprotected system to automatically derive
policies. This analysis can also be used to automat-
ically complete the set of integrity-critical applica-
tions, starting from a partial list provided by a policy
developer.

As we show in Section 3.3, our technique is sound,
i.e., it will generate policies that preserve system in-
tegrity, even if the access logs used in analysis are
compromised by malicious applications running on
the unprotected system. However, corrupted logs can
compromise system availability.

• A flexible enforcement framework. Our enforcement
framework, described in Section 5, consists of a small,
security-critical enforcement component that resides
in the OS kernel, and a user-level component that in-
corporates more complex features that enhance func-

(Low Integrity)
Untrusted

Benign
(High Integrity)

Trusted

Malicious

Integrity−critical

Figure 1. Classification of Applications

tionality without impacting security. This framework
also incorporates features needed for learning and
synthesizing policies for new applications.

• Mechanisms for limiting trust. There are some in-
stances when high-integrity applications should be
allowed to access low-integrity files. In Section 4, We
develop techniques that enable such exceptions to be
restricted. Our techniques typically have the effect
of distinguishing between code/configuration inputs
from data inputs, and ensuring that exceptions are
made only for data inputs. Using these mechanisms,
we describe how we can limit the amount of trust
placed on important applications such as software
installers, web browsers and email handlers, and file
utilities.

We have implemented our technique on desktop sys-
tems running RedHat/Ubuntu Linux, consisting of sev-
eral hundred benign software packages and a few tens
untrusted packages, the evaluation shows that the ap-
proach is practical, and does not impose significant us-
ability problems. It is also effective in preventing in-
stallation of most malware packages and detection (and
blocking) of malicious actions performed by stealthy
malware.

2. Policy Framework

2.1. Trust and Integrity Levels

Figure 1 illustrates the integrity and trust levels used
in our framework. To simplify the presentation, we
use just two integrity levels: high and low. Integrity
labels are associated with all objects in the system,
including files, devices, communication channels, etc.
A subset of high-integrity objects need to be identified
as integrity-critical, which provide the basis for defining
system integrity:

Definition 1 (System Integrity) We say that sys-
tem integrity is preserved as long as all integrity-critical
objects have high integrity labels.

The set of integrity-critical objects is externally spec-
ified by a system administrator, or better, by an OS
distribution developer. It is important to point out
that the integrity-critical list need not be comprehen-
sive: if objects are left out of this list, our technique will



automatically detect them using the analysis described
in Section 3, as long as these objects are accessed after
the kernel module enforcing PPI policies has begun ex-
ecution. In particular, objects that are accessed during
early phases of the boot process, as well those objects
that are accessed by PPI, must be explicitly included in
the integrity-critical set. On Linux, this (minimal) set
of integrity-critical objects includes all the files within
/boot, the binaries used by init and the files used by
PPI, as well as devices such as the hard disk.

When referring to applications, we use the term
“trust level” instead of “integrity level.” Benign appli-
cations are those that are known to be benign, and may
include applications that are obtained from a trusted
source such as an OS vendor. Hence the files that
constitute benign applications will have high integrity.
Moreover, benign applications will remain trustworthy
(i.e., produce high-integrity outputs) as long as they
are never exposed to low-integrity (and hence poten-
tially malicious) inputs. A subset of benign applica-
tions may be designated as trusted. These applications
are deemed to sufficiently validate their inputs that
they can produce high-integrity outputs even when
some of their inputs have low-integrity. Untrusted ap-
plications are those that are obtained from untrusted
sources, e.g., downloaded from an unknown website or
those arriving via email from unauthenticated sources.
An unspecified subset of these applications may be ma-
licious.

Since trusted applications are being exempted from
information flow policies, it is important that only a
small number of well-tested applications are designated
this way. In addition, the scope and purpose of this
trust should be minimized as much as possible. We
defer these issues until Section 4.

2.2. Integrity Labels Versus Policies

Given our goal of preserving system integrity, the Biba
model is an obvious starting point [6]. However, a
traditional interpretation of multi-level security (MLS)
can lead to a rigid system that is difficult to use. To
address this problem, we distinguish between integrity
labels and policies. In our view, an integrity label on
a file simply indicates whether its content is trustwor-
thy, but does not dictate whether trustworthiness must
be preserved, say, by preventing low-integrity subjects
from writing to that file. A policy, on the other hand,
indicates whether a certain read or write access should
be permitted. This separation yields flexibility in de-
veloping policies that preserve system integrity without
unduly impacting usability. For instance, we have the
following choices for policies when a high-integrity sub-
ject (process) attempts to read a low-integrity object:

• deny: deny the access

• downgrade: downgrade the process to low-integrity

• trust: allow the access without downgrading the pro-
cess, trusting the process to protect itself

The following examples illustrate the need for this
flexibility. Consider a utility such as cp that ac-
cesses high-integrity objects in some runs (e.g., copy
/etc/passwd), and accesses low-integrity objects in
other runs (e.g., copy user files). Downgrading (the
second alternative above), which corresponds to the
low-water mark (LOMAC) policy [6, 7, 12], permits
such dual use. However, this choice of downgrading
is inappropriate in some cases, and leads to the well-
known self-revocation problem: consider a process that
has opened a high-integrity file H for writing, and sub-
sequently attempts to read a low-integrity file L. If the
process is downgraded at this point, we need to revoke
its permissions to H. Applications typically assume
that access permissions cannot be revoked, and hence
may not handle the resulting access errors gracefully.
On the other hand, if we deny the read access to L, it
is likely to be better handled by the application.

To justify the third choice, consider an SSH server
that reads low-integrity data from remote clients. The
server code anticipates that clients may be malicious,
and can reasonably be expected to protect itself ade-
quately, thereby ensuring that the low-integrity input
will not corrupt any high-integrity outputs. In con-
trast, the other two choices (deny or downgrade) will
prevent the server from carrying out its function.

Analogous to the choices above, the following op-
tions are available when a low-integrity process at-
tempts to write a high-integrity file (i.e., a file con-
taining trustworthy data).

• deny: deny the access

• downgrade: downgrade the object to low-integrity,
and allow the write operation

• redirect: redirect the access to a file f so that it ac-
cesses another file fu instead. All subsequent accesses
by an untrusted application to f will be redirected to
fu, while accesses by a benign application won’t be
redirected.

To justify the second choice, consider a file that is cre-
ated by copying a high-integrity file. By default, the
copy would have a high-integrity label, but if the copy
is subsequently used only in low-integrity applications,
downgrading it is the best option, as it would permit
this use. As a second example, consider a commonly
executed shell command such as cat x > y. Here, the
shell will first create the output file y before cat is
launched. If the shell has high integrity, then y would
be created with high integrity, but subsequently, if x



turns out to have low integrity, the best option is to
downgrade y rather than to deny access to x. On
the other hand, if a file is known to be used by high-
integrity applications, it should not be downgraded,
and the write access must be denied.

To justify the third choice, consider a benign ap-
plication that is sometimes used with untrusted ob-
jects, e.g., a word-processor that is used on a file from
the Internet. During its run, this application may
need to modify its preferences file, which would have
a high-integrity label, since the application itself is be-
nign. Denying this write operation can cause the word-
processor to fail. Permitting the access would lower the
integrity of the preferences file, leading to all future
runs of the word-processor to have low integrity. How-
ever, by redirecting accesses to a low-integrity copy of
the preferences file, both problems can be avoided.

In summary, there are several ways to resolve poten-
tial integrity violations (conflicts), and different resolu-
tions are appropriate for different combinations of ob-
jects, subjects, and operations. Our (low-level) policy
specifies, for each combination of object O and subject
S, which of the six different choices mentioned above
should be applied. The sheer number of objects and
subjects on modern operating systems (e.g., >100K
files in system directories on typical Linux distribu-
tions) makes manual policy development a daunting
task. We have therefore developed techniques to auto-
mate this task in the next section.

Although we discussed only file read/write opera-
tions above, the same concepts are applicable to other
operations, e.g., file renames, directory operations, de-
vice accesses, and inter-process communication. We
omit the details here, covering them briefly in the im-
plementation sections.

3. Automating Policy Development

The large number of objects and subjects in a modern
OS distribution motivates automated policy develop-
ment. We envision policy development to be under-
taken by a security expert — for instance, a member
of a Linux distribution development team. The goal
of our analysis is to minimize the effort needed on the
part of this expert. The input to the policy generation
algorithm consists of:

• software package information, including package con-
tents and dependencies,

• a list of untrusted packages and/or files

• the list of integrity-critical objects

• a log file that records resource accesses observed dur-
ing normal operation on an unprotected system.

We use these to compute dependencies between ob-
jects and subjects in the system, based on which trust
labels and policies are generated. Ideally, all accesses
observed in the log would be permitted by these policies
without generating user prompts or application fail-
ures, but in practice, some failures may be unavoid-
able. Naturally, it is more important to minimize fail-
ures of benign applications as opposed to untrusted
ones. Given this goal of policy analysis, it becomes im-
portant to ensure coverage of all typical uses of most
applications in the log, with particular emphasis on be-
nign applications. Since usage is a function of users and
their environments, better coverage can be obtained by
analyzing multiple logs generated on different systems.

3.1. Computing Dependencies, Contexts and
Labels

Critical to the success of our approach was the observa-
tion that software package information, such as those
contained in RPM or Debian packages, can be lever-
aged for extracting subject/object dependencies. The
package information indicates the contents (i.e., files)
in each package, and the dependencies between differ-
ent packages.

Since some of the dependences, such as those on con-
figuration or data files, may not be present in the pack-
age database, we analyze the access log to extract addi-
tional dependency information. The dependencies can
vary for the same application depending on the context
in which it is used. For instance, when used by system
processes (such as a boot-time script), bash typically
needs to be able to write high-integrity files, and hence
must itself operate at a high-level of integrity. How-
ever, when used by normal users, it can downgrade
itself when necessary to operate on untrusted files. In
the former context, bash reads and writes only high-
integrity files, whereas in the latter context, it may read
or write a mixture of high and low integrity files. To
identify such differences, we treat each program P as
if it were several distinct programs, one corresponding
to each of the following execution contexts: Ps that is
used by system processes, Pa that is used by processes
run by an administrator, and Pui

for processes run by
a normal user ui. (The distinction between Ps and Pa

is that in the second case, the program is run by a
descendant of an administrator’s login shell.) For sim-
plicity, we will assume that there is only one normal
user u.

Once the logs are generated, it is straight-forward to
compute the set of files read, written, or executed by
a program in each of the above contexts. In addition,
for each program and file read (written or executed) by
that program, we compute the fraction of runs of that



program in each context during which the file was read
(written, or executed).

Deriving Initial Object Labels. Initial object la-
bels are derived using the following steps. The assump-
tion behind this algorithm is that all packages and files
on the system are benign unless specified otherwise:

• Mark all packages that depend on untrusted packages
as untrusted.

• Label all objects that belong to untrusted packages
(or are explicitly identified as untrusted) with low
integrity.

• Label any object that was written by an untrusted
subject (i.e., a process whose executable or one of
its libraries are from low-integrity files) with low in-
tegrity.

• Label all other objects as having high integrity.

We reiterate that object labels do not dictate policy:
an object may have a high label initially, but the policy
synthesized using the algorithm below may permit it to
be written by an untrusted subject, which would cause
its label to become low.

3.2. Policy Generation

The policy generation algorithm consists of four phases
as described below. The first phase identifies the set
of “preserve-high” objects, i.e., objects whose integrity
needs to be preserved. In the second phase, we gener-
ate the low-level policies for each (subject, object, ac-
cess) combination, reflecting one of the policy choices
described in Section 2.2. Phase III refines the policies
by simulating the accesses contained in the log. Phase
IV consists of ongoing policy refinement, as new appli-
cations are installed.

Phase I: Identification of objects whose in-

tegrity needs to be preserved.

1. Initialize:

• For every package P such that an integrity-critical
package depends on it, add P to the set of integrity-
critical packages.

• For every object that belongs to an integrity-
critical package (or object that is explicitly labeled
as integrity-critical), mark it as “preserve-high.”

• For every program P that is ever executed in the
system context, mark P as preserve-high.

2. Propagate from object to subject. If a program P

writes an object Q that is marked preserve-high, then
mark P as preserve-high.

3. Propagate from subject to object. If a program P

reads or executes an object Q then mark Q as
preserve-high if any of the following hold:

(a) Ps (i.e., P operating in system context)
reads/executes Q.

(b) Pa reads or executes object Q in non-negligible
fraction of runs, say, over 10% of the runs.

(c) P is marked preserve-high and Pu almost always
reads or executes Q, say, in over 95% of the runs.

Every program that is run in system context is ex-
pected to be run in high-integrity mode, and hence
the first rule. Most activities performed in adminis-
trator context have the potential to impact system
integrity, and hence most of these activities should
be performed in high integrity mode, and hence the
second rule. For the third rule, if a benign program
P almost always reads or executes a specific file Q,
then, if Q has low integrity, it will prevent any use
of P in high integrity mode. It is unlikely that a be-
nign program would be installed on a system in such
a way that it is only executed at low-integrity level,
and hence the third rule.

4. Repeat the previous two steps until a fixpoint is
reached.

If any low-integrity file gets marked as preserve-high,
there is a conflict and the policy generation cannot pro-
ceed until it is manually resolved. Such a conflict is in-
dicative of an error in the input to the policy generation
algorithm, e.g., a software package commonly used in
system administration has been labeled as untrusted.

Phase II: Resolution of conflicting accesses.

This phase identifies which of the policy choices dis-
cussed in Section 2.2 should be applied to each con-
flicting access involving (subject, object, access).

• Deny policy: For every object labeled preserve-
high, the default policy is to permit reads by any
subject but deny writes by low-integrity subjects.
Similarly, for every object labeled with low-integrity,
the default policy is to permit reads by low-integrity
subjects but deny reads by high-integrity subjects.
Exceptions to these defaults are made as described
below, depending upon the program executed by a
subject, and its trust level.

• Downgrade subject policy: A high-integrity sub-
ject P running in context c will be permitted to down-
grade itself to low-integrity if there are runs in the
log file where Pc read a low integrity file, and did not
write any high integrity objects subsequently. Such
runs show that Pc can run successfully, without ex-
periencing security violations. If there are no such
runs, then the downgrade policy is not used for Pc.

Note that at runtime, a subject running Pc may still
be denied read access if it has already opened an ob-
ject O such that the policy associated with O pre-



vents its label from being downgraded.

Finally, note that the use of context makes the down-
grade policy more flexible. For instance, we may per-
mit bash to downgrade itself when running in user
mode, but not when it is run in system mode.

• Trust policy: Each subject P that reads a low-
integrity object and writes to an object marked
preserve-high is a candidate for the “trust” policy.
Such candidates are listed, and the policy developer
needs to accept this choice. If this choice is not ac-
cepted, the log analyzer lists those operations from
the log that would be disallowed as a result of this
decision.

• Downgrade object policy: Any object that is not
marked as preserve-high can be downgraded when it
is overwritten by a low-integrity subject.

• Redirect policy: A redirect policy is applied to the
combination (P,O,write) if (a) O is marked preserve-
high, (b) P reads O in almost every run, and (c) P

writes O in a non-negligible fraction of runs 1.

Phase III: Log simulation and policy refine-

ment. The algorithm described above did not take
into account that file labels will change as the opera-
tions contained in the log file are performed. (If we did
not make the simplifying assumption that the labels
are static, then the analysis would become too complex
due to mutual dependencies between policy choices and
file labels.) To rectify this problem, we “simulate” the
accesses found in the log. We track the integrity lev-
els of objects and subjects during this simulation, and
report all accesses that cause a violation of the policy
generated in the previous step. The violation reports
are aggregated based on the subject (or object), and
are sorted in decreasing order of the number of occur-
rences, i.e., the report lists the subject (or object) with
the highest number violations first. Subjects with high
conflict counts are suggestive of programs that may
need to be trusted, or untrusted programs that cannot
be used.

Based on the conflict report, the policy developer
may refine the set of trusted, benign, or untrusted pro-
grams. If so, the analysis is redone. In general, more
than one iteration of refinement may be needed, al-
though in our experience, one iteration has proven to
be sufficient.

Phase IV: Policy generation for new applica-

tions. New files get created in the system. In addi-
tion, new applications may become available over time.
In both cases, we cannot rely on any “logs” to generate

1These three conditions characterize the access by most ap-
plications to their preference files — the context in which the
redirect policy was motivated.

policies for them. Our approach is as follows.
For objects that are created after policy deployment,

their labels will be set to be the same as that of the
subject that created them. The default policy for such
newly created objects is that their labels can be down-
graded when they are written by lower integrity sub-
jects. In addition, accesses to these objects are logged.
The resulting log is analyzed periodically using the
same criteria described above to refine the initial pol-
icy. For instance, if the object is used repeatedly by
high-integrity subjects, the policy would be set so that
writes by lower-integrity subjects are denied.

If a new software package is installed, labels for the
objects in the package are computed from the trust
level of the package, which must be specified at the
time of installation. The policies for these files are then
refined over time, as the package is used by the user.

3.3. Soundness of Policies

Recall that the policies derived above are based on ac-
cesses observed on an unprotected system. Being un-
protected, it is possible for the log to have been com-
promised due to malicious untrusted code. Thus, an
important question is whether the soundness of the de-
rived policies is compromised due to the use of such
logs. An important feature of our policy generation
technique is that this does not happen. Thus, if the
generated policies are enforced on a newly installed sys-
tem, these policies will preserve its integrity.

Observation 2 As long as the programs identified as
trusted are indeed trustworthy, the policies generated
above will preserve system integrity even if the access
logs were compromised due to attacks.

Proof sketch: Recall that preserving system integrity
means that integrity-critical objects should never be
written by low-integrity subjects. Observe that all
integrity-critical objects are initialized to preserve-high
in the first phase of the policy generation algorithm.
The propagation steps in this phase can add to the set
of objects marked preserve-high, but not remove any
objects. In the next phase, note that “downgrade ob-
ject” policy is applied only to those objects that aren’t
marked preserve-high. All other policy choices ensure
that object labels will not be downgraded. Thus, the
generated policy will ensure that the labels of integrity-
critical objects remain high.

Observe that if the logs were compromised, far too
many conflicts may be reported during policy genera-
tion. Worse, because the compromised logs may not
reflect the behavior of programs on an uncompromised
system, the generated policies may cause many accesses
(not recorded in the log) to be denied, which can make
the system unusable. Both these symptoms are sug-



gestive of a compromised log file. The policy developer
needs to obtain a new, uncompromised log and rerun
the policy generation algorithm2.

The above observation indicates that the primary
weakness of PPI arises due to trusted programs. If
they are incorrectly identified, or if they contain ex-
ploitable vulnerabilities, they can compromise end-user
security objectives. This factor motivates features and
techniques in the next section that limit and reduce the
scope of trust.

4. Limiting Trust

Unlimited and unrestricted trust is often the weakest
link in security, so we have incorporated features in
PPI to reduce the scope and nature of trust placed on
different programs. We describe these features below,
followed by a discussion of how these features are used
to address important applications such as software in-
stallers, browsers and email handlers, window systems,
and so on.

Invulnerable and Flow-Aware Applications.

All outputs of an invulnerable applications continue to
have high integrity even after reading low-integrity in-
puts. An example would be an ssh server that can
be trusted to protect itself from potentially malicious
network inputs, and maintain its high integrity.

Flow-aware applications can simultaneously handle
inputs with different integrity levels. They keep track
of which inputs affect which outputs, and label the
outputs appropriately. (Our enforcement framework
provides the primitives for flow-aware applications to
control the labels on their outputs.) Flow-awareness
is natural for some applications such as web-browsers
that already keep track of the associations between
their input actions and output actions. (Web browsers
use this type of information to enforce the “same ori-
gin policy [15].”) Alternatively, automated techniques
such as runtime taint-tracking [25, 36, 27] may be used
to achieve flow-awareness.

A generic technique to mitigate the risk due to ex-
cessive trust is to deploy defenses against the most
common ways of exploiting applications using mali-
cious inputs, e.g., address-space randomization [5, 35]
or taint-tracking3 [25, 36, 27]. This technique can be
combined with a more specific risk mitigation mecha-
nism described below that limits trust to certain con-
texts.

2Recall that end-users are not expected to generate policies,
so they won’t experience the security failures that result due to
compromised logs; and hence we don’t expect this possibility to
negatively impact end-user experience.

3Taint-tracking is preferable due to the weaknesses of ASR
against local attacks.

Context-aware Trust. A key observation is that
programs are rarely designed to accept untrusted in-
puts on every input channel. For instance, while an
ssh server may be robust against malicious data re-
ceived over the network, it cannot protect itself from
malicious configuration files, shared libraries or exe-
cutables. Our approach, therefore, is to limit trust to
the specific input contexts in which an application is
believed to be capable of protecting itself. For an ssh
server, this may be captured by explicitly stating that
it is invulnerable to inputs received on port 22.

With respect to files, one approach for limiting trust
is to enumerate all the files read by an application in
advance, and identify those that can have low integrity.
This is far too cumbersome (or may not even be fea-
sible) since the number of files read by an application
may be very large (or unbounded). An alternative ap-
proach is to categorize a file as “data input” or “con-
trol input” (configuration or a library), and to permit
a trusted application to read low-integrity data inputs
but not control inputs. But manual identification of
data and control inputs would be cumbersome. In-
stead, we rely on some of the properties of our policy
synthesis techniques to achieve roughly the same effect.
Specifically, note that configuration and library inputs
will be read during practically every run of an appli-
cation. As such, these files will be marked “preserve-
high” in phase I of the policy generation algorithm,
and hence the application will not be exposed to low-
integrity configuration or library files4.

4.1. Limiting Trust on Key Applications

Software Installers pose a particular challenge in
the context of integrity protection. Previous techniques
simply designated software installers as “trusted.”
This designation is problematic in the context of con-
temporary package management systems, where pack-
ages may contain arbitrary installation scripts that
need to be run by the installer. During this run, they
may need to modify files in system directories, and
hence scripts cannot be run with low privileges.

We have developed a new approach to address this
software installation problem. In our approach, the in-
staller consists of two processes: a “worker” that runs
as a low-integrity subject (but may have root privi-
leges), and performs installation actions. To ensure

4This does not protect against the possibility that the appli-
cation may, in a subsequent run, read a different configuration
file. However, this is usually the result of running the appli-
cation with a command-line option or an environment variable
setting that causes it to read a different configuration/library
file. These “inputs” are provided by a parent process, and hence
are trusted, since the parent itself must have high-integrity in
order for a child process to have high integrity.



that this low-integrity subject can overwrite system
files if needed, a redirection policy is applied to all files
written by this subject. A second high integrity “su-
pervisor” subject runs after the first one completes.
It verifies that the actions performed during installa-
tion were legitimate. In particular, it ensures that (a)
the modifications made to the package management
database are exactly those that were made to the file
system, and (b) all the files installed are those that can
be overwritten by a low-integrity subject. If the verifi-
cation succeeds, the supervisor renames the redirected
copies of files so that they replace their original ver-
sions. Otherwise, all the redirected copies are removed
and the installation aborted.

Web Browser and Email Handler. Web browser
and email client act as conduits for data received
from the network. In our system, both web browser
and email handler are considered flow-aware applica-
tions. Specifically, data received by a browser can be
deemed high or low integrity based on the source of
data and other factors such as the use of SSL. For the
Mozilla browser used in our experiments, we built a
small external program that uses the contents of a file
“downloads.rdf” to correlate network inputs with the
files written by the browser, and to label these files ac-
cordingly. We wrote a similar program for pine email
reader.

X-Server and Other Desktop Daemons. GUI-
based applications, called X-clients, need to access the
X-Server. To ensure continued operation of benign as
well as untrusted X-client applications, the X-Server
should be made invulnerable on input channels where
they accept data from untrusted clients. We mitigate
the risk due to this trust in two ways. First, X-server
is made invulnerable only on inputs received via sock-
ets used to connect to an untrusted client. Second, we
make use of the X security extension [33] to restrict
low-integrity applications so that they cannot perpe-
trate attacks on other windows that would otherwise
be possible.

Unfortunately, due to the design of the GNOME
desktop system, there are some servers (e.g., gconfd)
that are used by multiple X-clients and need to be
trusted in order to obtain a working system. We
are currently investigating techniques to limit trust on
these applications. Some of the recent results from the
SE-Linux project [31, 18] could be applicable in this
context.

File Utilities. Applications that can run at multi-
ple trust levels can sometimes introduce some usability
issues, specifically, when they are used to operate on
input files with varying trust levels. We modified cp

Figure 2. PPI System Architecture

and mv to make them flow-aware, so that the output
files correctly inherit the label from the input files.

5. Enforcement Framework

Our design is a hybrid system consisting of two com-
ponents: a user-level library and a kernel-resident
checker. Integrity-critical enforcement actions are per-
formed by the kernel component, while “functional-
ity enhancement” features are relegated to the library.
For instance, the kernel component does not deal with
redirection policy. Moreover, while it supports the no-
tion of trusted subjects, it does not concern itself with
mechanisms for limiting trust, which are provided by
the user-level component. While the kernel enforce-
ment component is always trusted, the user-level com-
ponent is trusted only when it operates in the context
of a high-integrity process.

In our implementation, the kernel level component
is realized using LSM (Linux Security Modules) [34],
which has now become part of the standard Linux ker-
nel. We use the security hooks of LSM to enforce in-
formation flow policies. Although our policy frame-
work allows for policies to be a function of objects as
well as subjects, for simplicity, the policies enforced
by the kernel component have limited dependence on
subjects. (More flexible subject-dependent policies can
be realized using the user-level component.) This en-
ables kernel-enforced policies to be stored with objects
using extended file attributes available on major Linux
file systems (including ext2, xfs, and reiserfs). Poli-
cies as well as integrity labels are stored using these
attributes. Specifically, a 3-bit attribute integ obj is
used to store the integrity level of a file. (For extensi-
bility, our implementation uses eight integrity levels.)
A 11-bit policy is associated with each file, consisting
of two parts. The first part pertains to read and write
operations performed on the file:

• down obj (3 bits) indicates the lowest integrity level
to which this object can be downgraded.



• log obj (1 bit) indicates whether accesses to this ob-
ject should be logged. This feature could be used
for auditing. In our implementation, it provides the
mechanism for generating the logs used for policy
generation.

The second part of the policy pertains to the use of a
file to instantiate a subject, i.e., when the file is exe-
cuted. It consists of the following components:

• down sub (3 bits) indicates the lowest integrity level
to which a process that executes this object can be
downgraded.

• log sub (2 bits) indicates whether accesses made by
this subject should be logged. A second bit indicates
whether this policy should be inherited by descen-
dants of a subject.

• invul sub (1 bit) indicates if this subject is invulnera-
ble. No distinction is made among various subclasses
of trusted applications described in Section 4 — it is
up to the user-level component to implement distinc-
tions such as flow-awareness and context-awareness.

• super sub (1 bit) allows a subject to modify the labels
associated with objects in the system. Naturally, this
capability should be highly restricted. In our imple-
mentation, there is one administrative program that
has this capability.

When PPI system is initialized, the extended attributes
associated with all the files are populated using the la-
bels and policies generated using the techniques in Sec-
tion 3. New files inherit the integrity of the subject cre-
ating them. The log bits are set by default, super sub
and invul sub bits are cleared, and the down sub and
down obj bits are set to zero. (A lower integrity level
or a higher downgrade level may be requested by any
subject.)

After a fork, the child inherits the parent’s at-
tributes, including its integrity level. After an exec,
the integrity of the subject is reduced (but can never
be increased) to that of the file being executed. The su-
per sub policy is inherited from an executable file only
if the subject is at the highest possible integrity level.
Finally, the invul sub as well as log sub attributes are
set from the executable file.

Handling Devices, IPC, and File Renaming.

Devices typically need special treatment since they are
not persistent in the same sense as files. The integrity
and down obj labels of devices such as /dev/kmem,
/dev/mem, and /dev/sda* are set to be 111 to en-
sure that only the highest integrity subjects can modify
them. Devices such as /dev/null and /dev/zero are
treated as having low-integrity for writes, and high in-
tegrity for reads. The integrity labels of devices such
as /dev/tty* and /dev/pty/* are derived from that

of the associated login processes, in a manner similar
to that of SELinux.

IPC and socket communication are treated as com-
munication channels between subjects. As such, they
inherit labels from the subjects that they connect.
Moreover, since most of these communication mech-
anisms are bidirectional, subjects interconnected using
them have identical security attributes5. The kernel
enforcement component keeps track of “groups” of sub-
jects interconnected using IPC and socket communica-
tion so that operations such as downgrading can be
performed safely.

Finally, file renaming operations are deemed as a
write operation on the file object.

Implementing Subject Downgrading. Subjects
are downgraded at runtime only if doing so will not
result in revocation of privileges. Specifically, the user-
level component indicates, at the time of opening a file
for read, whether a higher integrity subject is willing
to downgrade to a lower level. The kernel component
permits the downgrade if (a) the file can be successfully
opened, (b) the subject does not have higher integrity
files that it is writing into, and (c) all other subjects
with which this subject has IPC can also be down-
graded.

User-Level Component. The user-level component
is implemented by intercepting system calls in glibc.
Since the policies themselves are application-specific,
their implementation is kept in a separate library. The
user-level communicates with the kernel level using
ioctl’s to implement complex policies. We already
described how “downgrade subject” policy is imple-
mented through such coordination. It also supports
context-aware trust policies: the user level determines
whether a trusted application is invulnerable (or flow-
aware) in a certain context, and if so requests an open
without downgrading its integrity. For flow-aware ap-
plications, the user-layer communicates to the kernel
layer if files should be opened with a lower integrity
level than that of the subject. The user level is also re-
sponsible for implementing the redirection policy. The
kernel layer is unaware of this policy, and simply treats
it as a combination of a read operation on the original
file, and a write operation on a new file.

5An exception occurs in the case of trusted subjects that are
invulnerable to inputs on a communication channel: in this case,
the trusted process can continue to maintain its integrity level
and other security attributes regardless of the security attributes
of the subject on the other end of the communication channel.



6. Evaluation

We initially implemented PPI on CentOS and subse-
quently migrated to a Ubuntu system. Due to time
limitations, some of our evaluations were performed on
CentOS while others were performed on Ubuntu. The
specifics of these two systems are as follows:

• CentOS 4.4 distribution of Linux with kernel version
2.6.9. The test machine has 693 rpm packages and
205k files in total.

• Ubuntu 7.10 distribution of Linux with kernel version
2.6.22-14. The test machine has 1164 dpkg packages
and 159k files in total.

6.1. Experience

Policy Generation on Ubuntu. For generating
policies, we used an access log collected over a period
of 4 days on a personal laptop computer. We also car-
ried out administrative tasks such as installing soft-
ware, running backups, etc. The log file we obtained
was around 1GB.

The set of initial integrity-critical file objects in-
clude files within /boot, /etc/init.d/, /dev/sda and
/dev/kmem. We identified 26 untrusted application
packages, which include:

• Media players: mplayer and mpglen

• Games: gnome-games, crafty and angband

• Instant messengers: pidgin

• Emulators: apple2 and dosemu

• File utilities: rar, unrar and glimpse

• X utilities: axe

• Java applications: jta, sun-java6-bin and sun-java-jre

Based on the above initial configurations to log anal-
ysis, we performed the procedures described in Sec-
tion 3 for label computation and policy generation.

Among all the files (159K) and dpkg packages (1164)
on the system, the initial labels of 783 files (including
files that belong to 26 untrusted packages and those
written by them) were set to low integrity, while all
the others are labeled high integrity initially.

Then we moved on to the policy generation phase.
The number of subjects and objects that were assigned
to different policy choices across different phases are
summarized in Figure 3. In Phase I, the log anal-
ysis determined 73305 files (934 packages) that need
to be marked “preserve-high.” In Phase II, the anal-
ysis identified which of the six policy choices should
be applied to each conflicting accesses. As a result,
168 programs that are exclusively run in system con-
text were assigned “subject-deny” policy, and they
won’t be allowed to read untrusted input. 4 programs
(Xorg, dbus-daemon, gconftool-2, gnome-session) were

marked “trusted,” and they would retain high integrity
level even when exposed to low-integrity input in cer-
tain channels, for instance, /tmp/.X11-unix/X0 in the
case of Xorg. The rest programs (6905) can be down-
graded when reading low-integrity input. Correspond-
ingly, for file objects, deny policies were applied to
73305 integrity critical objects, while the others can
be downgraded6. Finally, the analysis identified 15 file
objects for redirection policy, including files such as the
preferences files for gedit editor.

Phase III used the initial policy configuration
from Phase II. It reported 66 violations due to ob-
ject and subject labels being downgraded in a run-
ning system. (A few thousand object and sub-
ject downgrades were observed.) Of all the viola-
tions, trackerd accounted for 51 conflicts. Another
ten conflicts were due to nautilus, gconfd-2, and
bonono-activation-server. After an analysis of the
conflict report, it was determined that these four appli-
cations needed to be classified as trusted. Finally, four
conflicts arose because bash could not write to the his-
tory file. This was resolved by using the redirect policy.

In addition, as described earlier, Mozilla and pine
were also identified to be trusted applications. (One
could of course avoid this for a browser by running two
instances, one operating in high-integrity and used to
access high-integrity web sites, and the other in low-
integrity to access untrusted web sites.) Most of the
trusted applications listed above should be made flow-
aware, so they label their outputs appropriately, based
on the integrity of their inputs.

PPI Experience during Runtime. After we
plugged in the policies generated in the previous step,
we ran PPI in normal enforcing mode for several days.
The system booted up without problems, which indi-
cated that none of the init related programs were af-
fected by low integrity input. We first ran all the nor-
mal administration type of tasks using root privilege,
such as checking disk space, configuring network in-
terfaces, etc. Then we logged in as normal user, and
worked on the system as a typical user would. We also
used all of the untrusted applications installed on the
system. None of these activities raised any security vio-
lations. (We were able to create violations on purpose,
e.g., by trying to edit a high and low integrity file at
the same time using a benign editor.)

One slight problem is the side-effect of redirection

6It should be noted that one of the main reasons for so many
files being labeled downgradable is that the log was collected over
a relatively short period of time, during which many of the appli-
cations were not exercised. Thus, we should view the policies on
these remaining files as “initial” policies that would be further
refined in Phase IV of policy development. (Implementation of
Phase IV is ongoing work.)



Phase I Phase II Phase III
subject object subject object subject object

subject-deny 168 168

subject-downgrade 6905 6905

subject-trust 4 8

object-deny 73305 73305 73305

object-downgrade 86185 86185 86185

object-redirect 15 16

Figure 3. PPI Policy Generation in Different Phases.

policies: a duplicate copy of many of the preference files
will be created as a result. One option is to periodically
delete the low-integrity version of these files.

6.2. Effectiveness Against Malicious Applica-
tions

Our integrity policy described in Section 3 provides
effective defense against malware attacks.

• Linux rootkits. In this experiment, we downloaded
around 10 up-to-date rootkits from [1]. Since our
browser is flow-aware, it checked the source of the
downloaded software, and marked them as untrusted.
User level rootkits such as bobkit, tuxkit, and lrk5
required an explicit installation phase. PPI re-
ported permission violations such as deletion of
/etc/rc.sysinit and /bin/ps, and hence their instal-
lation failed.

Kernel level rootkits in the form of kernel modules
are prevalent nowadays and are more difficult to de-
tect. We downloaded, compiled, and installed one
such rootkit, adore-ng. Since the initial download
was low-integrity, the kernel module was also labeled
with low-integrity. Since PPI does not permit load-
ing of kernel modules with low integrity, this rootkit
failed. Since only high integrity subjects are allowed
to write to /dev/kmem, another kernel rootkit mood-
nt failed with the error message “.D’ho! Impossible
aprire kmem.”

• Installation of “Malicious” rpm package. The Fedora
package buildsystem [11] suggest three possible at-
tack scenarios from the malicious package writer. Of
these, a malicious rpm-scriptlet is a serious threat.
To test the effectiveness of PPI under this threat,
we crafted a “malicious” rpm package. This pack-
age is named glibsys.rpm. During the installation
phase, the package tried to overwrite system files
/lib/libc.so and /bin/gcc. These violations are
captured by our system, and the installation aborted
cleanly.

• Race condition attack. We crafted a piece of mal-
ware which employed a typical race condition at-

tack. The attack we created is the classic TOCTTOU
race condition [8], allowing a malicious process racing
against a benign process in writing a high-integrity
file (/etc/passwd) using a race condition by creating
a symbolic link. This attack was successful on an un-
protected system, but it was defeated by PPI, since
the follow link operation on the low-integrity sym-
link downgraded the benign process and the write
was disallowed.

• Indirect attack. In this attack, we created another
piece of malware that first created an executable with
an enticing name and waited for users on the system
to run it. The attack did not work as PPI automat-
ically downgraded the process running the low in-
tegrity executable, and as a result, it could not over-
write any of the files in the system that can damage
system integrity.

• Malformed data input. Similar to the above exam-
ple, a malformed jpeg file was downloaded from some
unknown source, so PPI marked it as low-integrity.
When an image viewer opened it, although it was
compromised, it was running in low-integrity mode,
and hence its subsequent malicious actions failed.

6.3. Usability of PPI Versus Low Watermark

In order to better understand how PPI provides im-
proved usability, we implemented a prototype version
of Low watermark model using LSM, and applied the
prototype to exactly the same host environment with
the same initial labeling and policy configurations (in-
cluding invulnerable applications). We used the test
environment for a period of one day and observed the
violations in the following several types:

• Because of lack of object downgrade policy, in Low
watermark model, gzip and ggv had difficulty in com-
pleting their jobs when handling low integrity files. In
the case of gzip, it first ran with high integrity, cre-
ated an output file, then downgraded on reading low-
integrity input. Subsequently, gzip tried to change
permissions on the output file, which was denied due
to the fact that the file was at high integrity while



simple syscall read write stat open/close select(100) pipe latency

Orignal 1.6936 2.1882 1.8670 7.9352 11.4859 27.2026 37.4196

PPI 1.6862 2.3541 1.9899 15.0348 15.0348 28.5309 38.5261

Figure 4. Microbechmark Result using LMbench. All numbers a re in microseconds.

the subject had been downgraded.

• With PPI, editors such as vi, gedit and gimp could
be used to edit low-integrity as well as high-integrity
files. With Low-watermark policy, the applications
experienced a runtime error, if the first run of the
application was performed with high-integrity input.
In this case, the preference files were marked high-
integrity. When the editor was subsequently used
on a low-integrity file, it was downgraded, and its
subsequent access to update the preference file was
denied. If the the first run was performed with low-
integrity input, then the preference file was created
with low integrity, which meant that every future run
of the editor will be downgraded. In contrast, the use
of log-based analysis in PPI enables these editors to
work properly in both scenarios.

• As mentioned earlier, shell redirections typically
cause problems due to self-revocation with Low-
watermark model. For instance, when executing a
command such as cat in > out, the shell, typically
running at high-integrity, creates the file out with
high-integrity. If in is a low-integrity file, then cat

will be downgraded on reading it, and then its at-
tempt to write to out will be denied.

6.4. Performance Overheads

We present both the microbenchmark and macrobench-
mark results for PPI. For microbenchmark evaluation,
we used LMbench version 3 [23] to check the perfor-
mance degradation of popular system calls. The results
are summarized in Figure 4. We observed that PPI did
not introduce noticeable overhead for most system calls
except for open (and other similar system calls such as
stat). For macrobenchmark, we measured 3 typical
applications running within PPI during runtime. As
illustrated in the Figure 5, the runtime overhead for
applications in PPI is about 5% or less.

6.5. Limitations

Our approach cannot support arbitrary untrusted soft-
ware. Some software, by its very nature, may need re-
source accesses that cannot safely be granted to un-
trusted applications. Our results show that for the
type of programs that tend to be downloaded from un-
trusted sources, our approach is indeed applicable.

Our work does not focus on confidentiality or avail-

Original PPI Mode
Time Time Overhead

gzip 1.269 1.271 0.1%

xpdf 2.476 2.604 5.1%

make 22.467 23.345 3.8%

Figure 5. Application Performance Overhead.
All numbers are in seconds averaged across
10 runs.

ability, but it still contributes to them in two ways.
First, solutions for confidentiality and availability must
build on solutions for integrity. Second, our techniques
halt malware that exploits integrity violations to attack
confidentiality; for example, by preventing a rootkit
from installing itself, we also prevent it from subse-
quently harvesting and sending confidential account in-
formation. But no protection is provided from malware
that targets violation of confidentiality without violat-
ing integrity.

7. Related Work

Information Flow Based Systems. Biba model [7]
has a strict “no read down and no write up” policy. The
low-water mark model [7] relaxes this strict policy to
permit subjects to be downgraded when they read low-
integrity inputs. LOMAC [12], a prototype implemen-
tation of low-water mark model on Linux, addresses the
“self-revocation” problem to a certain extent: a group
of processes that share the same IPC can continue to
communicate after one of the processes is downgraded
by having the entire group downgraded, but the prob-
lem still remains for files. SLIM (Simple Linux In-
tegrity Model) [28] is part of the IBM research trusted
client project, and is also based on the LOMAC model.
It also incorporates the Caernarvon model [17], which
supports verified trusted programs and limits the trust
on these programs by separating read and execute priv-
ileges. The features developed in this paper are more
general in this regard, allowing distinctions between
data input and control input, and so on.

IX [22] is an experimental MLS variant of Unix. It
uses dynamic labels on processes and files to track in-
formation flow for providing privacy and integrity. In
contrast, our technique generalizes the LOMAC model
by offering several other policy choices, which we have



shown to be helpful for improving usability. Other im-
portant distinctions between these works and ours are
that we decouple policies from labels, and provide au-
tomated techniques for policy development.

Windows Vista enforces only the “no write up” part
of an information flow policy, “no read down” is not en-
forced as it causes usability problems. Unfortunately,
malware writers can adapt their malware to defeat this
protection, as discussed in the introduction. In con-
trast, Back to the Future system [14] enforces only the
“no read down” policy. Its main advantages are that
it can recognize any attempt by malware to inject it-
self into inputs consumed by trusted applications, and
the ability to rollback malware effects. A drawback is
that any attempt to “use” the output of an untrusted
(but not malicious) application would require user in-
tervention. It can be difficult for users to judge whether
such inputs are “safe” and respond correctly to such
prompts. Secondly, malware can freely overwrite criti-
cal files, which need to be “recovered” when the data is
subsequently accessed — a potentially time-consuming
operation.

Safe Execution Environments [3, 30, 37] and virtual
machines [32, 9, 4] rely on isolation to confine untrusted
processes. While isolation is an effective protection
technique, maintaining multiple isolated working en-
vironments is not very convenient for users. In partic-
ular, objects such as files that need to be accessed by
untrusted code have to be copied into and/or out of
the isolated environment each time.

Li et al [20] also address the problem of making
mandatory access control usable by focusing on tech-
niques for policy development. However, their focus
is on servers exposed to network attacks, as opposed
to untrusted software threats on workstations. The
nature of the threat (remote attacks versus adaptive
malware) is quite different, causing them to focus on
techniques that are quite different from ours. For in-
stance, they don’t protect user files, while we consider
corrupting of user files to be a very powerful attack vec-
tor in our context. Moreover, they do not consider the
problem of securing software installations, or provide
analysis techniques that can leverage resource access
logs to generate policies. Nevertheless, there are some
similarities as well: we have been able to use their no-
tion of limiting trust to certain network channels. In
addition, we provide a refinement of this notion in the
context of files.

All of the above works were based on central-
ized policies, which are less flexible than decentralized
information-flow control (DIFC) policies. DIFC poli-
cies allow applications to control how their data is used.
In this regard, JFlow [24] is a language level approach.

Asbestos [10] and Hi-Star [38] are new operating sys-
tem projects that have been architected with infor-
mation flow mechanisms incorporated in their design.
Flume [19] is focused on implementing an extension
to existing operating systems to provide process level
DIFC. Like most other previous works in information-
flow based security, these projects too focus on mech-
anisms, whereas our focus has been on generating the
policies needed to build working systems.

SELinux, Sandboxing and Related Techniques.

Several techniques have been developed for sand-
boxing [13, 2, 26]. Model-carrying code [29] is focused
on the problem of policy development, and provides a
framework for code producers and code consumers to
collaborate for developing policies that satisfy their se-
curity goals. Nevertheless, development of sandboxing
policies that can robustly defend against adaptive mal-
ware is a challenge due to the ease of indirect attacks
as described in the Introduction.

SELinux [21] uses domain and type enforcement
(DTE) policies to confine programs. Their main fo-
cus has been on servers, and they have developed very
detailed policies aimed at providing the least privilege
needed by such applications. Systrace project [26] has
also developed system-call based sandboxing policies
for several applications, and is widely used in FreeBSD.
Neither approach ensures system integrity by design.
SELinux as well as Systrace can log accesses made dur-
ing trial runs of an application, and use it as the basis
to generate a policy for that application. Their policy
generation technique is useful for trusted code, such as
servers, but would be dangerous for untrusted applica-
tions.

Whereas our focus is on generating policies that
ensure integrity, other researchers have worked on
the complementary problem of determining whether a
given policy guarantees system integrity [16].

8. Conclusion

In this paper, we presented techniques for proactive
integrity protection that scales to a modern operat-
ing system distribution. By enforcing information
flow policies, our approach provides positive assurances
against malware from damaging system integrity. One
of the central problems in developing practical systems
based on such mandatory access control policies has
been the complexity of policy development. We have
developed several techniques to automate the genera-
tion of low level information flow policies from data
contained in software package managers, and logs that
capture normal usage of these systems. Our experi-
mental results show that the technique is efficient, can



provide protection from most malware, and does not
unduly impact system usability.

References

[1] Linux rootkits. http://www.eviltime.com.

[2] A. Acharya and M. Raje. Mapbox: Using parameterized
behavior classes to confine applications. In USENIX Secu-
rity Symposium, 2000.

[3] Alcatraz. http://www.seclab.cs.sunysb.edu/alcatraz.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, volume
37, 5 of Operating Systems Review, pages 164–177, New
York, Oct. 19–22 2003. ACM Press.

[5] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address ob-
fuscation: an efficent approach to combat a broad range of
memory error exploits. In Proceedings of the 12th Usenix
Security Symposium, Washington, D.C., August 2003.

[6] K. J. Biba. Integrity considerations for secure computer
systems. Technical Report MTR-3153, Mitre Corporation,
June 1975.

[7] K. J. Biba. Integrity considerations for secure computer
systems. In Technical Report ESD-TR-76-372, USAF Elec-
tronic Systems Division, Hanscom Air Force Base, Bed-
ford, Massachusetts, 1977.

[8] M. Bishop and M. Dilger. Checking for race conditions in
file accesses. Computing Systems, 9(2), 1996.

[9] J. Dike. A User-Mode port of the linux kernel. In Proceed-
ings of the 4th Annual Showcase and Conference (LINUX-
00), pages 63–72, Berkeley, CA, Oct. 10–14 2000. The
USENIX Association.

[10] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazires, F. Kaashoek, and
R. Morris. Labels and event processes in the asbestos op-
erating system. In 20th Symposium on Operating Systems
Principles (SOSP 2005), 2005.

[11] The fedora.us buildsystem. http://enrico-
scholz.de/fedora.us-build/html/.

[12] T. Fraser. Lomac: Low water-mark integrity protection for
COTS environments. In IEEE Symposium on Security and
Privacy, 2000.

[13] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications: con-
fining the wily hacker. In USENIX Security Symposium,
1996.

[14] F. Hsu, T. Ristenpart, and H. Chen. Back to the future:
A framework for automatic malware removal and system
repair. In Annual Computer Security Applications Confer-
ence (ACSAC), December 2006.

[15] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Pro-
tecting browser state from web privacy attacks. In WWW
’06: Proceedings of the 15th international conference on
World Wide Web, pages 737–744, New York, NY, USA,
2006. ACM.

[16] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity
protection in the selinux example policy. In Proceedings of
the 12th USENIX Security Symposium, 2003.

[17] P. Karger, V. Austel, and D. Toll. Using a mandatory
secrecy and integrity policy on smart cards and mobile de-
vices. In EUROSMART Security Conference, pages 134–
148, Marseilles, France, 2000.

[18] P. Karger, V. Austel, and D. Toll. Using gconf as an ex-
ample of how to create an userspace object manager. page
SELinux Symposium, 2007.

[19] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for stan-
dard os abstractions. In SOSP ’07: Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems prin-
ciples, pages 321–334, New York, NY, USA, 2007. ACM.

[20] N. Li, Z. Mao, and H. Chen. Usable mandatory integrity
protection for operating systems. In IEEE Symposium on
Security and Privacy, 2007. To appear.

[21] P. A. Loscocco and S. D. Smalley. Meeting critical security
objectives with security-enhanced linux. In Proceedings of
the 2001 Ottawa Linux Symposium, 2001.

[22] M. D. McIlroy and J. A. Reeds. Multilevel security in
the UNIX tradition. Software - Practice and Experience,
22(8):673–694, 1992.

[23] L. McVoy and C. Staelin. Lmbench.
http://www.bitmover.com/lmbench/.

[24] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software
Engineering and Methodology, 9(4):410–442, 2000.

[25] J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In Proceedings of 12th An-
nual Network and Distributed System Security Symposium
(NDSS), 2005.

[26] N. Provos. Improving host security with system call poli-
cies. In Proceedings of the 11th USENIX Security Sympo-
sium, pages 257–272, 2003.

[27] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and
Y. Wu. LIFT: A low-overhead practical information flow
tracking system for detecting general security attacks. In
IEEE/ACM International Symposium on Microarchitec-
ture, December 2006.

[28] D. Safford and M. Zohar. A trusted linux client (tlc), 2005.

[29] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and
D. C. DuVarney. Model-carrying code: A practical ap-
proach for safe execution of untrusted applications. In ACM
Symposium on Operating System Principles, Bolton Land-
ing, New York, October 2003.

[30] W. Sun, Z. Liang, R. Sekar, and V. Venkatakrishnan. One-
way Isolation: An Effective Approach for Realizing Safe
Execution Environments. Proceedings of the Network and
Distributed System Security Symposium, 2005.

[31] E. F. Walsh. Integrating xfree86 with security-enhanced
linux. In X Developers Conference, Cambridge, MA, 2004.

[32] B. Walters. VMware virtual platform. j-LINUX-J, 63, July
1999.

[33] D. P. Wiggins. Security extension specification, version 7.0.
Technical report, X Consortium, Inc., 1996.

[34] C. Wright, C. Cowan, J. Morris, S. Smalley, G. KroahHart-
man, s modules, and G. support. Linux security modules:
General security support for the linux kernel, 2002.

[35] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime
randomization for security. In Symposium on Reliable and
Distributed Systems (SRDS), Florence, Italy, October 2003.

[36] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range
of attacks. In USENIX Security Symposium, August 2006.

[37] Y. Yu, F. Guo, S. Nanda, L. chung Lam, and T. cker Chi-
ueh. A feather-weight virtual machine for windows applica-
tions. In Proceedings of the 2nd ACM/USENIX Conference
on Virtual Execution Environments (VEE’06), June 2006.

[38] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazires.
Making information flow explicit in histar. In Seventh Sym-
posium on Operating Systems Design and Implementation
(OSDI06), 2006.


