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Abstract of the Dissertation
Enhancing Multi-user OS with Network Provenance for Systematic Malware Defense
by
Wai Kit Sze

Doctor of Philosophy

in
Computer Science
Stony Brook University

2016

Desktop OSes adopt users as the basic unit of trust. Every file and process owned by the same
user has the same userid as the user. This design stems from the very first multi-user OS created in
the late 1950s, where computers were self-contained and file contents were entirely under the control
of users.

With the spread of the Internet, it is common to have those code and data from the Internet.
Users do not necessarily have the ability to fully understand every file they download. However,
OSes do not distinguish between downloaded files from regular user files, and they simply reuse the
same trust model and treat downloaded files as if users own files— OSes assume users understand the
consequences of using these files. When malware exploits this design flaw, OSes simply warn users
that using files from the Internet can compromise the systems and let the user to decide whether to
use the files.

In this dissertation, we propose SPIF, which generalizes the OS trust-hierarchy with provenance
information— SPIF extends the trust-hierarchy with principals to encode both local users and remote
provenance information. Principals in SPIF can have different trust relationships. SPIF is general
and can model trust-hierarchy of systems like Same-Origin Policy, Android and Bubbles. With just
two provenances having a unidirectional trust relationship, SPIF can already provide usable integrity
protection to defend against unknown, high-profile malware such as Stuxnet and Sandworm. We
also demonstrate a secure software installation system based on SPIF.

Trust-hierarchy and access-controls are enforced deeply inside OSes. Generalizing trust-model in
OSes can therefore affect every application and component inside OSes. Instead of building a brand
new OS from scratch or instrumenting existing OSes to enforce a new trust-model directly, SPIF
achieves this generalization by re-purposing security-mechanisms common in contemporary OSes.
This re-purposing automatically mediates every resource access, incurs low performance overhead,
and is agnostic to both OSes and applications. SPIF has been implemented on various OSes, including
Linux, BSD, and Windows. SPIF also runs large unmodified applications such as Firefox, Microsoft
Office, Adobe Reader, and Photoshop.
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Chapter 1

1 Introduction

The earliest computers were mainframes from the 1950s that lacked any form of operating system.
Each user had sole use of the machine for a scheduled period of time. They would arrive at the
computer with program and data, often on punched paper cards and magnetic or paper tape. The
program would be loaded into the machine, and the machine would be set to work until the program
completed or crashed.

As computers became faster, people quickly realized that rapid advances in electronics could
allow time-sharing of hardware resources across multiple users. The very first multi-user OS called
Multics was then created in the late 1969, allowing multiple users to use a computer simultaneously.
Users are the basic unit of isolation to prevent one user’s task from affecting that of another.

Every resource in a multi-user OS is labeled based on users. This notion made sense since
computers were self-contained and isolated systems: users provide their own programs and data
in the form of punched cards or magnetic taps. There was no way to introduce new data or code
into a computer (except for a dedicated system administrator that could access some backup and
restore devices). The only way data or code could be on the system is if the user actually produced
or generated it by running existing programs on some of his/her data. Hence, the user is solely
responsible for the data.

When the Internet became popular in the 1980s, no changes were made to the user/permission
model to account for the possibility that code or data could be downloaded from the Internet. The
way the implementation handled this possibility was to set the ownership of a downloaded file to
that of the process performing the transfer. This labeling only captures the fact that the download
was handled by the process, but it fails to meaningfully account for the network origin of the file
content.

As sharing across the Internet became the norm in 1990s, people share not only data but also
code, a.k.a. third-party applications. Many users do not hesitate to use resources readily-available
from the Internet without fully considering the security implications. Unfortunately, the OS cannot
protect the user either, since it possesses neither the information about the true source of such files,
nor the mechanisms to provide such protection. As a result, when a process performs operations
such as adding a file to run during system booting, OSes cannot distinguish if the user intentionally
added this file, or it was an unintended side-effect of running an application from the Internet.
When malware exploits this design flaw, OSes such as Mac OS and Windows simply warn users
that downloading files from the Internet can compromise the system. OSes introduce labels to track
where the files come from (provenance information) so that they can warn users when consuming
the files. However, warning alone cannot solve the problem especially when users are warned too
often. The number of malware continues to grow exponentially.

In comparison with desktop OSes, mobile OSes such as Android and iOS introduced a new
security model to handle the increasing use of third party apps. Instead of considering users as a
trust unit, mobile OSes consider apps as the basic unit of trust. Each app is isolated based on the
origin of the code. Apps from different origins can only interact using newly introduced explicit
sharing mechanisms. As Android wants app isolation while using conventional OS, Android builds
app isolation using user isolation by running each app as a separate user. iOS uses security hooks
inside the kernel to mediate interactions between apps. App model has been back-ported to desktop
OSes such as Windows 8 and Mac OS X. Apps distributed through Windows Store and App Store
follow the mobile model where each app is isolated. A compromised or malicious app therefore cannot
compromise other apps directly. However, the app model is not a complete solution, especially for
desktop OSes, because of three problems:



e App model applies isolation based on code origin only. Compromisation can still happen
through data. A benign app consuming malicious data can still be compromised. A complete
solution should consider origin information of both code and data.

e App models limit application functionality. Apps cannot modify system resources because
doing so would create states visible to other apps and violate the isolation policy. In addition,
feature-rich applications may require specific permissions that app models do not support. As
a result, the majority of feature-rich desktop applications (e.g., Skype and Photoshop) either
do not run as apps or have a functionality-reduced version (e.g., MS Office) for apps on desktop

OSes.

e The solution does not support legacy desktop applications. App models require every interac-
tion between apps to be made explicit with new mechanisms. However, desktop applications
are built to support application composition via implicit sharing mechanisms such as files and
pipes. App models do not allow apps to be composed freely.

Existing security models do not use provenance tracking to account for both code and data from
metwork. In this dissertation, we study the use of provenance information for enhancing security
models. Specifically, we show how to apply provenance tracking for contemporary desktop OSes. We
demonstrate the usefulness of provenance information by building a practical integrity protection
system, called SPIF, that can defend against high-profile malware on multiple OSes. Instead of
restricting interactions between resources from different sources, SPIF promotes safe interactions
across different sources. SPIF therefore not only supports composing applications as in the traditional
desktop environment, but can also stops malware from compromising other applications. We then
show that by tracking provenance, SPIF can enforce a more general policy. We show that SPIF can
simulate other security models such as Android, Bubbles, and Same-Origin-Policy on desktop OSes.
The general policy takes both user and network provenance information into account.

In Chapter 2, we present the background and related work. We discuss existing security defenses
on protecting untrusted code and data, including commonly deployed and research techniques. In
Chapter 3, we present a whole system integrity protection system called SPIF. We focus our discus-
sion on building SPIF with only two provenance origins (principals) called benign and untrusted. We
show that even with a simple trust policy between the two principals, SPIF is powerful enough to pro-
tect against unknown, high-profile malware while maintaining usability. We have implemented the
system on multiple OSes, including Linux, BSD, and Windows. In Chapter 4, we study properties of
policy enforcement mechanisms. We classified systems into eager enforcement and delayed enforce-
ment. In the context of information flow tracking systems, there can be No Downgrading, Early
Downgrading, and Lazy Downgrading, depending on whether and when downgrading is allowed.
Classical information flow systems supporting downgrading, such as low-water-mark, have a well-
known self-revocation problem. We show that SPIF is an Early Downgrading system which avoided
self-revocation. By utilizing more process information, we can restrict dynamic downgrading only
to scenarios that will not lead to self-revocation. We propose SRFD, Self-Revocation Free Down-
orading, an integrity policy which is strictly more usable than SPIF while avoiding self-revocation
as in low-water-mark.

In Chapter 5, we discuss how to apply provenance tracking to protect security critical subsys-
tems. We focus our discussion on securing software installation processes. Software installation is
critical for security as installers usually run with administrative privileges. A malware can gain
administrative privileges simply by packing itself with installers. Once malware runs with admin-
istrative privileges, it can disable any security system, including SPIF, and plant itself deep inside
the systems so that it is hard to be detected and removed. OSes do not provide any mechanisms
for users to secure against these threats. Users are given limited options: either trust the installers
or not to run the installers at all. There are not a lot of research focusing on securing installation




against malware. We present a system that secure the installation process based on SpiF. The
system also provides initial file labeling for SPIF to enforce policies.

In Chapter 6, we extend SPIF to support multiple principals and allow each principal to define its
own trust relationship with other principals. SPIF can simulate systems such as Android, Web Same-
Origin Policy, and Bubbles easily on desktop OSes with this extension. We also present a policy
language that principals can use to specify their trust relationships. When principals interact, SPIF
will select an interaction mode that respects the trust relationships between the involving principals.

We then conclude the dissertation in Chapter 7.



H Term ‘ Explanation H

malicious |intentionally violate policy, evade enforcement
untrusted |possibly malicious
benign code |non-malicious but potentially vulnerabilities
benign process|process whose code and inputs
are benign, i.e., non-malicious

Figure 1: Key terminology

Chapter 2

2 Background and Related work

In this chapter, we provide some of the background information that this dissertation is addressing,
as well as related work in the area.

Terminlogy The core of our approach is based on information-flow tracking, similar to classical
integrity preservation systems like Biba. Our approach relies on attaching labels to subjects and ob-
jects and enforces policies based on the labels. Specifically, SPIF tracks provenance information when
data enters into systems. We define provenance as the origin (“where”) of a piece of information. In
the simplest setting, we consider only two provenance labels. Files coming from the OS vendor (and
any other source that is trusted to be non-malicious) are given the label benign (Figure 1), while the
remaining files are given the label untrusted. Note that benign programs may contain exploitable
vulnerabilities, but only untrusted programs can be malicious, i.e., may intentionally violate policy
and/or attempt to evade enforcement. Exploitation of vulnerabilities can cause benign programs to
turn malicious. However, an exploit represents an intentional subversion of security policies, and
hence cannot occur without the involvement of malicious entities. Consequently, benign processes,
which are processes that have never been influenced by untrusted content, cannot be malicious. New
files and processes created by benign processes can hence be labeled benign. Processes that execute
untrusted code (or read untrusted inputs) are labeled as untrusted, so are the files created or written
by them.

2.1 Malware detection and avoidance

The most widely adopted malware defense techniques are based on detection and avoidance. They
attempt to detect and stop malware from running in the first place. Before any new piece of code
and data can be used, these techniques attempt to determine if the file is free of malware. Anti-virus,
Windows Security Zone [Microsoft, 2015a], and Mac OS X Gatekeeper [Apple Inc., 2015a] belong
to this category. They all work by either blacklisting malware or whitelisting files obtained from
identifiable and verifiable sources. For instance, anti-virus relies on malware signatures. Windows
Security Zone relies on the domains that the files come from. Gatekeeper uses code-signing with
keys signed by Apple. We discuss each of them in detail below.

2.1.1 Anti-virus

Modern anti-virus software relies on pattern scanning. The idea is to first identify a set of character-
istics that malware possesses, called patterns. The anti-virus software running on a client computer
will then match every file with these patterns. A match would suggest that the file could be mal-
ware. As benign files may be marked as malware due to false positives, anti-virus software also uses
whitelisting. Upon detection, anti-virus software will proceed with remediation procedures such as
prompting for user actions and quarantining or removing the suspicious files.



The success of pattern-based solutions depends on both the expressiveness and coverage of the
patterns for identifying malware. The simplest form of patterns uses hashing, e.g., cryptographic
hashing functions MD5 or SHA, which generates a unique checksum for each unique file.

Cryptographic hashing functions have an avalanche effect: a single bit-flip in the file would result
in a completely different pattern. Malware can therefore easily evade detection using techniques such
as polymorphism or appending random data. When two files contain mostly identical contents, the
fact that one file is malware suggests that the other file is also likely to be a malware. The anti-virus
industry therefore introduced context triggered piecewise hashes (CTPH, a.k.a. Fuzzy hashes), e.g.,
ssdeep [Kornblum, 2006]. These hashes can match inputs that have homologies. Files with mostly
the same but slightly different content will yield hash values with common substrings. Malware that
shares some code could therefore be captured using CTPH.

These techniques, however, may not detect metamorphic malware, which has different code yet
with the same semantics. A common technique to solve the problem is to generate byte-patterns
rather than relying on file hashes. Yara [Alvarez, 2015] is a popular pattern matching tool for byte
sequence matching in malware. Instead of using a summary Byte-pattern captures the essence of
malicious behaviors by identifying the corresponding instructions. As malware can be encrypted,
bytes can be obfuscated. Anti-virus vendors therefore are also analyzing process memory during
run-time to scan for patterns. Volatility [The Volatility Foundation, 2015], a memory dump tool on
Windows, is often combined with Yara to identify malware.

Apart from analyzing malware statically, anti-virus vendors also use dynamic analysis to identify
runtime malicious behaviors (e.g., cuckoo [Cuckoo Foundation, 2015], a platform for automatically
testing malware). During program executions, system calls or Windows API calls are monitored and
matched against known malicious or suspicious behaviors. These patterns are usually defined manu-
ally, e.g., popular malware Flame [Kaspersky Lab] creates mutex of names in the form of __fajb.x*
or DVAAccessGuard. *, Turlacomrat [Tanase, 2015] moves files with names Microsoft\shdocvw.t1lb,
Microsoft\oleaut32.dll, ... Other patterns include creating remote thread in other processes, in-
stalling and communicating via tor network, detecting virtualized environment, or installing OpenCL
library (for mining Bitcoins) [Cuckoo Foundation, 2015].

Pattern-based approaches are effective only when anti-virus vendors have access to the malware
before their clients so that vendors can generate patterns for clients to detect and block the malware.
Before 2000s, the total unique malware samples were less than 100,000; however, the number of new
malware found in the year 2014 alone already reached 148,000,000 [McAfee Labs, 2015], which is
more than 4.5 malware creations per second. The rate of new unique malware becomes so high that
pattern-based approaches are no longer effective because (1) anti-virus vendors may not have seen the
malware before, and (2) the pattern may not be delivered to the clients in time; furthermore, malware
started to employ different techniques to detect virtualized environment, which is commonly used
by anti-virus vendors to analyze malware but not typical among end users. By exhibiting legitimate
behaviors during analysis, malware can evade detection.

2.1.2 Origin-based protection

Anti-virus software relies on databases of known malware and goodware. Every piece of data on
the system is checked against known malware patterns. Anti-virus therefore cannot protect against
new malware that has not be seen by anti-virus vendors. Instead of relying on anti-virus vendors,
Windows Security Zone relies on the origins of the data: user’s trust on a file depends on where the
file comes from. For example, files coming from the OS distributor or local network would be more
trustworthy than files coming from the Internet.

Windows Security Zone maps domains into zones of different trustworthiness. Windows prede-
fined five zones: URLZONE_LOCAL_MACHINE, URLZONE_INTERAET, URLZONE_TRUSTED,



URLZONE_INTERNET, and URLZONE_UNTRUSTED. These zones correspond to different secu-
rity boundaries that users commonly have. Users can also define additional zones. When files are
downloaded from the Internet, applications can fill in the zone information by calling some system
APIs. Windows stores zone information along with files using as Alternate Data Stream on NTFS,
similar to extended attributes on EXT file systems. The zone information is not used by the OS,
and the OS enforces no policy based on it. Processes running executables from the Internet do
not have special labels. It is upto applications to decide how to use the zone information when
consuming the files. For instance, Windows Explorer will prompt users when attempting to execute
files from the zone URLZONE_INTERNET or URLZONE_UNTRUSTED. Microsoft Office will run
in Protected View [Microsoft, 2015b], a mode that makes Microsoft Office harder to be exploited at
the cost of reduced functionality, when consuming files with these labels too. This limits damages
that a compromising Microsoft Office can inflict.

OS X does not provide fine granularity classification of file origins as in Windows Security Zone.
Gatekeeper [Apple Inc., 2015a] in OS X functions similarly to Windows Security Zone, and it will
prompt users for confirmation when running Internet executables unless the integrity of the ex-
ecutables can be verified (Section 2.1.1). Gatekeeper stores the origin information as extension
attribute [Lin, 2013] along with the file. Note that both Security Zone and Gatekeeper rely on
applications that perform downloading to label files properly by invoking some APIs. These APIs
will then fill in the corresponding information. In OS X, a flag is set to label Internet files. Files that
do not have such information will be treated as regular user files and will not trigger any prompting.

2.1.3 Code-signing

Apple (OS X and i0S) relies heavily on code signing to identify and verify the origin of the code.
The technique itself does not protect against malicious code, but simply a way to provide a secure
end-to-end channel to distribute code from code producers to code consumers.

Code signing imposes no real restriction on malware writers. Malware writers can still get a key
to distribute signed malware [F-Secure Labs, 2013] or invoking private APIs [Wang et al., 2013].
The only restriction that code signing imposes is via the code review process. For apps distributed
through App Store, Apple relies on manual code review to identify malicious applications. Each
app is reviewed to ensure that every permission the app needs has legitimate reasons. This is a
lengthy and subjective process. Apps that violated Apple’s policy or failed to demonstrate the need
for the requested permissions will need to be modified. Apps that refuse to comply will be banned
from the App Store, which is the sole mean of distribution for i0OS devices. For OS X apps that are
distributed outside App Store, Apple relies on verifying the identities of the developers. By default,
GateKeeper only allows downloads from Mac App Store and identified developers. Apple has the
ability to revoke a certificate when malicious activity is detected [Kim, 2011].

Apples model is built on trust rather than technical foundations. Manual code review is unreli-
able, and attacks can happen once the developers turned malicious. There have been incidents where
malicious apps got published [Wang et al., 2013, Xing et al., 2015] because the app review process
failed to identify malicious behaviors, or malware bypassed the Gatekeeper because an identified
developer key was used maliciously.

Conclusion Since detection-based techniques have to block malware before they run, they are
obstructive to functionality. As there is no way to be confident if a flagged item is actually a
malware, users are often prompted to make the ultimate decisions as to whether to proceed with
the execution. In the recent XcodeGhost [Gregg Keizer, 2015] incident, some of the Chinese i0S
developers ignored warnings from Gatekeeper and used compromised versions of XCode to create
backdoored iOS apps. These iOS apps were distributed via Apple App Store to users. This signifies



the weaknesses of detection-based techniques.

2.2 Policy-based confinement

Recognizing the fact that it is impossible to fully characterize what a malware is, proactive ap-
proaches assume malware can run and aim at restraining what malware can do.

A natural (and perhaps the best studied) proactive defense is to sandbox potentially malicious
code using policies based on the principle of least privilege. This approach can be applied to software
from untrusted sources [Goldberg et al., 1996], which may be malicious to begin with; or to software
from trusted sources [Loscocco and Smalley, 2001a, Ubuntu, 2015, Provos, 2003] that is benign to
start with, but may turn malicious due to an exploit. In policy-based confinement, a reference
monitor will check every operation that the code performs. The reference-monitor then decides
whether to allow or block the operation when it is deemed as malicious.

The goal of policy-based confinement is to guard against improper use of resources. The most
common form of resource to guard is the invocation of system-calls. Earlier OSes did not sup-
port policy enforcement at the system-call level, and research works had been focusing on devel-
oping supporting architectures (e.g., inside kernel space using kernel modules or in userland such
as ptrace [Padala, 2002] or delegation architecture [Garfinkel et al., 2004]). Linux introduced sec-
comp [Linux Kernel Organization, 2015] in 2005, a rule-based system-call filtering mechanism. sec-
comp itself is very limited because it does not allow policies beyond limiting a process to resources
already granted. Other mechanisms such as LSM [Wright et al., 2002], TrustedBSD [Watson et al.,
2003], Windows Integrity Mechanism [Microsoft, 2015¢], and System Integrity Protection [Apple
Inc., 2015b] (on OS X) focus primarily on security-sensitive operations. Both LSM and TrustedBSD
implement hooks on security-sensitive operations to enforce policies on kernel objects (e.g., inodes
and process structs). Windows Integrity Mechanism (WIM) attaches integrity labels to subjects
and objects and enforces a policy that does not allow subjects with lower integrity labels to modify
objects with higher integrity labels. System Integrity Protection protects Apple signed files and
processes from being tempered by any non-signed process, including root processes. Apart from
enforcing policies at the OS level, policies can also be enforced at the binary-level (e.g., SFI [Wahbe
et al., 1993]) or below the OS level (e.g., Library OS [Porter et al., 2011, Tsai et al., 2014] or
hypervisor [Butt et al., 2012].

2.2.1 Drawbacks for policy-based confinement

While the goal of policy-based confinement against malicious code is simple, there are several chal-
lenges for applying policy-based confinement to defend against malicious code:

Difficulty of policy development: Experiences with SELinux [Loscocco and Smalley, 2001a] and
other projects [Acharya et al., 2000, Sekar et al., 2003, Ubuntu, 2015] show that policy development
requires a great deal of expertise and effort. Policies depend highly on the usage environment and
usage behavior. A slightly different configuration or an unanticipated usage behavior could result in
policy violations. For example, Ubuntu has developed an AppArmor profile for Firefox; however, it
is not enabled by default [Dziel, 2014, Mozai, 2013] due to false positives. The use of SELinux often
deter system administrators from securing their own systems (e.g., by placing configuration files at a
location other than the default location) because of the difficulties in reconfiguring SELinux policies.

Policies that provide even the modest protection from untrusted code can break benign applica-
tions. On the other hand, developing secure policies to protect against malicious code is also difficult.
Malicious code can mimic benign code [Parampalli et al., 2008]. A vulnerability on OS X suggested
the difficulty in developing policy especially when apps can interact— applications can store and
share user credentials (e.g., browser logins) using KeyChain. Although applications can define their
own access control lists to restrict what applications can access their KeyChain entries, OS X does



not prevent other applications from deleting and recreating the entries to grant themselves access.
This vulnerability has allowed attackers to gain access to user credentials since most applications do
not check ACL permissions [Xing et al., 2015].

Subversion attacks on benign software: FEven highly restrictive policies can be inadequate,
as malware can co-opt benign applications to carry out prohibited operations: malware may trick
a user to run a benign application in insecure ways or exploit vulnerabilities in benign applications
to perform arbitrary actions, e.g., use a copy utility to overwrite a system library with malware.
Alternatively, malware may exploit vulnerabilities in a benign application, e.g., create a malicious
file on the desktop with an enticing name. When clicked on by the user, it compromises a benign
application that opens the file, as in the Acrobat sandbox escaping vulnerability [Fisher, 2014]. Since
this benign application is not confined by a sandbox, it can now perform arbitrary actions.

Difficulty of secure policy enforcement: Uncircumventable policies are usually enforced in OS
kernels. The drawbacks of kernel-based approaches have been eloquently argued [Jain and Sekar,
2000, Garfinkel et al., 2004]: kernel programming is more difficult, leads to less portable code, and
creates deployment challenges. Experience with various commercial containment mechanisms such
as sandboxie [Sandboxie Holdings, LLC., 2015], Bufferzone [BufferZone Security Ltd., 2015], and Dell
Protected Workspace [Dell, 2015] have demonstrated the challenges of building effective new con-
tainment mechanisms for malicious code [Rahul Kashyap, 2013]. Approaches such as ptrace [Padala,
2002] avoid these drawbacks by enabling policy enforcement to be performed in a user-level monitor-
ing process; however, it poses performance problems due to the frequent context switches between
the monitored and monitoring processes. Moreover, the monitoring process needs to protect itself
against attacks launched from the confined processes. More importantly, TOCTTOU attacks are
difficult to prevent [Garfinkel, 2003]. Ostia [Garfinkel et al., 2004] avoided most of these drawbacks
by developing a delegating architecture for system-call interposition. It used a small kernel module
that permits a subset of “safe” system calls (such as read and write) for monitored processes, and
forwards the remaining calls to a user-level process. Applications such as Chrome, Adobe Reader
and Internet Explorer adopted similar model (See Section 2.2.2).

Some works such as SELinux [Loscocco and Smalley, 2001b], Systrace [Provos, 2003] and AppAr-
mor [Ubuntu, 2015] focus on protecting benign code, and they typically rely on trainings to create
a policy. Such a training-based approach is inappropriate for untrusted code. So Mapbox [Acharya
et al., 2000] develops policies based on expected functionality by dividing applications into various
classes. Model-carrying code [Sekar et al., 2003] proposes a framework in which code producers and
code consumers can effectively collaborate to come up with policies that give applications sufficient
privileges to function. While it represents a significant advance over purely manual development
of policies, it still does not scale to large numbers of applications. Rather than confining arbitrary
operations, WIM and System Integrity Protection aim to protect the system itself by preventing
untrusted processes from modifying the system. However, WIM and System Integrity Protection do
not impose any limitations on system processes. They can still get compromised when consuming
untrusted data.

Instead of developing policies to protect against arbitrary untrusted code proactively, policy-
based confinement is more commonly used as a mechanism to deter attackers from exploiting ap-
plications in the first place. OSes such as iOS, Android, and app models in Windows and OS X
predefine a set of permissions. Application developers declare what permissions their applications
need. OSes grant only the requested permissions to the app regardless of whether the app is com-
promised or not. It becomes less attractive for malware writers to compromise apps as they cannot
gain as many privileges as compromising an unconfined application. Clearly, this approach cannot
protect malware that was distributed as apps because malware writers can simply declare whatever
permissions they need and abuse them; furthermore, the permission systems in the OSes are getting



more complicated over time— Android API level 3 has 103 permissions, and has increased to 165
permissions in APT level 15 [Wei et al., 2012]. iOS and OS X also added more entitlements over
time. It is not surprising that some of the Apple applications in OS X are sandboxed, yet they are
granted with special entitlements that allow them to circumvent some of the restrictions [letiemble,
2011].

2.2.2 Privilege separation

Privilege separation techniques extend policy-based confinement approaches to support applications
that require significant access to realize their functionality. The application is decomposed into a
small, trustworthy component that retains significant access and a second larger (and less-trusted)
component whose access is limited to that of communicating with the first component in order to
request security-sensitive operations. While policy-based confinement can confine malicious as well
as frequently targeted benign applications (e.g., browsers), privilege separation is applied only to the
latter class. Chromium browser [Reis and Gribble, 2009], Acrobat Reader and Internet Explorer are
some of the prominent applications that employ privilege separation, more popularly known as the
broker architecture. These applications isolate their renderers, which are complex and are exposed
to untrusted content. Workers were given just enough privileges to work. As a result, vulnerabilities
in a renderer (or more generally, a worker) process won’t allow an attacker to obtain all privileges
of the user running the application.

Privilege separation shifts the policy development responsibility to developers. Instead of having
OS distributors or system administrators to configure policies, software developers already encode in
policies what legitimate accesses the workers need. Since developers know exactly what accesses their
programs need, they can develop good policies without compromising usability and functionality.

However, given the large effort needed to (a) develop policies and (b) modify applications to
preserve compatibility, it is no wonder that in practice, confinement techniques are narrowly targeted
at a small set of highly exposed applications. This naturally leads attackers to target sandbox escape
attacks: if the attacker can deposit a file containing malicious code somewhere on the system and
trick the user into running this file, then this code is likely to execute without confinement (because
confinement is being applied to a small, predefined set of applications). Alternatively, the attacker
may deposit a malicious data file, and lure the user to open it with a benign application that isn’t
sandboxed. In either case, the attacker is in control of an unconfined process that is free to carry
out its malicious acts.

As a result of these factors, policy-based confinement can only shut out the obvious avenues,
while leaving the door open for attacks based on evasion (e.g., Stuxnet [Falliere et al., 2011]),
policy/enforcement vulnerabilities (e.g., sandbox escape attacks on Adobe Reader [Fisher, 2014], IE
[Li, 2015] and Chrome [Constantin, 2013]), or social engineering. Stuxnet [Falliere et al., 2011] is
a prime example here: one of its attacks lures users to plug in a malicious USB drive into their
computers. The drive then exploits a link vulnerability in Windows Explorer, which causes it to
resolve a crafted [nk file to load and execute attacker-controlled code in a DLL.

2.3 Isolation-based approach

An alternative to policy-based confinement is isolated-execution of untrusted code. The main ad-
vantage of isolation-based approach is its simple policy— isolation simply virtualizes all resources,
and hence it does not have to decide whether an operation is allowed or denied. The underlying
implementation can depend on policy-based approaches to deny access to shared resources. There
are two types of isolation: One-way isolation and two-way isolation.

One-way isolation [Liang et al., 2003, Sun et al., 2005] permits untrusted software to read shared
resources, but its outputs are held in isolation. This is usually used to isolate a less trustworthy
security domain from a trustworthy security domain. One-way isolation is typically implemented
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with copy-on-write file systems. Commercial product Sandboxie [Sandboxie Holdings, LLC., 2015]
realizes one-way isolation on Windows so that applications running inside the sandbox can modify
any file without affecting the actual system. Bromium [Bromium] leverages virtualization technolo-
gies to create “micro-VMs” whenever users run an application. Two-way isolation protects integrity
and confidentiality by limiting both reads and writes, holding the inputs as well as outputs of un-
trusted applications in an isolated environment. A classical example is to use air gap to physically
separate different security-level networks. In cloud computing, virtual machines are widely used to
provide isolation while allowing consolidating different security domains applications to run on the
same physical machine. The app model on Android, i0OS, OS X, and Windows 8 are based on this
two-way isolation model. Apps cannot interact with each other by default.

Isolation approaches provide a stronger protection against malware since they block all inter-
actions between untrusted and benign software, thereby preventing subversion attacks. Isolation
approaches also provide much better usability because they permit sufficient access for most appli-
cations to work.

2.3.1 Drawbacks for applying isolation on desktop environment

While the only policy that isolation-based approach enforces is to isolate resources, they too have
several significant drawbacks, especially when applied in the desktop environment:

Fragmentation of user-data: Unlike policy-based confinement, which continues to support the
model of a single namespace for all user-data and resources, isolation causes fragmentation: user-
data and resources are partitioned into multiple containers, each representing a disjoint namespace.
In app model, each app has its own home directory. App-created files are considered as app-data
rather than user-data. In desktop environment such as Linux Container [Canonical Ltd., 2012],
applications from one isolation context cannot be used in another context. Users therefore have to
install and manage the same application across multiple contexts. Apiary [Potter and Nieh, 2010]
proposed using unioning file system to simplify applications management.

Inability to compose applications: The hallmark of today’s desktop OSes is the ability to
compose applications. UNIX pipelines represented one of the early examples of application com-
position. Other common forms of composition can happen through files or scripts, e.g., saving a
spreadsheet into a PDF file and then emailing this PDF file. Unfortunately, strict isolation pre-
vents one application from interacting with any data (or code) of other applications, thus precluding
composition.

No protection when isolation is breached: Strict isolation may be breached either due to a
policy relaxation or through manual copying of files across isolation-contexts. Any malware present
in such files can subsequently damage the system as these files do not carry any identifiers.

2.3.2 Attempts to make isolation more usable for desktop environment

Isolation has been made popular by the app models. Despite of applying isolation on a completely
new ecosystem, app models need to address the challenges above. The app models on iOS, Android,
and Windows address the first two drawbacks by introducing new mechanisms for apps to interact.
For instance, Android supports intent as an interaction mechanism— each app declares in its intent
filter what resource type and actions the app is capable of handling. When an app needs to interact
with another app, it creates an intent, which is an IPC mechanism provided by Android. Android will
resolve the intent by picking an app which is capable of handling the intent request. Upon resolution,
Android will transfer the control to the selected app. Intents can request data in multiple forms.
For example, an app invoking a camera app for taking a picture can get the raw bitmap of an image
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directly, save the image to the app’s selected private location, or ask the camera app to save the
image to a public location and return the location. This model is much safer than the desktop model
because all interactions are made explicit: apps only access data that they can handle, and they only
share data that they are willing to share. By default, apps accept no intent. On the other hand,
if an app does not support sharing, users have no way to access the data from other apps. Since
apps need to use the new sharing mechanisms, desktop applications cannot simply run as apps; in
addition, isolation environment has imposed a lot of restrictions on accessing system resources. As
such, most of the desktop applications (e.g., Microsoft Office, Adobe Reader, Photoshop) do not
support all functionalities when running as apps.

Instead of defining a completely new sharing mechanism, app model in OS X aims at reassembling
the user-familiar unified file system view while enforcing file system isolation. OS X has applied App
Sandbox on most system processes. It also mandates all apps distributed via App Store to run inside
a sandbox. OS X developers spent tremendous efforts in preserving the normal desktop experience
for isolated apps. OS X introduced PowerBox [Apple Inc., 2014] to grant apps access to user-files
based on user interactions. This solves the fragmentation problem. When users need to open files,
the apps will make IPC requests to a trusted daemon process running outside of the sandbox. The
daemon process will then draw a file selection dialog box on behalf of the isolated app. Once users
selected the file, the daemon will generate a token for the sandboxed app. The sandboxed app can
then present the token to the kernel. The kernel will then permit the app to access the file. While the
mechanism is simple, OS X developers have spent a lot of efforts in ensuring the looks-and-feels of
the dialog box matches with application styles. To make the technology usable in different scenarios,
OS X extended PowerBox with security-scoped bookmarks. For example, users can configure web
browser to download files to a user-specified folder. It is inconvenient if users have to select the same
location via the file dialog box every time to grant the web browser permission to create files there.
App-scoped bookmark allows apps to gain persistent accesses to a previously selected location. Apps
are free to store the tokens generated by the trusted daemon for later use. OS X also introduced
document-scoped bookmarks to solve another usability problem. Document-scoped bookmarks are
tied to files— when users grant an app to access a file, the app can automatically access another
file. This is useful in scenarios where multiple related files need to be accessed simultaneously. For
example, a movie file can have a bookmark to a subtitle file. A html file can have bookmarks to
all the embedded objects. This would allow a movie player or web browser to display the content
properly. PowerBox does not solve the problem of composing applications. Indeed, OS X does not
sandbox shell scripts invoked by sandboxed processes as long as the scripts were placed at a specific
location outside of the sandbox. Some of the popular apps such as Adobe Acrobat and Photoshop do
not run within App Sandbox. Developing a usable isolation environment for desktop OSes remains
to be a hard problem [Reddit Discussion, 2014].

Microsoft Office introduced Protected View [Microsoft, 2015b] to confine itself when consuming
untrusted data. The idea is to run the application in an one-way isolation environment if the
application could be compromised by consuming the untrusted data. This effectively isolate the
effect of possible exploitation. Protected view leverages WIM and application-awareness to achieve
isolation. When consuming untrusted files, Microsoft Office will run itself as a low-integrity process.
By default, system files and registry entries are of high-integrity, and user files and registry entries
are of medium integrity. WIM prevent lower-integrity processes from writing into higher-integrity
objects. The office process can therefore read but not write into system or user files. Since the
office process itself needs to modify some files (e.g., temporary files), the process will write into some
OS-designated low-integrity areas instead of the regular medium-integrity locations. Protected View
still requires applications to be aware of being isolated so that they won’t modify files that are of
higher integrity.
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2.4 Information flow control

Isolation separates resources into different isolation contexts based on security domains. While iso-
lation is effective in protecting one domain from another, it also limits the ability to compose appli-
cations. To allow sharing and app composition, various isolation-based approaches introduced their
own sharing mechanisms to circumvent isolation. Once sharing happens across an isolation bound-
ary, isolation can no longer provide any protection as isolation does not provide finer-granularity
tracking within a domain.

A natural extension to isolation is to attach labels to every subject and object and enforce
policies to confine their interactions. Bell-LaPadula is one of the earliest multi-level security models
concerning confidentiality. Its labels, ranked from highest confidential to least confidential, are top
secret, secret, confidential, and unclassified. Subjects with clearance C can read information of label
C' or below (no-read-up); similarly, any output from the subjects can contain information derived
from C, and hence is labeled as C' (no-write-down). Biba [Biba, 1977] focuses on integrity with
labels from highest integrity to lowest integrity. It enforces no-read-down and no-write-up policies.

2.4.1 Usability problems with IFC policies

There are two classical integrity policies: Biba and low-watermark [Biba, 1977]. They have been
proposed for more than 40 years. A policy is nothing but defining what subjects can and cannot
do. Operations that are not allowed by the policy will be denied. Naturally, if a policy does not
deny any action that would have been succeeded on an unprotected system, user experiences would
be preserved. This could lead to better usability. Since different policies allow different set of
operations, therefore different policies have different usability.

Biba model enforces a strict separation between high and low-integrity objects and subjects,
which impacts its usability. Consider a utility application such as a word-processor that needs to
operate on both high and low integrity files. It would be necessary to have two versions of every
such application, one for operating on high-integrity files and another for low-integrity files. It is
cumbersome to install and maintain two versions of every application. Worse, a user needs to be
careful in selecting the correct version of an application for each task — choosing a high-integrity
version of an application for processing low-integrity files (or vice-versa) will lead to security failures
and/or application crashes.

The low-watermark policy avoids these drawbacks of the strict policy by permitting subject
integrity to be downgraded at runtime. In particular, low-watermark allows applications to be
invoked with high integrity, and the integrity level can be downgraded if the application subsequently
reads a low integrity object. Any operations allowed in Biba would also be allowed by the low-
watermark policy. Intuitively, low-watermark has better usability. Fraser [Fraser, 2000] argues
eloquently why low- watermark policy has significantly better compatibility with existing software
as compared to the strict model. However, prior to his LOMAC project, the low-watermark policy
was not very popular because of the self-revocation problem [Fraser, 2000]. Specifically, consider a
subject that has already opened a high integrity file for writing. If this subject subsequently opens
a low integrity file for reading, it is downgraded. At this point, the subject cannot be permitted
to write into the high integrity file any more. Applications usually handle security failures when
opening files, but once opened, they assume that subsequent read and write operations will not fail.
When this assumption is invalidated, applications may malfunction or crash.

On one hand, the low-watermark policy seems more usable because it allows more actions that
would have be succeeded on an unprotected system. On the other hand, it suffers from self-
revocation, which breaks usability.
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2.4.2 Modern application of IFC

Usability remains one of the major concern in applying information flow tracking. The most notable
widely deployed system is WIM. While WIM is more commonly used as an isolation mechanism,
WIM is an instance of information flow tracking. Microsoft introduced WIM in Windows Vista to
protect system objects against malicious modification. Most Windows users themselves are system
administrators and login to Windows with their administrator accounts. As users run both regular
applications and administrative applications with the same user identifiers, Windows XP has no
way to differentiate if an administrative operation is initiated by users or malicious applications.
Windows uses WIM to encode the “trustworthiness” of the processes. When administrative users
login, Windows Explorer will have two security tokens, one as normal user and one as administrative
user. These security tokens are for authorizing user actions. Whenever users run system applications
or installers, Windows Explorer will prompt users for confirmation. Only then the programs will
run with administrative tokens (high integrity-level) and be able to write into high-integrity system
objects; otherwise, programs will run with normal user tokens, i.e., medium integrity-level and can
only modify user files. WIM ensures that medium integrity-level processes spawn only medium
integrity-level processes. While WIM enforces information flow policy, this policy is not sufficient to
protect system integrity. WIM enforces only no-write-up to protect system objects, but it does not
enforce no-read-down. This is because enforcing no-read-down would break system applications and
result in self-revocation. As a result, attacks have been successfully carried out— an attack vector
of Stuxnet modifies a user-writable task xml file maliciously so that an attacker-specified program
will run with the system privilege [jduck, 2014].

Most of the recent information flow tracking techniques remain in the research areas. LOMAC
focuses on addressing self-revocation. It extends low-water-mark to address some of the common
self-revocation scenarios in pipes using heuristics. It does not consider the direction of the pipes and
hence could stop a safe execution that does not have self-revocation. Furthermore, LOMAC does
not address problems for processes connected via other means such as shared memory or sockets.

PPI [Sun et al., 2008b], UMIP [Li et al., 2007] and IFEDAC [Mao et al., 2011] focus on applying
information flow tracking on commodity OSes, but they all require significant changes to the OS
kernel and only work for open source OSes. UMIP [Li et al., 2007] focuses on protecting system
integrity against network attackers. UMIP uses the sticky bit to label low-integrity data. The
kernel tracks process integrity levels and enforce policies on low integrity processes. High integrity
processes remain high integrity as long as they do not consume any low-integrity files or interact
with low-integrity processes. Low integrity processes can only read from non-user files and write
into world-writable files. This is true for network applications but not desktop applications. UMIP
is designed to protect servers. Compromising user files and processes is an important avenue for
malware propagation, but UMIP does not attempt to protect the integrity of user files. Downgrading
a user process allows no interactions with the user files, making the system not usable for desktops.

IFEDAC [Mao et al., 2011] extends UMIP to protect against untrusted users as well by tracking
not only network provenance information, but also local user. This is the same as our system.
Instead of labeling files using sticky bit as in UMIP, IFEDAC uses kernel to track object labels as
well. This allows IFEDAC to have arbitrary number of labels.

PPI [Sun et al., 2008b] is designed to preserve integrity by design and focuses on automating
policies. PPI relies on exhaustive training to determine policies for subjects and objects. It starts
by manually defining a set of integrity-critical objects. The set of subjects and objects that need to
remain at high integrity is then expanded recursively based on the observations from training. The
absence of training can lead to failures of high-integrity processes. Specifically, incomplete training
can lead to a situation where a critical high-integrity process is unable to execute because some of
its inputs have become low-integrity, leading to availability problem.
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2.4.3 Decentralized information flow control

Traditional IFC systems have labels predefined by system administrators. They focus on protecting
system integrity or preventing confidential data leakage. Labels in IFC systems have system-wide
meanings. In contrast, DIFC [Myers and Liskov, 1997] relaxes the notion of labels. Applications can
create their own labels and these labels are only meaningful to the application creators, and do not
necessarily have meanings to the system and other applications. The DIFC system will propagate
and enforce system-predefined policies based on the labels. This allows composition of different
applications while satisfying the security requirements for the applications and data.

DIFC approaches can be classified into language-based and OS-based. Language-based solutions
(e.g, Jif [Myers et al., 2001]) push information-flow control inside applications. Developers have to
write their programs with new language primitives and design the program logic to comply with
information-flow policy; otherwise, programs will not be protected or simply do not run due to
violations. An advantage of language-based approach is that labels can be assigned and enforced at
a fine-grained level such as variables.

OS-based solutions such as Flume [Krohn et al., 2007], HiStar [Zeldovich et al., 2006] and As-
bestos [Efstathopoulos et al., 2005] enforce policies at the OS subjects and objects. They usually
require OS changes to track information flow. The advantage of OS-based solutions is that they
usually require less changes to applications. For example, HiStar redesigned the OS with new ab-
stractions to allow more precise labeling at memory-page level. While the majority of the code in
Flume resides in userspace, Flume still relies on kernel modules to confine processes. This makes
Flume hard to support different Linux distributions and other Unix systems.

Laminar [Porter et al., 2014] is both a language- and OS-based solution. It requires minimal
changes to existing application code. Instead of rewriting the entire application to comply with
information-flow policies, application developers only need to indicate which parts of the code need
access to sensitive data, and what capability a thread will have when executing the code. The
JVM in Laminar will then perform the runtime checking and policy enforcement. Laminar can also
use labels from OS objects such as files, making it a combination of both OS and language based
solution.
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Chapter 3

3 Portable Information Flow Tracking

Mobile OSes use code origin information to isolate different apps. The model is so popular that it
has been backported to desktop OSes. While this code provenance-based isolation model provides
better security, it is limited to new apps only. In this chapter, we study how to leverage the
provenance information better to achieve application compatibility while providing better security
against malware.

We present a whole system integrity protection system called Spir. We focus our discussion
on building SPIF with only two provenance origins (principals) called benign and untrusted. We
show that even with a simple trust policy between the two principals, SPIF is powerful enough
to protect against unknown, high-profile malware while maintaining usability. SPIF extends the
idea of mobile OSes to desktop OSes, and is designed to protect legacy desktop applications. We
have implemented the system on multiple OSes, including Linux, BSD, and Windows. SPIF is
compatible with existing applications such as Firefox, Internet Explorer, Chrome, Microsoft Office,
Adobe Reader, and Photoshop.

3.1 Approach overview

Sophisticated malware can evade defenses using multi-step attacks, with each step performing a
seemingly innocuous action. For instance, malware may simply deposit a shortcut on the desktop
with a name of a commonly used application instead of writing files in system directories directly.
It can wait until the user double-clicks on this shortcut and do its work. Alternatively, malware
may deposit files that contain exploits for popular applications, with the actual damage inflicted
when a curious user opens them. The first example involves a benign process executing code derived
from a malicious source, while the second example involves a vulnerable benign application being
compromised by malicious data.

Our approach, SPIF, which stands for Secure Provenance-based Integrity Fortification, combines
the strengths of sandbozing, isolation of untrusted code, and information flow tracking while avoiding
most of their weaknesses. Like sandboxing, all user data is held within one name space, thereby
providing a unified view. Like isolation, SPIF preserves the usability of applications, and does
not require significant policy development effort. At the same time, it avoids the weakness of
isolation-based approaches, allowing most typical interactions between applications, while ensuring
that system security isn’t compromised by these interactions. To thwart all malware attacks that
compromise system integrity regardless of the number of steps involved, we use integrity labels to
track the influence of untrusted sources (provenance) on all files.

Below, we list the requirements for successfully applying provenance tracking for protecting
contemporary OSes:

e Reliable tracking system: Existing information flow tracking systems either develop brand
new OSes [Zeldovich et al., 2006, Efstathopoulos et al., 2005] or instrument OSes [Li et al.,
2007, Sun et al., 2008b, Mao et al., 2011] to label every subject (process) and object (file)
in the system. Developing such a system-wide tracking mechanism can be error-prone and
involve substantial engineering challenges. This problem is particularly serious in the context
of Windows because its source code is unavailable. Attackers can try every possible way to
circumvent the tracking system. It is therefore important to track provenance across the system
reliably.

e Robust policy enforcement: Experience with various containment mechanisms such as
sandboxie [Sandboxie Holdings, LLC., 2015], Bufferzone [BufferZone Security Ltd., 2015] and
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Dell Protected Workspace [Dell, 2015], as well as the numerous real-world sandbox escape
attacks [Fisher, 2014, Li, 2015, Constantin, 2013] have demonstrated the challenges of build-
ing new, effective containment mechanisms for malicious code [Rahul Kashyap, 2013]. It is
more desired if we can build a secure system based on some existing, time-tested security
mechanisms.

e Application transparency: New security paradigms such as the app model and broker
architecture provide better security at the cost of requiring application developers to refactor
code or use new APIs. As a result, the majority of the existing applications remain vulner-
able and become the weakness link for security compromisation. By being compatible and
transparent to existing applications, a system can higher the attack barrier.

e Preserving user experience: Increased security is usually achieved through stronger secu-
rity policies. These stronger policies will invariably deny some (otherwise allowed) operations
and thus impact functionality. Users may not be patient enough or willing to learn new work-
flows and simply disable the security system entirely. While careful policy development may
reduce the scope of functionality loss, experience with SELinux [Loscocco and Smalley, 2001a]
and other projects [Acharya et al., 2000, Sekar et al., 2003] show that (a) the effort and ex-
pertise involved in developing good policies is considerable, and (b) the resulting policies can
still lead to unacceptable loss of functionality (or security).

The fundamental problem is that finding the “boundary” between legitimate and insecure
behaviors can be very hard. For instance, consider identifying the complete set of files that must
be protected to ensure host integrity. An overly general list will cause untrusted applications
to fail because their file accesses are denied, while omissions in this list will impact benign
system operations. If untrusted software is prevented from writing any files within a user’s
home directory, this can affect its usability. If, on the other hand, it is permitted to write any
file, it may be able to install backdoors into the user’s account, e.g., by modifying files that
are automatically executed with user’s privileges, such as the .bashrc file.

While designing SPIF, we aim at preserving the normal user experience and avoid asking users
to make any security decision. Users can interact with the system as usual.

e Automating policy development: To build a practical system that preserves user experi-
ence, we need as much (if not more) emphasis on the policies as on the enforcement mechanisms.
However, policy development is often a manual process that requires careful consideration of
every application and file on the system. Given that a typical system may have thousands
of applications and many tens of thousands of files, this becomes a truly daunting task. It is
therefore desirable to automate the policy development process without requiring efforts from
application developers or system administrators.

e Implementation on contemporary OSes: Research efforts in developing security defenses
have been centered on Unix systems. Prototypes are developed and evaluated on open-source
platforms like Linux or BSD to illustrate feasibility and effectiveness. While these open-
source platforms simplify prototype development, they do not mirror closed-source OSes like
Windows. First, these closed-source OSes are far more popular among end-users. They attract
not only application developers, but also malware writers. Second, there is only a limited
exposition on the internals of closed-source OSes. Very few researchers are aware of how the
mechanisms provided in these OSes can be utilized to build systems that are secure, scalable,
and compatible with large applications. A desirable requirement is to support contemporary
OSes, including closed-source OSes like Windows.

We discuss below how SPIF address each of the requirement above.
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3.1.1 Reliable tracking system

To reliably track provenance, SPIF uses an existing security mechanism, namely, multi-user protec-
tion and discretionary access control (DAC). Unlike Android, which uses a different userid for each
app, our design creates one new userid for each existing user. While Android’s goal is to isolate
different apps, we use DAC to protect benign processes/files from untrusted code/data. (We discuss
the alternative of using Windows integrity labels in Section 3.9.1.)

Files coming from untrusted sources are owned by a “low-integrity’ user, a new user from the
OS perspective. Since OSes already have mechanisms for tracking resources of each user, SPIF can
overload the existing mechanisms to track provenance.

File download is the most common way to introduce new files. SPIF can leverage Windows
Security Zones labeling to automatically label files downloaded from the Internet. While most
browsers and email readers already fill in these labels, applications are free to decide how to use
these labeled files. Most applications simply ignore the labels, leading to a gap in the tracking. In
contrast, SPIF requires every subject handling low-integrity files to be of low-integrity — subjects
and objects derived from these untrusted files will be labeled as low-integrity.

3.1.2 Robust policy enforcement

SPIF enfoces robust policies by using (a) simple policies, and (b) time-tested security mechanisms for
sandboxing untrusted code. Specifically, SPIF relies on multi-user protection mechanism for policy
enforcement. By relying on a mature protection mechanism that was designed into the OS right
from the beginning, and has withstood decades of efforts to find and exploit vulnerabilities, SPIF
side-steps the challenges of securely confining malicious code.

To protect overall system integrity, it is necessary to sandbox benign processes as well: otherwise,
they may get compromised by reading untrusted data, which may contain exploits. This is what
existing defenses such as Windows Integrity Mechanism and System Integrity Protection do not
consider. SPIF therefore enforces a policy on benign processes as well. Among other restrictions, this
policy prevents benign processes from reading untrusted data. Note that, since benign processes have
no incentive to actively subvert or escape defenses, it is unnecessary for this enforcement mechanism
to be resilient against adversaries.

3.1.3 Application transparency

SPIF embraces the fact that applications will have vulnerabilities, and shifts the responsibility of
system integrity protection to an OS-wide mechanism. Processes are annotated with provenance
information to indicate their potential security interest. Since SPIF labels processes using userid,
SPIF can treat applications as blackboxes and require no application modification. Applications
already support running with different userids natively. SPIF can therefore support feature-rich
unmodified applications such as Photoshop, Microsoft Office, Adobe Reader, Windows Media Player,
Internet Explorer, and Firefox.

3.1.4 Preserving user experience

We overcome the dilemma in defining a boundary between functionality and security with a novel
dual-sandbox architecture. The first of these sandboxes performs eager policy enforcement. To
minimize breaking legitimate functionality, it blocks only those operations that can cause irreparable
damage, e.g., overwriting an existing benign file. This sandbox, called untrusted sandbox (U), needs
to be secure against any attempts to circumvent it.

Operations with unclear security impact, such as the creation of new files, are left alone by the
second sandbox, called benign sandbox (B). While these actions could very well be malicious, there
isn’t enough information to make that conclusion with confidence by U. Hence, we rely on B to
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observe subsequent effects of this action to determine if it has to be stopped. For instance, B would
prevents a benign process from using files that could compromise the benign process.

Our dual-sandbox architecture achieves several important goals: First, it provides robust en-
forcement of complex policies without requiring OS kernel modifications. Second, it preserves func-
tionality of both benign and untrusted applications by implementing many important transparency
features, so that security benefits of our approach can be achieved without requiring changes to
applications, or the way in which users use them.

One of the design goals of SPIF is to preserve normal desktop user experience. Unprotected
systems impose no constraint on subjects (processes)- objects (files) interaction. Although this
allows maximum compatibility with existing software, malware can exploit this trust to compromise
system integrity. Preventing such compromise requires placing some restrictions on the interactions.
Simply blocking such interactions can lead to application failures, and hence impact user experience.
SPIF comes pre-configured with policies targeted at preserving user experience.

3.1.5 Automating policy development

We have therefore developed a procedure for classifying files into different categories: code, con-
figuration, preference and data. Based on this inference, we provide a detailed policy that works
without needing manual analysis of applications or file residing on the system.

SPIF infers most policies automatically from already existing information such as file permissions,
observed behaviors of applications, etc. We developed techniques (Section 3.5) to distinguish between
config/code and data inputs for programs. SPIF uses this information to provide security and
usability guarantees.

A second technique we have developed for simplifying policy development is based on the concept
of implicit versus explicitly specified file accesses. Explicit file accesses occur when a file is specified
externally, through means such as command-line arguments, file selection dialogs, or user double-
clicking to open some files. Implicit accesses are made without external specifications. Code and
configuration files are accessed implicitly, while data files are usually accessed explicitly. Based
on this observation, we have developed techniques to distinguish between these accesses, and apply
different policies in the two cases. As we show later, this approach captures user intention to improve
usability, reduces application failures and safeguards security.

3.1.6 Implementation on contemporary OSes

We have implemented SPIF on Linux, BSD, and Windows, supporting XP, 7, 8.1, and 10. Imple-
menting such a system-wide information flow tracking system on closed-source OSes is challenging.
We present different design choices we made during the development of SPIF. We share our expe-
riences and lessons on implementing SPIF different OSes such that researchers can be aware of the
techniques we applied, and start developing defenses on popular OSes.

3.2 Threat Model

We assume that users of the system are benign. Any benign application invoked by a user will
therefore be non-malicious. If a user is untrusted, SPIF can simply treat the user as an untrusted
user and every subject created by that user is of low-integrity.

SPIF assumes that any file received from unknown or untrusted sources will be labeled as low-
integrity. This can be achieved by exclusion: Ounly files from trusted sources like OS distributors,
trustworthy developers, and vendors are labeled as high-integrity. All files from unverifiable origins
(including network and external drives) are labeled as untrusted. This labeling convention has
been adopted by Windows and OS X. As described later, SPIF’s labeling of incoming files has been
seamlessly coupled with Windows Security Zones, which has been adopted by all recent browsers
and email clients. For Unix systems, we have developed browser and email client addons to label
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Figure 2: Untrusted sandbox

files. An administrator or a privileged process can upgrade these labels, e.g., after a signature or
cryptographic hash verification. We may also permit a benign process to downgrade labels.

SPIF focuses on defending attacks that compromise the system-integrity, i.e., performing unau-
thorized modifications to the system (such as malware installing itself for auto-starting) or environ-
ment that enables the malware to subvert other applications or the OS (e.g., .bashrc). Although
SPIF can be configured to protect confidentiality of user files, this requires confidentiality policies to
be explicitly specified. We introduce in Chapter 6 a generalization to SPIF together with a policy
language that can be used to specify confidential policies. It should be noted that files containing
secrets useful to gain privileges are already protected from reads by normal users. This policy could
be further tightened for untrusted subjects.

We assume that benign programs rely on system libraries (i.e., libc.so, ntd11.d11 or kernel32.d11)
to invoke system calls. SPIF intercepts system calls from the libraries to prevent high-integrity pro-
cesses from accidentally consuming low-integrity objects. We do not make any such assumptions
about untrusted code or low-integrity processes, but do assume that OS permission mechanisms are
secure. Thus, attacks on the OS kernel are out of scope of SPIF.

3.3 Containing Untrusted Processes

SPIF leverages existing userid mechanisms in OSes to track provenance information and enforce
policies. SPIF uses a novel dual-sandboxing architecture to confine both benign and untrusted
processes to preserve user experience and simply policy development. In this section, we focus the
discussion on untrusted sandbox.

Our untrusted sandbox, illustrated in Figure 2, consists of a simple inner sandbox U; based on
OS-provided access control mechanisms, an outer sandbox that is realized using a library Uy, and a
user-level helper process Ug.

The inner sandbox U enforces an isolation policy that limits untrusted processes so that they
can only perform operations that are safe, e.g., write to untrusted files (Section 3.3.1). This strict
policy, by itself, can cause many untrusted applications to fail. For example, an untrusted document
writer cannot create temporary files or save files on user’s desktop. The outer sandbox is designed
to relax the restrictions imposed by U;. The transparency library Uy (Section 3.3.2) component
of the outer sandbox masks these failures so that applications can continue to operate as if they
were executing directly on the underlying OS. In particular, Uy, remaps some of the failed requests
(primarily, system calls) so that they would be permitted by U;. As Up runs in the untrusted
context, Uy, may not resolve all failures due to the DAC permission. In those cases, Uy, forwards the
request to Ug, which runs with the userid of a normal user, to carry out the request. The helper
Up uses a policy (described in Section 3.3.4) that is more permissive than the inner sandbox, but
will still ensure information-flow based integrity.

In addition to modifying or relaying requests from untrusted processes, the transparency library
U, may also modify the responses returned to them in order to preserve their native behavior. We
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provide two examples of remapping to illustrate its benefit:

e Shadowing: When a benign application is run with untrusted inputs, it will execute as an
untrusted process, and hence will not be able to update its preference files. To avoid application
failures that may result due to this, U, can shadow these accesses to untrusted private copies
of such files.

e Redirection: Untrusted applications will experience a failure when they attempt to create files
in the home directory of a user R, since this directory is not writable by untrusted userids. In
this case, U, transparently redirect the file creation to a redirected location. Uy, also intercepts
calls to directory operations to merge entries in the redirected location. This presents users a
unified file system view.

Whether a particular file access is shadowed or redirected is determined by security policies, a topic
further discussed in Section 3.5.

By splitting the untrusted sandbox into inner and outer sandboxes, SPIF can rely on existing
OS mechanism to enforce a non-circumventable policy against malicious code. The outer sandbox is
circumventable, but bypassing it does not let untrusted code gain any privilege. The inner sandbox
only needs to deny untrusted processes from accessing resources owned by benign users. This allows
SPIF to be deployable on most multi-user OSes with users as basic trust units. OSes such as Windows
support advanced user permission models, e.g., ACLs, can grant untrusted processes preciously the
safe accesses that they can have. For these OSes, the outer sandbox needs not be separated from
the inner sandbox.

3.3.1 Inner Sandbox U;

Contemporary desktop OSes provide access control mechanisms for protecting system resources such
as files, registry entires and IPCs. Moreover, processes belonging to different users are isolated from
each other. We repurpose this mechanism to realize the inner sandbox. Such repurposing would,
in general, require some changes to file permissions, but our design was conceived to minimize such
changes: our implementation on Ubuntu Linux required changing permissions on less than 60 files
(Section 3.7). Windows ACL supports permission inheritance and hence only a handful of top level
directories and registry entries needed modification. Moreover, this DAC permission overloading
preserves all of the functionality relating to the ability of users to share access to files.

The basic idea is to run untrusted processes with newly-created users that have very little, if any,
direct access to modify the file system. For each non-root user! R in the original system, we add
a corresponding untrusted user Ry. Similarly, for each existing group G, we create an untrusted
group Gy that consists of all userids in G and their corresponding untrusted userids. To further
limit accesses of Ry, we introduce a new group Gp of existing (“benign”) userids on the system
before untrusted userids are added. File permissions are modified so that world-writable files and
directories become group-writable by Gg 2. Similarly, world-executable setuid programs are made
group executable by Gp. The algorithm is presented in Figure 3.

With the above permission settings, no Ry will have the permission to create or modify any
file in the system. To support redirection and shadowing, SPIF creates a redirect and a shadow
directory for each Ry so that Ry can create or modify objects inside. Shadowing consists of reading
the original copies and creating shadow copies. By granting Ry permissions to create files, at least
half of the logic for shadowing can be offloaded to Ry;. This greatly simplifies the complexity of the
outer sandbox.

IWe don’t support untrusted code execution with administrative privileges. In Chapter 4, we describe another
system which supports running untrusted code as root.
2If group permissions are already used, then we use ACLs instead.
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create a new group Gp
for each user U do
add a userid U to group Gp
for each real user R do
create a userid Ry for the user R
for each group G do
create a new group that Gy with the members of G
for each user account R in G do
add Ry to Gy

Figure 3: Algorithm for setting up users in SPIF

SPIF ensures that benign processes will not consume untrusted files by ensuring that they do not
access objects within the redirect or shadow directory. Since untrusted files are either redirected or
shadowed, benign processes are not even aware of the untrusted files by default. Untrusted processes
cannot modify benign files either, since the benign sandbox ensures appropriate permission settings
on benign files during creation.

Untrusted processes can compromise benign processes through inter-process communication.
Some communication mechanisms, such as pipes between parent and child processes, need to be
closed when a child process of a benign process becomes untrusted. This can happen in SPIF only
through the execve system call or CreateProcess Windows API. Other communication mechanisms
such as signals and IPC are restricted by the OS based on userids, and hence the inner sandbox will
prevent them already. For intra-host socket communication, the benign sandbox is responsible for
identifying the userid of the peer process and blocking the communication. While SPIF can also rely
on the untrusted sandbox to prevent untrusted processes from connecting to benign sockets, some
OSes such as BSD do not honor permissions on sockets. Hence, SPIF placing the check on the be-
nign sandbox at the time of connection establishment. To block communication with external hosts,
appropriate firewall rules can be used, e.g., using the uid-owner and gid-owner options provided by
iptables.

Using userid as an isolation mechanism has been demonstrated in systems like app model on
Android for isolating applications. One of our contributions is to develop a more general design that
not only supports strict isolation between applications, but also permits controlled interactions. (Al-
though Android can support interactions between applications, such interactions can compromise
security, providing a mechanism for a malicious application to compromise another benign appli-
cation. In contrast, our approach ensures that malicious applications cannot compromise benign
processes.) Our second contribution is that our approach requires no modifications to (untrusted
or benign) applications, whereas Android requires applications to be rewritten so that they do not
violate the strict isolation policy.

3.3.2 Transparency Library U,

Operations such as requesting the helper, performing shadowing and redirection cannot be encoded
as permission. SPIF uses Uy, to modify the behaviors of system library to support these operations.
Note that Uy operates with the same privileges as the untrusted process, so no special security
mechanisms are needed to protect it. Specifically, Uy, handles the following transparency issues:

Userid and group transparency Applications may fail simply because they are being run with
different user and group ids. For this reason, Uy wraps getuid-related system calls to return R
for processes owned by Ry. It also wraps getgid-related system calls to return G for processes
group-owned by G,. On UNIX, this mapping is applied to all types of userids, including effective,
real and saved userids. As a result, an untrusted process is not even aware that it is being executed
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with a different userid from that of the user invoking it.

This modification is important for applications that query their own user or groupid, and use
them to determine certain accesses, e.g., if they can create a file in a directory owned by R. If not,
the application may refuse to proceed further, thus becoming unusable. Some common applications
such as OpenOffice, gedit, eclipse and gimp make use of their userid information. U ensures
that such applications remain usable. This modification is also cricual for enhancing usability on
Windows— shortcuts such as Desktop and My Documents in file selection dialog boxes are pointed
to R rather than Ry, despite the fact that Ry is running the processes.

File access transparency Both shadowing, redirection, and merging of directory contents are
implemented in Uy, by intercepting calls to file creation/open, getdents, or NtQueryDirectoryFile.
Untrusted processes can rely on existing DAC permission to read and shadow files on their own. If
untrusted processes do not have permissions to read the original files, they can request Uy to get ac-
cess to the file and shadow the file themselves. Note that SPIF implemented its own COW semantics
as existing COW semantics would not allow Ry to create files inside R’s shadowed directories.

3.3.3 Helper Process Uy

In the absence of SPIF, programs will be executed with the userid R of the user running it. Thus,
the maximum access they expect is that of R, and hence Uy can be run with R’s privileges.

Observe that the inner sandbox imposes restrictions (on Ry relative to R) for only three cate-
gories of operations®: file/registry/IPC operations, signaling operations (e.g., kill or CreateSemaphore),
and tracing operations (e.g., ptrace or CreateRemoteThread). We have not found useful cases where
Ry needs to signal or trace a process owned by R. Registry entries and IPC objects support permis-
sion settings, and hence SPIF treats them the same as files. Consequently, we focus the discussion
on file system operations:

e Read-permission: By default, Ry is permitted to read every object (file, registry, pipe, etc.)
readable by R. This policy can be made more restrictive to achieve some confidentiality
objectives. We leave the discussion in Chapter 6.

o Write-permission: By default, Ry subjects are not permitted to write objects that are owned
by R. However, instead of denying, untrusted sandbox can shadow the accesses transparently
by copying the original file F' to Ry’s shadow directory. Henceforth, all accesses by Ry-subjects
to access F' are transparently redirected to this shadow file.

Shadowing enables more applications to successfully execute by avoiding permission denials.
But this may not always be desirable, as it can create confusion to users as there can be
multiple copies of the same file. It is sometime desirable to deny the operation. We describe
in Section 3.5 how to decide between denial and shadowing.

e Object creation: New object creation is permitted if R has permission to create the same
object. Ry creates these new objects in redirected directory and high-integrity processes will
not be permitted to read them. If R creates an object whose name collides with a low-integrity
object, either file exists error will be returned or the low-integrity object will be shadowed,
depending on the type of the object. The policy is detailed in Section 3.5.

e Listing directories: As Ry’s files are either redirected or shadowed, benign and untrusted files
are separated. This can lead to usability problem as file system namespace is fragmented. To
preserve a unified file namespace, SPIF merges the contents from the directories transparently
as in unioning file system.

3Recall that R cannot be root, and hence many system calls (e.g., changing userid, mounting file systems, binding to
low-numbered sockets, and performing most system administrative operations) are already inaccessible to R-processes.
This is why it is sufficient to consider these three categories.
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e Operations to manipulate permissions, links, etc.: These operations are handled similar to file
modification operations: if the target file(s) involved is untrusted, then untrusted processes
can perform the changes as permitted by the inner sandbox.

e Operations on R’s subjects: Ry-subjects are not allowed to interact with R-subjects. These
include creating remote threads in or sending messages to R’s processes, or communicating
with R’s processes using shared memory.

e Other operations: Ry-subjects are given the same rights as those of R for the following opera-
tions: executing files, querying registry, renaming low-integrity files inside redirected/shadow
directory, and so on. Operations that modify high-integrity file attributes are automatically
denied by Uj.

Note that it is possible that a file may be at a shadowed directory, main file system, or both. Users
may have a hard time locating such files, as untrusted copies are visible only to untrusted processes.
SPIF reduces this confusion by limiting shadowing to application preference files: applications need
to modify these files but users are unlikely to look for (or miss) them. Data files are not shadowed.
We discuss in Section 3.5.1 how to distinguish between these file types.

While we do not emphasize confidentiality protection in this chapter, SPIF provides the basis for
sound enforcement of confidentiality restrictions by tightening the policy on user-readable files. We
discuss more in Chapter 6

3.3.4 Windows implementation

In our Windows implementation, SPIF grants all of the above rights, except for shadowing and
redirection, to Ry-subjects by configuring permissions on objects accordingly. There is no need for
Ug. Unlike UNIX, object permissions on Windows are specified using ACLs, which can encode
different accesses of arbitrary number of principals. Moreover, there are separate permissions for
object creation versus writing, and permissions can be inherited, e.g., from a directory to files in the
directory. These features give SPIF the flexibility to implement the above policies. Shadowing and
redirection are implemented using Uy,. Both reading the original files and creation of untrusted files
in the shadowed /redirected directories can be completed by untrusted processes themselves.

3.4 Protecting Benign Processes

Existing mechanisms focus on restricting only untrusted processes: policy-based confinement mech-
anisms focus on sandboxing untrusted processes; Windows Integrity Mechanism (WIM) enforces
no-write-up policy to protect higher-integrity processes from being attacked by lower-integrity pro-
cesses. However, they do not enforce any policy on benign processes. A higher-integrity process can
read lower-integrity files and then get compromised. This is well illustrated by the Task Scheduler
XML Privilege Escalation attack [jduck, 2014] in Stuxnet, where a user-writable task-file is mali-
ciously modified to allow the execution of arbitrary-commands with system privileges. Hence, it is
important to protect benign processes from consuming untrusted objects accidentally.

Our benign sandbox completes the second half of our sandbox architecture. Whereas the un-
trusted sandbox prevents untrusted processes from directly damaging benign files and processes,
the benign sandbox is responsible for protecting benign applications from indirect attacks that take
place through input files or inter-process communication.

While policy enforcement against low-integrity processes has to be very secure, policies on high-
integrity subjects can be enforced in a more cooperative setting. High-integrity subjects do not
have malicious intentions, and hence they can be trusted not to actively circumvent enforcement

mechanisms?.

4 Although benign applications may contain vulnerabilities, exploiting a vulnerability requires providing a malicious
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In this cooperative setting, it is easy to provide protection— SPIF uses a benign sandboxing
library Bj that operates by intercepting calls to system calls used for making security-sensitive
operations and changing their behavior so as to prevent attempts by a high-integrity process to
open low-integrity objects. In contrast, a non-bypassable approach will have to be implemented in
the kernel, and moreover, will need to cope with the fact that the system call API in Windows is
not well-documented.

A simple way to protect benign applications is to prevent them from ever coming into contact
with anything untrusted. However, total separation would preclude common usage scenarios such
as the use of benign applications (or libraries) in untrusted code or the use of untrusted applications
to examine or analyze benign data. In order to support these usage scenarios, we partition the
interaction scenarios into three categories as follows.

e Logical isolation: By default, benign applications are isolated from untrusted components
by the benign sandbox , which denies any attempt to open an untrusted file for reading, or
engaging in any form of inter-process communication with an untrusted process.

e Unrestricted interaction: The other extreme is to permit benign applications to interact freely
with untrusted components. This interaction is rendered secure by running benign applications
within the untrusted sandbox.

e Controlled interaction: Between the two extremes, benign applications may be permitted to
interact with untrusted processes while remaining as benign processes. Since malware can
exploit vulnerabilities of benign software through these interactions, they should be limited to
trusted programs that can protect themselves in such interactions.

The first and third interaction modes are supported by a benign sandboxing library By,. As described
Section 3.4.1, By, enforces policies to protect benign processes from accidental exposure to untrusted
components. The second interaction mode makes use of the untrusted sandbox described earlier,
as well as a benign sandboxing component (Section 3.4.2) for secure context switch from benign to
untrusted execution mode.

3.4.1 Benign Sandboxing Library

Since benign processes are non-malicious, they can be sandboxed by enforcing policies using library.
In the isolation mode, By, enforces the following policies.

e Listing directories: Attempts to list directories that have been redirected will be merged to
present users an unified view. This is the only operation that untrusted files are involved. It
is a tradeoff between security and usability— SPIF assumes that benign processes cannot be
compromised simply because of the presence of an untrusted file. This allows users to know
the existance of untrusted files and infers user intentions to transition to untrusted domain.

e Querying file attributes: Operations such as access, stat and NtQueryAttributesFile that
refer to untrusted files are denied. The default error is file not exist, as untrusted files are
shadowed /redirected. However, there are cases where returning permission denial is more
meaningful to communicate security failures to users (Section 3.5).

o Executing files and reading files/registry entries: These are handled in the same way as file
attribute query operations. Since untrusted files and registry entries are always shadowed or
redirected, this checking can be done by simply examining the paths to the system call.

input. Recall our assumption that inputs will be conservatively tagged, i.e., any input that isn’t from an explicitly
trusted source will be marked as untrusted. Since a high-integrity process won’t be permitted to read untrusted input,
it follows that it won’t ever be compromised and hence won’t actively subvert policy enforcement.
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e Opening non-file objects for reading: SPIF does not permit benign processes to read untrusted
objects. These opens will be denied as in the querying file attributes operations. To avoid
race conditions, the object needs to be opened and a stat is performed on the object descrip-
tor/handle. Note that post-checking is necessary for non-file objects because SPIF does not
separates namespace for untrusted non-file objects, as not all OSes support object namespace.

e Changing file permissions: These operations are intercepted to ensure that benign files are not
made writable to untrusted users accidentally. These restrictions prevent unintended changes
to the integrity labels of files. However, there may be instances where a benign process output
needs to be marked as untrusted. SPIF provides both an utility and specific library calls for
this purpose. SPIF uses DAC permission to ensure that only benign processes can invoke this
utility.

e Interprocess communication channel establishment: This includes operations such as connect
and accept. The OS is queried for the userid of the peer process. If it is untrusted, the
communication will be closed, and SPIF returns a failure code. For OSes that do not support
querying userid based on sockets, SPIF can incorporate in-band authentication mechanisms to
challenge peer’s identity right after the channel establishment. The challenge can be as simple
as asking the peer process to return the content of a user-readable file which untrusted users
cannot read.

e Loading kernel modules: Similar to opening files for reading, untrusted modules or drivers are
redirected and hence are not visible to benign processes for loading into the kernel.

In addition to isolation, By, can also support controlled interaction between benign and untrusted
processes. This option should be exercised only with trustworthy programs that are designed to
protect themselves from malicious inputs. Moreover, trust should be as narrowly confined as possible,
so By, can limit these interactions to specific interfaces and inputs on which a benign application
is trusted to perform sufficient input validation. To highlight this aspect, we refer to this mode of
interaction as trust-confined execution.

By, provides two ways by which trust-confined execution can deviate from the above default
isolation policy. In the first way, an externally specified policy identifies the set of files (or com-
munication end points such as port numbers) from which untrusted inputs can be safely consumed.
We discuss more in an application of SPIF, namely secure software installation, in Chapter 5. The
policies can also specify if certain outputs should be marked as untrusted. In the second way, a
trusted process uses an API provided by By, to explicitly bypass the default isolation policy, e.g.,
trust_open to open an input file even though it is untrusted. While this option requires changes to
the trusted program, it has the advantage of allowing its programmer to determine whether sufficient
input validation has been performed to warrant trusting a certain input.

3.4.2 Secure Context Switching

Users may wish to use benign applications to process untrusted files. Normally, benign applications
will execute within the benign sandbox, and hence won’t be able to read untrusted files. To avoid this,
they need to preemptively downgrade themselves and run within the untrusted sandbox. The (policy)
decision as to whether to downgrade this way is discussed in Section 3.5. In the context of information
flow based systems, SPIF adopts the early downgrading model, which allows a process to downgrade
itself just before executing a program image. When compared to the strict Biba [Biba, 1977] policy,
early downgrading is strictly more usable. While dynamic downgrading [Fraser, 2000, Sun et al.,
2008b] is more general, it usually requires changes to the OS [Sun et al., 2008b, Li et al., 2007, Krohn
et al., 2007, Zeldovich et al., 2006, Mao et al., 2011], whereas early downgrading does not.
Switching security contexts (from untrusted to benign or vice-versa) is an error-prone task. For
a high-integrity process to run a low-integrity program, it needs to change its userid from R to Ry.
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3.4.2.1 Transition on UNIX

One of the advantages of our design is that it leverages a well-studied solution to this problem,
specifically, secure execution of setuid executables in UNIX.

A switch from untrusted to benign domain can happen through any setuid application that is
executable by untrusted users. Well-written setuid programs protect themselves from malicious
users. Moreover, OSes incorporate several features for protecting setuid executables from subversion
attacks during loading and initialization. While these should be sufficient for a safe switching
out of untrusted domain, our design further reduces the risk with a default policy that prevents
untrusted processes from executing setuid executables. This policy can be relaxed for specific setuid
applications that are deemed to protect themselves adequately.

Transitions in the opposite direction (i.e., from benign to untrusted) require more care because
processes in untrusted context cannot be expected to safeguard system security. We therefore
introduce a gateway application called uudo to perform the switch safely. Since the switch would
require changing to an untrusted userid, uudo needs to be a setuid-to-root executable. It provides an
interface similar to the familiar sudo® program on UNIX systems — it interprets its first argument
as the name of a command to run and the rest of the arguments as parameters to this command. By
default, uudo closes all benign files that are opened in write mode as well as IPC channels. These
measures are necessary since all policy enforcement takes place at the time of open, which, in this
case, happened in the benign context. Next, uudo changes its group to Gy and userid to Ry and
executes the specified command. (Here, R represents the real userid of the uudo process.)

3.4.2.2 Transition on Windows

On UNIX, the transition can be performed using setuid, but Windows only supports an imperson-
ation mechanism that temporarily changes security identifiers (SIDs) of processes. This is insecure
for confining untrusted processes as they can re-acquire privileges. The secure alternative is to
change the SID using a system library function CreateProcessAsUser to spawn new processes with
a specific SID. SPIF uses a Windows utility RunAs to perform this transition. RunAs behaves like a
setuid-wrapper that runs programs as a different user. It also maps the desktop of Ry to the current
desktop of R so that the transition to user Ry is seamless. By passing RunAs with the appropiate
parameters, it serves the purpose of uudo.

We view uudo as a system utility, similar to sudo that enables users to explicitly execute com-
mands in untrusted mode. While it may seem like a burden to have to use it every time an untrusted
execution is involved, experience with the use of sudo suggests that it is easy to get used to. More-
over, the use of uudo can be inferred (Section 3.5.2) in common usage scenarios: launching an
application by double-clicking on a file icon, running an untrusted executable, or running a benign
command with untrusted file argument.

3.5 Policy Inference

In the preceding subsections, our focus was on policy enforcement mechanisms, and the different
ways they could handle a particular access request. To build a practical system that preserves user
experience, we need as much (if not more) emphasis on the policies that specify the particular way
each and every request is handled. This is the topic of this subsection.

5The name uudo parallels sudo, and stands for “untrusted user do,” i.e., execute a command as an untrusted user.
The most typical usage scenario is to start an untrusted shell by executing uudo bash or uudo cmd.
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3.5.1 Untrusted Code Policy

Our policy for untrusted processes is geared to stop actions that have a high likelihood of damaging
benign processes. A benign process may be compromised by altering its code, configuration, pref-
erence or data input files. Of these, the first three choices have a much higher likelihood of causing
harm than the last as programs are less likely to be written to protect against them. For this reason,
our policy for untrusted processes is based on denying access to code, configuration, and preference
files of benign processes. However, note that benign applications may be run as untrusted processes,
and in this case, they may fail if they aren’t permitted to update their preference files. For this
reason, SPIF shadows writes to preference file while denying writes to configuration and code files.

To implement this policy, we could require system administrator (or OS distributors) to specify
code, configuration, and preference files for each application. But this is a tedious and error-prone
task. Moreover, these details may change across different software versions, or simply due to differ-
ences in installation or other options.

A second alternative is to do away with this distinction between different types of files, and apply
shadowing to all benign files that untrusted processes opened for writing. But this approach has
several drawbacks as well:

e Shadowing should be applied to as few files as possible, as users are unaware of these files.
In particular, if data files are shadowed, users may not be able to locate them. Thus, it is
preferable to apply shadowing selectively to preference files. (Users can still find the redirected
files as they are visible to benign processes.)

e If accesses to all benign files are shadowed, this will enable a malicious application to compro-
mise all untrusted executions of benign applications. As a result, no benign application can
be relied on to provide its intended function in untrusted executions. (Benign executions are
not compromised.)

e Finally, it is helpful to identify and flag accesses that are potentially indicative of malware.
This helps prompt detection and/or removal of malware from the system.

We therefore develop an automated approach for inferring different categories of files so that we can
apply shadowing to a narrow subset of files.

3.5.1.1 Explicitly specified versus implicit access to files

When an application accesses a file f, if this access was triggered by how it was invoked or used, then
this access is considered to be explicitly specified. For instance, f may be specified as a command-
line argument or as an environment variable. Alternatively, f may have been selected by a user
using a file selection widget. A file access is implicit if it is not explicitly specified.

Applications seldom rely on an explicit specification of their code, configuration and preference
files. Libraries required are identified and loaded automatically without a need for listing them by
users. Similarly, applications tend to “know” their configuration and preference files without requir-
ing user input. In contrast, data files are typically specified explicitly. Based on this observation,
we devise an approach to infer implicit accesses made by benign applications. SPIF monitors these
accesses continuously and maintains a database of implicitly accessed files, together with the mode
of access (i.e., read-only or read/write) for each executable. The policy for untrusted sandbox is
developed from this information, as shown in Figure 4.

Note that our inference is based on accesses of benign processes. Untrusted executions (even of
benign applications) are not considered and thus avoiding attacks on the inference procedure.
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Figure 4: Untrusted Sandbox policy on modifying benign files

3.5.1.2 Computing Implicitly Accessed Files

Files that are implicitly accessed by an application are identified by exclusion: they are the set of
files accessed by the application but are not explicitly specified. Identifying explicitly specified files
can be posed as a taint-tracking problem. Taint sources include:

e command-line parameters
e all environment variables

e file names returned by a file selection widget, which captures file names selected by a user from
a file dialog box

Taint in our system is propagated with the following rule: If a directory with a tainted file
name is opened, all of the file names from this directory are marked as tainted. This is important
for file selection dialogs: when users open a directory by double-clicking on a directory icon in
file selection dialogs, this directory open should be regarded as explicit because users are involved.
Hence, intermediate paths returned should also be intercepted. Explicitly specified files are those
that are tainted.

SPIF intercepts exec and CreateProcess to monitor arguments and environment variables. SPIF
also intercepts values returned by file selection widgets to capture what files users selected. These
values are then used to determine if a file access is explicit. SPIF regards a file access as explicit if
the file accessed has a name that matches the explicit values specified by the users. Other files are
regarded as implicitly accessed.

In terms of implementation, the file name for each file open is matched against a set of explicit
values. Furthermore, values specified by users may not be exactly the same as the file name appears
in open(2): a file may be specified via command line options: e.g., —config = test. The file
eventually opened can be /path/to/file/test.cfg. The location of the file may be the current
working directory of the process, or a default directory specific for the application. The argument
contains program specific option config, followed by test, which appears in the actual open system
call argument. We rely on the assumption that file names typically do not contain “—”. If we
identify an argument starts with “—” or “=,” then we discard parts of the name up to these symbols.
Instead of performing an exact match, SPIF considers matches if the length of the longest substring
between the file accessed and any of the explicitly specified values exceeds certain size. A match
will be added to the set of explicit values. SPIF applies Aho-Corasick [Aho and Corasick, 1975]
algorithm to compute the longest common substring and supports incremental tracking of explicit
values efficiently.

With information on whether a file is accessed implicitly by programs or explicitly by users,
different policies can be applied to serve users better. While this subsection focuses on describing
how this “implicit-explicit” technique can be used to infer file types and hence be used for shadowing
policy, this technique can also be applied to limit the trust on programs that need to handle benign
and untrusted simultaneously (Section 3.5.2).
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Figure 5: Benign Sandbox policy on reading untrusted files

3.5.2 Benign Code Policy

Policies can also be inferred for benign programs, although some of the aspects are too complex to
resolve entirely automatically. We discuss how SPIF automate the policy inference process for each
of the three modes supported on benign code.

3.5.2.1 Logical isolation

The default policy for benign code is to prevent consumption of untrusted inputs, while returning a
“permission denied” or “file not exist” error code.

Although an attempt to open a file is always going to be blocked, the response of the application
can be different, based on the error code returned. We find that applications handle “permission
denied” error codes well when dealing with data files, i.e., user specified files. Moreover, communi-
cating this error message to the user is less confusing than the alternative “file not exist.” Finally,
it can suggest to the user to run the application with the uudo wrapper. On the other hand, some
applications (e.g., OpenOffice on Windows) are less graceful in handling permission denials on con-
figuration and preference files. This is because applications create these configuration and preference
files and do not expect users to modify them. So, our approach returns a “file not exist” error when
accessing untrusted files implicitly (Figure 5).

3.5.2.2 Untrusted execution

By design, SPIF does not allow subjects to change their integrity labels. Processes therefore have
to decide which integrity level they want to be in before executing program images. To run as
low-integrity, users can invoke uudo. Requiring users to explicitly invoke uudo has the benefit that
users know in advance whether they can trust the outputs or not. However, it is an inconvenience
for users to make this decision all the time. Hence, SPIF can also automatically infer the use of
uudo. The idea is as follows: if an execution will fail without uudo but may succeed with it, SPIF
automatically invokes uudo.

SPIF relies on uudo inference to infer what integrity level a process should be executed with.
The inference involves predicting what files a program will use when executed: if users want to use
a program with untrusted files, the process should be executed as untrusted to avoid violating the
security policy. On the other hand, if no untrusted files are involved, the process can be executed
with high integrity. By design, an incorrect choice of integrity level only affects usability, but not
system integrity.

SPIF determines the required integrity level of a process based on a simple technique. If any
of the arguments or environment variables corresponds to a low integrity file, SPIF would execute
the program as untrusted. We found that this simple technique is very helpful because data are
typically specified as program’s input arguments. For instance, a lot of command line programs are
not interactive and input files need to be specified as arguments. Even for GUI programs, they also
accept input arguments to specify files to be opened. File explorers (e.g., Nautilus and Windows
Explorer) then act as front ends to interact with users: double-clicking on the icons cause them to
be executed with file path arguments.

uudo inference can also be combined with the implicit-explicit mechanism. When it is the users’
intention to open low-integrity files, SPIF opens the files with low-integrity processes. However, when
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users do not expect opening the low-integrity files, such openings would be denied. SPIF considers
user-actions such as double-clicking on the files, selecting files from a file-dialog box, or explicitly
typing the file names as indications of their intents.

This technique, however, fails if files to be opened depend on the interaction with the programs.
Since the files to be accessed are not known at the time of executing program images, SPIF cannot
infer the use of uudo in cases such as when high integrity programs are invoked without arguments.
A solution is to have the benign programs to capture the user intention to use untrusted files (e.g.,
when users explicitly selected to open an untrusted file) and spawn a new untrusted process to
handle the user request. Handling more general cases, e.g., pipelines, can be addressed using trial
execution (Chapter 3.5.3) or dynamic downgrading (Chapter 4).

3.5.2.3 Trust-confined execution

There does not seem to be a practical way to automatically decide which applications are trustworthy.
However, it is possible to identify where trust is inappropriate: given the critical role played by
implicitly accessed files, it does not seem appropriate to trust applications to defend themselves
from untrusted data in these files. In this manner, the inference procedure described earlier is
helpful for determining trust confinement policies.

We discuss how in Section 3.7 how SPIF integrates with different system applications.

3.5.3 Trial-execution based inference

Command-based inference has the advantage that it is simple. Simply by looking at the parameters
used in the exec system call, SPIF can infer what files a program may access. However, there are
two problems with this simple technique: The first problem is that command-based does not take
into account how files are used. Files specified in arguments may not be necessarily for reading. If
the files are for writing only, the inference can wrongly suggest the use of uudo. The second problem
is that not all files are specified directly in the argument, just as illustrated in the previous example
where there are some transformations in the filenames.

Trial-execution based inference relies on the assumption that given the same command, file access
behavior of the program would be the same under the same environment. By observing files that
are accessed during a trial execution, SPIF can determine what files will be accessed in the actual
execution. SPIF can then decide what mode of interaction should be used. More importantly, the
system can abort directly if the integrity requirement between benign and untrusted principals simply
cannot be satisfied. This technique is general enough to support arbitrarily complex command that
can involve any number of programs, principals and files.

Trial-execution relies on programs to exhibit the same file access behaviors whenever the same
command is issued. However, actual file accesses can depend on the system environment such as the
file systems and environment variables. While SPIF can execute the command directly on the actual
system, this however can damage or corrupt system states, leaving the system in inconsistent state.
[Hence, we rely on one-way-isolation to create an isolated environment for “trial” execution. This
one-way-isolation environment provides same file system environment, except modifications to the
environment are isolated. Changes to the environment are discarded such that the real environment
is unaffected. This allows us to capture the actual file access behavior when the same command
would have been executed in the system.

During the trial execution, processes and files accessed (in read or write mode) are recorded.
These become constraints for the inference process. The goal of the inference is assign subjects with
labels (integrity level) such that all the constraints can be satisfied.

There are various type of constraints based on the interaction policies:

1. Object principal constraint corresponds to principals of existing files. Since objects usually do
not the principals they belong to, this represents a hard constraint.
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2. Object read access constraint corresponds to the read accesses captured during the trail-
execution. If a process reads from a file of principal F, the principal of the process would
need to trust the information from F'.

3. Object write access constraint are generated from write accesses. This constraint makes sure
that processes writing to a file with principal F' is allowed to have information flow to F'.

The analysis starts by assuming processes can be any principal (benign or untrusted). Based on
the constraints, potential process principals will be reduced. For example, if the process read from
an untrusted file, then the process must be untrusted to satisfy the read constraint. The analysis
completes when all of the information flow constraints are satisfied with some process-to-principal
assignment, or the constraints cannot be satisfied. If there exists a principal assignment to processes,
the command can then be executed in the actual environment, and appropriate interaction policies
will be placed automatically for principal transition. On the other hand, if no solution exists, our
system will report to the user that the command cannot be executed.

Note that multiple trial-execution may be needed to complete the analysis. When an isolated
process needs to run as untrusted, we need to terminate the execution and restart that process in
the corresponding principal. This is because we cannot let processes violate the trust relationship,
even in isolated environment, to read files that from a principal that is not trusted. Doing so
can compromise a process, and any read-write access behavior observed can no longer be trusted.
Furthermore, the process can also compromise other processes in the isolated environment to affect
affect the influence.

We rely on Linux container for process isolation, aufs for creating a copy-on-write file system
for isolated processes. Read-write accesses are captured using the library interception framework.
'We then used XSB to solve the constraints.

3.6 Security Guarantees

We designed SPIF to protect the integrity and availability of high-integrity processes from being
compromised by anything of low-integrity. In this subsection, we formally establish the integrity
and availability properties of SPIF.

In our analysis, we assume that the OS kernel is not vulnerable. We also assume that all files that
kernel reads directly (not including those read on behalf of user-level processes) are writable only
by the system administrator®. Since SPIF does not permit low-integrity code to run with system
administrator privilege, the kernel will never read a low-integrity file, nor will it fail due to the
absence of such a file (as low-integrity code could not have created the file in the first place). As a
result, integrity and availability failures can only be experienced by user-level processes. Hence the
proofs below target only at user-level processes.

We also assume that no low-integrity file will be marked high-integrity, regardless of how the file
entered the system.

3.6.1 Integrity Preservation

We use F to denote the state of the file system. The file system state evolves discretely over time, with
each change corresponding to the execution of a command ¢, denoted F — F’/. A command includes
a program name, and encompasses both command-line arguments and environment variables. We
denote a command invoked by a high-integrity process as high-integrity command. During an
execution, a process may read a set of input files, and produce a set of output files. For simplification,
we assume that commands are deterministic, i.e., two executions of the same program with identical
command-line arguments, environment, and system state will result in exactly the same set of
changes to F. Some times we use the notation F(¢) to denote system state at time ¢.

6Recall from the description of Uy, that this property holds for loadable kernel modules as well.
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The most natural steps towards a proof would seem to be: (1) provide a formal definition
of integrity, and (2) prove that our sandboxes preserve integrity after every command execution.
Unfortunately, both steps are problematic. Firstly, contemporary OSes are too complex and dynamic
to develop a precise yet practical definition of integrity. Secondly, even in the absence of any low-
integrity code, system integrity could be compromised due to factors such as human errors, e.g.,
running an important system script with incorrect parameters. Thus, a formal proof requires a
different way of thinking about the problem.

To overcome the first problem, we develop an abstract characterization of integrity: our proof
relies on the existence of a function I for determining integrity, but does not require its details to
be spelt out. Formally:

I:FxN—{0,1}

such that system integrity held at some time tq (i.e., I(F(¢o), N) = 1). Here, N is a subset of
filenames in F(to) that are relevant for integrity. Moreover, we assume that all files in N are labeled
as high-integrity at the start time ¢y. In the degenerate case, where some of the files in N are not
present in F, I returns 0.

To overcome the second problem, i.e., side-step the effect of human errors, we don’t prove that
command executions always preserve integrity. Instead, we show that (a) if integrity is lost, then its
root cause can be traced to a high-integrity command execution, and (b) the loss would have been
experienced even if there was no low-integrity code or data on the system.

Lemma 1 In the absence of trusted processes (i.e., processes that remain high-integrity after con-
suming low-integrity inputs), system integrity cannot be compromised due to the presence of low-
integrity files.

Proof: If integrity is never lost, then there is nothing to prove. Otherwise, let ¢, be the earliest
time when I(F(t,,), N) = 0. Let us denote the evolution of system state from tg to t,, as follows:

F(to) 5 F(t1) =5 F(t2) =% -+ = F(tm) (1)
From this sequence, we construct another sequence

Fui(to) —= Fri(ti) = - =2 Fri(ty,) (2)
that consists of only high-integrity commands and operates on the restriction Fp; of the system
state to files that are labeled as high-integrity. Command ¢ is the null command (i.e., it leaves the
system state unchanged) if ¢; represents a low-integrity command, or else ¢, = ¢;. We now establish
the validity of Sequence (2) by induction on m. The base case of m = 0 holds vacuously. For the
induction step, assume that the sequence is valid up to length k — 1. In the k*" step, if ¢; is a
low-integrity process, then, the policies enforced by the sandboxes ensure that it cannot modify any
high-integrity files. Thus, Fg;(t,_1) = Fgi(ty), thus validating the k' step with ¢;, being the null
command. If ¢; is a high-integrity process, then, because of the fact that none of the high-integrity
processes are permitted to consume low-integrity inputs (or even query their existence), the behavior
of ¢ is solely determined by the content of high-integrity files in F(¢5_1). Due to determinism of
command execution, ¢ will have identical effects on the file system when executed on F(t;_1) and
Fri(ti—1), 50 Fri(ts_1) — Fp;(t) in this case too.

Since t,, is the first step where integrity does not hold, all of the files in the set N are present in
F(ty) for 0 < k < m. Moreover, due to our policies that do not permit overwriting a high-integrity
file with a low-integrity one, the files in N will always be high-integrity. This means that Fg;(¢x)
will include all of the files in N, and hence I(Fg;(tx),N) = 1 for 0 < k < m. Since we assumed
I(F(ty), N) = 0, either some of the files in N are not present in F(¢,,), or I returns 0 on these files.
In either case, I(F;(tm), N) = 0. Thus, integrity violation occurs in the Sequence (2) that has no
low-integrity executions or files. [
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Theorem 2 Sandboxes Uy, Ur, and Uy ensure that system integrity is not compromised by low-
integrity applications.

Proof sketch:

The proof of Lemma 1 amounted to showing that if there was an integrity violation, it was due
to high-integrity processes. In this theorem, we have one more reason for integrity violation, namely,
a (buggy) trusted process that compromises the system due to consumption of low-integrity input.
This error should be attributed to the trusted process. We formalize this idea by treating the input
as if it was already embedded in the code of the trusted process, and then removing the external
input.

Specifically, as in the proof of Lemma 1, we start with the sequence that violates system integrity
properties. For each trusted process execution ¢, in this sequence that safely consumes a low-integrity
file f, we construct another command cj ¢ that has the exact same behavior, except that it does
not read f at all. This transformation has the effect of attributing integrity violations due to the
consumption of f as an error that is contained entirely within the trusted process. Once this is done,
we have a sequence that is the same as at the beginning of the proof of Lemma 1, so we can reuse
that proof to establish that low-integrity processes and files were not the source of any integrity
violations.

3.6.2 Availability Preservation

Although the sandboxing of high-integrity processes has the benefit of enhancing system integrity,
availability may be degraded since these processes may now fail due to accesses being denied.

Theorem 3 Sandboxes Uy, Uy, and Uy ensure that availability of high-integrity processes will not
be compromised due to the presence of low-integrity files or their execution.

Proof: We use a construction similar to the proof of Theorem 2 to show that any availability
loss is due to high-integrity commands only. We start with the initial state ¢y, and consider the
earliest time t,, where an availability loss is experienced. We consider an availability failure when
a high-integrity process accessing a file implicitly. If the file is of high-integrity, there will not be
any availability failure. If the file is of low-integrity, the reason why the low-integrity file can be
accessed by the high-integrity process is because no such high-integrity copy exists. Since SPIF denies
all implicitly accessed low-integrity files by returning file not existed, we can create an equivalent
sequence operating on only the high-integrity states (Fg;). If the high-integrity process failed due
to file-not-exist error when accessing the low-integrity file, the same failure is also experienced on a
system containing no low-integrity code or data. [

Relaxing Assumptions in the Formal Model One of the assumptions was deterministic exe-
cution. This can be relaxed by permitting process executions to transform an input state into one
of many possible states, with the provision that the possibilities remain identical for the same input
state. This would allow the proof to be easily carried through.

A second assumption was sequential execution of processes. This can easily be relaxed to permit
common cases where multiple processes interact with each other, while executing concurrently. For
instance, consider the common case of a script that starts up several processes over its lifetime, and
ensures that all of these processes are terminated before its own termination. This set of process
executions can be captured as if it is one large command that executed.
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3.7 Implementation

In this subsection, we discuss how we implemented SPIF on Ubuntu, PCBSD, and Windows. Our
primary implementation was performed mainly on Ubuntu 10.04 and Windows 8. We ported SPIF to
PCBSD, one of the best known desktop versions of BSD, to illustrate its feasibility on BSD system.
In addition, we also tested our system on Windows XP, 7, 8 and Windows 10. We discuss the
implementation specifics below:

3.7.1 SPIF initialization

When our system is installed, existing files are considered as benign. Permission on existing world-
writable files need to be changed so that they are not writable by untrusted processes.

Ubuntu We found no world-writable regular files on Ubuntu, so no permission changes were
needed. There were 26 world-writable devices, but SPIF did not change their permissions because
they do not behave like files. SPIF also left permissions on sockets unchanged because some BSD
systems ignore permissions on sockets. Instead, SPIF performs checking during the accept system
call. World-writable directory with sticky-bit set were left unmodified because OSes enforce a policy
that closely matches our requirement. Half of the 48 world-executable setuid programs were modified
to group-executable by Gp. The rest were setgid programs and were protected using ACLs.

Windows Installation of SPIF on Windows involves modifying ACLs. As Windows ACL supports
inheritance, only a few directories and registry entries need updating— by default, Windows allows
any user to create files in the root directory (e.g., C:\) and various system directories. SPIF modified
ACL to protect these directories such that untrusted files can only be created in shadowed or
redirected directories. Instead of creating a new group G on Windows, SPIF created negative ACL
entries to revoke the write permissions of these directories. SPIF also granted read and traversal
permissions to Ry on R’s home directory and registry subtree. This removes the need of the helper
process Ug.

Some applications (e.g., Photoshop) intentionally leave some directories and files as writable for
everyone. As such, low-integrity processes could also write to these locations. SPIF prevented low-
integrity processes from writing into these locations by revoking write permissions from low-integrity
users. This was achieved by explicitly denying writes in ACLs. Once SPIF is installed, SPIF’s benign
sandbox will automatically modify ACLs to newly created world-writable files/directories/registry
entries.

Some system files are writable by all users, yet they are protected by digital signatures. SPIF
currently does not consider digital signatures as integrity label, and hence SPIF grants benign pro-
cesses exceptions to read these “untrusted” files. A better approach is to incorporate signatures into
integrity label so that no exception needs to be granted.

Apart from files, there were also other world-writable resources such as named pipes and devices
for system-wide services. SPIF granted exceptions for these resources as none of them could be
controlled by low-integrity processes, and these resources do not carry low-integrity information.

SPIF also created a shadow and a redirect directory and granted untrusted processes full control
to the directories.

3.7.2 U, and Bj realization

3.7.2.1 Policy enforcement mechanics

On Ubuntu, SPIF modifies the system library at the binary level to realize the functionality of
Ur and Byp. Fifteen assembly instructions were inserted around each system call invocation sites
in system libraries (1ibc and libpthread). This allows SPIF to intercept all system calls. Our
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H Shared Ubuntu PCBSD H

Require no instrumentation 118 170 205
Benign Sandbox 49 6 29
Untrusted Sandbox 55 7 40

Figure 6: Number of system calls

implementation then modifies the behavior of these system calls as needed to realize the sandboxes
described in Section 3.3 and 3.4. SPIF also modified the loader to refuse loading untrusted libraries
for benign processes.

SPIF cannot rely on the same mechanism to hook on Windows APIs. This is because Windows
protects DLLs from tampering using digital signatures. Instead, SPIF relies on the dynamic binary
instrumentation tool Detours [Microsoft Research, 2015]. Detours works by rewriting in-memory
function entry-points with jumps to specified wrappers. SPIF builds wrappers around low-level
APIs in ntd11.d11 to modify API behaviors.

To initiate API-hooking, SPIF injects Uy, and By, into every process. Upon injection, the DLLMain
routines of Uy, and By, will be invoked, which, in turn, invoke Detours and trigger the API intercep-
tion.

SPIF relies on two methods to inject Uy and By into process memory. The first one is based
on AppInit DLLs [Microsoft, 2015d], which is a registry entry used by user32.d1l. Whenever
user32.d11 is loaded into a process, the DLL paths specified in the registry AppInit DLLs will also
be loaded.

A second method is used for a few console-based applications (e.g., the SPEC benchmark) that
don’t load user32.d11. This method relies on the ability to create a child process in suspended
state (by setting the flag CREATE SUSPENDED). The parent then writes the path of the Uy, into the
memory of the child process, and creates a remote thread to run LoadLibraryA with this path as
argument. After this step, the parent releases the child from suspension.

We rely on the first method to bootstrap the API interception process. Once the loaded into a
process, the library can ensure that all its descendants are systematically intercepted by making use
of the second method. Although our approach may miss some processes started at the early booting
stage, most processes (such as the login and Windows Explorer) are intercepted.

3.7.2.2 Enforcement on system calls

Figure 6 shows the number of system calls that SPIF instrumented to enforce policies on Ubuntu
and PCBSD. On i386 Linux, some calls are multiplexed using a single system call number (e.g.,
socketcall). We demultiplexed them so that the results are comparable to BSD. Most of the
system calls require no instrumentation. A large number of system calls that require instrumentation
are shared between the OSes. Note that some calls, e.g., open, need to be instrumented in both
sandboxes.

A large portion of the PCBSD specific system calls are never invoked: e.g., NFS, access control
list, and mandatory access control related calls. Of those 59 (10 overlaps in both sandboxes) system
calls that require instrumentation, 29 are in the benign sandbox. However, only 4 (nmount, k1dload,
fexecve, eaccess) out of the 29 calls are actually used in our system. Hence, we only handle these 4
calls. For the rest of the calls, we warn about the missing implementation if there is any invocation.
The other 40 calls in untrusted sandbox are for providing transparency. We found that implementing
only a subset of them (futimes, lchmod, lutimes) is sufficient for the OS and applications like
Firefox and OpenOffice to run. Note that incomplete implementation in the transparency library
U does not compromise security.
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API Type APIs

File NtCreateFile, NtOpenFile, NtSetInformationFile, NtQueryAttributes,
NtQueryAttributesFile, NtQueryDirectoryFile,...

Process CreateProcess (A/W)

Registry NtCreateKey, NtOpenKey,NtSetValueKey, NtQueryKey, NtQueryValueKey,...

Figure 7: Windows API functions intercepted by SPIF

On Windows, SPIF intercepts mainly the low-level functions in kernel32.d11 and ntdll.d11.
Higher-level Windows functions such as CreateFile (A/W) , CopyFile (A/W), MoveFile (A/W), ReplaceFile (A/W),
GetProfile... FindFirstFile(A/W),FindFirstFileEx, ' rely on a few low-level functions such as
NtCreateFile, NtSetInformationFile and NtQueryAttributes. By intercepting these low-level
functions, all of the higher-level APIs can be handled. Our experience shows that changes to these
lower level functions are very rare®. Moreover, some applications such as cygwin don’t use higher-
level Windows APIs, but still rely on the low-level APIs. By hooking at the lower-level API, SPIF
can handle such applications as well. Figure 7 shows a list of API functions that SPIF intercepts.

There are 276 system calls in 32-bit Windows XP and 426 in 32-bit Windows 8.1. Although
the number of system calls on Windows and Unix are comparable, system calls on Windows are
more complicated than those on Unix. Windows has a large number of higher-level APIs that are
translated into lower-level APIs by DLLs. For example, a file-open on Unix (open(2)) takes up to 3
arguments. On the other hand, file-open on Windows requires NtCreateFile, which takes 11 argu-
ments. Apart from the file-path and open-mode, additional arguments are for setting file attributes,
storing request completion status, setting allocation size, controlling share access, specifying how
the file is accessed, and setting extended attributes. As such, the number of system calls that SPIF
needs to handle is much less than on Ubuntu. Apart from low-level APIs, SPIF also intercepts a few
higher-level functions as they provide more context that enables better policy choices. For example,
SPIF intercepts CreateProcess(A/W) to check if a high-integrity executable is being passed a low-
integrity file argument, and if so, create a low-integrity process. This has allowed SPIF to perform
uudo inference.

3.7.3 Initial file labeling

An important requirement for enforcing policies is to label new files according to their integrity.
Some files may arrive via means such as external storage media. In such a case, we expect the
files to be labeled as untrusted (unless the authenticity and/or integrity of files could be verified
using signatures or other means). However, we have not implemented any automated mechanisms
to ensure this, given that almost all files arrive via the Internet.

Web browsers We designated Firefox, the main web browser on Ubuntu, to protect itself from
network inputs and inputs from local files selected using a file dialog by the user. Files selected by
user using a file dialog are mainly used for uploading. These files are identified by the “implicit-
explicit” mechanism described in Section 3.5.1, preventing Firefox from using untrusted files as
non-data inputs. To ensure that downloaded files are associated with the right integrity labels, we
have developed a Firefox addon, which uses a database to map domains to integrity levels.

As a second alternative, we dedicated an instance of the web browser for benign sites. Using
policies, the benign instance can be restricted from accessing untrusted sites. In SPIF, we manually
defined a whitelist of benign sites. A better alternative would use whitelists provided by third
parties. Instead of blocking users from visiting untrusted sites, we can invoke an untrusted browser
instance to load the pages directly.

7Calls ending with “A” are for ASCII arguments, “W” are for wide character string arguments.
8We did see new functions in Windows 8.1 that SPIF needed to handle.
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Email clients FEmail clients introduce untrusted data into the system through message headers,
content, and attachments. Our approach is to trust the email reader to protect itself from untrusted
sources. Attachments are given labels corresponding to the site from which the attachment was
received. We have developed an addon for Thunderbird on Ubuntu for this purpose. However, the
current email protocol (SMTP) does not protect against spoofing. To provide trustworthy labeling,
we could either rely on digital signatures (when present) or the chain of SMTP servers that handled
the email. Such spoof-protection has not yet been implemented.

Integrating with Windows Security Zone SPIF’s integration with Windows leverages Win-
dows Security Zones. Instead of developing addons for web browsers and email clients, most of them,
such as Internet Explorer, Chrome, Firefox, MS Outlook, and Thunderbird already automatically
fill in security zone information when downloading files. It is a piece of information stored in Al-
ternate Data Stream, along with the file. The origins-to-security zones mapping can be customized
on Windows. Windows provides a convenient user-interface for users to configure what domains
belong to what security zones. Microsoft also provides additional tools for enterprises to manage
this configuration across multiple machines with ease.

Windows has used security zone to track origin, but in an ad-hoc manner. When users run an
executable that comes from the Internet, they are prompted to confirm that they really intend to
run the executable. Unfortunately, users tire of these prompts, and tend to grant permission without
any careful consideration. While some applications such as Office make use of the zone labels to run
themselves in protected view, other applications ignore these labels and hence may be compromised
by malicious input files. Finally, zone labels can be changed by applications, providing another way
for malware to sneak in without being noticed.

SPIF makes the use of security zone information mandatory. SPIF considers files from URLZONE_INTERNET
and URLZONE_UNTRUSTED as low-integrity. Applications must run as low-integrity in order to con-
sume these files. Moreover, since SPIF’s integrity labels on files cannot be modified by untrusted
processes, attacks similar to those removing file zone labels are not possible.

Software Installation Our system relies on correct integrity labeling when new files are intro-
duced into the system. Of particular concern is the software installation phase, especially because
this phase often requires administrative privileges. Solutions have previously been developed for
securing software installation, such as SSI [Sun et al., 2008a]. We implemented an approach similar
to SSI based on SPIF (Chapter 5) to protect the software installation phase and to label files intro-
duced during the installation on Ubuntu. SPIF can then enforce the policies at run time based on
the labels.

Rather than safeguarding the installation process, approaches have been developed to eliminate
the installation phase completely. Oinstall [Leonard et al., 2015] allows users to execute a software
directly using a url. Application files are cached entirely in user’s home directory. We tested our
system with Oinstall. It allows users to directly execute a remote application securely simply based
on a url. Oinstall supports multiple platforms, including Linux and Windows.

3.7.4 Relabeling

SPIF automatically labels files downloaded from the Internet based on its origin. However, it is
possible that high-integrity files are simply hosted on untrusted servers. As long as their integrity
can be verified (e.g., using checksum), SPIF would allow users to relabel a low-integrity file as high-
integrity. Changing file integrity level requires copying the file from redirect storage to the main
file system, while the file ownership is changed from Ry to R. We rely on a trusted application
for this purpose, and this program is exempted from the information flow policy. Of course, such
an application can be abused: (a) low-integrity programs may attempt to use it, or (b) users may
be persuaded, through social engineering, to use this application to modify the label on malware.
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The first avenue is blocked because low-integrity applications are not permitted to execute this
program. The second avenue can be blocked by setting mandatory policies based on file content,
e.g., upgrading files only after signature or checksum verification.

3.7.5 Display server and DBus

Resources such as display (X-Server or desktop window) and DBus need to be shared by both benign
and untrusted processes for usability, yet these mechanisms support very little or no access control
once processes are granted access the resources. An untrusted GUI application can send arbitrary
events (key events or Windows events) to another benign GUT programs. An untrusted process can
also send messages to other programs listening to the user DBus.

SPIF attempts to protect these resources using two methods: isolation or enforce policies to
restrict operations. In isolation, SPIF creates a redirected copy of the resource and let untrusted
processes connect to the redirected copy. On Ubuntu, SPIF uses Xephyr, a nested X-server to serve
untrusted processes. As for DBus, SPIF transparently redirects untrusted processes to connect to
an untrusted DBus server.

Another alternative is to enforce policies to restrict interactions between untrusted processes and
the server. SPIF uses X-security-extensions to designate untrusted processes as untrusted X-client,
to restrict/disable accesses to certain X resources. DBus does not provide built-in mechanisms to
designate clients as untrusted. We have also built a DBus proxy which intercepts DBus messages
between server and untrusted processes. This allows SPIF to enforce policies on DBus. Since this
option trusts the X-server or the DBus proxy, it is not as secure as the first alternative, but integrates
smoothly in terms of user experience.

Our implementation do not consider Windows messages because any process with a handle to
the desktop can send message to any other process on the desktop, regardless of the userid of
the processes. This is demonstrated in shatter attack [Wikimedia Foundation, 2015]. As a result,
an untrusted process can send Windows messages to a benign process. Windows servers support
multiple concurrent users, SPIF could use remote-desktop to achieve isolation similar to Xephyr.
For policy-based enforcement, there are two techniques to solve the problem: The first technique is
to apply job control in Windows to prevent untrusted processes from accessing handles of benign
processes. By setting the JOB_OBJECT_ULIMIT_HANDLES restriction [Close et al., 2005], a process
cannot access handles outside of the job. The other method is to run untrusted processes as low
WIM integrity processes. WIM already prevents lower integrity processes from sending messages to
higher integrity processes.

3.7.6 File utilities

Files belonging to different integrity levels co-exist. Utilities such as mv, cp, tar, find, grep, and rm
may need to handle files of high and low integrity at the same time. We designated these file utilities
as able to protect themselves when dealing with untrusted data such that their functionalities can
be preserved.

Instead of trusting these utilities to consume any untrusted data, SPIF can further reduce the set
of files by relying on the “implicit-explicit” technique described in Section 3.5.1. When users invoke
a command, data files are specified as input arguments®.

A side effect of making these utilities as trusted is that their outputs have high integrity labels.
This is not desirable for applications like cp and tar as integrity labels on original files are lost.
We solved this problem by setting appropriate flags to preserve the integrity information. This is
relatively easy as the integrity information is encoded as group ownership in SPIF.

9When globbing is used in shell command, the shell process will expand it to the set of file names matching the
pattern.
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Figure 8: Code complexity on Ubuntu and PCBSD

3.8 Evaluation

In this subsection, we evaluated the complexity, compatibility, usability, security and performance
of SPIF.

3.8.1 Code complexity

Ubuntu and PCBSD Figure 8 shows the code size of different components for supporting
Ubuntu, and the additional code for PCBSD. The overall size of code is not very large. More-
over, a significant fraction of the code is targeted at application transparency. We estimate that
the code that is truly relevant for security is less than half of that shown, and hence the additions
introduced to the TCB size are modest. At the same time, our system reduces the size of the TCB by
a much larger amount, because many programs that needed to be trusted to be free of vulnerabilities
don’t have to be trusted any more.

Windows As for Windows, SPIF consists of 4000 lines of C++ and 1500 lines of header. This
small size is a testament to the design choices made in our design. In particular, the helper Uy
is removed because of the ACL support on Windows allows SPIF to grant untrusted processes the
precious set of permissions that Uy needs to grant. A small code size usually translates to a higher
level of assurance about safety and security.

3.8.2 Preserving Functionality of Code

We performed compatibility testing with about 100 applications shown in Figure 9a on Ubuntu. 70
of them were chosen randomly, the rest were hand-picked to include some widely used applications.
Figure 9b shows a list of 35 unmodified applications that can run successfully at high- and low-
integrity in SPIF on Windows. We used them to perform basic tasks. These applications span a
wide range of categories: document readers, editors, web browsers, email clients, media players,
media editors, maps, and communication software.

3.8.2.1 Benign mode

As expected, all the applications running as benign processes worked perfectly when given benign
inputs.

To use these applications with untrusted inputs, we first ran them with an explicit uudo command
or from untrusted shell (bash on Ubuntu or cmd on Windows). In this mode, they all worked
as expected. When used in this mode, most applications modified their preference files, and our
approach for redirecting them worked as expected.
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Document Adobe Reader, dhelp, dissy, dwdiff, evince, F-spot, FoxitReader, Geegle-gps, jparse, naturaldocs,

Readers nfoview, pdf2ps, webmagick
Document Audacity, Abiword, cdcover, eclipse, ewipe, gambas2, gedit, GIMP, Gnumeric, gwyddion, Inkscape,
Processor labplot, lyx, OpenOffice, Pitivi, pyroom, R Studio, scidavis, Scite, texmaker, tkgate, wxmaxima

Games asc, gbrainy, Kiki-the-nano-bot, luola, OpenTTD, SimuTrans, SuperTux, supertuxkart,

Tumiki-fighters, wesnoth, xdemineur, xtux
Internet cbm, evolution, dailystrips, Firefox, flickcurl, gnome-rdp, httrack, jdresolve, kadu, lynx, Opera,
rdiff, scp, SeaMonkey, subdownloader, Thunderbird, Transmission, wbox, xchat

Media aqualung, banshee, mplayer, rhythmbox, totem, vlc

Shell-like bochs, csh, gnu-smalltalk, regina, swipl

Other apoo, arbtt, cassbeam, clustalx, dvdrip, expect, gdpc, glaurung, googleearth, gpscorrelate-gui,

grass, gscan2pdf, jpilot, kiki, otp, gqmtest, symlinks, tar, tkdesk, treil, VisualBoyAdvance, w2do,
wmmon, xeji, xtrkcad, z88

(a) Software tested on Ubuntu

Readers Adobe Reader, MuPDF
Document MS Office, OpenOffice, Kingsoft Office, Notepad 2, Notepad++, CppCheck, gVim,
Processor AklelPad, IniTranslator, KompoZer

Internet Internet Explorer, Firefox, Chrome, Calavera UpLoader, CCProxy, Skype, Tor + Tor

Browser, Thunderbird
Media Photoshop CC, Picasa, GIMP, WinAmp, Total Video Player, VLC, Picasa, Light
Alloy, Windows Media Player, SMPlayer, QuickTime
Other Virtual Magnifying Class, Database Browser, Google Earth, Celestia

(b) Software tested on Windows

Figure 9: Software ran successfully in SPIF

We then used these applications with untrusted inputs, but without an explicit uudo. In this
case, our uudo inference procedure was used, and it worked without a hitch when benign applica-
tions were started using a double-click or a “open-with” dialog on the file manager nautilus or
Windowsexplorer. The inference procedure also worked well with simple command-lines without
pipelines and redirection.

One example that the technique did not handle well was when double-checking to open an
untrusted image file on Windows. The default viewer is the running explorer process itself, which is
a benign process and hence cannot read the untrusted file. Users have to open the image file with
another editor (e.g., MS Paint) or have a default program other than the Explorer such that SPIF
can perform the uudo inference.

3.8.2.2 Untrusted mode

All of the software shown in Figure 9 worked without any problems or perceptible differences. We
discuss our experience further for each category shown in Figure 9.

Document Readers All of the document readers behave the same when they are used to view
benign files. In addition, they can open untrusted files without any issues. They can perform “save
as” operations to create new files with untrusted label.

Games By default, we connect untrusted applications as untrusted X-clients, which are restricted
from accessing some advanced features of the X-server such as the OpenGL GLX extensions. As a
result, only 8 out of 12 games worked correctly in this mode. However, all 12 applications worked
correctly when we used (the some what slower) approach of using a nested X-server (Xephyr).

Editors/Office/Document Processors These applications typically open files in read/write
mode. However, since our system does not permit untrusted processes to modify benign files,
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attempts to open benign files would be denied. Most applications handle this denial gracefully: they
open the file in read-only mode, with an appropriate message to the user, or prompt the user to
create a writable copy before editing it.

Internet This category includes web browsers, email clients, instant messengers, file transfer tools,
remote desktop clients, and information retrieval applications. All these applications worked well
when run as untrusted processes. Files downloaded by applications are correctly labeled as untrusted.
Any application opening these downloaded files will hence be run in untrusted mode, ensuring that
they cannot damage system integrity.

Media Player These are music or video players. Their functions are similar to document readers,
i.e., they open their input files in read-only mode. Hence, they do not experience any security
violations. For media editors, they behave more like document processors. They create new media
files rather than modifying the original files.

Shell-like application This category includes shells or program interpreters that can be executed
interactively like a shell. Once started in untrusted mode, all the subsequent program executions
will automatically be performed in untrusted mode.

Other Programs We tested a system resource monitor (wmmon), file manager
(tkdesk), some personal assistant applications (jpilot, w2do,
arbtt), googleearth and some other applications. We also tested a number of specialized ap-
plications: molecular dynamic simulation (gdpc), DNA sequence alignment (clustalx), antenna
ray tracing (cassbeam), program testing (qmtest, expect), computer-aided design (xtrkcad) and
an x86 emulator (bochs). While we are not confident that we have fully explored all the features
of these applications, we did observe the same behavior in our tests in benign as well as untrusted
modes. The only problem experienced was with the application gpscorrelate-gui, which did not
handle permission denial (to write a benign file) gracefully, and crashed.

3.8.2.3 Overall

Reading both high and low integrity files. Applications that only read, but not modify files
can always start as low-integrity, so that they can consume both high and low integrity files.

Editing both high and low integrity files. SPIF does not allow a process to edit files of different
integrity simultaneously as this can compromise the high-integrity files. However, SPIF allows files
to be edited in different processes— edit high-integrity files in high-integrity processes, and edit low-
integrity files in low-integrity processes. As these processes are running as different users, different
instances of the same application can run simultaneously in SPIF.

Low-integrity processes writing high-integrity files. Applications like OpenOffice maintain
runtime information in user profile directories. Applications expect these files to be both readable
and writable— otherwise they will simply fail to start and crash. Having these files as high-integrity
would prevent low-integrity processes from being usable. Letting these files become low-integrity
would break availability of high-integrity processes.

SPIF shadows accesses to these files inside user-profile directories, hence high- and low-integrity
processes can both run without significant usability issues. One problem is that profiles for high and
low integrity sessions are isolated. There is no safe way to automatically merge the shadowed files
together.
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On Ubuntu, files that are being shadowed are all “.” entries. Some of them are cache file, some of
them are preference/history files (.viminfo, .pulse — cookie, deluge/ui.conf, gtkfilechooser.ini,
vlcrc, .recently — used.xbel) or cache files. As for Windows, shadowing is primarily applied to
preference files. Specifically, Spif applies shadowing to files in 4USER PROFILE)\AppData, HKEY_CURRENT_USER
and files in all hidden directories. None of them corresponds to data files and deleting the redirected
storage does not result in any significant usability issues.

3.8.3 Usage experience

Secure-by-design solutions frequently end up requiring considerable changes to applications as well
as the user experience. We walk through several usage scenarios to demonstrate that our techniques
generally do not get in the way of users, and are highly compatible with existing software. Here
are some scenarios to illustrate the usability of SPIF, as well as how SPIF preserved the normal user
experience.

Watching a movie We opened a movie torrent from an untrusted website. Firefox downloaded
the file to the temporary directory and labeled it as untrusted. The default BitTorrent client,
Transmission, was invoked as untrusted to start downloading the movie into the Download direc-
tory. Once the download completed, we double-clicked the movie to view it. vlc was started as
untrusted to play the movie. Realizing that the movie had no subtitles, we located subdownloader
for downloading subtitles. Since our installer considers Ubuntu’s universe repository as untrusted,
the application was installed as untrusted, and hence operated only in untrusted mode. We searched
and found a match. Clicking on the match resulted in launching an untrusted Firefox instance. We
went back to subdownloader to download the subtitle, and then loaded this file into vlc to continue
watching the movie.

Compiling programs from students Some students submit their programming assignments.
Teaching assistants for the course need to download their projects, extract them, compile them and
execute the binaries in order to grade the assignments. In this experiment, we considered an attack
that creates a backdoor by appending ssh key to authorized keys so that a malicious student can
break into TA’s machine later.

With protection from SPIF, when the TA received the submission as an attachment, it was
marked untrusted. As the code was unpacked, compiled and run, this “untrusted” label stayed with
it. So, when the code tried to append a public key, it was stopped.

Resume template We downloaded a compressed resume template from the Internet. When
we double clicked on the tgz file, FileRoller, the default archive manager started automatically as
untrusted because the file was labeled as untrusted by Firefox. We extracted the files to Documents
directory. We then opened the file with texmaker by selecting “Open With”, since texmaker was
not the default handler for tex file. texmaker was started as untrusted and we started editing the
file. We then compiled the latex file and viewed the dvi document with evince by clicking on the
“View DVI” button in texmaker. We then viewed pdf and AdobeReader was automatically invoked
as untrusted. The document was rendered properly.

Stock charting and analysis We wanted to study trend of a stock and we searched the Internet
about how to analyze. We came across a tutorial on an unknown website with a R script. We
installed R and downloaded the script. When we started R, we found that it is a command line
environment and is not so user-friendly for beginners. We then installed RStudio, a front-end for R,
from a deb file we found on another unknown website. Our installer installed RStudio as untrusted
because Firefox labeled the deb file as untrusted. After we started RStudio, we loaded the script
and realized that it required several R libraries. We installed the missing R libraries. These libraries

43



were installed in a shadow directory since R implicitly accessed the library directory. After installing
the libraries, we generated a graph. We saved the graph in the Pictures directory, and edited the
graph with GIMP.

Summary The protection offered by SPiF had allowed us to download and run arbitrary software.
Applications were started in the right mode automatically and user did not have to think about
security.

While security failures occur from time to time, our efforts to ensure application transparency
bore fruit: applications handled failures gracefully if not transparently. For instance, if an untrusted
editor was used to open a benign file, it would first attempt to open the file in read/write mode,
which would be denied. Then it simply opens the file in read-only mode, and the user does not
experience a difference unless she tries to edit the file.

3.8.4 Experience with malicious software

SPIF is also effective in stopping malware from compromising the system. Here we present some
scenarios involving stealthy attacks that are stopped by our system.

3.8.4.1 Real world malware on Ubuntu

Malware can enter systems during installation of untrusted software or via data downloads. As
secure installation is not our focus, we assumed that attacks during installation are prevented by
systems like [Sun et al., 2008a] or the system presented in Chapter 5 and untrusted files are labeled
properly.

We tested our system with malware available on [Packet Storm, 2015] for Ubuntu and [Offensive
Security, 2014] for Windows. On Ubuntu, these malware were mainly rootkits: patched system
utilities like ps and 1s, kernel modules, and LD_PRELOAD based libraries. Specific packages tested
include: JynxKit, ark, BalaurRootkit, Dica, and Flea. All of them tried to overwrite benign
(indeed, root-owned) files, and were hence stopped.

KBeast (Kernel Beast) requires tricking root process to load a kernel module. The benign sandbox
prevents root processes from loading the kernel module since the module is labeled as untrusted.

3.8.4.2 Real world exploit on Ubuntu

We tested an Adobe Flash Player exploit (CVE-2008-5499) on Ubuntu, which allows remote attackers
to execute arbitrary code via a crafted SWF file. If the browser is simply trusted to be free of
vulnerabilities, then this attacks would obviously succeed. Our approach was based on treating the
web-site as untrusted, and opening it using an untrusted instance of the browser. In this case, the
payload executed, but its actions were contained by the untrusted sandbox. In particular, it could
not damage system integrity.

3.8.4.3 Simulated targeted attacks on Ubuntu

We also simulated a targeted attack via compromising a document viewer on Ubuntu. A user
received a targeted attack email from an attacker, which contained a PDF that can compromise the
viewer. When the user downloaded the file, the email client labeled the attachment as untrusted
automatically since the sender cannot be verified. Our system, however, did not prevent the user
from using the document. User could still save the file along with other files.

When she opened the file, the document viewer got compromised. On an unprotected system,
the attacker controlled viewer then dumped a hidden malicious library and modified the .bashrc file
to setup environment variable LD_PRELOAD such that the malicious library would be injected into all
processes the user invoked from shell. Worse, if the user has administrative privileges, the viewer
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CVE/OSVDB-ID [ Application [ Attack Vector

2014-0568 Adobe Reader Code
CVE-2010-2568 Windows Explorer (Stuxnet) Data (Ink)
2014-4114/113140 Windows (Sandworm) Data (ppsx)
104141 Calavera UpLoader Preference (dat)
100619 Total Video Player Preference (ini)
2013-6874/100346 Light Alloy Data (m3u)
2013-3934 Kingsoft Office Writer Data (wps)
102205 CCProxy Preference (ini)
2013-4694/94740 WinAmp Preference (ini)
2014-2013/102340 MuPDF Data (xps)

Figure 10: Exploits defended by SPIF on Windows

can also create an alias on sudo, such that a rootkit would be installed silently when user performs
an administrative action.

Although the viewer still got compromised under SPIF, the user was not inconvenienced: while
she could view the document, modification attempts on .bashrc were denied, and hence malware
attempts to subvert and/or infect the system were thwarted.

3.8.5 Real world exploit on Windows

There are far more malware available on Windows. We evaluated the security of SPIF against
malware from Exploit-DB [Offensive Security, 2014] on Windows XP, 7 and 8.1. We selected all
local exploits targeting Windows platform, mostly released between January and October of 2014.
Since these exploits work on specific versions of software, we only included malware that “worked”
on our testbed, and their results were easy to verify. Figure 10 summarizes the CVE/OSVDB-ID,
vulnerable applications, and the attack vectors. We classify attacks into three types: data input
attacks, preference/configuration file attacks, and code attacks.

Note that by design, SPIF protects high-integrity processes against all these attacks. Since high-
integrity processes cannot open low-integrity files, only low-integrity applications can input any of
the malware-related files. In other words, attackers can only compromise low-integrity processes.
Moreover, there is no mechanism for low-integrity processes to “escalate their privilege” to become
high-integrity processes. Note that since low-integrity processes can only modify files within the
shadow directory, they cannot affect any user or system files. For this reason, SPIF stopped all of
the attacks shown in Figure 10.

Both data and preference/configuration file attacks concern inputs to applications. When ap-
plications fail to sanitize malicious inputs, attackers can exploit vulnerabilities and take control of
the applications. Data input attacks involve day-to-day files like documents (e.g., wps, ppsx, xps).
They can be exploited by simply tricking users to open files. On the other hand, attacks using pref-
erence/configuration files are typically hidden from users, and are trickier to exploit directly. These
exploits are often chained together with code attacks to carry out multi-steps attacks to circumvent
sandboxes.

Code attacks correspond to instances where the attacker is already able to execute code but
with limited privileges, e.g., inside a restrictive sandbox. For instance, in the Adobe Reader ex-
ploit [Fisher, 2014], it is assumed that an attacker has already compromised the sandboxed worker
process. Although attackers cannot run code outside of the sandbox, they can exploit a vulnera-
bility in the broker process. Specifically, the attack exploited the worker-broker IPC interface —
the broker process only enforced policies by resolving the first level NTFS junction. A compromised
worker can use a chain of junctions to bypass the sandbox policy and write arbitrary file to the
file system with the broker permissions. Since the broker ran with user privilege, attackers could
therefore escape the sandbox and modify any user files. SPIF ran both the broker and worker as
untrusted processes. As a result, the attack could only create or modify low-integrity files, which
means that any subsequent uses of these files were also confined by the untrusted sandbox.
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SPIF stopped Stuxnet [Falliere et al., 2011] by preventing the Ink vulnerability from being trig-
gered. Since the Ink file is of low-integrity, SPIF prevented Windows Explorer from loading it, and
hence stopped Windows Explorer from loading any untrusted DLLs.

We also tested the Microsoft Windows OLE Package Manager Code Execution vulnerability,
called Sandworm [Ward, 2014]. It was exploited in the wild in October 2014. When users view
a malicious PowerPoint file, OLE package manager can be exploited to modify a registry in HKLM,
which subsequently triggers a payload to run as system-administrator. SPIF ran PowerPoint as low-
integrity when it opened the untrusted file. The exploit was stopped as the low-integrity process
does not have permissions to modify the system registry.

The most common technique used to exploit the remaining applications was an SEH buffer
overflow. The upload preference file uploadpref.dat of Calavera UpLoader and Setting.ini of
Total Video Player were modified so that when the applications ran, the shell-code specified in the
files would be executed. Similarly, SEH buffer overflow can also be triggered via data input, e.g.,
using a multimedia playlist (.m3u) for Light Alloy or a word document (.wps) for Kingsoft Office
Writer. Other common techniques include integer overflow (used in CCProxy.ini for CCProxy) and
stack overflow (triggered when MuPDF parsed a crafted xps file or when WinAmp parsed a directory
name with invalid length). In the absence of SPIF, these applications ran with user’s privileges, and
hence the attackers could abuse user’s privileges, e.g., to make the malware run persistently across
reboots.

Although preference files are specific to applications, there exists no permission control to prevent
other applications from modifying them. SPIF makes sure that preference files of high-integrity
applications cannot be modified by any low-integrity subject. This protects benign processes from
being exploited, and hence attackers cannot abuse user privileges. On the other hand, SPIF does
not prevent low-integrity instances of the applications from consuming low-integrity preference or
data files. While attackers could exploit low-integrity processes, they only had privileges of the low-
integrity user. Furthermore, all attackers’ actions were tracked and confined by the low-integrity
sandbox.

3.8.5.1 Real world malware on Windows

One of the advantage of implementing the defense on Windows is that we can evaluate the defense
against a wide range of malware available in the wlid.

We downloaded more than 35000 files from malwr.com [Claudio nex Guarnieri and Alessan-
dro jekil Tanasi, 2015], a website where anyone can submit files for dynamic malware analysis.
Malwr.com relies on Cuckoo [Cuckoo Foundation, 2015], an open source automated malware anal-
ysis tool to analyze submissions. Cuckoo works by running the files inside VMs and monitors the
behaviors of the processes. As some malware may only exhibit malicious behaviors only when there
are human interactions (e.g., mouse move events), Cuckoo generates these events. Cuckoo relies on
injecting libraries to monitor processes.

Out of the 35000 files downloaded from malwr.com, 15000 of them are executables. We focus our
automated testing on executables only. To evaluate the effectiveness of SPIF, we modified Cuckoo.
We prepared two groups of Windows XP SP2 VMs, one group without SPIF and one group with
SPIF protection. Since SPIF’s library works at a lower level than Cuckoo’s, events observed by
Cuckoo library were redirected and shadowed; Cuckoo can report user file being modified, yet SPIF
transparently shadowed the modifications. We therefore do not rely on the monitoring facility in
Cuckoo. To obtain the exact changes made by processes during executions, we dump the entire
system registry tree and generate md5 for all files in the system before and after the running of the
samples. By comparing the snapshots, we can detect changes made by the samples. By comparing
the snapshots generated from protected VM and unprotected VM, we can determine if SPIF is
effective in stopping the sample.

3408 samples showed no changes when running in both unprotected and protected VMs, of which
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Simple Simple Simple Simple Simple Simple Select Select Pipe Process | Process | Process

syscall read write stat fstat open/ on 10 on 100 la- fork + fork+ fork +

close fd’s fd’s tency exit execve | /bin/sh
Unprotected (ps) 0.80 0.88 0.86 2.14 0.98 3.94 1.03 2.10 74.57 438 1128 2498
platform (overhead) 6.18% 5.98% 5.60% 5.34% 4.88% 232% 5.13% 2.36% 1.79% 55.04% 173% 152%
remote (overhead) 6.39% 6.10% 5.85% 174% 4.97% 183% 4.91% 1.89% 2.03% 54.63% 149% 134%

Figure 11: 1mbench performance overhead on Ubuntu

2506 were marked as malware by VirusTotal. The reason why these samples do not exhibit any
observable behavior is likely because of missing dependency in our VM, or they detected virtualized
environment and refuse to run. 824 samples modified the system registry entries, of which 419
of them modified entries to automatically start whenever the system boots. SPIF stopped these
attempt because untrusted processes do not have privileges to modify system objects. 337 samples
modified user registry entries or files so that they can start whenever the user login to the system.
SPIF redirected these changes to the untrusted users’ registry entries or files. As untrusted user does
not login to the system via the login windows, these entries will not be used. 5 samples modified
the security zone mapping. Again, SPIF redirected these changes and hence have no effect to R.
512 samples attempted to create files or executables in C:\Windows or C:\Program Files. SPIF’s
policy does not allow untrusted processes to create files in these directories, as they can compromise
all other untrusted processes. 5 samples modified existing executables. SPIF does not allow existing
executables to be modified by untrusted processes. 5 of the samples modified all user files on the
system. These are likely to be randsome malware which encrypts user files. SPIF does not allow them
to modify user files because these are considered as data file. 599 samples created new executable
in non-system locations. SPIF redirected the creation to redirected directories. These new files also
carry untrusted labels so that they can only run as untrusted processes.

3.8.6 Performance

A practical malware defense should have low overheads. We present both micro and macro-benchmarks

of Spir. All performance evaluation results were obtained on Ubuntu 10.04 and Windows 8.1. (Per-
formance does not vary much across different versions of Windows.)

3.8.6.1 Micro-benchmark

Figure 11 shows the performance of 1mbench micro-benchmark. stat has large overhead for un-
trusted processes because we are consolidate stat into fstatat for untrusted processes. The over-
head for open/close is particularly high because of the implicit/explicit tracking. The behavior on
fork-related calls are likely to be because of the use of fork instead of vfork.

Figure 12 shows the SPEC2006 benchmark overheads on Ubuntu and Windows. The overhead is
less than 1% for CPU intensive operations. This is to be expected, as the overhead of SPIF will be
proportional to the number of intercepted system calls or Windows API calls, and SPEC benchmarks
make very few of these.

3.8.6.2 Macro-benchmark

Figure 13 shows the overhead of openssl and Firefox when compared with unprotected systems
on Ubuntu. We obtained the statistics using speed option in openssl. As for Firefox, we used
pageloader addon [Mozilla, 2015] to measure the page load time. Pages from top 1200 Alexa sites
were fetched locally such that overheads due to networking is eliminated. The overhead on openssl
benchmark is negligible. The average overhead for Firefox on Ubuntu is less than 5%. We did the
same experiment on Windows for the top 1000 Alexa sites. The overheads for benign Firefox and
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Unprotected Benign Untrusted

Time (s) Overhead | Overhead

400.perlbench 575.8 -0.18% 0.10%
401.bzip2 841.8 0.23% -0.38%
403.gcc 541.2 -1.99% 0.82%
429.mcf 699.0 -0.86% -1.06%
445.gobmk 693.2 -0.02% -0.02%
456.hmmer 982.7 0.36% -0.13%
458.sjeng 933.8 0.49% 0.51%
462.libquantum 995.4 -0.17% 0.33%
464.h264ref 1243.3 0.21% -0.27%
471.0omnetpp 573.0 0.07% -0.24%
473.astar 734.2 -0.46% -0.79%
433.milc 882.5 0.85% -2.66%

[ 444mamd | 8415 [ 011% | 0.13% |

[ Average | [ -010% [ -028% ||

(a) SPEC2006 on Ubuntu

Unprotected Benign Untrusted

Time (s) Overhead Overhead

401.bzip2 1785.9 -0.33% 0.26%
429.mcf 716.4 -1.69% -0.96%
433.milc 3314.1 1.15% -0.53%
445.gobmk 1094.9 0.26% -0.08%
450.soplex 1108.0 0.58% 2.34%
456.hmmer 2386.2 0.02% 0.13%
458.sjeng 1442.5 -0.25% 0.20%
470.1bm 1203.0 -1.51% -0.32%
471.omnetpp 750.9 0.96% 1.83%
482.sphinx3 2653.6 -2.55% -3.45%

[ Average | [ -034% [ -006% |

(b) SPEC2006 on Windows

Figure 12: Overhead in SPEC2006, ref input size

Benign Untrusted
Overhead [ o Overhead [ o
openssl 0.01% 1.43% -0.06% 0.70%
Firefox 2.61% 4.57% 4.42% 5.14%

Figure 13: Runtime overhead for Firefox and OpenSSL on Ubuntu.
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untrusted Firefox on Windows are 3.32% and 3.62% respectively. Figure 14 shows the correlation
between unprotected page load time with protected benign Firefox and untrusted Firefox.

We also evaluated SPIF with Postmark [Katcher, 1997], a file I/O intensive benchmark. To better
evaluate the system for Windows environment, we tuned the parameters to model files on a Windows
8.1 system. There were 193475 files on the system. The average file size is 299907 bytes, and the
median is a much smaller 5632 bytes. We selected 3 size ranges based on this information: small
(500 bytes to 5KB), medium (5KB to 300KB), and large (300KB to 3MB) bytes. Each test creates,
reads, writes and deletes files repeatedly for about 5 minutes. We ran the tests multiple times and
the average is presented in Figure 15. There are three columns for each file size, showing (a) the
base runtime obtained on a system that does not have SpIF, (b) the overhead when the benchmark
is run as a high-integrity process, and (c) the overhead when it is run as a low-integrity process. As
expected, the system shows higher overhead for small files. This is because there are more frequent
file creation and deletion operations that are intercepted by SPIF. For larger files, relatively more
time is spent on reads and writes, which are not intercepted by SPIF.

Figure 16 shows the latency for some GUI programs on Ubuntu. We measured the time between
starting and closing the applications without using them. While there are some latencies, the overall
user experiences were not affected when using the applications.

3.9 Discussion

3.9.1 Alternative choices for enforcement

SpPIF could use WIM labels instead of userids for provenance tracking and policy enforcement. WIM
enforces a no-write-up policy that not only prevents a low-integrity process from writing to high-
integrity files, but also to processes. Although WIM does not enforce no-read-down, we can achieve
it in a co-operative manner using an utility library, the same way how SPIF achieves it now.

With userids, SPIF gets more flexibility and functionality by using DAC permissions to limit the
access of untrusted processes. For instance, files that can be read by low-integrity applications can
be fine-tuned using the DAC mechanism. Moreover, SPIF can be easily generalized to support the
notion of groups of untrusted applications, each group running with a different userid, and with
a different set of restrictions on the files they can read or write. Achieving this kind of flexibility
would be difficult if WIM labels were used instead of userids.

On the positive side, WIM can provide better protection on desktop/window system related at-
tacks. The transition to lower-integrity is also automatic when a process executes a lower-integrity
image, whereas this functionality is currently implemented in our utility library. For added protec-
tion, one could combine the two mechanisms — this is a topic of ongoing research.
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Figure 14: Firefox page load time correlation on Windows

49



File Size 500B to 5KB 5KB to 300KB 300KB to 3MB

Operations Base Benign Untrusted Base Benign Untrusted Base Benign Untrusted
Files Created per Second 351.14 -5.02% -10.45% 68.00 -2.79% -2.02% 8.00 -1.25% -1.56%
File Read per Second 350.14 -5.18% -10.59% 67.64 -3.02% -2.34% 7.60 -3.95% -1.97%
File Appended per Second 344.79 -5.19% -10.58% 67.64 -3.02% -2.61% 8.00 | -2.50% -2.34%
File Deleted per Second 350.21 -5.17% -10.57% 67.86 -3.03% -2.00% 8.00 -1.25% -2.34%
Total Transaction Time (s) 285.36 6.53% 12.38% 367.29 3.05% 4.58% 308.67 1.27% -0.62%

Figure 15: Postmark overhead for high and low integrity processes on Windows

Unprotected Benign Untrusted

Time (s) Overhead Overhead
eclipse 6.16 1.99% 10.23%
evolution 2.44 2.44% 5.04%
F-spot 1.61 2.11% 6.80%
Firefox 1.32 3.24% 10.08%
gedit 0.82 5.02% 6.09%
gimp 3.63 1.90% 4.32%
soffice 1.56 0.33% 7.08%

Figure 16: Latency for starting and closing GUI programs on Ubuntu

3.9.2 Limitations

Our WinAPI interception relies on the AppInit DLLs mechanism, which does not kick in until the
first GUI program runs. Furthermore, libraries loaded during the process initialization stage are not
intercepted. This means that if a library used by a benign application is somehow replaced by a
low-integrity version, a malicious library could be silently loaded into a high-integrity process. Our
current defense relies on the inability of untrusted applications to replace a high-integrity file, but
subtle attacks may be possible where an application loads a DLL from the current directory if the
DLL is present, but if the DLL is not found, it starts normally. A better solution is to develop a
kernel driver to enforce a no-read-down policy on file loads.

Our prototype does not consider IPC that takes place through COM and Windows messages.
COM supports ACL, so it may be easy to handle.

Our prototype does not support untrusted software whose installation phase needs administrative
privileges. If we enforce the no-read-down policy, the installation won’t proceed. If we waive it, then
malicious software will run without any confinement, and can damage system integrity. Techniques
for secure software installation [Sun et al., 2008a] can be applied to solve this problem, but will need
to be implemented for Windows.

3.9.3 Other architectural/implementation vulnerabilities

Attacks on Uy Policies on untrusted processes are enforced using the well-defined, well-studied
DAC mechanisms. Relaxation over the strict policy dictated by the DAC mechanisms are provided
via the use of helper process Uy. Communications between untrusted processes and Uy use UNIX-
domain sockets. This narrow communication interface exposed to untrusted processes have only a
small attack surface. Same as other benign processes, Uy cannot be ptraced or receive signals from
untrusted processes. Furthermore, Uy runs with user’s privilege, but not administrative privileges.

Vulnerabilities in trusted programs Trusted programs are trust-confined. They are only
trusted to consume some specified untrusted files. Opening of other untrusted files will still be
rejected. Our approach reduces the attack surface to those interfaces where we incorrectly chose
to trust. Trusted programs are those that can execute in limited mutual trust mode. They are
only trusted to consume some specified untrusted files. Opening of other untrusted files will still be

50



rejected. Our approach reduces the attack surface to those interfaces where we incorrectly chose to
trust.

Trusted programs may also need to label files based on origins. Labeling errors due to misplaced
trust. For instance, we may incorrectly trust a software provider and mark their code as benign or
label an untrusted file downloaded from untrusted source as benign. The only defense in this regard
is to be conservative: only trust those sources that are indisputably trustworthy.

Labeling errors Another related problem is labeling errors due to misplaced trust. For instance,
we may incorrectly trust a software provider and mark their code as benign or label a untrusted file
downloaded from untrusted source as benign. The only defense in this regard is to be conservative:
only trust those sources that are indisputably trustworthy.

3.10 Related Work

SpIF applies techniques from both policy-based confinement and isolation. Most of the related work
have been discussed in Section 2. We focus our discussion on techniques related to SPIF.

Policy based confinement and Isolation

One of the difficulties of policy-based confinement is achieving secure policy enforcement. A confined
process can trick a reference monitor with TOCTTOU. Ostia [Garfinkel et al., 2004] avoided the
drawback by developing a delegating architecture for system-call interposition. It used a small kernel
module that permits a subset of “safe” system calls (such as read and write) for monitored processes,
and forwards the remaining calls to a user-level process. SPIF’s use of a user-level helper process
was inspired by Ostia. While their approach still requires kernel modifications, SPIF is implemented
entirely at user-level by re-purposing user access control mechanisms.

Using userid as an isolation mechanism has been demonstrated in systems like Android and Plash
[Seaborn, 2015] for isolating applications. One of our contributions is to develop a more general
design that not only enforces strict isolation between applications, but also permits controlled inter-
actions. Although Android also allows applications to interact, such interactions can compromise
security, becoming a mechanism for a malicious application to compromise another high-integrity
application. In contrast, SPIF ensures that malicious applications cannot compromise high-integrity
processes. Furthermore, SPIF requires no modifications to applications, whereas Android requires
applications to be rewritten so that applications do not violate the strict isolation policy.

Both SPIF and Plash [Seaborn, 2015] confine untrusted programs by executing them with a user
id that has limited accesses in the system. Both SpiF and Plash use a helper process to grant
additional accesses to confined processes. However, SPIF’s focus is on preserving compatibility with
a wide range of software, while giving concrete assurances about integrity and availability. SPIF
achieves this goal by sandboxing all code, whereas Plash focuses on sandboxing only untrusted code
with least privilege policies.

Another difference between our system and Android is that the Android model introduces a new
user for each application, whereas we introduce a new (untrusted) user for each existing user.

User Intent

Both user-driven access control [Roesner et al., 2012] and our uudo inference are based on capturing
user intention. However, user-driven access control is about granting resource accesses to untrusted
applications. Their focus is on reducing additional user effort for granting these accesses, whereas
our goal is to eliminate additional interactions. User-driven access control operates in a hostile
environment while uudo is for high-integrity processes to infer the use of low-integrity environment.
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Inaccuracies in their approach can lead to granting authorized permissions to the untrusted appli-
cations. In SPIF, inaccurate uudo inference will not lead to any security failures.

BLADE [Lu et al., 2010] protects system against drive-by-download malware by stopping unconsented-
content executions. It detects user intention of downloading files by parsing file-download dialog-
boxes of browsers. Such intent is then used to move files out of the secure zone. Files without
user-consent will remain in the secure zone and hence cannot be executed. BLADE relies on user
intent for security purposes. Although SPIF also captures user intents, the goals of capturing user
intents are different in the two systems. BLADE uses the intent to enforce security policy, but SPIF
relies on user intent for improving usability. As such, BLADE requires a kernel module to examine
network streams and correlate with files to ensure that file origins are labeled properly. BLADE
also needs to monitor keyboard and mouse to make sure that users are actually interacting with the
browser rather than a spoofed interface. BLADE has to make sure that user intents are captured
properly or otherwise security breaks. On the other hand, SPIF does not rely on user-intent for
security, but for usability. SPIF relies on user-intent for uudo inference, deciding shadowing policies,
as well as the return code for denying opening low-integrity files. Therefore, SPIF does not require
kernel driver to make sure the correctness of user-intent.

Information Flow Control

SPIF and the majority of the Flume [Krohn et al., 2007] implementation locates in the userspace.
Flume, like Ostia, requires a kernel module to confine processes by blocking some system calls.
Flume prevents confined processes from performing fork because of the complexity in maintaining
labels for all opened resources. As a result, Flume allows only spawn (fork 4+ exec) but not fork.
Furthermore, child processes cannot inherit any file descriptors except pipes from parent processes.
This constrains the applications that Flume can run. SPIF relies on existing userid mechanism for
both labeling and confining processes. SPIF does not constraint the set of system calls that processes
can make — they can fork and inherit file descriptors as usual.

While both Spir and UMIP rely permission bits to encode integrity labels, SPIF also uses the
mechanism to enforce policy. Furthermore, UMIP can only encode one bit information. SPIF relies
on userid, hence can encode richer provenance information.

PPI [Sun et al., 2008b] is designed to preserve integrity by design and focuses on automating
policies. But there are several important advances we make in SPIF over PPI. First, SPIF uses a
portable implementation that has no kernel component, whereas the bulk of PPI resides in the kernel.
Second, PPI approach for policy inference requires exhaustive training, the absence of which can
lead to failures of high-integrity processes. Specifically, incomplete training can lead to a situation
where a critical high-integrity process is unable to execute because some of its inputs have become
low-integrity. The approach presented in this work avoids this problem by preventing any high-
integrity file from being overwritten with low-integrity content. On the other hand, PPI has some
features that we don’t: the ability to run low-integrity applications with root privilege and dynamic
context switch from high to low integrity. SPIF does not have these features because these features
significantly complicate the system design and implementation.

On the other hand, PPI has some features that SPIF does not have: the ability to run low-
integrity applications with root privilege and dynamic context switch from high to low integrity.
SpPIF does not have these features because these features significantly complicate the system design
and implementation. Moreover, SPIF avoids this problem by preventing any high-integrity file from
being overwritten with low-integrity content, and hence can preserve the availability of high integrity
processes.
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Chapter 4

4 Functionality and usability in policy enforcement mecha-
nisms

In this chapter, we study an enforcement property of security mechanisms. Security mechanisms
enforce policies by imposing restrictions on what processes can and cannot do. Different security
mechanisms can impose restrictions at different time. For instance, ACL permits or denies an
operation at the time the operation is performed. Since a security decision has to be made on a
per-operation-basis, the security mechanism only has limited information to decide if the operation
is permissible or not. As a result, security mechanisms tend to make conservative decisions. They
could block not only malicious operations, but also non-malicious operations. This could lead to
poor functionality.

Instead of denying an operation immediately, systems such as information flow tracking use labels
to track the effects of each operation. The security decision can be postponed until the effect of
the operation becomes clearer. Obviously, this could lead to better functionality as all the non-
malicious operations would be permitted, and only those malicious operations would be blocked.
[However, since malicious operations are denied at a much later point in time, applications may
mot handle these failures gracefully and could lead to compatibility problems. For instance, write
access to a high-integrity resource may be revoked because the process read from an low-integrity
file. The application does not expect reading could revoke its granted access. This is known as the
self-revocation problem [Fraser, 2000].

We call security mechanisms that make security decisions on a per-operation basis eager enforce-
ment. These include policy-based confinement and isolation. Mechanisms such as information flow
tracking that can postpone the enforcement are called delayed enforcement. There are trade offs in
terms of functionality and compatibility between eager enforcement and delayed enforcement. In
this chapter, we study the benefits and drawbacks of these two types of mechanisms.

We consider specifically only information flow integrity policies in this chapter. While Biba is an
information flow tracking policy, it is indeed an eager enforcement policy because subject and object
labels do not change in Biba. It creates a rigid isolation boundary between different security domains.
Similarly, given a subject and an object, Biba either allows the operation between the subject and the
fobject if and only if the information source has integrity level no less than that of the information sink.
Low-water-mark policy allows subjects to change their labels anytime during program execution.
[When the current integrity configuration between a subject and an object cannot be satisfied, low-
water-mark does not simply deny the operation as in Biba. Instead the execution is prolonged by
downgrading the subject. As such, low-water-mark is a delayed enforcement mechanism. Between
the two integrity policy, SPIF in Chapter 3 is a special combination of eager and delayed enforcement
mechanism. While SPIF does not allow label changes during program execution, SPIF does allow
subjects to change their integrity level before executing program images. Specifically, the uudo
inference tries to prolong the execution by downgrading subjects.

Based on these three information flow policies,

e We develop a model (Section 4.1) to compare different enforcement mechanisms in terms of
their functionality (i.e., the behaviors that they permit) and failure compatibility (i.e., ability
to map security failures newly introduced by the policy into those that are already handled
by an application). We show that among these policies, low-watermark policy is the best in
terms of functionality, but the worst in terms of compatibility.

e We then define a new policy, called Self-Revocation-Free Dynamic Downgrading (SRFD) that
combines the best features of different security mechanisms.
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e We present a design for enforcing SRFD on contemporary operating systems. (See Section 4.2.)
Our design uses a novel constraint propagation technique to identify file open operations that
introduce a potential for future self-revocations, and deny them. Our design is general, and
avoids self-revocation involving files as well as interprocess communication.

e We formally show that SRFD eliminates self-revocations. We also show that unless future
inter-process communications can be predicted accurately, it is not possible to improve on the
functionality of SRFD without incurring self-revocation.

e We present an implementation and experimental evaluation of SRFD on Ubuntu Linux 13.10
in Section 4.3. Our experimental evaluation shows that our implementation is fast, incur-
ring a maximum overhead under 6% and average overhead below 2% across several macro-
benchmarks. The evaluation also demonstrates that SRFD has very good compatibility while
thwarting malware attacks.

e Finally, we present in Section 4.4 how to extend our userland system, SPIF, to support a
simplified SRFD policy.

4.1 Formalizing Functionality, Compatibility and Usability

We propose a model to compare these security policies. Specifically, we show that a policy with
dynamic downgrading (delayed enforcement) of subjects has better functionality than the strict
integrity model (eager enforcement). However, more functionality does not always translate to better
compatibility or user experience. We therefore formalize the notion of compatibility, and proceed
to define a new dynamic downgrading policy that is an optimal combination of functionality and
compatibility among the commonly-used integrity policies.

We model process execution in terms of the sequence of actions A = A; ... A, performed by a
process. Each action A; can be:

e an invocation (I), typically, the execution of another program;
e an observation (O), typically, a file read operation; or
e o modification (W ), typically, a file write operation.

In order to simplify terminology and description, we consider only two integrity levels in this
paper: high (H4) and low (Lo). Objects (typically files) as well as subjects (processes) have one of
these integrity levels.

Definition 4 (Integrity-preserving executions)
Such ezecutions ensure that the content of all high integrity objects are derived entirely from other
high integrity objects and subjects.

A strong integrity-preservation policy, such as the Biba’s strict integrity policy and the low-watermark
policy, will ensure that all executions are integrity preserving. In particular, this means that low-
integrity data and programs cannot influence the contents of integrity-critical (data or program)
files on the system. Today’s remote exploits and malware attacks all rely on modifying critical files
using data or code from untrusted sources, and hence can be definitively blocked by enforcing these
integrity policies, provided that only data and code from trustworthy sources is given a high integrity
label.

A security policy can alter an execution sequence in one of two ways. First, it can disallow an
operation A;, denoted as 4;. There are several possibilities here, including (a) silent suppression
of A;, (b) suppressing A; and returning an error to the process performing this operation, and (c)
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replacing A; with another allowable action. In the rest of this section, we primarily focus on the
alternative (b).

A second avenue for the enforcement engine is to downgrade a subject before A;, denoted |A;.
Note that such a downgrade may be an internal operation within a reference monitor enforcing the
policy, and hence we may not explicitly show it in some instances.

We call executions without any failed operations permitted or successful executions, while the
rest are called failed erecutions. The more execution sequences that a security policy permits, the
less functionality will be lost as a result of security policy enforcement. This leads to the following
definition comparing the functionality of different security policies.

Definition 5 (Functionality)
A security policy Py is said to be more functional than P, denoted P, D P, if and only if
every execution sequence permitted by Ps is also permitted by P;.

Note that functionality defines a partial order on security policies, and hence two policies could be
incomparable in terms of functionality. By permitting more executions, a more functional policy
would seem to have weaker security than a less functional policy, thus capturing the tension between
functionality and security.

4.1.1 Integrity policies

We can now classify actions into two categories: high integrity actions (Ag) that can be performed
by high integrity subjects, and low integrity actions (Ay) that can be performed by low integrity
subjects. Specifically, Ay includes all actions except read-down (Op), i.e., read from a low-integrity
input, and invoke-down (I},), i.e., executing a program that has low integrity. Ay, includes all actions
except write-up (Wg). Note that Iy is permitted in A;, because we interpret it as the execution
of a high integrity file within a low integrity subject. (In contrast, the term “invoke-up” is used in
Biba model to refer to the execution of a high integrity subject.)

Integrity-preserving execution sequences can be realized by confining high integrity processes to
perform only Ay, and low integrity processes to perform only Ay. Since Wy exists only in Ay and
Oy exists only in Ay, it is clear that low-integrity objects and subjects cannot affect high-integrity
objects.

Most systems do not allow revisions to object integrity levels. However, subject integrity label can
be revised down as long as the downgraded subject is restricted to perform Aj, after the downgrade.
This leads to the following variants that all preserve integrity.

No Downgrading (ND) This policy, which corresponds to the Biba strict policy, permits no
privilege revision (NPR): labels are statically assigned to subjects and objects, and they cannot
change. With this strict interpretation, every program has to be labeled as high or low integrity,
and a high integrity program cannot be used to process low integrity data, even if all outputs
resulting from such use flow only to low-integrity files or low-integrity subjects.

Eager downgrading (ED) This policy permits subject labels to be downgraded, but only when
executing a program. This approach, also called privilege revision on invocation (PRI), allows more
executions as compared to the no-downgrading policy. With the PRI policy, a subject wishing to
operate on low-integrity files should know ahead of time (i.e., prior to execution) that it needs to
consume low-integrity file, and drop its privilege before execution. This is why we call it eager
downgrading. SPIF is an ED system.

Lazy downgrading (LD) The final policy is the low-watermark policy for subjects, where down-
grades can happen before any observe operation, or an invoke operation. We call it lazy (or just-in-
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Figure 17: State machine for integrity-preserving executions.

time) downgrading since downgrading operation would typically be delayed until the very last step,
which must be the consumption of a low-integrity input.

Figure 17 shows a simple state-machine model that captures the above three policies. With the
N D policy, none of the transitions between Hi and Lo states are available. With the ED policy,
only the transitions on I, and Iy are enabled. Note that while it is mandatory to transition to Lo
on I;, Iy may or may not cause a transition to Lo. When it does, it corresponds to the use of a
high-integrity application to process low-integrity data.

With the LD policy, only the I;, and Oj, transitions from Hi to Lo are enabled. There is no
need to make a transition from Hi to Lo on I, as the downgrade can be deferred until the next
operation to read low-integrity data. As a result, LD avoids one of the difficulties of E D, namely,
the need to predict ahead of time whether a certain process will need to read low-integrity data.
uudo inference described previously is a technique to make ED more usable.

4.1.2 Comparing functionalities of integrity policies

It is easy to see the motivation for the LD policy: when the actions performed by an application are
disallowed, it can lead to errors and failures, and hence loss of functionality. In contrast, downgrading
has the potential to permit the application to continue and function. In fact, we can formally state:

Theorem 6 LD Dp ED Dp ND

Proof: This theorem simply states that LD is strictly more functional than ED, which, in turn, is
more functional than N D. From the definition of the three policies, and Figure 17, it is easy to see
that all three policies accept the same set A% of execution sequences for low-integrity subjects. (We
are using a regular expression syntax to succinctly capture the set of execution sequences permitted
by a policy.) Thus, we can limit our comparisons to the execution sequences permitted for high-
integrity subjects. Note that N D accepts only sequences of the form A}, for high-integrity subjects.
ED accepts (IL|I)Aj; for subjects started with high, in addition to the set A};. Finally, LD accepts
A% (IL|OL) A3, which is a strict superset of sequences accepted by ED. [

4.1.3 Compatibility

Increased functionality does not always translate to a better user experience, or better compatibility
with existing software. Self-revocation is a prime example of the compatibility problem posed by
LD, an approach that maximizes functionality over other integrity policies. In contrast, ED is less
functional as compared to LD, but is intuitively perceived as being more compatible.
Self-revocation occurs when a subject is initially granted access to a resource, but this access
is revoked subsequently; and the revocation is the result of some of the other actions performed
by the subject itself. More concretely, self-revocation manifests itself as follows in the context of
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file system APIs provided by modern operating systems: a process successfully opens a file, but
a subsequent write operation using that file handle is denied. Although self-revocation is more
commonly identified with failures of writes, it can also happen on read operations. In both cases,
self-revocation raises several compatibility issues:

e The file system API is designed to perform security checks on open operations, but not on
reads and writes. As a result, there is usually no way to even communicate a security failure
to the subject performing the read or write!?. Thus, security failures have to be mapped into
other failures that can occur on reads/writes, such as an attempt to read a file before opening
it. Such remapping has obvious drawbacks because applications may misinterpret the error
code and respond inappropriately.

e Even if an error code is returned on reads and writes, many applications may not check them at
all. This is because failures of these operations are rare and unexpected, so many applications
may not contain code for checking these error cases, or undertaking any meaningful error
recovery.

e Even if the application checks the error and undertakes recovery, data loss or corruption may
be unavoidable at this point. Consider an application that was updating a file. If its write
access is taken away when it is half-way through the update, that may lead to the file being
truncated, leading to data loss, inconsistency or corruption.'!

For this reason, we develop the following notion of failure-compatibility, or simply, compatibility of
security policies.

Definition 7 (Compatibility)
We say that a security policy P is compatible if all actions disallowed by it can return a valid
permission failure error to the subject.

With contemporary file APIs, this means that a compatible policy would deny open’s but not read-
s/writes. We show that in terms of compatibility, the results are inverted from that of functionality:

Theorem 8 LD is not failure-compatible, whereas ND and ED are both failure compatible.

Proof: Recall that for subjects that start at low integrity, all three policies allow A} . It is clear that
this sequence permits the same set of operations throughout, so self-revocation is not possible. For
high-integrity subjects, ND accepts A}; — again, the set of operations permitted remain constant
throughout the subject’s lifetime, and hence there will be no self-revocation. For ED, the sequences
accepted are of the form A}, or Aj. For each alternate, it is easy to see that all of the actions
permitted towards the beginning of the sequence are also permitted later on, once again ruling
out the possibility of self-revocation. Finally, we have already explained how LD suffers from self-
revocation. ]

4.1.4 Maximizing functionality and compatibility

The results above lead to the following question: can there be an approach that is preferable in
terms of both functionality and compatibility? Our answer is affirmative. We begin by positing
the existence of a new dynamic downgrading policy that combines LD’s functionality with the
compatibility of ED.

0For instance, on UNIX, there are no error codes related to permissions that can be returned by read and write
system calls.

HWith buffered 1/O, even the data that an application believes to have written prior to the self-revoking action
may be lost — such data may be held in the program’s internal buffers, which may be flushed much later, at which
point, the write system call would fail.
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Definition 9 (Self-revocation-free downgrading)
SRFED accepts the same set of execution sequences as LD. Every sequence that is modified by
LD is also modified by SRFD, but unlike LD, SRFD only modifies (i.e., denies) open operations.

So, the next natural question is whether SRFD is realizable. Conceptually, we can synthesize
execution sequences accepted or modified by SRFD from the acceptance or modification actions of
LD as follows. If LD accepts a sequence, then SRFD will accept the same sequence. If LD modifies
a sequence, let A; be the first write operation denied by LD. SRFD will identify the open operation
A;j preceding A; that caused LD to downgrade the subject, and then SRFD will deny A;.

Noting that LD denies only write operations on high-integrity files, this means that SRFD needs
to predict whether a subject will perform future writes on any of the currently open file descriptors
for accessing high-integrity files. If so, SRFD should not permit the subject to open any low-integrity
file. In this manner, SRFD can prevent the subject from downgrading itself, and hence will not have
to deny writes on one of these descriptors in the future.

This raises the final question: how can a reference monitor predict future actions of a subject?
Often, questions regarding future behavior are answered by assuming that any thing that can happen
will indeed happen. We formalize this by characterizing a class of programs that transfer data along
every possible communication channel between communicating processes, and show that for this
class, SRFD can indeed be realized.

Another way to characterize our result is as follows. Unless an oracle for predicting future
behavior of a set of communicating processes exists, one cannot improve over the functionality of
the design presented in the next section without risking self-revocation.

4.2 Self-Revocation Free Downgrading

SRFED represents a hybrid between N D that refuses to ever downgrade a subject, and LD which
downgrades at the first open of a low-integrity file. The key idea is to deny these open operations
when a subject already holds open-file-descriptors that can write to high-integrity files. This task is
simple enough for stand-alone subjects, but challenges arise when considering processes that interact
with each other.

Note that many applications involve processes that communicate via pipes, sockets, shared mem-
ory and other IPC mechanisms. If SRFD looks at each process in isolation and allows one of them
to be downgraded, it is possible that a future read by another process would have to be denied, since
it is reading an output of the downgraded process. Since the goal of SRFD is to avoid denials of
reads/writes, SRFD needs better mechanisms to keep track of open file descriptors across collections
of processes.

A simple approach to deal with collections of communicating processes is to treat them as a
single unit, and downgrade them as a unit. LOMAC [Fraser, 2000] uses this approach to avoid
self-revocation due to IPC within a UNIX process group. However, LOMAC does not recognize
the one-way nature of pipe-based communication, and hence would needlessly downgrade an up-
stream process when a downstream process opens a low-integrity file. To avoid this, SRFD needs a
mechanism to keep track of all output files held open by processes that are downstream from each
process. Since this information is different for each process, keeping track of it can be messy as well
as expensive, especially if the number of processes (or number of open files) grows large.

To overcome these problems, we develop a new approach that is based on propagating constraints
about downgradability of processes. In particular, SRFD keeps track of the highest integrity of any
output file that is held open by a process and any of the processes that it writes to. We call
this min_1bl. SRFD propagates the min 1bl “upstream” through pipes and other communication
mechanisms. The result is an approach that relies on maintaining and propagating just this single
quantity (min_1bl) for each process, instead of having to propagate a large amount of information
concerning open file descriptors.
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We now proceed to describe the key abstractions in SRFD’s design and constraint propagation
mechanism. Although we have limited ourselves to just two integrity levels, the design described
below is quite general and can support any lattice of integrity labels. While SRFD is fully compatible
with unmodified COTS applications, SRFD also has features that can be utilized by information-
flow-aware applications to improve functionality. One such feature is for an application to explicitly
request that it not be downgraded below a certain level. In particular, SRFD will deny any attempt
to open files at a lower integrity than this specified level as to protect the integrity of the process.
Another feature is to allow trusted applications'? to request selective, fine-grained exceptions to the
information-flow policy.

4.2.1 Abstractions
SRFD has three entities: Objects, Subjects and Handles.

Objects Objects consist of all storage and inter-process communication abstractions on an OS:
files, pipes, sockets, message queues, semaphores, etc. SRFD divides these objects into two cat-
egories: file-like and pipe-like. There is a fundamental difference between these classes. File-like
objects are persistent, and SRFD assigns fixed integrity label to them. Any data read from the file
has this label, and writes to the file don’t change the label. (The information flow policy ensures
that any subject writing to it has a equal or higher label.) For a file-like object, the label of data
read from it will be the same as that of data written into it. In contrast, for a pipe-like object, the
label of data read from the object representing one end of the pipe is the same as the label of data
written to the object representing the other end of the pipe (called a peer object). Examples of
pipe-like objects include UNIX pipes and sockets.

Subjects and SubjectGroups Subjects correspond to threads. Since the OS-level mechanisms
used in our framework cannot mediate information flows that take place via shared memory, subjects
that share memory are grouped into SubjectGroups. SubjectGroups are basically processes. The
idea is that all subjects within a SubjectGroup will have the same security label at any time.

Handles Handles is a level of indirection between subjects and objects. They serve to link together
objects and subjects that have a unidirectional information flow relationship. There is a many-to-
one mapping between handles and subjects, and many-to-one mapping between handles and objects
in SRFD.

Handles are conceptually similar to file descriptors, but there are some differences as well, e.g., a
handle is unidirectional: a handle has either a read or a write capability. (Obtaining both requires
two handles.) The label of a read-handle is given by the label of the object that it reads from, while
the label of a write-handle is given by the label of the subject holding the handle. When read (or
write) operation takes place, SRFD pass the label of the handle to the corresponding subject (or
object).

4.2.2 Information Flow Policies

SRFD maintains a current label (current_1bl) field for each object and subject. current_1bl is
the basis for policy enforcement. In particular, SRFD permits no flow from a source to a destination
unless the source’s current label is at least equal to that of the destination.

Invariant 10 Any information flow from an entity A to another entity B must satisfy current_1b1(A) >
current_1bl(B).

12These are applications that have been written carefully so as to protect themselves from low-integrity data, and
hence can operate on them while retaining their high-integrity.
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Figure 18: Illustration of Information Flow in our Framework

Instead of denying the operation when the above invariant does not hold, SRFD will attempt to
dynamically downgrade the label of the destination. Since the model presented so far restricts
downgrading to subjects, B must be a subject, and downgrade occurs when it reads from a handle
A. B can protect itself from undesirable downgrades by setting its minimum label (called min_1b1).
In particular, SRFD will not attempt to downgrade current_1bl unless the following invariant holds
after the downgrade:

Invariant 11 VB, current_1bl(B) > min 1b1(B).

Since SRFD does not downgrade the labels of file-like objects, file-like objects will have the same label
for min 1bl and current_1bl. For subjects and pipe-like objects, SRFD determines the min 1bl
by constraint propagation, as described further in Section 4.2.4. Finally, handles do not have an
independent value for their current label and minimum label; instead, these are derived from the
corresponding values of objects and subjects associated with a handle.

Combining the above two invariants, SRFD will permit information flow from A to B in all
cases where current_1b1(A) > min_1b1(B). Since self-revocation occurs precisely when such a data
transfer is denied, we can say:

Observation 12 A read (or write) operation that transfers data from an entity A to another entity
B will be denied in SRFD only if current_1b1(A) < min_1b1(B).

4.2.3 Forward information flows

Figure 18 illustrates the flow of information between objects and subjects via handles. In this
figure, solid lines represent actual flow of information. There are two subjects S7 and Ss. Flow of
information between these two subjects occurs via a socket object O; (which is pipe-like), and a file
object Os.

Flow of information via file objects is simpler than that of pipe-like objects. In particular, an
object created by a subject receives the label of that subject. This flow is handled by propagating
the current label of subject Sy to its write handle WH>, and then from WH; to the object Os. (If the
object is already present, then its current_1bl should be less than or equal to that of the subject
writing to it, and no propagation would be needed.) If S; subsequently reads from the object Oa,
the label of Oy will flow into S;.

Since a socket is a pipe-like object representing two distinct flows, we split it into two objects:
012 that represents information flow from S; to S5, and Os; that represents the information flow
from Sy to S1. S7 uses a read-handle RH>; and a write-handle WH15 to read from and write into
the socket, while Sy uses RHyo and WHy, respectively for the same purpose.

It is important to clarify the role of open versus read operations. Specifically, when a file is
opened for reading, the file’s current_1bl flows from the file to the handle. But since no data
has yet been read by the subject, the propagation of current_1bl from the handle to the subject
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does not take place until the first read operation. (A similar comment applies to write operations
as well.) This distinction between open and read operations is made for pipe-like objects as well,
except that there are many open-like system calls, including pipe, connect and accept.

Delaying current_1bl propagation serves an important purpose: shells (e.g., bash) often open
files for file redirection, and set up pipes for use by its child processes. The shell process does not
perform any reads/writes on these objects. By deferring any downgrades until the first read, SRFD
prevents the shell from having to downgrade itself. Such a downgrade of shell’s label is disastrous,
as it prevents the shell from ever running high-integrity commands.

We note that for memory-mapped files, reads may happen implicitly when memory is read, and
hence SPIF does not support delayed propagation of labels as described above.

4.2.4 Constraint propagation

As noted earlier, SRFD avoids self-revocation by propagating constraints on min_1bl. Figure 18
shows constraint propagation using dashed lines. Note that constraints propagate in the reverse
direction of information flow.

Note that min_1bl represents the minimum label that needs to be maintained by a subject A.
Any entity B from which information can flow to A needs to maintain a label higher than min_1b1(A)
or else the flow from B to A may have to be cut-off. Since such cut-offs lead to self-revocation, SRFD
prevents them by propagating min_1b1(A) to any handle from which A reads; and from this handle
to the associated object; and so on. In other words, by propagating min_1bl in the inverse direction
of information flow, SRFD can ensure that every data producer upstream will maintain the integrity
level required by A.

Whereas the forward flow of labels is normally delayed until an explicit read or write operation,
constraint propagation is instantaneous, i.e., when a channel (representing file or pipe-like communi-
cation) for information flow from entity A to another entity B is opened, B’s min_1bl is propagated
immediately to A. Because of Invariant 11, this propagation will fail if A’s current label is already
less than min_1b1(B). In this case, SRFD will deny the open operation.

It is important to note that min_1bl is a quantity that is derived through constraint propagation.
It should not be thought of as a variable whose value is increased each time a new communication
channel is established. For this reason, min_1bl can either increase or decrease during the lifetime
of a subject. Increases happen when a subject opens a new output handle, while decreases happen
when a subject closes an output handle.

Due to constraint propagation, the following invariant holds:

Invariant 13 If there is an information flow path (shown by solid lines in Figure 18) from A to B,
min_1b1(A) > min_1b1l(B).

Since constraint propagation increases a min_1bl value for an entity only if there is a constraint
that requires it to be that high, and since files are the only entities that have a hard requirement
for their min 1b1 values, we can make the following observation:

Observation 14 For an entity A, let By, ..., B be all the open output files reachable from A while
following the information flow paths. Thenmin 1b1(A) will be the mazimum amongmin 1b1(By),...,min 1b1(By).

This observation follows readily from our declarative definition of constraints and their propagation.

4.2.5 Properties

Theorem 15 There will be no self-revocations in our approach.

Proof: The proof is by contradiction. Suppose that a self-revocation takes place on a read or write
operation that transfers data from A to B. From Observation 12, self-revocation can happen only
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when current_1b1(A4) < min_1b1(B). Together with Invariant 11, this implies that min_1b1(A4) <
min_1b1(B). However, note that it is invalid to issue a read or write operation before setting up the
information flow path between A and B. (In this case, the path happens to be of length 1.) From
Invariant 13, the condition min_1b1(A) > min_1b1(B) must also hold, thus leading to a contradiction.

Definition 16 (Flow-indeterminate programs) A set of programs are said to be flow-indeterminate
if for any set of communicating processes running them, the following condition holds: for every com-
munication path p between any two processes, there will be data transfer operations that cause data

to flow from the beginning to the end of this path.

Flow-indeterminacy simply formalizes the idea that programs may exhibit any possible pattern of
communication that is consistent with their current set of open file descriptors; and that there is no
simple yet general way to delineate likely communications from those that are unlikely/impossible.

Theorem 17 For flow-indeterminate programs, any policy that accepts any execution rejected by
SRFD will suffer from self-revocation.

Proof: For an execution sequence rejected by our approach, consider the first operation A; that
is denied. From the description of the approach in Section 4.2.4, A; must be an open operation
that would have created a path from entity A to B such that current_1b1(A) < min_1bl(B). Now,
suppose that there exists a correct integrity policy P that permits this open operation. Then, because
of the properties of flow-indeterminate programs, it can be seen that there will be a subsequent
operation that transfers data from A to B. This will either have to be denied, or it will cause
current_1b1(B) to fall below min_1b1(B). The former case corresponds to self-revocation, thus
completing the proof. In the latter case, from Observation 14, it can be seen that there is some output
file B; whose min_1bl is higher than current_1bl(B). Also, from properties of flow-indeterminate
programs, there will be an actual data flow from B to B;, which will cause the output file B;’s label
to fall below its minimum value. This is not permissible in the model, and hence the more permissive
policy P is simply invalid. Thus, in either case, we have established that the functionality offered
by SRFD cannot be increased without risking self-revocation. L]

Thus, for flow-indeterminate programs, we have shown that SRFD allows the same successful
executions as any other valid information-flow policy that is free of self-revocations. Thus, SRFD
represents the maximal functionality achievable without any self-revocations.

4.3 SRFD Implementation and Evaluation

Our SRFD prototype works on both Ubuntu 13.10 and 14.04. We implemented SRFD using the
Linux Security Module (LSM) framework. Although Linux kernel no longer allows loadable modules
to use LSM hooks, there are work-arounds available [NTT DATA Corporation, 2010] that we relied
on. Structuring the system as a loadable module eases development and debugging, especially in
the early stages of prototype development.

LSM hooks are used to enforce information flow policies, perform dynamic downgrading, track
and maintain min 1bl constraints. Our implementation also uses an user-level component to per-
form some usability enhancing features such as notifying users when a process is downgraded and
shadowing accesses to preference files for low-integrity processes. By maintaining separate preference
files for high and low-integrity processes, SRFD prevents processes from downgrading automatically
due to consuming low integrity preference files. Note that these features do not allow a process to
bypass kernel enforcement.

The overall size of our implementation is shown in Figure 19.
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H \ C \ Header \ Python \ Total H

Kernel Code 3844 865 - | 4709
Userland code 643 142 57 842
| Total | 4487 [ 1007 | 57 | 5561 |

Figure 19: Implementation code size for SRFD

4.3.1 Abstractions: Subjects, Objects, and Handles

SRFD maps threads to subjects. Threads of the same process belong to the same subject group.
Within the kernel, subjects are identified using task_structs. Since LSM does not have hooks to
track process creation directly, our prototype relies on cred_* hooks instead. For each subject group,
SRFD maintains information such as integrity level and a list of handles.

Objects are mapped into inodes in the kernel. Our implementation maintains and updates
object-related information, including labels, handles associated with each object, and constraints.
We use LSM hooks on inodes for creating objects on demand, and deallocating objects when they are
no longer needed. For file objects, integrity labels are stored on the disk persistently using extended
attributes.

Handles are similar to file descriptors but represent an unidirectional information flow between ex-
actly one subject and one object. SRFD relies on LSM hooks such as file_open, inode_permission
and d_instantiate to maintain handles. When an object is associated with a subject (as a result
of a file open, pipe or socket creation), the object will be attached to the subject via at least one
handle. When the association is broken, e.g., due to a close operation, the corresponding handle is
destroyed.

4.3.2 Constraint propagation

When a subject A opens a file O for writing (or a socket connection with another process), constraints
from the file (or target process) have to be propagated in the inverse direction of information flow, as
described in Section 4.2.4. The open operation is permitted if the invariants regarding current_1bl
and min_1bl can be satisfied after this propagation.

Note that constraint propagation can involve circular dependencies as illustrated in Figure 18. To
deal with cycles, SRFD uses a fixpoint algorithm for constraint propagation. To detect a fixpoint,
SRFD stores the previous value of min 1bl in a variable called lastmin 1bl. It then updates
the value of min 1bl of A to be the maximum of lastmin 1bl and the label of the file O. If
min 1b1(A) = lastmin 1b1(A), then a fixpoint has been reached, and our algorithm stops. If not,
then the same process is used to propagate the new value of A’s min 1bl to each of the subjects
S1,-..,5, that output to A, and the process continues. If any of the propagation steps fail because
it results in a min_1bl exceeding the value of current_1bl, then the open operation is denied, and
the values of min_1bl restored.

The same fixpoint algorithm is used even if A performs a close rather than an open. The only
difference is that instead of computing the maximum of A’s min_1bl and that of the new object
being opened, we recompute min_1bl as the maximum of the labels of all the currently open write
handles of A. However, in the presence of cycles, this simple algorithm will not always compute the
least fixpoint. For this reason, our algorithm will retry constraint propagation from scratch before
denying an open request. Note that (a) this retry step is unnecessary if no close operations have
taken place since the last retry, and (b) constraint propagation itself is unnecessary for processes
that are already at low-integrity.

LSM has no hooks on close operation: SRFD is not notified when a process closes a file. As a
result, SRFD may have stale information regarding files opened. SRFD solves this problem by walk-
ing through the file descriptor table to prune out outdated handles when recomputing constraints.

63



SRFD optimizes this by recomputing the constraints only when the current constraints cannot be
satisfied.

4.3.3 Tracking subjects

Processes inherit a lot of rights from their parents, e.g., ability to write to a file. SRFD needs to be
aware of these inherited rights to protect against self-revocation of these rights.

When a new process is created, SRFD duplicates the book-keeping information associated with
the parent to the child. This automatically captures the communication between parent and child
that happen using mechanisms such as pipes. The most common use of pipes occur in the context
of shell processes, where the parent first creates a pipe with a readable-end and a writable-end. It
then creates two child processes. At this point, the parent and children can all read and write from
the pipes, so there is cyclic dependency between them. As a result, any constraint propagation will
result in all three processes having the same min 1bl. However, in the next step, parent shell will
close the two ends of the pipe, and then the first child will close the readable end of the pipe, while
the second child will close the writable end of the pipe. After these close operations, there can be no
flow between the children and the parent shell. Moreover, no information can flow from the second
child to the first child. All of this is handled by our constraint propagation algorithm, which will
correctly allow the second child to be downgraded (if necessary) without having to downgrade the
first child or the parent.

4.3.4 Limitations

Our current prototype does not enforce its policies on operations relating to capabilities, file mount
points, signals, message queue, and semaphores. In particular, low-integrity processes performing
these operations are not restricted. We also simply denies lower integrity processes to ptrace on
higher integrity processes. We have left out these aspects since our experiments did not make use of
these system calls. A complete implementation should also mediate these operations by propagating
labels.

For sockets, our prototype handles Unix domain sockets because the two ends of the socket
connection are within the control of the OS. For sockets in the Internet domain, their other end is
typically outside the control of the OS. Hence SRFD does not attempt to enforce any policies on
such Internet sockets.

4.3.5 Performance

We evaluate the performance of SRFD using micro- as well as macro-benchmarks. All the evaluations
are performed on a Ubuntu 13.10 VMware virtual machine allocated with one VCPU AMD Opteron
Processor 4228 HE (2.8GHz) and 1GB RAM.

Simple Simple Simple Simple Simple Select Select Pipe AF_UNIX Process Process Geometric
syscall read write stat open/ 10 500 latency latency fork+ fork+ mean
close fd’s fd’s exit /bin/sh -c
unprotected 0.375 0.477 0.517 1.104 2.591 0.624 8.935 12.854 8.812 235.4 1830
protected 0.376 0.526 0.580 1.122 5.867 0.624 8.958 13.994 9.785 249.8 1963
Overhead (%) 0.09% 10.28% 12.15% 1.62% 126% -0.1% 0.26% 8.87% 11.04% 6.08% 7.27% 12%

Figure 20: SRFD lmbench Performance overhead

As a micro-benchmark, we use 1lmbench, which measures the overhead for making individual
system calls. Figure 20 shows the overheads of our system for different classes of system calls. The
overheads are modest: the geometric mean is about 12%, and the arithmetic mean is 16%. Note that
if we exclude open and close, which are typically less frequent than other calls such as read/write,
the overheads are much smaller — less than 5%.
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Unprotected Protected

Time (s) Overhead

400.perlbench 554.41 -0.21%
401.bzip2 772.29 0.03%
403.gcc 505.47 0.01%
429.mcf 709.06 0.02%
445.gobmk 673.06 0.05%
456 . hmmer 712.94 -0.13%
458 sjeng 865.29 20.23%
462.libquantum 1032.35 -0.23%
464.h264ref 1159.41 -0.05%
471.omnetpp 543.24 0.27%
473.astar 738.29 0.16%
433.milc 875.47 -0.14%

[ 444namd [ 76447 [ -0.09% ||

H Average [ [ 0.04% H

Figure 21: SPEC2006 Overhead for SRFD, ref input size

Protected
Overhead
H Openssl [ -0.08% H
dpkg -b coreutils 2.93%
dpkg -b am-utils 1.22%
[ Firefox [ 4.89% ||
H Postmark [ 5.74% H

Figure 22: Overhead on other benchmarks for SRFD

It is natural for open and close to have higher overheads because of constraint propagation, but
that does not explain a doubling of execution time. It occurs in our prototype because LSM does
not have hooks for close, and as a result, our implementation has to walk through the list of open
file descriptors while propagating constraints. In contrast, because there can be no failures on read
and write, no additional checking is needed, and the only work is to blindly copy current_1bl from
the source to destination.

Micro-benchmarks help to understand and explain the overheads of kernel-based defenses such as
ours, but they tend to overestimate the overheads because most applications spend only a minority
of their time in the kernel. Macro-benchmarks are better at estimating overheads experienced by
real users in practice. For this reason, we used several macro-benchmarks, including the CPU-
intensive SPEC 2006 and openssl, file-system intensive Postmark, and commonly used programs
such as browsers and software builds.

From Figures 21 and 22, it is clear that overheads on CPU-intensive programs such as SPEC
and openssl are negligible — the overheads are below measurement errors/noise.

Package builds, which represent a combination of CPU and I/O load, show a slightly higher
overhead of 1% to 3%. Specifically, our benchmark built Debian Linux packages for coreutils and
am-utils from source code. Another mixed load consists of Firefox, whose overhead was measured
using pageloader, a benchmarking tool from Mozilla. Top 3000 Alexa sites were pre-fetched in
this experiment so as to eliminate the effects of network latency. (If this was not done, then the
overheads will be even smaller.) The overhead experienced was 5%.

Finally, the I/O-intensive Postmark was configured to create 500 files with size between 500 bytes
and 500 Kbytes. The overhead reported was 6%.
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4.3.6 User Experience

Our work is motivated by a continuing trend in sophisticated and adaptive malware attacks, and our
desire to develop a principled defenses against them. Existing approaches rely on techniques such as
sandboxing a few key applications such as browsers and email readers that have the most exposure
to malware. While sandboxing these applications can prevent some attacks, e.g., those that try to
mount a code injection attack on an email reader (or other document viewers invoked by a browser),
more sophisticated attacks can often get around these defenses. For instance, users may save a
document on their desktop, and subsequently open it with their favorite document editor/viewer
application. Since the application is typically not sandboxed in this usage scenario, the attack can
succeed. In contrast, an information-flow based approach would mark such files as low-integrity,
and regardless of the number of applications that process them, or how many intermediate steps
they go through, untrusted files will always be operated on by low-integrity processes. Since such
processes can only output low-integrity files, and cannot modify high-integrity files or interfere with
high-integrity subjects, their attempts to compromise system integrity will continue to fail.

Although these theoretical benefits of information-flow based integrity protection are well-known,
these techniques have not found widespread use on modern operating systems as they often pose
compatibility challenges. In this section, we walk through several illustrative and common usage
scenarios to demonstrate that SRFD can work well on contemporary operating system distributions,
without posing major compatibility problems. Naturally, our focus will be on illustrating features
specific to SRFD, as opposed to information-flow based techniques in general.

In these scenarios, we assume that the default OS installation consists of only high-integrity
files; and that low-integrity files enter the system when the system begins to be used, and new
low-integrity files are created by low-integrity subjects. We assume that browsers and email readers
are run as low-integrity processes.

Self-revocations involving files, pipelines and sockets

The scenarios discussed here illustrate the benefits of accurate information-flow dependency tracking
in SRFD, and how that permits us to be more functional as compared to previous approaches
(specifically, LOMAC [Fraser, 2000]), while avoiding self-revocation.

One of the challenges in SRFD is to track communications between processes. This can be
nontrivial when a deep pipeline is involved. Consider the command:

cat lowl | grep...|sed|... | sort |uniq)) highl

It is necessary to propagate labels across the pipeline to ensure that information from low-integrity
file 1owI is prevented from contaminating a high-integrity file highI. Opportunities for self-revocation
abound, especially if the shell opens highI before cat gets a chance to open lowI. Even otherwise,
self-revocation is possible since intermediate commands such as grep may begin execution as high-
integrity processes, and then be prevented from reading their input pipes, or they may be downgraded
and prevented from writing on their output pipes. LOMAC [Fraser, 2000] avoids self-revocation on
pipes by downgrading process groups at a time — in this case, all processes in the pipeline will be
part of the same process group.

SRFD accurately captures information flow dependencies between the processes in the pipeline,
and can avoid self-revocation while preserving usability. In particular, depending on the order in
which processes are scheduled, cat may be permitted to downgrade. In this case, SRFD will deny
the open operation on highI. Alternatively, if highT is opened first, SRFD will deny cat’s attempt
to open lowI.

Another example that illustrates the strength of SRFD is:

cat highl | tee high2 | lowP
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where lowP is a low-integrity utility program. SRFD will run this pipeline successfully: both cat
and tee will be remain at high-integrity, and be able to output to high-integrity file high2, while
lowP will run at low-integrity. LOMAC requires all processes in the pipeline to be at the same level,
and hence cannot run this.

SRFD protects sockets, and can avoid self-revocation on processes that make use of these features.
When a server program has a high-integrity file opened for writing, SRFD will deny connections
from a low-integrity client, as the establishment of such a connection would violate the constraints
on min_1bl. Moreover, any client that is already connected to such a high-integrity server will
be prevented from opening a low-integrity file, or connecting to any other low-integrity process.
LOMAC will experience self-revocation.

Commonly used applications

We implemented SRFD on a Ubuntu 13.10 desktop system. This system runs a large number of
applications and services, including a number of daemons, X-server, GNOME desktop environment,
and so on. All these applications work with SRFD, but this is unsurprising: in our tests, these
applications did not access low-integrity files, and so SRFD does not constrain them in any way.

In the same manner, applications that don’t modify high-integrity files will run without any
problems, as SRFD imposes no constraints on them. Most complex applications can be run this way
— for instance, we run web browsers and email readers in this mode.

Most command-line programs can run as high or low-integrity without any problems. Common
utilities such as tar, gzip, make, compilers, and linkers can be run without any problems on low-
integrity files. Composing these command line applications using pipelines works as described in the
preceding section. Thus, we focus the rest of this section on more complex GUI applications that
need to access a combination of low and high-integrity files.

Document viewers Document viewers such as evince and Acrobat Reader can be used in SRFD
without any issues. These programs can be used to open high and low-integrity documents simul-
taneously. However, once the viewer has opened a low-integrity file, it will not be able to overwrite
a high-integrity file.

Editors GUI editors (e.g., gedit, OpenOffice, GIMP) impose additional challenges for dynamic
downgrading systems like SRFD. When users select files to edit using file selection dialogs, appli-
cations tend to open every file to generate a preview, regardless of the integrity of the files. When
users open a directory containing low-integrity files, the editors will automatically be downgraded
to low-integrity even if the users did not intend to open low-integrity files.

To prevent editors from downgraded accidentally, we can allow editors to be downgraded only
when demanded by users. We can rely on the “implicit-explicit” mechanism suggested in Sec-
tion 3.5.1 to identify file accesses that are requested explicitly by users, and only allow editors to be
downgraded on opening these files. SRFD can deny opening low-integrity files implicitly.

Media Editors We consider media editors (e.g., f-spot and audacity) separately because they
usually do not modify the original media files directly. Instead, they edit copies of the media files.
As a result, these media editors can be used without usability issues.

4.3.7 Defense against malware

We downloaded a rootkit ark from [Packet Storm, 2015]. The tar file was labeled as low-integrity
when downloaded into the system by a web browser. The user then untars the file by invoking
tar. SRFD started tar as a high-integrity process, with current_1bl = H4, min_1bl = Lo because
it has no constraints on its output files and it has not been contaminated with any low-integrity
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information. tar started by loading libraries like 1d.so.cache and libc — 2.17.s0. The tar process
was then downgraded to low-integrity when reading the rootkit tar file. tar process then spawned
gzip as low-integrity to decompress the file. After decompressing, the tar process continued to
untar. All of the new files created are automatically labeled as low-integrity.

With these integrity labels in place, SRFD can easily preserve system integrity. Specifically,
system directories are labeled as high-integrity and hence rootkits cannot be placed in the system
directories. It is possible for users to accidentally invoke these rootkits by placing them in some
user-specific search paths. SRFD protects the system integrity by downgrading processes when these
rootkits are executed or used, including executions by root processes. Hence, when a user process
executes a low-integrity binary or loads a low-integrity library, SRFD downgrades the process and
prevent the process from damaging system integrity.

SRFD also intercepts LSM hooks related to kernel modules. Low-integrity kernel modules cannot
be loaded even by root processes.

4.4 User-level SRFD

In this section, we describe how we can leverage existing constructs in OSes to build a dynamic
downgrading system similar to SRFD without any kernel modification. The SRFD described so far
maintains labels in the kernel, which provides a lot of information about processes and flexibility for
Ipolicy enforcement and label management. Enforcing similar policy in the user-space is challenging,
yet it would be more robust and easily deployable on various Unix based OSes.

4.4.1 Downgrading mechanism

Similar to SPIF, our user-level based SRFD relies on userid in the OSes to encode integrity levels of
both subjects and objects. The set of users in the system is partitioned into high integrity and low
integrity. Ownership of processes and files implicitly encode their integrity levels.

SPIF is an Early Downgrading system where processes have to decide in advance what integrity
level they will execute as. This is because processes typically cannot change ownership during
lexecutions. A process running as a high integrity user cannot change its owner to low integrity user.
In SPIF, the only time that processes can change their integrity level is when they are executing a
mew image. As a result, a program runs as high integrity will remain as high integrity throughout
its lifetime.

SRFD is a Dynamic Downgrading system. Supporting dynamic downgrading requires the ability
to change integrity of processes dynamically during their executions. For user-space implementation,
this will requires changing userids of processes dynamically. Unix supports setuid system calls that
allow processes to change userids. Typically, setuid is used by root processes to switch to another
users. For example, the login program runs as root when the system starts. Upon receiving and
authenticating user login credentials, login will call setuid to change ownership to the user. All
processes spawned by login will then automatically inherit the credentials of the user.

There are three different userids associated with each process. They are ruid (real userid),
euid (effective userid), and suid (saved userid). ruid represents the ownership of the process. euid
represents the privileges of the process. For most processes, these three userids share the same value.
[Processes that have different ruid and euid are those running setuid binaries or root processes. When
a process executes a setuid binary, the ruid of the process will remain as the ruid of the process.
This allows setuid programs to check who executed the programs. However, euid of the process will
be changed to the owner of the setuid binary. Since all permission checking are based on euid, this
allows the process to be granted with the privileges of the setuid binary owner'?.

Apart from the setuid system call that allows a root process to change its userids to arbitrary
values, there are other setuid system call variants for manipulating userids. Specifically, setresuid
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allows a process to change its ruid, euid and suid to any of its ruid, euid and suid. For most user
processes that have the same ruid, euid and suid, calling setresuid has no effect.

By exploiting the semantics of setresuid, we can extend SPIF to achieve userid-based dynamic
downgrading as in SRFD. setresuid provides a mechanism for processes to change ownership. In
our system, benign user processes will be running with two userids: real user and “untrusted” user.
As long as the process is benign, the process will have privileges of the real user. To downgrade a
process, our system simply needs to change all the userids of the process to the “untrusted” user
(or drop the benign userid). As a result, the process can no longer have the privileges of the benign
user.

4.4.2 userid propagation and maintenance

[To support dynamic downgrading, processes need to start with two userids. However, as discussed
previously, privileged processes like login call setuid to set ruid, euid and suid all to the actual
user’s userid. Child processes simply inherit userids from parent processes and hence have only one
userid. One way to support multiple userids for all user processes is to modify the behavior of the
privileged processes such that they maintain two userids. Specifically, we can convert calls to setuid
into setresuid to maintain two userids. Then all the child processes will automatically have two
userids and can be downgraded.

Alternatively, we can grant processes two userids only if they might need to be downgraded.
Processes like window managers or file managers that do not downgrade can simply run as usual
with a single userid. Instead of intercepting the transition from root to user at the setuid call,
we can grant processes with two userids at the exec time. This can be achieved by executing a
setuid-to-root binary whenever a process needs to have the downgradability privilege. Instead of
executing the desired program image, our system executes the setuid-to-root program. This setuid-
to-root binary is nothing but a program to execute the command specified in the parameter. Upon
executing this binary, the process privilege will be escalated to root and having euid = 0. The
program can then invoke setresuid to set ruid, euid and suid to contain the two userid before
executing the actual program images. Since running this setuid-to-root binary allows any process
to become high integrity downgradable processes, this setuid binary, same as other setuid binary,
needs to be protected so that only high integrity processes can execute.

However, granting two userids by executing a setuid-to-root binary has some limitations. Specif-
ically, the loader automatically discards some of the environment variables when executing setuid-
to-root binaries because environment variables such as LD_LIBRARY_PATH and LD_PRELOAD
can compromise the execution of the setuid process and lead to privilege escalation attacks. Relying
on exec-time to grant two userids could therefore affect the functionality of applications.

Another way to grant processes two different userids is by inheriting the two userids from their
parent processes during exec. It is therefore important to understand the semantics of exec when
processes have multiple userids. It is tricky about where to store the two userids. When a process
executes an image, its suid will be overwritten by the process’s euid. Only processes’ ruid and euid
are preserved when exec is called. This is because suid is considered for program’s internal use and
hence is not preserved across exec. As a result, our system cannot use suid for propagating the two
userids. To propagate the two userids across exec, we can store the “untrusted” userid into either
the ruid or euid.

We can store the real user’s userid into euid because euid is used for permission checking. A
benign process has the privileges of the real user. On the other hand, storing the “untrusted” userid
in ruid violates the semantics of the ruid. As a result, a process calling access would have access
control checked based on the “untrusted” user. This could deny benign processes from accessing
benign resources that untrusted processes do not have access to. One way to solve the problem is to
transparently convert the access system call into a call that check accesses based on euid. In Linux,
we can call eaccess(3). However, a eaccess does not necessarily reflect the access semantics with
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euid. For instance, eaccess does not handle ACLs.

A better approach is to store the “untrusted” userid into suid during process execution and only
swap it to ruid during exec. When executing the setuid-to-root binary, the process will have ruid =
“untrusted” and euid = real user. After executing the desired program image, we can then have suid
— “untrusted” and ruid = euid = real user. This approach preserves the semantics of the userids:
ruid and euid remain unchanged as if on unprotected system. suid is not used for anything except
as a place holder for storing userid temporarily during exec.

4.4.3 Dynamic Downgrading

There are three type of processes in our system: Downgradable benign processes, non-downgradable
benign processes and untrusted processes. They are different based on the userids they have. Non-
downgradable benign processes and untrusted processes in our system are exactly the same as in
SPIF. The ruid, euid and suid of the processes are the same. Downgradable benign processes have
ruid = euid = real userid, and suid = “untrusted” userid. This new type of processes can transition
from high to low integrity during its execution. This transition needs to be handled properly in
order to be secure.

While downgrading a process in our system is as simple as calling setresuid with “untrusted”
userid as parameters, the fact that our system works in user-space makes policy enforcement and
label management more complicated. Specifically, permission checking happens only at the open
time. Once a file descriptor is created, no additional checks are in place. This is exactly how SPIF
allows untrusted processes to read files that they do not have read permissions, by requesting a
helper process to open the files and pass the file descriptor via Unix domain sockets. The same can
happen when a process is downgraded.

Consider a high integrity process opened a high integrity file for writing. The file can be opened
for writing because the process has the privileges. Suppose the process is now downgraded to low
integrity. The opened file descriptor for the high integrity file remains valid, and it will allow the low
integrity process to write into it. This is not safe because this write should no longer be possible, or
the system integrity can be compromised. However, if the write is denied, the program may not be
able to handle the failure gracefully and result in self-revocation.

Our system ensures that no self-revocation by maintaining an invariant that high integrity pro-
cesses cannot be downgraded when they have high integrity files opened for writing. In other words,
a high integrity process can only open low integrity files for reading if it does not have high integrity
files opened for writing. This invariant is easy to maintain for a single process. Maintaining con-
straints for multiple IPC-connected processes, e.g., via pipes or sockets, become more complicated.

When multiple processes are connected via IPC, information can flow from one process to another.
[f any of the downstream processes have a high integrity file opened for writing, upstream processes
should not be allowed to open a low integrity file for reading. SRFD solves this problem by leveraging
information available in the kernel space. Inside the kernal, SRFD’s kernel module has access to all
opened files of any processes running in the system. SRFD can also check the opened files in a set of
connected processes easily using inodes and file descriptor tables. However, such information is not
available in the userspace for a user process. Each user process is isolated and cannot access private
structures (e.g., file descriptor table) of other processes. Hence, our system relies on a distributed
technique to maintain the invariant.

When multiple processes are connected via IPC, our system creates a shared memory region.
[Each of the benign member of the connected processes shares its opened file information with other
processes. The shared memory region contains whether the process has a high integrity file opened
for writing. When a process opens a low integrity file for reading, before it downgrades itself, it
will check if all the downstream processes can be downgraded as well as to prevent self-revocation.
[f it can be downgraded, it will write to the shared memory that the process is now downgraded
and detach itself from the shared memory region before performing the downgrading. This ensures
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the integrity of the information maintained in the shared memory region. Downstream processes
checking the region can then downgrade themselves.

File-connected processes are not interesting because file labels do not change. We focus our
discussion on on pipe- and socket-connected processes. Unlike in the kernel where pipes and sockets
can be identified by inode structures, user-level processes only have access to inode numbers. There-
fore, our system uses the indoe number as a key for matching connected processes using the shared
memory region. Processes would then indicate in the corresponding region its current opened file
constraints, as well as the information flow dependencies between processes. A process trying to
open a lower integrity file will check to make sure that all its downstream processes do not have
high integrity files opened for writing. Once the system ensures that such opening will not lead to
self-revocation, the process can mark itself as downgraded, detach itself from the shared memory,
downgrade itself, and open the low integrity file. Processes keep monitoring the integrity of upstream
processes. If any of them becomes low integrity, they will downgrade themselves as well.

4.4.4 Limitations

One of the obvious limitation of the user-level dynamic downgrading approach is that a process
can only downgrade at most once during its execution. This is because at most two userids can be
propagated across exec, and every downgrading would consume one userid. However, a new userid
can be resupplied by exec. The system can therefore allows processes to downgrade once during its
execution.

Another limitation is that the level to downgrade to have to be decided ahead of time. This
restriction, again, stems from the fact that processes can only carry two userids across exec.

Apart from userid, processes can also access resources based on groupid and supplementary
oroups. groupid can be downgraded similar to how userid is downgraded. However, there is no
mechanism to support downgrading supplementary groupids. As such, supplementary group accesses
are no longer supported in the system. For supplementary group accesses, the system convert it to
helper-based access as in SPIF for downgradable processes. Downgradable processes are therefore
started with no supplementary groups.

4.5 Related Work

Self-revocation

LOMAC [Fraser, 2000] argues that a central reason for non-adoption of conventional information
flow techniques is that of compatibility. They consider information flow systems that allow privilege
revision (such as dynamic downgrades) and those that don’t, and conclude that former class has
increased compatibility. They point out that policies such as low-watermark policy had not received
much attention because of the self-revocation problem. They proceeded to address this problem
in a particularly common case, namely, the pipelines created by shell processes. As noted earlier,
their solution relied on the shell’s use of Unix process groups to run each pipeline, and ensuring
that all processes within such a group had identical integrity labels. In this manner, there will never
be a need to restrict communications within a process group, and thus self-revocation involving
pipes is prevented. They remark that they “cannot entirely remove this pathological case without
also removing the protective properties of the model.” Indeed, the solution they present does not
attempt to address revocations involving files, sockets, etc. Our work is inspired by their comments,
and shows that it is in fact possible to retain the security benefits of integrity protection, as well as
the compatibility benefits of privilege revision without incurring the cost of self-revocation.

Both UMIP [Li et al., 2007] and IFEDAC [Mao et al., 2011] adopt the LD model and do not
constrain high-integrity processes. High-integrity process can therefore be downgraded accidentally
due to the consumption of low-integrity input. This can cause all its future accesses to be denied,
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including writes to files that were opened before consuming low-integrity input.

Flume [Krohn et al., 2007] uses the notion of endpoints and rules to enforce endpoint safety.
File endpoints have immutable labels. This implicitly constrains the labels of processes — processes
cannot downgrade (e.g., by acquiring low-integrity label) as this will violate the file endpoint safety
constraints. This prevents self-revocation. However, Flume only solved self-revocation involving
single process. It does not constrain downgrading for processes that are connected via IPC. When
these processes downgrade themselves to consume low-integrity data, the IPC endpoint safety can no
longer be satisfied. As a result, messages will get dropped silently. SRFD addresses this problem by
propagating constraints across all IPC-connected processes. Furthermore, Flume does not consider
file close operations. Once a file is opened, the file endpoint constraint remains throughout the
process lifetime. As a result, the process can never downgrade themselves once they opened a high
integrity file for writing, even after closing the files. While SRFD also relies on LSM hooks, SRFD
handle for file close operations by searching the file description table. Hence, SRFD allows processes
to be downgraded after closing high-integrity files.

Policy Model

Schneider [Schneider, 2000] formulates enforceable security policies using the formalism of security
automata. These automata make transitions that are entirely based on a subject’s own operations,
such as open’s, read’s and write’s. Whereas these automata can only accept or reject an execution
sequence, Ligatti et al [Ligatti et al., 2005] proposed a more powerful automata called edit automata
that could also suppress or modify a subject’s actions. We also use automata to compare different
downgrading schemes for information flow systems, but the transitions in our automata are not only
dependent on the subject’s actions, but also the state of the file system. This is because whether an
operation opens a high or low-integrity file is a function of the file system state. Indeed, Ligatti et
al [Ligatti et al., 2005] explicitly specify that security properties in their model are those that are
purely functions of the operation sequence.

Rollback

The main reason for resolving conflicts is because they can lead to partial completion when executions
failed due to the unexpected failures introduced by the security systems. Both ED and SRFD make
sure all failures are compatible — fail at open so that applications may handle them more gracefully.
As discussed previously, there is a trade-off between functionality and compatibility. A system cannot
have both because one has to decide allow or deny for each action. An alternative approach is to
build recovery mechanisms to “rollback” failed executions. This is not always easy to do in general.

One-way isolation [Sun et al., 2005] uses rollback as the default choice, while providing primitives
to commit executions that the user determines to be secure. However, it is problematic to rely on
users to decide what is secure. Not only does it demand considerable time, effort and skill on the part
of users, but also suffers from the fact that users could be easily fooled. Thus, rollback techniques
coupled with automated procedures for determining secure executions are needed. Such automated
procedures require full specification of what is secure — this itself is too a difficult task to accomplish
in general. However, it may be possible to specify detailed and accurate policies for secure execution
in special cases. One example of this is the secure software installation [Sun et al., 2008a] work,
where a policy for determining secure installations was specified and checked automatically.

TxBox [Jana et al., 2011] relies on TxOS [Porter et al., 2009] to sandbox and isolate untrusted
processes using transactions. It allows untrusted processes to run until they trigger policy violations.
A policy violation is defined at the system call level. When violations occur, the system state can
be rolled back as if the untrusted process never ran.

Back to the future [Hsu et al., 2006] takes this “rollback” technique to the extreme. It protects
system integrity against malware by rolling the system back. Instead of confining untrusted pro-
cesses, it confines benign processes. Every modification made by untrusted processes is recorded.
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Whenever a benign process consumes untrusted data, the entire system will be rolled back to the
“clean” state, and the untrusted process will be terminated. This allows high-integrity processes to
consume only high-integrity data.
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Chapter 5

5 Secure Installer based on SPIF

In this section, we discuss an important application of SPIF, namely software installation. We
introduce SWINST to secure the software installation process. SWINST is built based on SPIF and
transaction, a delayed enforcement mechanism based. Transaction allows deferring the decision on
whether to accept changes made by installers. SWINST allows system administrators to customize
policies about acceptable changes. Installations that do not violate the policies will be committed
automatically, otherwise, the system state is reverted as if the installation process has never taken
place.

5.1 Introduction

One of the important criteria for any provenance tracking system is the proper object labeling
upon object creation. The two main ways to introduce new files into systems are through browser
downloads and software installation. We have already described how SPIF leverages browser add-ons
and Security Zone to label file downloads properly. In this chapter, we discuss how to leverage the
provenance tracking capability of SPIF to label programs created during software installation and
hence securing the installation process.

We applied a delayed enforcement approach towards securing software installation.

Software installation itself poses a significant challenge to malware defense; not only because it
introduces new programs into the system, but also because the installation process itself involves
running untrusted code with administrative privileges. This would allow malware to shutdown any
user-level and kernel-level protection mechanism, and malware can also install themselves persis-
tently into the system at firmware levels [Hudson, 2015].

Desktop OSes vendors realized the problem and have attempted to address the problem partially.
Instead of limiting what an installer process can do, OS vendors specifically focus on protecting their
system files against tampering. Microsoft uses digital signatures to protect some of the system bi-
naries; Apple supports System Integrity Protection [Apple Inc., 2015b] to allow only Apple-signed
processes to update some of the system files. These mechanisms do not attempt to protect appli-
cations or the user environment because there is no way for the OSes to distinguish if it is user’s
intention to modify the applications and the user environment.

Modern OSes such as Android, iOS, Windows 10 and OS X adopt container based model for
installing applications. Each app lives in its own directory which contains all the libraries and
other dependencies the app needs. Apps are also independent of each other. Installation and
uninstallation of the app is as simple as creating and deleting the app directories. Unfortunately,
most desktop applications (e.g., Microsoft Office, Photoshop, Adobe Reader, Firefox) do not run as
apps; furthermore, a complete separation of apps also limits app functionalities. Modern desktop
OSes such as Windows 10 and OS X therefore still support the traditional software installation—
i.e., let the installers to do whatever they want to install the applications.

Users expect software installers to install programs into system directories and configure the
system in order to work properly, and therefore they are willing to grant installers administrative
privileges. Users do not expect installers to compromise the integrity of their systems; however,
there exists no mechanism to make sure that the installers will only perform what they are supposed
to do. OSes only enforce the bare minimum policies to protect themselves, yet leaving users no way
to confine but to trust the installers.

Software installations are attractive for both malware and PUPs (Potentially Unwanted Pro-
grams). For malware writers, instead of finding exploits to compromise programs to run their pay-
loads, software installation allows them to run arbitrary code directly with administrative privileges.
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They can create registry entries or files so that they will be persistent across system reboot. They
may also modify browser settings in an unwanted way. For software distributors, by distributing
and installing PUPs inattentively along with their software, the distributors can make extra profits.

Our goal is to secure the software installation process. Our system, SWINST, works by dividing
software packages into different trust levels and imposes different restrictions for different packages.
Intuitively, users are more willing to give packages from trustworthy sources more privileges than
packages from less trustworthy sources. In this paper, we evaluate the possibility of restricting
privileges on installers. This is challenging as installers usually run with administrative privileges
without any confinement.

Specifically, our contributions are:

e Designed and implemented SWINST that secures the software installation process for Debian

OSes

e Evaluated SWINST by testing installation of over 17500 packages

5.1.1 Existing installation approaches

One way to install software is via invoking make install or running software installers directly,
where users download the software and run scripts or binaries provided by the packages (e.g., in
the form of Makefile, install.sh, .msi, or .pkg). All desktop OSes support this type of soft-
ware installation. Users usually need to make sure that the system has met all the dependencies
requirements of the software.

A more common approach towards software installation on Linux is via package managers, which
helps resolving dependencies. Package manager front-ends (such as apt-get or Ubuntu Software
Center) help users to find and retrieve packages from pre-configured repositories. Users can also
download pre-compiled installation packages (in the form of deb or rpm files) manually. These
installation packages contain dependency information that can be used to check for conflicts and
dependency. The package manager back-ends (e.g., dpkg) will perform the actual installation by
extracting files from packages into the file system. Although this may seem less dangerous than
the make install approach, scripts from the packages (pre- and post-installation scripts) do execute
directly.

SWINST supports both installation methods. We focus our discussion on the package manager
based installation as it also involves running scripts provided directly from the packages.

5.1.2 Difficulties in securing the installation process

Installers run with administrator’s privileges; however, there exists no mechanism to limit trust on
the installers. A malicious installer can:

e replace existing files with rootkits

mark a file as root-setuid binary such that it can escalate to root at a later time

e create a new user with uid 0

make a protected file as world-writable

control another running process

Even if we limit installers from performing the above operations, they may still need to modify
some files legitimately. How do we make sure that files are modified in a legitimate way?

We propose SWINST, a system to safe-guard the installation process on unmodified installers.
SWINST also makes it easy to develop policy to safely install untrusted applications.
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Figure 23: Installation flow chart

5.2 Threat Model

We assumed that packages can be partitioned into benign and untrusted— only packages coming
from untrusted origins may compromise the system integrity. SWINST works by imposing restric-
tions on untrusted package installers to protect system integrity. SWINST therefore cannot support
arbitrary untrusted packages installation. SWINST is designed to support most untrusted package in-
stallation automatically. With the 17,161 packages randomly selected from the Ubuntu repositories,
87% of them could be installed without violating SWINST’s policy.

Software installation involves not only creating new files, but also modifying existing files. For
example, database of installed packages will be updated during the installation, a new helper program
may register itself as capable of opening certain files, or a program may want to create a new
non-system user. SWINST needs to make sure that all the changes are safe. Instead of writing
policies focusing on what changes are acceptable, SWINST focuses on securing how the changes are
commenced, i.e., the chain of processes that has resulted in the file changes. Policies are specified in
terms of program invocation. This provides high-level reasoning about why some modifications are
safe, and has significantly reduced the policy development efforts. Since the policies are developed
based on invoking existing system utilities, SWINST requires untrusted installers to modify files using
system utilities rather than editing the files directly.

5.3 System Design

SWINST protects against untrusted installers by isolating the untrusted installation processes. When
the installation is completed, SWINST analyzes if the modifications are acceptable, and commits the
changes back to the system only if so. This commit-based design is more powerful than sandboxing
approach. In this section, we describe how SWINST handles the pre-installation phase, installation
phase and post-installation phase. Figure 23 shows an overview flow of the installation. We discuss
each of the step in this section.

5.3.1 Handling dependency

Before installation, SWINST prioritizes the package installation order. On unprotected system, all
packages specified by users, as well as dependent packages, will be installed at the same time with
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administrator privilege. SWINST divides the installation into two phases by first installing benign
packages, and then the untrusted packages.

SWINST allows users to mark certain repositories as untrusted. Our implementation on Ubuntu
provides a wrapper on apt-get. Users interact with the wrapper the same as the the original
apt-get. Upon receiving requests to install new packages, the wrapper first resolves the dependency
and download the packages. At the same time, the wrapper identifies the integrity level of the
packages based on matching package checksums with the repository database. After identifying the
integrity-levels, the wrapper installs the benign packages and then the untrusted packages.

SWINST ensures that the integrity dependency is satisfied before the installation, i.e., benign
packages do not depend on any untrusted package. Otherwise, SWINST will deny the installation.

5.3.2 Isolating installation

Since installation scripts assume that they can modify, create, and remove any file with administra-
tive privilege, revoking such capabilities can break installation. SWINST protects the system against
untrusted installers by one-way isolation, which virtualizes the resources for installers. Apart from
isolation at the file system level, SWINST also needs to protect other processes running in the system.
Running untrusted code with root privileges can allow untrusted code to control any other processes.
Instead of running untrusted installers unconfined, SWINST applies both chroot and setuid-jail to
restrict file system and IPC accesses.

SWINST runs untrusted installers as a new, unprivileged user untrustedRoot. No other process
runs with untrustedRoot. To isolate modifications to the file system, SWINST creates a copy-on-write
(COW) file system and chroots untrusted installers inside it. Files owned by root cannot be modified
even in the COW file system. To allows untrusted Root to modify root-owned files inside the COW,
a root helper process running outside COW will handle file open requests from untrusted Root. The
helper will open files in the COW directory in writable mode. Before passing the file descriptor to
the installer, the root helper will change the ownership of the file to belong to untrustedRoot. This
allows the analyzer to know that this file could have been modified by untrustedRoot in arbitrary
way.

SWINST requires no modification to installers. SWINST injects a library into installers to change
some of the system call behaviors. For example, when file opens failed, the library transparently
requests the helper process to open the files, and then replace the error with the file handles re-
turned from the helper process. SWINST does not rely on the library to enforce any policy, but to
facilitates the installation process within the isolation environment. The actual policy is enforced
when analyzing the changes.

Figure 24 shows the overall architecture for SWINST. Edges labeled with C' and M correspond to
file creation and modification by untrusted process respectively. The trusted root helper helps the
untrusted installer to handle file creation and modification, and the helper will label these files as
untrusted at the same time. Edge T corresponds to the file access by trusted installer. This access
is not mediated. We describe more in Section 5.3.4 about trusted programs.

5.3.3 Committing changes

The COW file system shadows all the files changed, created and removed during an installation.
SWINST can decide if the installation is safe or not by simply examining the files in the shadow
directory. SWINST enforces a policy that no existing benign file should be modified to untrusted.
However, limiting changes to only file creation would break most installations; at least the package
database files will be updated. SWINST supports two strategies to validate if modifications to files
are safe: file-based and invocation-based. File-based verifications compare the difference between
the pre-installation and post-installation version of the file. Rules are defined on what changes are
acceptable for each file. Invocation-based verifications do not rely on file contents, but on how the
changes to the files are produced. SWINST defined a set of invocation rules suggesting files changed

7



File 1 File 2

Untrusted Trusted

Install
sty File 4 Process
4
/ D Writable FS
File 1 File 2

Trusted

Root Helper File 3

Read—only FS
[] Benign, uid =0 [J Untrusted, uid = 1005

Figure 24: SWINST architecture relies on COW filesystem, chroot and setuid jail

by certain programs are always safe to commit. SWINST ensures that files are only modified by
programs satisfying the safe condition. This is done by ensuring that invocation parameters and
the invocation environment are safe. Since these files cannot be modified by untrustedRoot in
arbitrary way, these files are not owned by untrustedRoot. The analyzer does not need to perform
any validation to the file contents. We will discuss more how SWINST guarantee the integrity of the
invocation environment in later section.

Apart from verifying the safety of the file content, the analyzer will also make sure that files
modified in the rootfs have not been modified since the start of the installation. If the files in
the rootfs are modified, the installation process might have used an out-dated copy during the
installation. Overwriting the rootfs files could result in inconsistency.

If the changes can be committed back to the rootfs, the analyzer will simply move the files from
the shadow storage to the rootfs. Otherwise, the changes will be discarded and the analyzer will
report to the user why the installation failed.

Files may be deleted during an installation. In COW filesystem, the underlying filesystem usually
creates whiteout files in the writable branch to represent deleted files. SWINST cannot encode how
a file is deleted using permission (as in the file modification case). SWINST solved this problem
by introducing a directory for authorized deletion. If a file is not deleted in arbitrary way, i.e.,
deleted only under specific circumstances, the deletion will result in an entry in the authorized
deletion directory. SWINST relies on the portable integrity protection system to ensure the integrity
of the trusted processes and the authorized deletion directory. We will discuss more in the following
subsection.

5.3.4 Invoking trusted programs by untrusted installers

Files can be modified arbitrarily during the installation. Developing policies to capture safe modifi-
cations for each file would require a lot of efforts. We observe that file modifications are consequences
of invocation of some commands. We therefore propose verifying safety at the time of invocation of
the commands. For example, by verifying that useradd was invoked with a non-zero userid, SWINST
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Figure 25: Untrusted files that SWINST trusts mandb for reading

does not need to verify if /etc/passwd was modified safely.

However, programs invoking with the right parameters does not automatically guarantee the files
modified are safe to commit. Files can be modified by other processes in addition to the intended
process. Furthermore, untrusted installers could have compromised the execution environment for
the intended processes. It is therefore important to protect the execution of trusted programs.

SWINST enforces information flow policy using SPIF to protect the integrity of the execution
environment of trusted programs. Instead of running trusted programs as untrusted Root, SWINST
runs trusted programs as root. This prevents untrusted installers from injecting code into processes
running trusted programs. SWINST also protects the execution environment with a default policy
in SPIF to ensure that trusted processes cannot consume files created/modified by untrusted Root.
This is because reading untrusted files could compromise the integrity of trusted processes. Similar
to SPIF, SWINST achieves this by injecting a library into trusted processes— the library monitors
every file access and ensures that all the files accessed are not owned by untrusted Root. SWINST also
protects system libraries and the SWINST-library by denying untrusted installers from modifying the
libraries, despite they are inside a COW environment.

SWINST transitions from untrusted processes to trusted processes in two steps. In the first step,
untrusted processes will check if the exec parameters satisfy the conditions for running as trusted
processes. If so, a setuid-to-root program will be executed with the existing parameters passed as
arguments. In the second step, the setuid-to-root program will validate the parameters again since
the checking performed by untrusted processes cannot be trusted. Furthermore, the setuid program
will also make sure that the program image is safe. As for environment variables, existing systems
already protect them for setuid programs— loader automatically ignore the environment variables
such as LD_PRELOAD and LD_LIBRARY_PATH when executing setuid programs. Hence, SWINST does not
have to worry about malicious environment. Trusted programs cannot consume arbitrary untrusted
files. SWINST only allows trusted programs to read files located at specific directories. SWINST
considers mandb as a trusted program. Figure 25 shows the policy of the files that SWINST trusts
mandb to read.

By default, new programs executed by any trusted process will run as untrusted processes. This
is achieved by calling setuid to untrustedRoot before invoking exec. For scripts, the trust would
be inheritable to child processes.

5.4 Policy
5.4.1 Policy development

Policy development in SWINST is based on training. Policies are updated when installation of
seemingly safe untrusted packages has resulted in violation. To facilitate the policy development
process, SWINST traces installers running inside the confined environment. SWINST produces not
only files that violated the policy, but also how the violation was resulted.

Figure 30 shows an example of violation, where /var/cache /man/index.db is modified to low
integrity file during the installation of 2vcard. SWINST identifies the chain of processes that have
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resulted in the violation. SWINST produces this invocation chain by tracing processes across clone,
exec, and file open. During the commit phase, SWINST can then identify the dependency based
on clone, exec and file open to help policy developers to generate policy. In this example, mandb’s
post installation script was triggered because 2vcard created new mandb files that mandb need to
process. SWINST resolves this conflict by marking mandb as trusted program and can read untrusted
files specified in Figure 25.

There are two ways to resolve violations in SWINST. First is to ensure the content of the file is
safe. SWINST supports using scripts (e.g., sh or awk) to validate files. The second method is to rely
on identifying trusted programs in the installation. To facilitate the policy development process,
SWINST tracks each process running during the installation. When files cannot be committed auto-
matically, SWINST prints the process invocation chain leading to the modification of the problematic
file. Users can then decide whether to write a validation script for the file, or designate some pro-
grams as trusted by creating new invocation rules. Since SWINST protects trusted processes against
reading untrusted files, the result also lists out if there are any read violation occurred for trusted
processes.

5.4.2 Installation-time policy

SWINST enforces different policies when installers are running. There are four entities: untrusted
processes, trusted processes, rudo and the root helper.

Untrusted processes Untrusted processes run as untrustedRoot. SWINST allows untrusted pro-
cesses to perform any operation within the confined environment, provided that these actions do not
compromise the integrity of the trusted processes in the confined environment. Specifically, SWINST
allows untrusted processes to:

e Read from any root-readable file

e Write to any root-writable file, except those that can compromise the integrity of trusted
processes

e Connect to the root helper via IPC

e Transition to root when executing predefined trusted programs with predefined parameters

Trusted processes SWINST does not allow trusted processes to read anything untrusted. The
integrity of trusted processes are protected using SPIF by considering untrusted Root as an untrusted
user. Trusted processes also create an authorized deletion entry when deleting files.

rudo Similar to uudo in SPIF, rudo acts as a gateway for transitioning from untrusted processes
to benign processes. rudo allows transitioning from untrusted processes into root only when specific
conditions are met. Otherwise, the installation will fail.

Root helper SWINST uses root helper to provide both read and write accesses to untrusted
processes. Unlike SPIF’s helper process, the root helper in SWINST opens files inside COW as
writable for untrusted processes; in addition, the root helper also marks the files as untrusted.
Apart from opening files, the root helper also perform other file system operations such as chmod,
unlink, chown, symlink, etc.. While untrusted processes can modify root files via the root helper, the
root helper will only grant permissions to modify files that do not directly compromise the integrity
of trusted processes within the confined environment. For example, attempts to replace the loader,
system libraries, or SWINST-library will be denied.
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/usr/bin/mandb

/usr/bin/fc-cache
/usr/bin/update-desktop-database
/usr/sbin/update-fonts-scale
/usr/sbin/update-fonts-dir
/usr/sbin/update-mime
/usr/bin/gtk-update-icon-cache
/usr/share/gnome-menus/update-gnome-menus-cache
/var/1ib/dpkg/info/python-gmenu.postinst
/usr/sbin/update-alternatives
/usr/bin/update-alternatives
/usr/bin/gconftool-2
/usr/sbin/gconf-schemas
/usr/1ib/libgtk2.0-0/gtk-update-icon-cache
/usr/bin/defoma

/usr/bin/mkfontscale
/usr/sbin/update-info-dir
/var/1ib/dpkg/info/ureadahead.postinst
/var/1ib/dpkg/info/doc-base.postinst
/usr/bin/update-mime-database.real
/usr/bin/update-gconf-defaults
/usr/sbin/update-xmlcatalog
/usr/bin/dpkg-divert

Figure 26: Trusted programs

/usr/sbin/useradd
/usr/sbin/groupadd
/usr/bin/chage
/usr/bin/dpkg-statoverride
/usr/sbin/usermod
/usr/sbin/userdel

Figure 27: Trusted programs with rules for parameter validation

5.4.3 Commit-time policy

File-based policy The simplest policy that SWINST supports is append-only policy. SWINST ap-
plies this policy mainly on log files such as /var/log/apt/history.log or /var/log/apt/term.log
to make sure that new contents are only inserted at the end of the files. Some files such as
/var/1lib/dpkg/available-old maintain information about installed packages. SWINST ensures
only new entries corresponding to the just installed packages are added to the files. SWINST uses
file-based policy because dpkg modifies these files. Since dpkg will execute untrusted scripts, it is
not safe to designate dpkg as trusted.

Invocation-based policy Figure 26 shows a list of trusted programs in SWINST. SWINST en-
sures the execution environment of these programs, and only allow them to consume untrusted files
specified in certain directories. Files modified by these programs are therefore not checked.

Figure 27 also shows a list of programs that SWINST trusts to execute as benign process only
when invoked with certain parameters.
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’ Component \ C/C++ Header Other

shared 699 47
library 536 42 47
wrapper 945 758
helper 1209 88 )
rudo 39 22
y Total 3428 \ 177 832 \

Figure 28: Code complexity of SWINST

’ Count \ Violation ‘

18 Making an untrusted file setuid-to-root
48 Attempting to restart existing application
54 Package appears in both benign and untrusted packages
59 Involve package uninstallation which is not implemented
85 apt-get failed to retrieve packages
173 Package in neither benign nor untrusted repository
472 Benign package depends on untrusted packages
1288 | Invoking programs that untrusted installer should not invoke

Figure 29: Number of installations failed to install due to violations

5.5 Evaluation

We implemented SWINST on Ubuntu 10.04 based on SPIF. SWINST extended SPIF by providing
library functions specific to installation within the isolated environment. SWINST also introduced
root helper daemon for the installation and apt-get wrapper for creating isolated environment.
Table 28 shows the complexity of SWINST in addition to SPIF. SWINST only reuses some of the code
from the SPIF library.

To evaluate if SWINST is compatible with existing packages. We assigned packages from the uni-
verse and multiverse repositories as untrusted and installed them randomly. Each untrusted package
may depend on other packages. SWINST installed the benign packages, and then the untrusted pack-
ages.

We tested 20540 unique packages out of the 23433 untrusted packages A total of 17863 installa-
tions were performed. 702 installations (4%) failed to install automatically because the installation
requires user interaction, benign packages not installed successfully, or other implementation issues
that our installer have not handle (e.g., handling DBus messages). 14964 installations (83.7%) were
completed successfully without triggering any violation. The remaining 2197 installations (12.3%)
were failed because of some violations/errors as listed in Figure 29

Out of the 1288 failed installations that invoked programs that untrusted installers should not
invoke, over 1184 involve invoking update-rc.d. 77 involve dkms, 50 involve depmod, 29 involve
update-initramfs, 8 involve update-grub. Some installations invoked multiple of these programs.
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Write low: /var/cache/man/index.db 31382_2 /usr/bin/mandb
[31300_0] L /lwip/executables/dpkg/dpkg_original
[31373_0] L /lwip/executables/dpkg/dpkg_original
[31373_1] L /var/lib/dpkg/info/man-db.postinst /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31373_2] L /bin/dash /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31373_3] L /usr/share/debconf/frontend /usr/share/debconf/frontend /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31373_4] L /usr/bin/perl /usr/share/debconf/frontend /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31381_0] L /usr/bin/perl /usr/share/debconf/frontend /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31381_1] L /var/lib/dpkg/info/man-db.postinst /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31381_2] L /bin/dash /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31382_0] L /bin/dash /var/lib/dpkg/info/man-db.postinst triggered /usr/share/man
[31382_11 L /usr/bin/perl perl -e @pwd = getpwnam("man"); $( = $) = $pwd[3]; $< = $> = $pwd[2];
[31382_2] L /usr/bin/mandb /usr/bin/mandb -pq
+ /var/cache/man/index.db

Figure 30: Invocation chain explaining why /var/cache/man/index.db was downgraded to low
integrity during installation of 2vcard

Chapter 6

6 Generalizing to multiple principals

While partitioning origins into benign and untrusted is effective in protecting the system integrity
against malware, there are several drawbacks for considering only two principals. First of all, this
coarse-grained partitioning groups all potentially malicious resources into the same category. A single
malicious file can ruin all untrusted but non-malicious resources. This is particularly problematic
since most resources cannot be placed in the benign category. The second problem is that putting
all resources in the same level does not preserve security boundary. Naturally, files from both origin
A and B can be untrusted to the system; yet, information from A should be isolated from B. The
two-principal model cannot support this isolation. In this section, we discuss how to generalize SPIF
to support multiple untrusted principals, i.e., provenance tracking for more than 2 sources.

We also generalize SPIF to support confidentiality. Secret information such as SSH authorization
keys, cookies, and password files contains authentication information that attackers can use to
gain access to resources. Protecting integrity alone does not prevent such attacks. Protecting
confidentiality is necessary to provide complete protection.

We extends the notion of principal in OSes to incorporate not only local user but also network
provenance information. This is also a generalization to the same-origin-policy in web browsers and
the app model in Android, where only provenance information of app (web app or Android app) is
considered.

OSes only support mutually untrusted relationships between principals. Information is not shared
between principals by-default, but principals are free to share information voluntarily. In the previous
section, SPIF introduced a mandatory unidirectional trust relationship between two principals. By
considering multiple principals and confidentiality, SPIF can capture a more general notion of trust
and model trust-hierarchy in various systems. For example, Android allows one application to
“invoke” another application for code reuse; Web browsers isolate code and data so that code from
one origin can only access data and interact with code from the same origin. At the same time,
browsers also support using third-party scripts as libraries. Our extension to SPIF can simulate
existing trust models such as Android and Bubbles [Tiwari et al., 2012].

We start by describing the updated threat model that considers multiple principals (Section 6.1).
Then we propose using the notion of permissible information flow to capture both integrity and
confidentiality (Section 6.2). After that, we describe a policy language in Section 6.3 that allows
each principal to describe its security requirement. In Section 6.5, we describe how we modified SPIF
to support the generalized notion of principal. In Section 6.4, we discuss how principals can interact
with each other securely while respecting each principal’s security policy. In Section 6.6, we show

83



that SPIF is a general model that can simulate other existing models.

6.1 Threat Model in the multiple principal scenario

SPIF builds on the standard multi-user support mechanisms in the OSes to do the provenance track-
ing and policy enforcement. We assume this mechanism enforces access-control on every resource
that belongs to the user, and users are isolated from each other by default. i.e., one compromised
user cannot actively compromise another user.

We assume that system administrators (root/administrator/system) are not malicious. SPIF
relies on user-land mechanisms and hence a malicious system administrator can easily bypass our
protection.

We assume that whenever new files enter into the system, their network provenance information
can be retrieved accurately. For example, when downloading from the Internet, files will be assigned
with principals that reflect the origin domains if their integrity can be verified (e.g., transferred via
HTTPS or checksummed against tampering) by a “trusted” program. Otherwise, we assign the
file with an “untrusted” network principal to indicate that the files can be coming from potentially
anywhere.

Each principal can define its own integrity and confidentiality policy. For instance, integrity
depends highly on applications. A news feed program may trust RSS feeds from a site, but package
installers may not consider packages from the same site as high-integrity. By allowing each principal
to define its own policy, trust can be context specific. We consider the two most common applications
that handle files from multiple sources: web browsers and package installers. We assume that other
programs access the network for only information trusted by the program principals. Programs that
need to relabel files would need to be aware of SPIF so that they can express to SPIF their trusts on
files.

We also assume that code from a principal protects the principal itself. i.e., the code has no
intention to compromise the security of the code owning principal when executed by the code owning
principal. However, a code could be malicious to any principal when executed by another principal.
As a result, running code from other principals need to be explicitly allowed in SPIF. Moreover, any
principal can be actively trying to compromise other principals. These assumptions allow us to split
the principal protection scheme into two parts: cooperative part for protecting the principal itself,
and mandatory part for preventing the principal from compromising others. This is a generalization
of the dual-sandbox in the two-principal scenario.

6.2 Permissible information flow

The Bell-LaPadula model focuses on confidentiality and enforces no-write-down and no-read-up,
with levels concerning secrecy. On the other hand, Biba model focuses on integrity and enforces
no-read-down and no-write-up, with levels concerning integrity. It is natural to consider permissible
information flow which satisfies both confidentiality and integrity requirement. Specifically, infor-
mation can flow from principal A to principal B if and only if both of the following conditions are
satisfied:

1. Confidentiality of A: A is willing to release information to B. There are three possible cases:

e A has no secret, or
e A trusts B with keeping its secrecy, or

e A can declassify the information flowing to B (Declassification)
2. Integrity of B: B is willing to receive information from A. There are three possible cases:

e B’s security does not depend on the information, or
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e B trusts A that information from A will not compromise its integrity, or

e B trusts itself not getting compromised when consuming A’s information (Sanitization).

Our two-provenance scenario focuses on integrity— high-integrity principal allows information
to flow to low-integrity principal, and low-integrity principal trusts information from high-integrity
principal. This creates a unidirectional trust relationship that allows every piece of information to
flow from high-integrity to low-integrity.

When we consider secrecy as well, a high-integrity principal may be willing to share all except
some confidential information like SSH keys. This constrains the set of information that can flow
from high-integrity principals to low-integrity principals, or in general, between any two principals.

We extend SPIF so that each principal can define its own integrity and confidentiality requirement
with respect to other principals using the policy language specified in Section 6.3. SPIF will make
sure that any information flow occurs across principals will respect the requirements specified by
the principals. Otherwise, the two principals cannot interact.

As we generalize to consider both integrity and confidentiality, we call the benign principal
platform.

6.3 Policy language

The basis of security in our approach is isolation: no information is permitted to flow from one
principal to another unless both of the principals explicitly allow the flow. Since complete isolation
can prevent useful interactions, we provide a policy language for principals to specify their interaction
requirements. This language has been guided by the observation that application providers don’t
want to spend much effort on security policies. Hence we utilize a simple language that uses familiar
constructs when feasible (Figure 31), together with default policies (Figure 33) that work for most
of the applications. It is important to note that the default policies permit a good deal of interaction
between principal platform and other principals.

File names and network addresses can have wildcards. Groups of resources can be given a name
so that they can be reused in subsequent directives. Some resource groups have predefined meanings:

e The group confidential is empty by default, but can be defined explicitly. It is used in
default policies to prevent other principals from accessing the confidential information.

e The group explicitly_accessed includes locations such as Desktop and Documents direc-
tories. It also represents the set of files that are explicitly specified through environment
variables, command-line arguments, or file dialog boxes. explicitly_accessed captures user
intention to access files so that principals can take user intention into account.

e The group auto_accessed is an automatically computed list of file names, and represents the
set of all files that were accessed automatically (i.e., without explicit specification) by any
executable owned by the principal corresponding to the policy. The group auto_accessed_rw
is a subset of these files that were not only read but also written by the executable. This
captures the notion of preference files. Principals can define their own policies on whether to
share config and preference files using these primitives.

e The group executables includes all executables owned by a principal. We consider executable
separately from other files because a principal may not trust to run code from another principal
while it is willing to read data from another principal.

e The keyword all includes all principals other than the current principal. When new principals
are created in the system, they are automatically added to the group all. Principals can also
specify specific principals in their policies.
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Exec = Filename | Id
0Obj = NetworkEndPoint | Filename | Id
Rule = (allow|deny) Principal (read |write | invoke) Obj [from Principal]
| trust (reading|writing) of Obj from Principal
| trust invocation of Ezec from Principal
| Id={Obj,...,0bj}

Figure 31: Grammar for our Policy Language

A policy, specified by a principal p, consists of one or more rules that define how p can interact
with other principals. Interactions are divided into three categories: read, write, and invoke. SPIF
allows each principal to define policies for each of the interaction with respect to other principals.

As discussed previously, a permissible information flow needs to respect both the confidentiality
requirement of the information source and the integrity requirement of the information sink. The act
of information flow concerns two parties: a subject and an object. Rules are therefore categorized
into subject rules and object rules. Object rules concern when the principal’s object is involved in
information flow. Note that an objIt has the syntax listed in the first rule in Figure 31, and it specifies
what operations that other principals can or cannot perform on the principal’s objects using allow
or deny. Fach of the allow or deny rule specifies which other principals can read or write p’s files.
Note that an object rule that allows a principal to read an executable would automatically allow the
principal to execute the executable. SPIF does not prevent a principal from executing an executable
when it has the read permission. This is because the principal can simply create a new executable
on its own. The object rule invoke in SPIF is specifically designed for principal transitioning. This
rule is more general than the setuid because it allows transitioning to arbitrary principals, not just
the code owner. This is useful when we consider more than two principals (Section 6.4).

Note that allowing another principal p’ to write p’s files does not imply that p trusts the integrity
of p’. This is because the file, when written by p’, will have its label changed to that of p’. If p really
trusts the integrity of p’ then it can allow itself to read this file using a trust reading subject rule.
Note that allow/deny rules can refer to file objects as well as network end points.

Subject rules, start with the keyword trust (second and third rules), concern operations that
are performed by the principal when acting as subjects. Similar to the object rules, there are three
interactions that subject rules concern: reading, writing, and invocation. The trust reading rule
allows a principal to receive information from other principals. The trust writing rule focuses on
protecting the confidentiality of the principal. It allows the principal to declare explicitly that it is
safe for the principal to write information to other principal. The trust invocation rule declare
whether the principal can transition into other principals.

An information flow is allowed only if the subject and object rules from both principals have
explicitly allowed. These rules are tried in the order in which they are listed. If an access does not
match any rule, then it is denied.

The two-provenance case focuses only on integrity and can easily be captured with the policy
specified in Figure 32. The rules in Figure 32a allows information to flow out of the benign principal
without worrying about its confidentiality. The rules in Figure 32b allows information to flow
to the untrusted principal without worrying about integrity. Integrity of the benign principal is
protected by the implicit deny-rules of the benign policy: the benign object rule deny all write *
enforces no-write-up policy on the untrusted principal to protect benign objects. The implicit benign
invocation rule deny all exec * enforces no-exec-up policy to prevent untrusted principals from
running in the benign trust domain. The absence of subject rules prevents the benign principal from
interacting with any other principals and hence enforcing no-read-down. Similarly, benign subjects
cannot execute untrusted objects; however, benign principals can transition into untrusted using the
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invoke rule.

allow all read *
trust invocation of * from *
(a) Policy for benign
allow all read *
allow all write x
allow all invoke *
trust reading of * from benign
trust invocation of * from benign

(b) Policy for untrusted

Figure 32: Policy for two-provenance case

SPIF ensures that all information flows are permissible; otherwise, SPIF will deny the flows. As
applications are not aware of the enforcement of SPIF, applications could perform non-permissible
information flow and result in denials. SPIF ensures applications remain usable by automatically
resolving some of these denials using conflict resolution policies.

Figure 33 shows the policy for the platform principal. This policy is the same as the policy for the
benign principal except with the confidentiality rules added. This is because the platform principal
forms the basis for other principals to interact. Therefore, code, configuration files, preference files
and data from the platform are readable to other principals under the default policy.

A remote principal p, in the simplest case, does not provide a policy, and thereby ends up using
default policy shown in Figure 33b. Note that this policy does not provide any security from platform
code. This is intentional: since platform code runs with higher privileges (possibly root), it is not
always possible to protect p from the platform. The default policy also allows other principals to
read all except confidential files of p. By defining the list confidential, p can very easily control
the privacy of its data.

A principal A that wishes to engage in a two-way data-only collaboration similar to the App
model on Android with another principal B can do so by adding the following lines to the bottom
of the default policy shown in Figure 33b. B’s policy should be the same, except for replacing B
with A.

6.4 Interaction between principals

While permissible information flow focuses only on flows between information sources and infor-
mation sinks, a program execution would in general consist multiple information flows and involve
multiple principals. There can be four types of entities involved in a program execution:

e Invoker principal I: the principal that wants to execute a piece of code

e Code principal C: the principal that owns the code

e Read data principals Dg: the principals that own the data for reading during the execution
e Write data principals Dy : the principals that own the data for writing during the execution

Since each principal defines its own policy with respect to other principal, SPIF will select an
executing principal P to run the code such that all of the rules defined by the principals are observed.
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confidential = {.ssh/x,...}

deny all read confidential
allow all read *
trust invocation of * from *

(a) Default policy for platform

confidential = {}

deny all read confidential

allow all read *

allow all write %

allow all invoke

trust reading of * from platform

trust invocation of * from platform

(b) Default policy for other principals

Figure 33: Policy for multi-provenance case

allow B read explicitly_accessed

allow B write explicitly_accessed

trust reading of explicitly_ accessed from B
trust writing of explicitly accessed from B
allow B invoke

trust invocation of * from B

Figure 34: Additional policy rules for a principal to interact with principal B
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[ Source [ Confidentiality of H Integrity of [ Sink ]

Invoker I I’s act of execution
Code owner C Secret in C’s code P’s execution Executing principal P
Read data owner Dg Secret in Dg’s data
Executing principal P P’s execution Dw’s data ‘Write data owner Dy

Figure 35: Confidentiality and integrity for principal interaction. Optional constraint is highlighted.

Mode Executing Implicitation
principal P
Desktop Invoker I Conventional usage of desktop application, where code simply runs with the
privilege of the invoker, regardless of who owns the code.
App Code C App model on mobile OSes such as Android, where each app is runs with its own

privilege (similar to setuid on desktop). Unlike in Desktop mode where data is
owned by the invoker, data in App mode is owned by the app.

Data-oriented Data owner D, /D,, Bubbles-like system which organizes the system based on data labels. Each data
is tagged with a label. Code and invokers are simply tools for selecting data
labels for processing.

Hosted Other This is similar to the ephemeral container in Apiary, LXC, or Alcatraz, where
the code runs in isolation. SPIF runs the code with a principal other than I, C, or
D, /D,,. The process and its output would not be accessible by other principals.

Figure 36: Different principal interaction modes that SPIF supports

We use the notation A — B to denote permissible information flow from principal A to principal B.
SpIF will run the code as principal P such that:

e I — P (Invoker)
e C — P (Code owner)

D, — P,VD, € Dr (Read data owner)
e P— D,,VD, € Dy (Write data owner)

Each rule represents both the confidentiality and the integrity requirement for the two principals
involved. We summarize the requirement for each rule in each row in Figure 35.

Consider a typical desktop OS scenario with two principals: user and root, with root — user
for files such as code. When the user invokes a root owned program which modifies a user file.
SPIF considers user as the invoker principal I that triggers the action. The code is owned by root;
therefore, C' = root. When the code runs, the code will read both root-owned files (e.g., libraries) and
user-owned files (e.g., preference files): Dg = {user,root}. The execution can result in modifying
user files, i.e., Dy = {user}. As a result, the executing principal can only be user.

Satisfying the first three constraints are necessary for a program to execute. This is because the
act of invoking the code and reading code and data characterizes a program execution. Permissions
to write to file is not necessary for program execution as the modification can be shadowed.

Principal resolution algorithm SpiF allows only permissible information flows. Flows that
violate principals’ policy will be denied. To minimize the impact on usability, SPIF attempts to
choose to run code with a principal that satisfies all the information flow requirement.

There are 4 possible choices for the executing principal P. It can be the same as I, C, D,./D,,,
or other. We summarize the implication of each choice in Figure 36.

The goal of the different interaction modes is to allow principals to interact while respecting
their interaction policy. The algorithm to decide on which mode to run is simply test if each of the
mode listed in Figure 36 observes the policies of the involving principals. The testing order is as
follow: Desktop, App, Data-oriented, and finally Hosted. The order is determined by the impact on
usability for legacy desktop applications.
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An alternative view is that principals in SPIF form a partially ordered set, with a binary re-
lationship defining permissible information flow between two principals. In the simplest scenario,
we consider principals higher in the set allow information to flow to principals lower in the set.
The first three constraints imply that P is at most the greatest lower bound among {I, C, and
D, ,VD, € Dgr}. Such P may or may not exist, depending on the permissible information flow
between the principals. If no such P exists, the execution will be denied as the information flow
requirement between principals cannot be satisfied. Otherwise, the execution will be allowed to run
as principal P.

When shadowing data is not an option, the forth constraint translates into P > D,,, VD,, € Dy .
If no such P exists, the execution will be denied.

6.5 Implementation

Setup: We have modified SPIF to support multiple principals. We created additional users on the
system to represent new principals. From the OS perspective, these new principals are no different
than regular users.

Each principal has a set of principals that it trusts with integrity and confidentiality. In our
experiment, we have created three principals: platform, microsoft, and untrusted. microsoft cor-
responds to a principal which owns the Microsoft Office applications. platform trusts no other
principal; microsoft trusts platform; untrusted both microsoft and platform.

trust invocation of code from wuntrusted

(a) Policy for microsoft

trust reading of * from microsoft

(b) Policy for untrusted

Figure 37: Policy for multi-principal system

Figure 37 specifies the policy used for microsoft and the untrusted principal. Note that the only
rules we added are to allow microsoft to transition into untrusted, and to allow untrusted to read
from microsoft. The rest of the configurations are based on the default policy.

Policy enforcement: SPIF relies on OS DAC permissions to enforce object rules. If principal A
does not allow principal B to perform an operation on A’s objects, SPIF will protect A’s objects with
DAC permissions by denying B from performing the operation. On Windows, DAC permissions are
encoded using ACL which supports both positive and negative ACL entries. SPIF encodes the entire
set of object rules using ACL. On Linux, since ACL is not widely supported, SPIF uses the 9-bit
DAC permission to encode a default deny policy. It is up to the subjects to request the operation
using a helper process. The helper process will then decide whether to permit the operation based
on the object rules.

The enforcement of subject rules is based on the observation that these rules are defined by the
subject principal itself to restrict information flowing into and out of the principal. As a result,
the subject has no interest in bypassing subject rules. Therefore, SPIF enforces subject rules using
library interception.

For enforcing trust reading and trust writing rules, whenever a subject opens files of different
principal for reading or writing, SPIF checks if the permissions are allowed by the policy. The
enforcement of the object rules such as allow all read and allow all write are enforced by DAC
permission using ACL. For systems like Unix that do not use ACL, SPIF relies on Uy to mediate
accesses to other principals’ objects and enforce object policies for other principals.
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For enforcing principal transition rules, the subject rule trust invocation is checked when the
subject tries to transition into another principal before executing an executable. The object rule
allow all invoke is enforced by uudo to check if the subject principal has the permission to execute
the object.

Shadowing and redirection: Every principal (except platform) has its own shadowing and
redirection directory. Shadowing resolves the write object conflicts using copy-on-write, where an
executing principal does not have permission to modify an object. Redirection provides user an
illusion that files are located in the same directory; yet, they are located in different redirection
directories.

The purpose of redirection is to protect applications that are not compatible with Spir-library.
Since SPIF enforces subject rules using SPIF-library, applications that do not load the Spir-library
will not be protected against accidental consumption of untrusted resources. By partitioning re-
sources based on principals, applications that are not compatible with SPIF will remain protected.
Note that since SPIF does not rely on SPIF-library to enforce object policies. Applications that do
not load SPIF-library still cannot bypass the object rules, which are enforced using DAC permissions.

When a principal lists a directory, SPIF creates an unified view for the principal by combining all
the redirected directories. For example, untrusted principal listing user’s home directory will contain
the results not only from its own directory, but also from microsoft and platform. Since redirection
is only applied to data files, SPIF ensures that file names cannot collide by rejecting the creation of
files with the same name.

On the other hand, configuration and preference files use a shadowing/copy-on-write semantics,
with read-only copies from trusted principals. Modifications to the files would result in shadowing in
the principal’s own shadowing directory. For instance, when the untrusted principal runs Microsoft
Office, SpPIF allows the untrusted Microsoft Office process to read but not modify microsoft’s pref-
erence files. When these files are updated, SPIF transparently shadows the changes in untrusted’'s
shadow directories.

Transition between principals: SPIF is an early downgrading system (Section 4), principal
transitioning therefore happens at exec or CreateProcess time. For every exec or CreateProcess
call, SPIF runs the principal resolution algorithm (Section 6.4) to decide what can be the executing
principal. At the time of invocation, SPIF knows the invoker principal, the code owner principal,
and some of the data owner principals.

In the experiment, a platform process starting a Microsoft Office application will automatically
transition into microsoft because the invoker is platform and the code owner is microsoft. All the
documents created by the Office applications will therefore belong to microsoft. This is similar to
the App model on Android, where apps own the data.

On the other hand, if a web browser downloaded a document from the Internet and users opened
the untrusted document with double click, the Office application will run as untrusted. This is a
data-oriented model and the application is simply used to process the data. An exploit compromising
the Office application will not compromise the microsoft principal.

6.6 Simulating existing models

Bubbles: Bubbles [Tiwari et al., 2012] isolates resources based on context, which is an abstraction
to capture events based on contacts and time. For example, a context can be a conference event
with a group of participants at specific time. Before using an app, users need to select the context
which they want to use. Resources created in a context belongs to the context and can only be
accessed by that context.

Both Bubbles and our system support isolation. In Bubbles, apps are tools for manipulating
resources, but they do not own data. SPIF can simulate Bubbles by mapping a principal for ev-
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ery Bubbles’ context. Since Bubbles does not allow contexts to interact, this corresponds to no
interaction between principals in SPIF.

Bubbles require developers to develop trusted viewers to let users to browse and select contexts.
These viewers are trusted for not stealing information from different contexts and not corrupting
resources within the contexts. They assemble information from different contexts and present users
an unified view.

While simulating the Bubbles’s model, SPIF isolates contexts and hence also need to assemble
information from different contexts. Unlike Bubbles, SPIF can reuse existing desktop applications to
act as trusted viewers instead of requiring developers to develop new applications. Indeed, simply
the file manager (e.g., Windows Explorer) itself running as the platform principal can already browse
all the files created in each context. SPIF transparently merges files created from different principals
together. By double-clicking on a file, the corresponding principal will start and let the user to view
the context.

trust reading of data from all

trust invocation of code from all

(a) Policy for trusted viewer

allow trusted_viewer read data

allow trusted_viewer exec code

(b) Policy for contexts

Figure 38: Policy for modeling Bubbles, with principal P using coding from R

Figure 38 shows a SPIF policy for simulating Bubbles. The policy consists of two parts: one
for trusted viewers and one for contexts. The trusted viewers are trusted to view data from all
principals so that they can present users a summarized view. The trustinvocation rule allows the
trusted viewers to transition into different context when users want to dive in. The policies for the
contexts simply permit the trusted viewers the accesses.

Android: Android isolates applications based on app origin. App origin is identified by the de-
veloper’s key used to sign the apps. Apps from the same origin run as the same user and are free
to interact using existing Linux IPC mechanisms such as signaling to interact. Apps from different
origins run with different userid, and they can only interact with other apps using Android’s own
sharing mechanisms such as Intent.

Our system can simulate Android by mapping each app origin as a different principal. In Android,
apps can decide what data it want to share and receive. Hence, private files (such as preference and
configuration files) are not shared in Android. In our system, all data files (explicitly accessed)
can be shared with other principals unconditionally, while configuration and preference files are not
visible by other principals and hence are private.

On Android, user can select a particular application which she wants the data to be shared with.
The user can also select a particular app if multiple apps can handle the intent during the intent
resolution phase. On our system, the Windows Explorer serves as the explicit sharing mechanism
across principals. Users can use open as to select a desired app to consume the data. Applications
that can accept the data would have handlers registered with the Windows Explorer/Shell.

Figure 39 shows the policy in SPIF for modeling Android app. Every app in Android uses the
same policy: it allows other apps to read and write its data, and allows transitioning into or from
other apps. Intent filter in the Android model is captured using data, shared_data, and code for
specifying data, shared data, and code that an app can and is willing to handle.
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allow all read shared_data

allow all write shared_data
allow all exec code

trust reading of data from all
trust writing of data from all
trust invocation of code from all

Figure 39: Policy for modeling Android app model

Web: The Web security model also adopts isolation. It applies same-origin-policy (SOP) to isolate
based on origins, defined by the tuple jdomain name, protocol;. Resources for each principal in
the SOP model includes code (JavaScript), DOM and local storage objects, and remote resources
(accessed via cookies).

There a few modes of interactions in the web model. We discuss each of them and how they can
be modeled by SPIF:

e SOP does not allow a principal P to access resources belonging to other principals (e.g., R).
P can include the entire page from R but cannot access DOM or local storage objects from
R. Cookies from R are also not accessible by P. However, SOP allows resources such as
JavaScripts and images from R to be loaded by P. P can use JavaScripts and images from R
as if they are from P.

For instance, principal P can include code R as libraries using script tags. The code will
then be executed as if it belongs to P, i.e., it will have all the privileges that P has. The code,
however, cannot access local or remote resources from R since P does not have accesses.

Modeling SOP in SPIF is simply allows principal P to read code from principal R. This is
done by using the policies in Figure 42. They keyword code consists of a the set of code that
R is willing to share with P.

trust reading of * from R

(a) Policy for P

allow P read code

(b) Policy for R

Figure 40: Policy for modeling SOP, with principal P using coding from R

With the policy in Figure 42, Spir would allow P to read code from R. P can execute the
code or use code from R as library. However, there is no domain transition rule from P to R.
P cannot access data in R too.

e CORS (Cross-Origin Resource Sharing) is a mechanism for relaxing the limitation of
SOP. SOP limits code from principal P to access only P’s resources. It is something useful
for P to access other’s resources as well, such as when R is a content provider for application
at P. Since the SOP policy is enforced by web browsers to protect principals, the relaxation
is actually done by the browsers. When code from P requests resources from R (e.g., using
Ajax), the browsers will consult R to check if R is willing to give P access to its resources.
Only if R allows P to access the resources, the request from P can reach R. Unlike SOP which
only allows script tags (basically only HTTP GET requests), CORS allows also POST and
PUT requests that can modify resources on R. CORS has recently been standardized.
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trust reading of * from R

trust writing of * from R

(a) Policy for P

allow P read *

allow P write x

(b) Policy for R

Figure 41: Policy for modeling CORS, with principal P using resources from R

CORS would allow P to make any requests to R. However, R can implement additional
logics to decide whether to serve each of the request from P. Similarly, the policy specified
in Figure 41 would allow P to access any files of R. Additional permission settings can be
specified in the policy of SPIF as needed. In comparison with CORS, all the policy decisions
can be specified as SPIF policy and enforced by SPIF.

JSONP requires no modification to the HTTP protocol in order to realize cross origin shar-
ing on top of SOP. JSONP exploits the fact that SOP allows code from other principals to
be accessible via script tag. By having the other principal R to return resources inside a
JavaScript file, P can access resources from R. JSONP has been used in frameworks such
as jQuery, where the code running as principal P can specify a callback method name in the
request to R. The script returned from R can then invoke the callback method with the data
requested.

JSONP is considered as exploiting a loophole in SOP. The script returned from R could
access all resources of P, including P’s DOM tree, local storage, and remote resources of P as
cookies are accessible too. If the principal R is malicious or compromised, SOP can provide
no protection to P.

trust reading of * from R

allow R invoke x*

(a) Policy for P

allow P read *

trust invocation of * from P

(b) Policy for R

Figure 42: Policy for modeling JSONP, with principal P using resource from R

We do not specify the write policy here. Note that while using script tag would generate only
GET requests, GET requests can have side effects as well.

While JSONP focuses on sharing data from R with P, R can take full control of the privilege
of P. This is why SPIF models JSONP by allowing R to transition into P.

URL.hash [Wang Jiaye, 2011] is another method for allowing principals from two origins to
communicate despite of SOP. Browsers allows code to access the URL location of another frame.
Two principals can be loaded into two different frame and communicate with each another by
changing the hash tag value at the end of their URL. Since hash tag in the URL does not
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trigger any page reload, it can be served as a shared object for principals to communicate. A
participating principal would monitor hash tag values of the other principals, and then modifies
its own hash tag value in respond.

Since this mechanism is not designed for inter-principal communication in the first place, there
is no security protection. Any other principals can access the hash tag values and intercept
the communication.

trust reading of URL.hash  from all
(a) Policy for P

trust reading of URL.hash  from all
(b) Policy for R

Figure 43: Policy for modeling URL.hash, with principal P communicating with R

SpiF models URL.hash method by assigning a resource which is publicly readable by all prin-
cipals. Principals can communicate via the publicly readable resources.

Post-message is a newer standard for web principals to interact. Its idea is similar to
the URL.hash method. Post-message allows principals to communicate by sending messages.
When sending a message, the sending principal can specify the receiving principal using origin.
A callback function provided by the receiving principal will be invoked. The callback function
can also check the message originating principal. This push bashed mechanism is much more
secure than the URL.hash method.

trust writing of R.window from R

(a) Policy for P

allow P write R.window

trust reading of R.window from P

(b) Policy for R

Figure 44: Policy for modeling post-message, with principal P sending messages to R

SPIF captures the post-message model by designating R.window as the object for P to com-
municate with R. The policy allows P to send messages to R and R to read the messages from
P.

WebSocket is a new protocol for simulating raw sockets for web applications. It provides full
duplex communication between web applications and web servers. Browsers do not enforce
SOP on WebSocket, namely principals can use WebSocket to connect to any origin. To allow
remote servers to identify the request originating principals, browsers will add a header Origin
to the WebSocket request. The server can then enforce policies and decide if the connection
can be established.

Unlike SOP and CORS where the policy enforcement is done at the browser side, policy
enforcement for WebSocket is done at the server side.

WebSocket relies on browsers to tag the origin of requests. Remote servers rely on the origin
information to decide whether the requests will be handled. In SpiF, this model can be
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simulated entirely using policies. This is because SPIF tracks provenance and principals can

specify policies based on provenance.

trust writing of * from all
trust reading of * from all
(a) Policy for P
allow P read designated_resources
allow P write designated_resources
trust reading of designated_resources from P

(b) Policy for R

Figure 45: Policy for modeling WebSocket, with principal P communicating with R

6.7 Applications
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