
Fast Pattern-Matching Techniques for Packet Filtering

by

Alok S. Tongaonkar

to

The Graduate School

in partial fulfillment of the

Requirements

for the degree of

Master of Science

in

Computer Science

Stony Brook University

May 2004

Stony Brook University

The Graduate School

Alok S. Tongaonkar

We, the thesis committee for the above candidate for the

Master of Science degree,

hereby recommend acceptance of this thesis.

Professor R. C. Sekar, Thesis Advisor,
Computer Science Department

Professor I. V. Ramakrishnan, Chairman of Thesis Committee,
Computer Science Department

Professor C. R. Ramakrishnan,
Computer Science Department

This thesis is accepted by the Graduate School.

Dean of the Graduate School

ii

Abstract of the Thesis

Fast Pattern-Matching Techniques for Packet Filtering
by

Alok S. Tongaonkar

Master of Science
in

Computer Science

Stony Brook University
2004

Packet filtering is used for selecting or classifying network packets in a variety

of network applications such as routers and network monitors. Packet filters are

typically specified using patterns. These patterns specify constraints on the values

of different fields in the packets . The two key requirements in packet filtering are

high performance and flexibility. High performance refers to the ability of the packet

filtering system to quickly compare a packet with different patterns. Flexibility refers

to the ability of the system to be easily applied for different filtering applications.

Pattern matching is a well studied problem that has applications in various fields

such as functional programming and rule-based systems. In this thesis we general-

ize and apply techniques from pattern matching to develop high performance packet

filtering systems that can be used in a variety of applications such as intrusion detec-

tion systems and network monitors. The algorithm aims to minimize the matching

time and space requirements of the generated packet filtering system. These factors

are crucial in applications that are charecterized by large number of filters such as

intrusion detection system.

We discuss the implementation of this algorithm and present experimental results

to demonstrate the scalability and performance of the algorithm.

iii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Thesis Overview . 6

2 Background 7
2.1 Languages For Packet Filtering . 7

2.1.1 BPF . 7
2.1.2 PacketTypes . 9
2.1.3 BMSL . 11

2.2 BMSL - A Pattern Specification Language 12
2.2.1 Syntax . 12
2.2.2 Event Declaration . 12
2.2.3 Packet Structure Description 12
2.2.4 Constraint Checking . 13
2.2.5 Patterns . 14

2.3 Related Work In Packet Filters . 14

3 Algorithm 21
3.1 Adaptive Pattern Matching . 21
3.2 Algorithm to build Adaptive Automaton 24
3.3 Computation of <determinism, utility, branching factor> 31
3.4 Subautomaton sharing . 32

4 Summary 34
4.1 Implementation . 34
4.2 Conclusion . 36

Bibliography 37

iv

List of Figures

1.1 Individual Filters . 2
1.2 Composite Filters . 2
1.3 Deterministic Automaton . 4

2.1 Tree Model . 15
2.2 Tree Filter for host “foo” . 16
2.3 CFG Model . 17
2.4 CFG Filter for host “foo” . 17
2.5 Composite filters in PATHFINDER 18
2.6 CFG for “all packets sent between X and Y” 20

3.1 Left-to-right Automaton . 22
3.2 Adaptive Automaton . 23
3.3 Algorithm for constructing adaptive automaton 24

v

ACKNOWLEDGEMENTS

I am grateful to take this opportunity to sincerely thank my thesis advisor, Dr.
R.C. Sekar, for his constant support, invaluable guidance and infinite patience.

I wish to extend my sincere thanks to Dr. I.V. Ramakrishnan and Dr. C.R.
Ramakrishnan for consenting to be on my defence committee and offering valuable
suggestions.

I would like to thank my friends: Mohan-Krishna Channa-Reddy for helping me
throughout my thesis research; Salil Gokhale for his insightful suggestions at vari-
ous times; Amit Purohit and Sandeep Bhtakar for their constant encouragements;
Akshay Athalye, Sumukh Shevde and Gaurav Gothoskar for making my stay at
Stony Brook a pleasant time; V.N. Venkatakrishnan for his invaluable suggestions
for the thesis defense; Kiran Reddy for helping me in preparing the final version of
the thesis.

Finally, I would like to thank my parents, sister Meghana and brother-in-law
Nitin Sadawarte, without whose support this work would have been impossible.

This research is supported mainly by an ONR grant N000140110967 and in part
by NSF grants CCR-0098154 and CCR-0208877.

Chapter 1

Introduction

Packet filtering is a mechanism that inspects incoming network packets, and based
on the values found in select fields, determines how each packet is to be processed.
Packet filtering is used in many applications like network monitoring, performance
measurement, demultiplexing end-points in communication protocols, packet classi-
fication in routers, firewalls, and in intrusion detection.

Typically, these applications specify multiple filters that are to be applied to a
network packet. These specifications can be in the form of imperative code written
using some special-purpose filtering language. The code for a packet filter consists
of tests that are to be performed on the packet fields and the action to be taken
when the fields of a packet pass all the tests of the filter. The code for multiple
filters consists of codes for individual filters that are combined using appropriate
control flow instructions. Clearly, the size of the code increases as the number of
filters increases. Writing such filter code manually is cumbersome and generally
error-prone. Adding a filter or changing the protocol requires significant rework in
the case of such code. Hence, maintaining the filtering code becomes difficult.

In this thesis we follow a different approach for specifying the filters. In this
approach, a filter specification is in the form of a pattern that specifies constraints
on the values of different fields in the packet. A packet matches a pattern if the
packet fields satisfy the constraints specified in the pattern.

A packet filtering system containing multiple filters can match a packet against
the patterns in two ways. In the first approach, each filter is considered as sep-
arate entity. The filtering system runs each filter sequentially on every network
packet. Here, each packet is matched against every pattern without using informa-
tion gained about packet fields from previous match. The cost of identifying the
matching pattern(s) grows linearly with the number of filters specified. This cost is
unacceptable in applications that specify a large number of filters. Figure 1.1 shows
an application like intrusion detection in which a number of filters are specified as

1

Packet FILTER 1 FILTER 2 FILTER n

Intrusion Alert 1 Intrusion Alert 2 Intrusion Alert n

Intrusion Detection System

Figure 1.1: Individual Filters

Intrusion Alert 1 Intrusion Alert n

Intrusion Detection System

Packet

Intrusion Alert 2

FILTER

Figure 1.2: Composite Filters

patterns. Here each pattern characterizes a different network intrusion. A packet
filtering system that tries to match each network packet against every pattern acts
as a bottleneck to network performance.

In the other approach, a composite filter is generated by combining indiviual filter
specifications as shown in figure 1.2. The advantage of this approach is that it tries
to use information gleamed about packet fields from each partially successful match
in the subsequent matches. Minimizing the space and matching time requirements
of a composite filter is a key issue in filter composition.

A sequence of patterns can be compiled into a finite tree automaton that iden-
tifies the matching pattern efficiently. In a finite tree automaton each state, except
the final states, tests attributes of network packets. There is an edge for each test.
Each state can have a “default” edge which is used when all other tests fail in that
state. The final states represent the patterns that are matched. The automaton can
be either nondeterministic or deterministic. Traversal of the nondeterministic au-

2

tomaton will involve backtracking. So simulation of a nondeterministic automaton
at runtime can be inefficient. Hence, a deterministic automaton is preferred over
its nondeterministic counterpart. In the deterministic automaton each attribute is
checked only once. So the running time is better than that of the corresponding
nondeterministic automaton. But the size of a deterministic automaton can be far
too large for it to be a practical solution.

A composite filter, represented as a deterministic automaton, can be viewed as
a decision tree. A decision tree is a tree-like representation of a finite set of if-then-
else rules. Each node of a decision tree is either a decision node or a leaf node. A
decision node specifies some test to be carried out on a single attribute value, with
one branch and sub-tree for each possible outcome of the test. A leaf node indicates
the patterns that are matched. A set of matching patterns can be considered as a
class for the packet. A decision tree can be used to classify a packet by starting at
the root and traversing down to a leaf node, which provides the matching patterns.

For example, consider that a network packet has three fields: f1, f2, and f3.
We want to specify four packet filters with the following patterns:

p1 : (f1 == a)&&(f2 == b)

p2 : (f1 == a)

p3 : (f1 == c)&&(f3 == d)

p4 : (f2 == b)
Figure 1.3 shows a decision tree automaton for classifying a network packet using

the above patterns. In this case, a packet can belong to one of the five possible
classes. These classes are

• Class 1: {p1, p2, p4}

• Class 2: {p3, p4}

• Class 3: {p2}

• Class 4: {p3}

• Class 5: {p4}

In such a decision tree, matching time for a packet belonging to a particular
class is equal to the depth of the leaf node containing that class. The set of possible
classes is a subset of the power set of the set of patterns specified. So the size of the
decision tree can be exponential in the number of patterns specified. Minimization
of the matching time and size requirements of deterministic tree automata has been
studied in pattern matching context for applications like term rewriting and func-
tional programming. However, since the problem of finding the optimal decision tree
is NP-complete [5], heuristics are used to minimize the automaton. The heuristics,

3

1

{p1, p2, p4} {p3, p4} {p4} {p3} {p4} {p4} {} {}{p1, p2, p4} {p2} {p2} {}

f1 == a
f1 == c

f1 != a && f1 != c

f2 == b f2 != b f2 == b f2 != b f2 == b f2 != b

f3 == d

f3 != d

f3 == d f3 == d f3 == d f3 == d f3 == d

f3 != d f3 != d f3 != d f3 != d f3 != d

{p1, p2, p4}

{p1, p2, p3, p4}

{p4}{p3, p4}

{p1, p2, p4} {p3, p4} {p3} {p4} {}
87

3 4

109
{p2}

11 12 13 14 15 16 17 18 19 20 21 22

5 6

2

Figure 1.3: Deterministic Automaton

4

based on pattern matching techniques, try to minimize the automaton by sharing
common tests.

The earliest packet filter mechanisms, CMU/Stanford Packet Filter (CSPF) [8]

and Berkeley Packet Filter (BPF) [7] are interpreter-based filter mechanisms that do

not support composition. Mach Packet Filter (MPF) [11] extended BPF to add sup-
port for composing filter specifications for special cases. MPF merges the common
prefix in different patterns. PATHFINDER [1] is a pattern based packet filtering
mechanism that allows for more general composition of filters with common prefixes
than MPF. Dynamic Packet Filter (DPF) [4] enhanced PATHFINDER’s core model

with dynamic-code generation to improve performance. Jayaram and Cytron [6] ex-
plored a new approach of specifying each filter by a context-free grammar. This
approach simplifies filter composition. Finally, BPF+ [2] allows multiple packet fil-
ters to be specified in a high-level language and be compiled into native-code. BPF+
performs low-level data flow optimizations like redundant predicate elimination to
improve the performance of the packet filtering code.

All these works focus on exploiting common tests while preserving the order in
which the tests are performed. So the extent of sharing possible is dependent on
the order in which the tests are specified. In this thesis, we present a new approach
which increases the extent of sharing. Our approach, based on the Adaptive Pattern
Matching [10] technique, uses heuristics to adapt the traversal order to suit the input
patterns. The modification of the order in which tests are performed increases the
opportunities for sharing. This helps to further minimize the space and matching
time requirements of the automaton.

The goal of this work is to generalize and extend pattern matching techniques
to network packet filtering, and investigate their effectiveness. Pattern matching
techniques consider only those tests which check whether an attribute has a par-
ticular value. Packet filters, on the other hand, commonly contain tests which
check whether an attribute has a value in a particular interval. So a key challenge
to adapting these techniques to network packet filtering is to handle intervals ef-
ficiently. Packet filters contain tests involving disequalities also. So the pattern
matching techniques need to be extended to handle such tests. They also need some
mechanism to handle bit-masking operations which are used commonly in packet
filters. Another important consideration in network packet filtering is that the same
bits in the packet may be interpreted in different ways. For example, a filter may
contain a test involving bit-masking operation on certain bits and some other test
which views the same bits as an integer.

In this thesis we have developed an algorithm, based on the adaptive pattern
matching technique, to generate packet filters from high level specifications. The
algorithm aims to determine a suitable order of testing attributes of network packets
based on the patterns specified.

5

1.1 Thesis Overview

In the next chapter we see the language for specifying the filters. Chapter 3 explains
the pattern-matching algorithm in detail. We give the summary in chapter 4.

6

Chapter 2

Background

In this chapter we review the languages available for specifying packet filters and
the existing packet filter schemes .

2.1 Languages For Packet Filtering

In this section we review some of the special-purpose languages for specifying packet
filters. The choices range from low-level imperative languages like the one provided
by BPF [7], a high-level packet specification language like PacketTypes [3], to a high-
level declarative language such as Behavioral Monitoring Specification Language
(BMSL) [9].

2.1.1 BPF

BPF uses a pseudo-machine language interpreter to provide the abstraction for
describing and implementing the filtering mechanism. The BPF machine abstraction
consists of an accumulator, an index register (x), a scratch memory store, and an
implicit program counter. BPF treates a packet as byte array. A packet field
is accessed by accessing the bytes at the corresponding offset in the byte stream.
Packet field values can consist of 32-bit words, 16-bit unsigned halfwords, and 8-bit
unsigned bytes. The following memory access, data manipulation, and control flow
instructions are provided:

• Load Instructions for copying values into the accumulator or index register.
The source can be an immediate value, packet data at a fixed data, packet
data at a variable offset, the packet length, or the scratch memory store.

• Store Instructions for copying either the accumulator or index register into the
scatch memory store.

7

• ALU Instructions for performing arithmetic or logic on the accumulator using
the index register or a constant as an operand.

• Branch Instructions for altering the flow of control , based on comaprison test
between a constant or x register and the accumulator.

• Return Instructions for terminating the filter.

• Miscellaneous Instructions for register transfers.

Each filter is expressed using code that terminates with either an indication of
what portion of the packet to save or a zero. A return value of 0 corresponds to
the rejection of the packet by the filter. Acceptance of a packet is indicated by a
non-zero return value.

Consider TCP/IP packets carried on Ethernet. A filter for accepting all IP
packets is specified as:

ldh [12]

jeq #ETHERTYPE_IP, L1, L2

L1: ret #TRUE

L2: ret #0

The first instruction loads the Ethernet type field, which is an unsigned halfword
at an offset of 12 bytes from the start of the packet, into the accumulator. This field
is compared with type IP. If the comparison fails, then the packet is rejected and
zero is returned. Otherwise,the packet is accepted and TRUE is returned. TRUE
is a non-zero value that indicates the number of bytes of the packet that are saved.

A filter for rejecting all packets originating from IP networks, 128.3.112 or
128.3.254 is specified as:

ldh [12]

jeq #ETHERTYPE_IP, L1, L4

L1: ld [26]

and #0xffffff00

jeq #0x80037000, L4, L2

L2: jeq #0x8003fe00, L4, L3

L3: ret #TRUE

L4: ret #0

Similar filters can be written for other network protocols or media. BPF achieves
this protocol independence by treating a packet as a simple array of bytes. But there
is a flip side to this approach of viewing a packet as a sequence of bytes. The appli-
cation that specifies the filters is responsible for encoding the filter appropriately for

8

the underlying network media and protocols. In the case of multiple filters, writing
such low-level code becomes cumbersome, reducing the usability of the language. A
more serious drawback of this style of programming, where the layout of a network
packet is explicitly encoded in a low-level language, is that it may introduce coding
errors in offsets, sizes, and conditionals. Errors like accesing an offset that is outside
the packet boundaries may cause a memory protection fault. Semantic errors like
accessing an offset believing that it contains certain information, when in fact, the
packet may be of a totally different type and contain completely different informa-
tion, may arise even more frequently. Language features that increase usability and
minimize the likelihood of these common errors are needed.

The usability of packet filters is increased by providing a user-friendly, high-level
filter specification language. The high level filter specifications are translated into
low-level code like BPF programs. Typically, this translation introduces redundancy
in the filter programs. Previous works like PATHFINDER and BPF+ have tried to
eliminate this redundacy by using various heuristics.

The problem of errors can be dealt with by hand-crafting a type checker that is
developed explicitly for a prespecified set of network protocols. This approach, used
in tcpdump, hard-codes the structures of packets for the prespecified protocols into
the compiler, which is used for translating the high-level filter specifications into low-
level filter code. This approach requires a redesign of the compiler to accomodate
protocols that are not already built into the compiler.

2.1.2 PacketTypes

PacketTypes is a high-level packet specification language that is used to describe
packet formats. Unlike other high-level filter specification languages, this language
does not hardcode the protocol specifics into the compiler. Instead, the language
provides a type system to specify the structure and content of the packets. This
approach makes it easy to support new protocols. Another feature of the language
is that the fundamental operation on packets is checking their membership in a
type. Hence, type definitions written using PacketTypes can serve as packet filter
specifications.

We take a look at how PacketTypes can be used to specify packet filters. Let us
consider TCP/IP protocol. An IP packet might be specified as

nybble : = bit[4];

short := bit[16];

ipaddress := byte[4];

ipoptions := bytestring;

IP_PDU := {

9

nybble version;

nybble ihl;

byte tos;

short totallength;

...

ipaddress src;

ipaddress dest;

ipoptions options;

bytestring payload;

} ...

Here, IP PDU defines the fields of IPv4 header. Although this type imposes a
structure on packets, if no additional constraints are specified then it allows many
bit sequences that are not valid IP packets. The necessary constraints like requiring
the version value in IP PDU to be 4, appear in a where clause following the sequence,
as in:

IP_PDU := {

...

} where {

version#value = 0x04;

...

}

The where clause can contain demultiplexing constraints, which are constraints
comparing the value of a key field to a constant. These demultiplexing constraints
can be used as filtering conditions. For example, a filter for capturing IPv4 packets
originating from 192.169.0.1 is specified as:

IP_PDU := {

...

} where {

version#value = 0x04;

...

src#value = 192.169.0.1;

}

The language captures the layering of protocols by providing a construct called
as refinement. Refinement is represented by the :> operator. Refinement uses
constraints to augment the traditional notion of inheritance. For example, an IP
packet on Ethernet might be specified as

10

macaddr := bit[48];

Ethernet_PDU := {

macaddr dest;

macaddr src;

short type;

bytestring payload;

}

IPinEthernet :> Ethernet_PDU where {

type#value = 0x0800;

overlay payload with IP_PDU;

}

Ethernet PDU contains the specification of an Ethernet frame and IPinEthernet

shows how to layer IP on it by constraining the type to have the value 0x800 and
overlaying the IP PDU definition onto the Ethernet payload.

Multiple filters can be specified by refining an existing type with different
demultiplexing constraints. Filters for capturing packets originating from either
128.3.112.1 or 128.3.112.2 are specified as:

Filter1 :> IPinEthernet where {

payload.srcaddr#value = 128.3.112.1;

}

Filter2 :> IPinEthernet where {

payload.srcaddr#value = 128.3.112.2;

}

2.1.3 BMSL

BMSL is a pattern specification language that is developed at Secure Systems Lab at
Stony Brook University. It can be used to specify packet filters. It provides a type
system, similar to the one provided by PacketTypes, for specifying the structure
and content of the packets . It has a notion of inheritance which is similar to type
refinement in PacketTypes.

In spite of the similarities there are several significant differences between the
two approaches. The inheritance mechanism of PacketTypes offers more power than
that of BMSL in that it can capture protocols that use trailers also. BMSL trades
off this power for simplicity.

We used BMSL for specifying the packet filters.

11

2.2 BMSL - A Pattern Specification Language

This section describes the features of BMSL and how it can be used for specifying
packet filters.

2.2.1 Syntax

Specifications consist of variable and type declarations, followed by a list of rules
[9]. The rules are of the form

pat --> action.

Pat is a pattern on sequences of network packets. Action consists of a sequence of
statements that are executed when there is a match for pat. If multiple patterns
match at the same time, actions associated with each pattern are launched. The
interaction of these actions that are launched simultaneously is beyond the scope of
this thesis.

2.2.2 Event Declaration

The language supports declaration of events. These events may be primitive or user-
defined. The primitive events are generated by external system and form the input
to the generated packet filtering system. For example, there may be two events(say,

tx and rx), corresponding to the transmission and reception of packets. These events
may have a packet as an argument. They may have an additional argument that
specifies the interface.

event rx(int interface, ether_hdr p);

event tx(int interface, ether_hdr p);

User-defined events, also called abstract events, correspond to the occurrence of a
sequence of primitive events. They are declared as

event eventname{parameter1, parameter2, ..., parametern) = pat

where pat is an event pattern. Event patterns are described in Section 2.2.5.

2.2.3 Packet Structure Description

The structure of the packets can be specified using packet type declarations. The
syntax of type declaration for packets is similar to that of the C-language. For
example, the following describes an Ethernet header.

12

#define ETHER_LEN 6

struct ether_hdr {

byte e_dst[ETHER_LEN]; /* Ethernet destination address */

byte e_src1[ETHER_LEN]; /* Ethernet source address */

short e_type; /* Protocol of carried data */

};

The nested structure of protocol header can be captured using a notion of inheri-
tance. For example, an IP header can be considered as a sub-type of Ethernet header
with extra fields to store information specific to IP protocol. BMSL permits mul-
tilevel inheritance to capture protocol layering. BMSL augments inheritance with
constraints to capture conditions where the lower layer protocol data unit (PDU)
has a field identifying the higher layer data that is carried over the lower layer pro-
tocol. For instance, IP header derives from Ethernet header only when e type field
in the Ethernet header equals 0800h.

#define ETHER_IP 0x0800

struct ip_hdr : ether_hdr with e_type == ETHER_IP {

bit version[4]; /* IP Version */

bit ihl[4]; /* Header Length */

byte tos; /* Type Of Service */

short tot_len; /* Total Length */

...

short check_sum; /* Header Checksum */

unsigned int s_addr; /* Source IP Address Bytes */

unsigned int d_addr; /* Destination IP Address Bytes */

};

To capture the fact the same higher layer data may be carried in different lower
layer protocols, the language provides a notion of disjunctive inheritance. The se-
mantics of the disjunctive inheritance is that the derived class inherits fields from
exactly one of the possibly many base classes. The following

struct ip_hdr : (ether_hdr with e_type == ETHER_IP) or

(tr_hdr with tr_type == TOKRING_IP) {

...

}

represents the fact that IP may be carried within an Ethernet or a token ring packet.

2.2.4 Constraint Checking

An important requirement for the language to be type safe is that the constraints
must hold before the fields corresponding to a derived type are accessed. Note

13

that at compile time the actual type of the packet is not known. For example, a
packet on an Ethernet interface must have the header given by ether hdr. But it
is not known whether the packet carries an ARP or an IP packet. So the constraint
associated with ip hdr must be checked at runtime before accessing the IP-relevant
fields. Similarly, before accessing TCP relevant fields, the constraints on tcp hdr

must be checked. Furthermore, the constraints on ip hdr must be checked before
checking constraints on tcp hdr.

2.2.5 Patterns

Patterns on packet sequences typically consist of a single receive or transmit event
along with a condition. A pattern is said to be matched when the event specified
in the pattern occurs and the condition associated with the event is satisfied. The
condition denotes a boolean-valued expression involving the event arguments and
possibly other variables. As we have seen in Section 2.2.2, a packet may be an event
argument. Hence, the condition may include predicates involving packet fields.

Suppose we want to write a packet filter that captures all packets coming from
host “foo” whose IP address is “xx.yy.zz.ww”. Then we can write,

rx(ifc, p) | (p.s_addr == xx.yy.zz.ww)

--> { display(‘‘foo’’); };

The compiler for BMSL will automatically insert the constraint for ip hdr in
the condition.

rx(ifc, p) | (p.e_type == ETHER_IP) && (p.s_addr == xx.yy.zz.ww)

--> { display(‘‘foo’’); };

Multiple filters are specified as different patterns. Different predicates can be
combined using boolean operators like AND, OR, and NOT. The compiler supports
ranges and arithmetic and logic operations on packet fields as well as other variables.

Notice that there is a rule for each filter and each rule has a pattern. So from
now on we will use the terms filter, rule, and pattern interchangeably.

2.3 Related Work In Packet Filters

In this section we describe the related work in the area of packet filters. We discuss
six major packet filter schemes: CSPF [8], BPF [7], MPF [11], PATHFINDER [1],

DPF [4], and BPF+ [2].

14

OR

ether.type =IP ether.type = ARP

Figure 2.1: Tree Model

The CMU/Stanford Packet Filter(CSPF)

The CMU/Stanford packet filter is an interpreter based filtering mechanism. The
filter specification language uses boolean expression tree. The tree model maps
naturally into code for a stack machine. In the tree model, each interior node
represents a boolean operation (e.g. AND, OR) while the leaves represent test

predicates on packet fields. Each edge in the tree connects the operator(parent node)

with its operand(child node). The algorithm for matching the packets proceeds in
a bottom up manner. Packets are classified by evaluating the test predicates at the
leaves first and then propagating the results up. A packet matches the filter if the
root of the tree evaluates to true. Fig. 2.1 shows a tree model that recognizes either
IP or ARP packet on Ethernet.

The major contribution of CSPF is the idea of putting a pseudo-machine lan-
guage interpreter in the kernel. This approach forms the basis of many later-day
packet filter mechanisms. Also the filter model is completely protocol independent
as CSPF treats a packet as a byte stream.

However, CSPF suffers from shortcomings of the tree model. The tree model of
expression evaluation may involve redundant computations. For example, consider
a filter that accepts all packets with an Internet adress “foo”. We want to consider
IP, ARP, and RARP packets carried on Ethernet only. The tree filter function is as
shown in figure 2.2. As can be seen the filter will compute the value of ’ether.type ==
IP’ even if ’ether.type == ARP’ is true. Although, this problem can be somewhat
mitigated by adding ’short circuit’ operators to the filter machine, some inefficiency
is inherent dure to the hierarchical design of network protocols. Packet headers
must be parsed to reach successive layers of encapsulation. Since each leaf of the
expression tree represents a packet field independent of other leaves, redundant
parses ay be carried out to evaluate the entire tree.

There is also a performance penalty for simulating the operand stack. Moreover,
the filter specification language is restricted to deal with only fixed length fields
since it does not contain an indirection operator.

15

ip.dst = fooether.type = IPether.type = RARP

OR OR OR

OR

AND AND

ether.type = ARP ip.src = fooarp.src = foo arp.dst = foo

Figure 2.2: Tree Filter for host “foo”

The Berkeley Packet Filter(BPF)

BPF was originally created for BSD UNIX and has been ported to many UNIX
flavors. It is also an interpreter based filter. It attempts to address some of the
limitations of CSPF. BPF filters are specified in a low-level language. The language
provides support for handling varying length fields. BPF uses directed acyclic con-
trol flow graph(CFG) model. In this model, each node node represents a packet
field predicate. The edges represent control transfer. One branch is traversed if a
predicate is true and the other if it is false. Two terminating leaves represent true
and false for the entire filter. The filter ‘IP or ARP on Ethernet’ can be represented
in CFG model as shown in fig. 2.3.

Use of CFG helps BPF to avoid some redundant computation. For example, the
filter for accepting packets with an Internet address “foo” (as described in section

2.3) is represented in CFG model as shown in figure 2.4.
However, BPF also does not provide support for filter composition. So BPF

does not scale well when there are a large number of filters.

16

ether.type =IP

ether.type = ARP

FALSE TRUE

no

no
yes

yes

Figure 2.3: CFG Model

ether.type = IP

ether.type = ARP

ether.type = RARP

ip.src = foo

ip.dst = foo

arp.src = foo

arp.dst = foo

FALSE TRUE

T

T

T

T

T

T
F

F

F

F

T

F

F

F

Figure 2.4: CFG Filter for host “foo”

17

IP
header header

TCPSrc addr = * Dest addr =
192.169.0.1

Src port = *

Dest port = A

Dest port = B

Path 1

Path 2

Figure 2.5: Composite filters in PATHFINDER

The Mach Packet Filter(MPF)

The Mach packet filter enhances BPF to handle end-port based protocol processing
in the Mach operating system. The primary focus of MPF is on demulplexing
packets. So they consider only filters that share common prefix and differ at a
single point in the header, say TCP port. This common prefix,recognized using
simple template-matching heuristics, is merged and additional checks are included
for the differing packet field.

Although MPF performs demultiplexing efficiently, it does not provide a general
way of composition of different filters.

PATHFINDER

PATHFINDER is a pattern based packet filtering mechanism that is designed so
that it can be efficiently implemented in both software and hardware. It allows for
more general composition of filters with common prefixes than MPF. The packet field
predicates are represented by templates called “cells”. The cells are chained together
to form a “line”. A line, which can be considered as a single filter, represents a logical
AND operation over constituent predicates. A collection of lines i.e. a composition of
filters, represents the logical OR operation over all lines. PATHFINDER eliminates
common prefixes as new lines are installed. For example, filters for identifying two
flows, say one from any source to destination 192.169.0.1 port A and the other from
any source to destination 192.169.0.1 port B are composed as shown in figure 2.5.

As these optimizations only consider common prefix, they fail when the predi-
cates are reordered.

Dynamic Packet Filter(DPF)

DPF uses an approach of template-matching similar to PATHFINDER. DPF coa-
lesces longest common prefix and performs some additional local optimizations to

18

eliminate unnecessary computation. DPF uses dynamic code generation to achieve
performance improvements over other interpreter-based systems.

Common prefixes always appear in the same order because DPF enforces in-
order packet header traversal. But, prefix compression fails when the filter itself
does not conform to same order as other already installed filters.

BPF+

BPF+ provides a high-level declarative predicate language for representing filters.
The BPF+ compiler translates the predicate language into an imperative, control
flow graph. Before converting this control flow graph into low-level code, BPF+
applies a data-flow algorithm, called “redundant predicate elimination” for predi-
cate optimization. BPF+ uses other common compiler optimizations like peephole
transformations also. For example, if we specify a filter to accept all packets sent
between host X and host Y, then a CFG representation would be as shown in fig-
ure 2.6. Here, MPF, PATHFINDER and DPF would not be able to perform any
optimization as there is no common prefix. But BPF+ will be able to identify
an opportunity for optimization using global data flow optimization techniques. If
control reaches the node “dest host == Y” then we know that the source host is
X. Therefore, the source host can not be Y. So the node “source host == X” is
redundant. But this node can not be removed as there is another path through that
node. So the dashed edge is transformed to point to FALSE node. This reduces the
average path length, and thereby improves filter execution performance.

All these optimizations are done while preserving the order in which the tests
are specified. This reduces the opportunities for sharing common tests.

19

source host == X

source host == Y

dest host == X

dest host == Y

FALSE TRUE

F

F

F

F

T

T

T

T

Figure 2.6: CFG for “all packets sent between X and Y”

20

Chapter 3

Algorithm

In this chapter we discuss the algorithm that we developed for generating packet
filters. We begin this chapter with an overview of the Adaptive Pattern Matching
technique.

3.1 Adaptive Pattern Matching

We have seen in chapter 1 that pattern matching techniques typically preprocess
the patterns into a DFA-like automaton that can rapidly select the patterns that
match the input term. This automaton is typically based on left-to-right traversal
of the patterns. The main advantage of such a matching automaton is that it does
not involve backtracking. The drawback of this automaton is that the size of the
automaton might be exponential in the number of patterns. One way of minimizing
both space and matching time requirements is to modify the traversal order to suit
the set of patterns.

Consider a network packet with fields f1, f2, f3, ... fn. Suppose we have
patterns p1, p2, and p3 that specify constraints on fields f1, f2, f3, and f4 as
follows:

p1 : (f1 == a)&&(f3 == a)&&(f4 == b)

p2 : (f1 == a)&&(f2 == b)&&(f3 == a)&&(f4 == a)

p3 : (f1 == a)&&(f3 == a)&&(f4 6= a)&&(f4 6= b)
Then a automaton based on left-to right traversal is shown in figure 3.1.
Here, each state corresponds to the prefix of the packet seen in reaching that state

and is annotated with the set of patterns that can possibly match. For example, in
the figure 3.1 state 5 is annotated with {p1, p2, p3} because after seeing the prefix
aba in the packet we can not rule out a match for any of the three patterns.

Now if we consider a different traversal order, say as shown in figure 3.2 then we
get an automaton that is smaller and takes less time to match patterns p1 and p3.

21

f4 == bf4 == a

f1 == a

f2 == b f2 != b

f3 == a

f4 != a && f4 != b

{p1, p2, p3}

{p1, p2, p3}

{p1, p2, p3}

{p1, p2, p3}

{p1, p3}

6
{p1, p3}

f3 == a

f4 != a && f4 != b

1

2

3 4

5

7 8 9 121110

f4 == bf4 == a

{p3}{p1}{}{p3}{p1}{p2}

Figure 3.1: Left-to-right Automaton

22

3

f1 == a

{p1, p2, p3}

{p1, p2, p3}

{p1, p2, p3}

{p2}

{p1}

f4 == a
f4 == b

f4 != a && f4 != b

f2 == b
f2 != b

{p1, p2, p3}

{p3}

f3 == a

4

7 8

65

1

2

{}

Figure 3.2: Adaptive Automaton

23

procedure Build(s) {
1. // s is a state of the automaton.
2. if (s.Candidates == φ) {
3. //stop
4. } else {
5. tests = Select(s.Conditions)
6. //This selects the tests to be preformed .
7. for each ti ∈ tests do
8. si = Create()
9. for each cj in s.Conditions do
10. if (cj/ti == TRUE) {
11. si.Matched = si.Matched ∪ {pj}
12. } else if (cj/ti == FALSE) {
13. si.Failed = si.Failed ∪ {pj}
14. } else {
15. si.Candidates = si.Candidates ∪ pj

15. si.Conditions = si.Conditions ∪ {cj/ti}
16. }
17. enddo
18. Build(si)
19. enddo
20. }

Figure 3.3: Algorithm for constructing adaptive automaton

3.2 Algorithm to build Adaptive Automaton

Figure 3.2 shows our algorithm Build for constructing an adaptive automaton. A
state s of the automaton remembers the patterns that are matched in reaching s
from the start state using the set Matched. The set Failed in state s contains the
patterns that can not be matched after s is reached. The set Candidates contains the
patterns that can possibly match after s. In the start state Matched is empty and
all patterns are in Candidates. Conditions is the set containing all the conditions
that remain to be checked once the state s is reached. All elements of Conditions
are conjunctions of tests. Select is a procedure that returns the next tests that
should be performed. Note that all the tests returned by Select contain a common

24

T1 T2 T1/T2 Additional Conditions

T T TRUE

T !T FALSE

x == a x == a’ FALSE a 6= a’

x == a x ∈ [a1, a2] x == a a ∈ [a1, a2]
FALSE otherwise

x == a T x == a

x 6= a x == a’ TRUE a 6= a’

x 6= a x ∈ [a1, a2] TRUE (a < a1) || (a > a2)

x ∈ [a1, a2] x == a TRUE a ∈ [a1, a2]
FALSE otherwise

x ∈ [a1, a2] x ∈ [a3, a4] TRUE (a1 ≤ a3) && (a2 ≥ a3)
FALSE (a2 < a3) || (a1 > a4)

T x == a T[x←a]

T T’ T

Table 3.1: Definition of / and % operations

attribute. Different patterns might contain different tests on the same attribute.
For instance, a pattern may specify the test p.protocol == IP TCP while another
pattern may specify the test p.protocol == IP UDP. There are transitions from s
for each distinct test ti to a new state si. There will also be a transition from s
on else which will be taken when other edges leaving s can not be taken. So else
corresponds to !t1∧!t2 ∧ ...!tn. The else transition leads to state sn+1.

For each new state si we have to form the sets Matchedi, Failedi, Candidatesi,
and Conditionsi. To this end, we define two new operations, quotient (/) and

remainder (%), on tests and conjunctions. Informally, if t1 and t2 are tests, then

t1/t2 gives the value of the test t1 given that t2 evaluates to true. t1%t2 is equal to

t2 if t1/t2 equals TRUE and is UNDEFINED otherwise. % is used to extend / for
conjunction of tests as follows:

(t1 && c) / t = (t1 / t) && (c / (t1 % t))
where c is a conjunction and t is a test.
Table 3.1 defines the / operation. The entries are tried top to bottom, and the

first applicable entry is used. Note that the additional condition in the table 3.1
must be satisfied before that entry can be used.

Now the sets Matchedi, Failedi, Candidatesi, and Conditionsi can be formed
as shown in the figure 3.2.

1. Convert conditions to Disjunctive Normal Form.

As we have seen in section 2.2.5, a pattern consists of an event and possibly the

25

associated condition. Each condition is a boolean expression involving tests
on attributes. So initially we have a set of conditions and their associated
patterns. Let us denote this set by

{[C1 → P1], [C2 → P2], ..., [Cn → Pn]}

There may also be patterns which do not have any associated conditions. We
collect these patterns into the Matched set i.e

Matched = {M1, M2, ..., Mk}

Here each Mi is a pattern with no associated condition. We collect the patterns
which have conditions into the Candidates set i.e

Candidates = {P1, P2, ..., Pn}

Note that initially Failed = φ.

Now all the conditions are converted into Disjunctive Normal Form. We collect
all conjunctions obtained from all conditions into the Conditions set. Note
that each conjunction is associated with a pattern. This step may break up
the condition associated with a pattern into multiple conjunctions. So we get
the set

Conditions = {[c1 → p1], [c2 → p2], ..., [cm → pm]}

where each ci is a conjunction and pi ∈ {P1, P2, ..., Pn}. Here, each ci is a

conjunction of tests. (We can consider each conjunction as a list of tests).

Each test is either of the form (e relop e′) or !(e relop e′) where e and e′ are
expressions and relop is a relational operator.

relop ∈ {=, 6=, >, <,≥,≤}

The following example illustrates this step. Consider the following three pat-
terns before this step:

P1: rx(p) | (p.protocol != IP_TCP) && (p.protocol != IP_UDP) &&

(p.protocol != IP_ICMP) && (p.protocol != IP_IGMP)

P2: rx(p) | (((p.udp_sport == ECHO_PORT) &&

(p.udp_dport == CHARGEN_PORT)) ||

((p.udp_dport == ECHO_PORT) &&

(p.udp_sport == CHARGEN_PORT)))

26

P3: rx(p) | (p.tcp_flag == SYN) || (p.tcp_flag == ACK)

After converting the conditions into DNF form we get,

c1: (p.protocol != IP_TCP) && (p.protocol != IP_UDP) &&

(p.protocol != IP_ICMP) && (p.protocol != IP_IGMP)

c2: ((p.udp_sport == ECHO_PORT) && (p.udp_dport == CHARGEN_PORT))

c3: ((p.udp_dport == ECHO_PORT) && (p.udp_sport == CHARGEN_PORT))

c4: (p.tcp_flag == SYN)

c5: (p.tcp_flag == ACK)

The sets constructed for the start state are Matched = φ, Failed = φ,
Candidates = {P1, P2, P3}, Conditions = {[c1 → P1], [c2 → P2], [c3 →

P2], [c4 → P3], [c4 → P3]}

2. Normalize variable names

BMSL supports variables which have different scopes. State variables have
global scope while the scope of local variables is restricted to a single rule.
The event arguments are also treated as variables.

This step is needed to ensure that identical variables denote identical things

across all conjunctions. For instance, $i should mean the ith argument of
current event regardless of which pattern the conjunction belongs to. In case
of state variables, identically named variables across different conjunctions
denote the same thing.

3. Introduce temporary variables

We replace expressions involving arithmetic operations with temporary vari-
ables. This allows us to compute common subexpressions only once. We
ensure that identical expressions across all conjunctions get replaced by iden-
tical temporary variables. For example, let v1, v2, etc. represent variables
and f be a predicate on the variables and cj be conjunctions:

c1 : !((v1 + v2) > v3− (v4 + v5)) && (2 6= (v1 + 5))

c2 : ((v4 + v5) + (v6 + v7) < (v1 + 5)) && !(v7 == 2) && !f(v1, v2 + v3)

Conditions = {[c1 → P1], [c2 → P2]}

So we replace the expressions by temporary variables tempk as follows:

temp1 = v1 + v2

27

temp2 = v4 + v5

temp3 = v1 + 5

temp4 = v3− temp2

temp5 = v6 + v7

temp6 = temp2 + temp5

temp7 = v2 + v3

temp8 = f(v1, temp7

So the conjunctions are now transformed to:

c1 = {!(temp1 > temp4), (2 6= temp3)}

c2 = {(temp6 < temp3), !(v7 == 2), !temp8}

We note here that the expression associated with a temporary variable is
evaluated only once.

4. Introduce new bit-masking expressions

Expressions involving bit-mask operations are treated in the following way:

(a) When we come across an expression of the form (x&a == e), where x is
a variable, a is a constant and e is an expression, we look for another bit-
masking operation on the same variable with a different mask (x&a′ ==

e′).

(b) We break this operation into multiple pieces such that they mask out
disjoint bits of x. For example, there could be three such masks in this
case, a1 = a&a′, a2 = a& a′, and a3 = a&a′.

(c) Replace (x&a == e) with ((x&a1 == e&a1) && (x&a2 == e&a2)) and

(x&a′ == e′) with ((x&a1 == e′&a1) && (x&a3 == e′&a3)).

(d) Go back to (a) until no pair satisfying (a) is found.

Not that the transformations are applicable regardless of which side of ‘==’
symbol the masking operation appears.

The purpose of the above transformations is that tests of the form (x&0x7f ==

0x33) and (x&0x83 == 0x3) can be factorized appropriately. This is best il-
lustrated by an example.

Consider the Conditions containing

[(x&0x7f == 0x33)→ P1]

[(x&0x83 == 0x3)→ P2]

28

[(x == 0x20)→ P3]

If temporary variables are introduced without the above transformations, then
we get:

temp1 = x&0x7f

temp2 = x&0x83

[(temp1 == 0x33)→ P1]

[(temp2 == 0x3)→ P2]

[(x == 0x20)→ P3]

This suggests that the three tests are independent. However, with the above
transformations we get:

temp1 = x&0x3

temp2 = x&0x7c

temp3 = x&0x80

[((temp1 == 0x3)&&(temp2 == 0x30))→ P1]

[((temp1 == 0x1)&&(temp3 == 0x0))→ P2]

[((temp1 == 0x0)&&(temp2 == 0x20)&&(temp3 == 0x0))→ P3]

In this case, tests on a single attribute i.e. temp1 will distinguish between the
three patterns.

5. Convert inequalities involving a constant into a range

This step is used for integer variables. The purpose of this step is to combine
the tests involving the same variable. The expressions that involve the rela-
tional operators {=, >, <,≥,≤} and where one argument is an integer variable
and the other is a constant, are converted to ranges. For instance, x ≥ 5 get
converted into x ∈ [5,∞], y < 3 into y ∈ [0, 2] if y is an unsigned integer and

into y ∈ [−∞, 2] if it is a signed integer.

This step helps us merge tests and remove conjunctions containing incompat-
ible tests. For instance, if a conjunction contains tests (x > 9) and (x < 21),

then they are merged to give x ∈ [10, 20]. If on the other hand the tests were

(x < 9) and (x > 21) then the conjunction would be removed from Conditions
since x can not satisfy both the tests at the same time.

Note that tests like (x > y) that do not contain any constant and (x 6= 30)
that involve 6= are not transformed.

29

6. Push NOTs inside and convert boolean tests into expressions

In this step, we push ! operator inside the expressions. So, a test like !(x > y)

gets turned into (x ≤ y).

Also, boolean tests like (temp1) and !(temp2) are converted to (temp1 ==

TRUE) and (temp2 == FALSE).

All tests involving only constants are evaluated. If any of these tests like 2 > 5
evaluates to FALSE then the conjunction is removed from Conditions. This
step evaluates the expressions involving only constants in temporary variable
bindings also. For instance, if (temp1 = 2 + 5) then we can replace temp1 by
7 in all tests.

At this point, each test is of the form (var relop var) or (var relop const), and

each temporary variable binding is of the form temp = op(e1, ..., en) where
each ei is a constant or a variable, and op is an arithmetic or a bit-masking
operation.

For example the conjunctions at the end of step 3 are converted to:

c1 = {(temp1 ≤ temp4), (2 6= temp3)}

c2 = {(temp6 < temp3), (v7 6= 2), (temp8 == FALSE)}

The temporary variable bindings remain the same.

7. Order Conditions

This step is an ordering operation on the Conditions set that allows us to per-
form many operations efficiently in the automaton construction. For example,
when the tests within a conjunction are in a particular order, we can perform
certain short circuit operations like ignoring all tests after a particular test
while scanning.

The ordering is done in a bottom-up fashion as follows.

(a) Order variables within each test

If a test contains a constant and a variable, then the constant goes on the
right hand side. If the test contains two variables, then the variable that
is earlier in the lexical order goes on the left hand side. For example, the
conjunctions at the end of step 6 are converted to:

c1 = {(temp1 ≤ temp4), (temp3 6= 2)}

c2 = {(temp3 > temp6), (v7 6= 2), (temp8 == FALSE)}

(b) Order tests within each conjunction

30

The tests in a conjunction are ordered such that a test (x op e) appears

before (x′ op′ e′) whenever (x, op, e) < (x′, op′, e′). In this context, a con-
stant is greater than any variable. For operators, we use lexical ordering
just as is done for variables. For example, the second and third tests are
exchanged in c2 as:

c1 = {(temp1 ≤ temp4), (temp3 6= 2)}

c2 = {(temp3 > temp6), (temp8 == FALSE), (v7 6= 2)}

(c) Order conjunctions in Conditions We sort the conjunctions such that the

smallest conjunctions (in terms of the number of tests in them) appears

first. In our example no reordering is necessary as |c1| < |c2|

3.3 Computation of <determinism, utility, branching

factor>

The Select function scans through the tests in the conjunctions until a candidate
test, say T is identified.test For this test, Select computes the value <determinism,
utility, branching factor>. If the best possible value is obtained then the search is
stopped. Otherwise, the search continues with other candidate tests. The test with
the best value i.e. highest determinism, highest utility, and lowest branching factor
is returned by the Select function.

Next we see how the value <determinism, utility, branching factor> is computed.
Depending on the type of T there are three cases as follows:

1. T is of the form (x = a1)

We identify all conjunctions that have a test of the form (x = ai) where
ai 6= aj∀i, j. All these conjunctions contribute 1 to determinism and utility.

Let the distinct constants compared with x be a1, a2, ..., ak. Then branching
factor is equal to k. This is because if this test is chosen, then branches will
formed for each of

T1 : (x = a1), T2 : (x = a2), ..., Tk : (x = ak)

The else branch corresponds to performing the test,

Tk+1 : (x 6= a1) ∧ (x 6= a2) ∧ ... ∧ (x 6= ak)

A conjunction c′ that does not contain a test of the form (x = ai) contributes

1− m−1

m
to determinism, where m is defined as follows.

m is the number of different Ti’s such that c′/Ti is not FALSE.

c′ contributes 1 to utility if it contains a test of the form x ∈ [a, a’] or x = y.

31

2. T is of the form x ∈ [a1, a2]

We identify all tests in all conjunctions that are of the form x ∈ [a1’, a2’]. We
pick a value a and compute the following values,

n+
a = number of conjunctions with a test of the form (x ∈ [a1’, a2’]) such that

a1’ > a

n−

a = number of conjunctions with a test of the form (x ∈ [a1’, a2’]) such that
a2’ ≤ a

n∗

a = number of conjunctions with a test of the form (x ∈ [a1’, a2’]) such that
a1’ ≤ a and a2’ > a

We compute costa as (n+
a + n∗

a)
2 + (n−

a + n∗

a)
2

We select a value of a that minimizes costa. This corresponds to performing
a test (x > a) at the current state of the automaton. For this test, the value
of determinism is given as follows. Each conjunction c in Conditions con-
tributes 1 to determinism if either c/T = FALSE or c/!T = FALSE. Each

conjunction with a test of the form (x ∈ [a1, a2]) contributes 1 to utility.

Note that the minimum possible cost is n2

2
, where n is the number of con-

junctions that have a test of the form (x ∈ [ai, aj]). This is minimum cost

is achieved when n∗

a = 0 and n+
a = n−

a = n
2
. This means that when costa is

minimum, the intervals are partitioned into two sets.

The branching factor is 2 corresponding to tests (x > a) and (x ≤ a).

3. T is of any other form

The branching factor is 2 corresponding to tests T and !T. Each conjunction
c in Conditions such that c/T = FALSE or c/!T = FALSE contributes 1

to determinism. Every c such that (c/T 6= c) and (c/!T 6= c) contributes 1 to
utility.

3.4 Subautomaton sharing

We further minimize the space requirements by merging equivalent states. Two
states are equivalent if they have the same remaining conjunctions i.e the same
Conditions sets. This merging is done at the time of automaton construction itself.
When we recognize that a new state that is to be created has an equivalent state
that is already created, then we make a transition to the equivalent state. Note
that we don’t have to create the new state. Also, we do not perform build on the
equivalent state because its subautomaton has already been built. This creation of

32

directed acyclic graph(DAG) automaton further reduces the size of the automaton.
Note that this subautomaton sharing does not help in improving the matching time.

33

Chapter 4

Summary

4.1 Implementation

Our implementation consists of a compiler and a runtime system. The compiler is
responsible for translating the network packet filter specifications into C++ code.
The aspects of compilation unique to our system include type-checking for packet
data types and the compilation of pattern-matching. The C++ code generated by
our compiler is compiled by a C++ compiler and linked with the runtime system to
produce the network packet filtering system.

Type-checking for Packet types: We have seen in section 2.2.4 that structures
are augmented with constraints. These constraints have to be checked before any
field of the structure is accessed. So in the type-checking phase, we add the struct-
constraints to the structure fields in the tests. For example, when the type-checker
comes across a test of the form p.protocol != IP TCP, it resolves p.protocol to
the protocol field in ip hdr. Since ip hdr derives from ether hdr with the struct-
constraint e type == ETHER IP, the type-checker associates the struct-constraint
p.e type == ETHER IP with p.protocol.

In the type checking phase, whenever we come across any structure field in
a test, we add the struct-constraint associated with the field as a test into the
conjunction. Note that the struct-constraint may itself involve test on a field of
another structure. Then we also have to add the struct-constraint associated with
this field to the conjunction. So in this step we check each test in a conjunction and
add the struct-constraints associated with any field access. Then we apply this step
recursively to the struct-constraints that are added.

Let us consider the the patterns specified in the previous step. In conjunction
c1, before we can access the protocol field of the ip hdr we need to check the
struct-constraint e type == ETHER IP. So we add this struct-constraint to c1. The

34

conjunction c1 becomes

c1: (p.e_type == ETHER_IP) && (p.protocol != IP_TCP) &&

(p.protocol != IP_UDP) && (p.protocol != IP_ICMP) &&

(p.protocol != IP_IGMP)

Similarly, c2 and c3 become

c2: (p.e_type == ETHER_IP) && (p.protocol == IP_UDP) &&

((p.udp_sport == ECHO_PORT) && (p.udp_dport == CHARGEN_PORT))

c2: (p.e_type == ETHER_IP) && (p.protocol == IP_UDP) &&

((p.udp_dport == ECHO_PORT) && (p.udp_sport == CHARGEN_PORT))

The above conjunctions show many fine points. First, notice that even though
both udp sport and udp dport have struct-constraint protocol == IP UDP we add
it only once in each conjunction. This sharing of struct-constraints in a conjunction
reduces redundancy. This is because we need to check protocol == IP UDP only
once along a path of the automaton. Notice that the sharing does not take place
across conjunctions. This is to ensure that the struct-constraint is checked in the
paths for each each of the conjunctions. Second, protocol itself has a struct-
constraint e type == ETHER IP which is added to the conjunction.

Compilation of Pattern-Matching: We have seen in chapter 3 how the pat-
terns are compiled into a kind of automaton for efficient pattern matching.

We used some sample pattern files to check the size of the generated automaton.
We observed that a filter specification consisting of 27 patterns and 106 constraints
gets compiled into an automaton having 240 states. We compiled another specifica-
tion consisting of 22 patterns and 73 constraints. The generated automaton had 167
states. This shows that the size of the automaton is not exponential in the number
of patterns.

Runtime System: The runtime provides support for capturing network packets
either from a network interface or from a file. The code for doing this is currently
based on the Berkeley packet filter code. This code is used to read all network
packets (either from a file or a network interface). The actual filtering and other
processing is done by the code generated by our compiler.

35

4.2 Conclusion

We believe that our algorithm for fast pattern matching in packet filtering can be
used in many applications like intrusion detection systems, firewalls, routers and
networking monitoring systems.

36

Bibliography

[1] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L. Peterson, and Prasen-
jit Sarkar. Pathfinder: A pattern-based packet classifier. In Operating Systems
Design and Implementation, pages 115–123, 1994.

[2] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Exploiting
global data-flow optimization in a generalized packet filter architecture. In
SIGCOMM, pages 123–134, 1999.

[3] S. Chandra and P. McCann. Packet types, 1999.

[4] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, flexible message demul-
tiplexing using dynamic code generation. In SIGCOMM, pages 53–59, 1996.

[5] L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is np-

complete. In Information Processing Letters, pages 5(1):15–17, 1976.

[6] M. Jayaram, R. Cytron, D. Schmidt, and G. Varghese. Efficient demultiplexing
of network packets by automatic parsing, 1994.

[7] Steven McCanne and Van Jacobson. The BSD packet filter: A new architecture
for user-level packet capture. In USENIX Winter, pages 259–270, 1993.

[8] J. Mogul, R. Rashid, and M. Accetta. The packet filter: An efficient mechanism
for user-level network code. In Proceedings of the 11th ACM Symposium on
Operating Systems Principles (SOSP), volume 21, pages 39–51, 1987.

[9] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag. A high-performance network
intrusion detection system. In ACM Conference on Computer and Communi-
cations Security, pages 8–17, 1999.

[10] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching.
In Automata, Languages and Programming, pages 247–260, 1992.

37

[11] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss.
Efficient packet demultiplexing for multiple endpoints and large messages. In
USENIX Winter, pages 153–165, 1994.

38

