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Abstract of the Thesis

Static Binary Analysis And Transformation For Sandboxing Untrusted Plugins
by

Prateek Saxena

Master of Science
in

Computer Science

Stony Brook University
2007

Computers today have become a integral part of daily activities for users who rely on them

as means of communication, financial management, entertainment, and business. Moreover, users

today are depending increasingly on off-the-shelf software from untrusted sources like the Internet

for everyday life. This factor has prompted research on mitigating the threat of untrusted programs

running on the end user’s personal computers. Relatively lesser focus has been laid on the threat

of software extensions such as plug-ins and modules for trusted host system such as web browsers

and email clients. With the alarming increase in malware that continues to defeat state-of-the-art

defenses and evades detection, this work aims to be part of a general body of “proactive” defense

technique that gives strong guarantees against future attacks, as opposed to a defense strategy that

is developed in response to known vulnerabilities and their exploits.

In this context, this thesis has three objectives. First, it analyzes the threat model imposed by

shared-address space extensions and modules that plug into larger host systems. Second, it surveys

the limitations of existing mechanisms to deal with this threat, and proposes a practical approach

to confinement of untrusted extensions. Finally, it presents a robust static binary rewriting and

analysis framework that has more general applicability as tool for analysis and instrumentation for

security applications where no source code is available.
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Chapter 1

Introduction

In recent years, there has been an explosive increase in malware, which often hides in software from
untrusted sources on the Internet. This is largely because users are relying increasingly on untrusted
software for daily activities such as instant messaging communication and viewing various forms of
multimedia content for business activities and entertainment. The high risk of damage posed by
such applications has prompted research into practical techniques that can allow safe execution of
untrusted software [28, 7, 24].

A majority of efforts in untrusted software security have been focussed on stand-alone appli-
cations using techniques such as policy-based confinement (also known as sandboxing) [28, 7, 24]

and isolated execution environments (e.g., using virtual machines). However, these techniques do
not address the serious threat posed by software extensions in plug-in and module-based software
architectures. Examples of such extensions include browser plug-ins for viewing (or listening to)

various forms of content on the Internet [1], Search or other toolbars for browsers, audio and video

codecs, Apache modules[2], Office add-ons, and Photoshop image processing filters. More gener-
ally, software libraries such as those for image decoding and internationalization font support are
instances of application extensions that operate with almost all GUI desktop applications.

Software extensions can alter application behavior in malicious ways because they reside within
the same address-space as their host applications, and communicate with it via expressive APIs that
have been custom-designed for the application. This enables attacks wherein the extension subverts
the host application’s logic by corrupting its data structures. Possible targets of such corruption
include function pointers used by the host, variables holding the names of files written or executed
by a program, buffers holding the data to be written by a program, etc. The threat is realistic and
growing sharply, as confirmed by [30] which details that nearly 75% of the spyware on the Internet,
uses browser extensions to monitor user activity. The attacks that specially crafted malicious
extensions can perpetrate are much more powerful that those that exploits benign extensions. There
is already compelling evidence for the latter, as seen in attacks targeting helper codec libraries[4],

and multimedia players [3]. Clearly, there is a need to study the impact of using software extensions
obtained from untrusted third-parties on the security of host systems, and develop corresponding
defenses against the threat.

Static detection of malicious behavior is often hard because malicious code may use various
forms of obfuscation to evade detection [19, 13]. In general, techniques that aim to detect a specific
“signature” behavior have limited applicability as a proactive defense technique, because they give
no guarantees against an attack. Software-based fault isolation (SFI) [29] is a language-based
mechanism that provides such comprehensive protection at a lower cost than what is possible
with OS-provided memory protection mechanisms. XFI [15] is a recently developed technique that
can limit memory accesses made by extensions to specified ranges of addresses, and ensure that
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the extension can call only a specified set of functions provided by its host application. These
specifications essentially correspond to security policies that are enforced on extensions. The low-
level nature of these specifications is motivated by the low-level nature of attack capabilities that
extension code poses. Although these techniques are able to provide a possible foundation for
securing extensions, their mechanisms are not easily adapted to achieve typical security objectives
relevant to the extensions outlined earlier. There are two main reasons for this :

• Shared-memory plugins are popular because they can exchange complex data structures with-
out worrying about where and how its components are created. As a result, host-extension
interfaces tend to consist of aggregate data structures, which in turn contain multiple level
of pointers to memory regions dynamically created by both the extension and host. Inferring
memory access constraints becomes impractical in such a setting. This is because it is hard
to identify all the memory regions that are granted legitimate access by the host applica-
tion, out of the complete set of memory locations accessible through the pointers explicitly
passed as function arguments to plug-in functions, or implicitly shared in the process address
space. Moreover, if the host application changes some of the pointer values, that may implic-
itly change the memory regions accessible to the plug-in. Finally, the efficiency of memory
protection using above mentioned techniques can degrade quickly if the number of memory
regions increases beyond a few.

• The APIs exposed to the extension by the host typically consists of hundreds to thousands
of functions. As an example, the KDE libraries, which provides the basic I/O and GUI

services to most plug-ins (as well as stand-alone applications) in the KDE environment,
contain over 24,000 functions. Given the large API being exposed to an untrusted plug-in, it
is unreasonable to assume that these API functions are written carefully enough to protect
themselves from maliciously crafted data that may be passed into them. As a result, policies
that simply allow (or prohibit) access to a set of functions are not powerful enough to offer
protection from plug-ins that use large host APIs.

This thesis aims to address these drawbacks in the context of complex extensions, using a secure
attribution mechanism to identify which actions are performed by the untrusted plugin code, or by
trusted host application on its behalf. In effect, this allows us to separate the policy enforcement
from the complex extension APIs and memory access locations, to other smaller APIs that can be
secured easily, such as the system-call API. The primary difficulty in delayed policy enforcement is
that security-sensitive API functions may be invoked by the trusted host application as well as the
untrusted extension. Our approach is to use information flow tracking to attribute the call to trusted
(or untrusted code), and enforce appropriate security policies based on which object “controls” the
action. The main advantage is that policies developed in system call based sand-boxing approaches
[24, 27] for stand-alone applications, can be applied more or less directly for extensions providing
similar functionality. Further, we discuss the threat model and possible attacks that an adversarial
extension may perpetrate, and show how our approach is designed to defend against them.

In order to make the mechanism practical, we developed a static binary transformation and
analysis tool for Linux/x86, that has a much more general applicability in security applications. It
can be used as a whole-program analysis tool for binaries, and for robust heavy-weight transfor-
mation of large applications. In general , the thesis makes two main contributions to the area of
program transformation :

• It provides evidence for the potential of combining static analysis and runtime enforcement
on binaries as an effective technique, yielding performance comparable to those offered by
similar approaches on source code.
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• It demonstrates the relative merits of static binary transformation against dynamic transla-
tion, as a means to achieve more practical performance without sacrificing robustness.

In particular, we apply static analysis to recover some of high-level program structure unavail-
able in commercial COTS binaries. This enables several performance optimizations to dynamic
taint-tracking instrumentation. The net effect of these optimizations is that taint-tracking on
binaries incurs performance penalties that compete with those obtained by source/compiler trans-
formations, and are better than those offered by contemporary binary based approaches by a factor
of 4.

1.1 Organization of The Thesis

In Chapter 2 we describe the threat model imposed by untrusted software extension operating in
the address space of trusted host, and the corresponding defense strategy. Chapter 3 describes
the design and services offered by BinStat – a static analysis and transformation tool developed for
realizing the system. Chapter 4 describes the performance optimizations developed in the context of
binary taint-tracking using BinStat. In Chapter5, BinStat implementation and the implementation
of other tools employed in sand-boxing are detailed. Chapter 6 presents and experimental evaluation
the effectiveness of the defense technique, the robustness of the tool, and the performance gains
achieved by the optimization techniques.
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Chapter 2

Containment of Shared-Memory

Extensions

Module and plug-in based architectures are becoming increasingly popular because of the flexibility
they offer for extending the functionality of host applications such as browsers, web servers, email
clients, office tools, and so on. The added flexibility comes at the expense of possible security
compromises as a result of the excessive permissibility granted to untrusted components. Extensions
such as browser plug-ins can access all of the memory of their host application. In addition, they
can interact with their host application using application-specific as well as system-wide APIs
consisting of thousands of functions. These factors make it very difficult to distinguish the actions
of the extension from its host application, thus complicating efforts to selectively contain such
extensions.

We could treat any application containing an untrusted extension as untrusted, and apply the
techniques developed previously for securing untrusted applications. However, such an approach
would typically be unduly conservative, precluding some of the intended uses of the host application.
For instance, any addition of an untrusted plugin to a browser will render the whole browser
untrusted, making it unsuitable for high-security operations (e.g., accessing an online bank). It is
therefore necessary to develop techniques that can confine the extension code without limiting the
privileges granted to the (trusted) host application.

Malicious extensions sharing the address space with host applications has serious consequences.
They may be specially crafted to violate common conventions implicit in the host application code,
which is typically compiled by a benign compiler. To understand the scale of possible damage, we
first describe the threat model in Section 2.1. In section 2.2 we describe how previous approaches
are either inapplicable or have dealt with this threat only partially ignoring important possible
attacks . In section 2.3 a basic defense strategy is described, and analysis of its effectiveness
against the threat model is presented. The implementation and complete experimental evaluation
is deferred until later in the thesis.

2.1 Threat Model and Attacks

In this section, we show that adding a untrusted software extension that resides as part of a trusted
host application, poses a powerful adversarial threat. Consider the simple case of multimedia
decoder for a certain digital format of video. Typically, these “codecs” are available for downloads
these from untrusted sources such as the Internet, and perform specific decoding operations on
buffers explicitly given to it by a media player. Thus, such an extension is tightly coupled with
the media player and is loaded dynamically as a shared library having full access to the process
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address space of the media player. Moreover, for most media players (such as VLC player, Gxine,

on Linux) there are equivalent software extensions available as shared libraries, that plug into a
browser for viewing online videos. As a result, the security of the browser may be impacted by the
loaded media player libraries, and the associated codecs it imports in the address space. Malicious
media players or its codecs may directly perpetrate attacks on the browser.

We assume that these untrusted components are available in binary form. Even if their source
code is available, it can not be trusted to have the same behavior as its binary as it may be compiled
by a malicious compiler. Further, we assume there exists a extension API and a low-level platform
defined Application Binary Interface or ABI for communication and inter-operability with the host.
However, the untrusted extension may not conform to either of these. We restrict the untrusted
extension to operate in user space, and not use vulnerabilities in the operating system for attacks.
The end goal of the attacker is execute a sensitive operation such as a system call of its choice, or
“control” the operation without alerting the user by causing a system crash.

We loosely measure the power or capabilities of an attacker, based on the control it is able to
exert on the choice of the sensitive operation, and the values of the arguments. Clearly, the attacker
that has a very limited choice for arguments to a given system call, say read, (such as static strings

used the host application), is much weaker than an attacker having arbitrary control to execute any
system call with any arguments. Consequently, there is spectrum of attacks vectors possible when
varying the range from “no control” to “arbitrary control” for each of the mentioned parameters.
We see here that there is inherent degree of freedom in defining the attack model. Later in our
defense evaluation, we argue that even though our defense may not prevent an arbitrary attacker,
it does render most of the practical attacks impossible.

In practical applications, we identify the following ways in which the attacker may compromise
the system :

1. Subverting program flow. The program may subvert program flow of the trusted code by
corrupting function pointers, and return addresses to directly execute sensitive operations or
execute host code that in turn calls sensitive operations. Further, corruption of its own code
pointers and return address may allow the untrusted extension to inject new code or execute
code that may be hidden from disassemblers by obfuscation. Extensions may also use system
features such as signals, exceptions, setjmp/longjmp to transfer control to unintended code.

2. Violating program data integrity. An attacker may directly corrupt data stored in the
process memory of the process to control the arguments. It may exploit several levels of
pointers to corrupt the intended target data in indirect memory accesses. Typically, this
may be possible because most legacy plugin APIs[1] such as Netscape API are designed for
benign plugins. Thus, the exchanged interface data structures contain objects owned by the
host application as well as extension specific data. The integrity of host-owned objects are
left unchecked at the interface, since plugins are assumed to return them unmodified. The
attacker may also use system implementation knowledge of how threads are implemented to
corrupt data. For example, on recent Linux versions, each thread is given a new base stack
address, expecting that the stack based accesses will not overflow into thread stacks of other
threads. However, this may be violated by the attacker to corrupt data on other thread
stacks.

3. Low-level attacks on ABI and violation the API. An API usually defines which func-
tions are legitimately accessible, and may be violated by extensions by calling prohibited
functions. On the other hand, an ABI specifies certain low-level restrictions on the usage
of registers and calling conventions. For example, it specifies that certain registers (called
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“callee saved registers”) are left unmodified across a function call, and specify which registers
contain return values. Similarly, the ABI may specify that the value of the stack pointer
register (ESP on x86), is unchanged after executing a function call. To enforce these, com-

pilers generate code to save/restore caller saved registers and ESP in the callee functions. A
malicious extension function may intentionally violate these conventions to subvert control
flow, or pass malicious parameters to the trusted caller functions.

4. Exploiting concurrency. Certain attacks become possible in multi-threading applications,
due to the inherent race conditions in data access between co-operating threads. Benign host
threads are often designed to employ appropriate synchronization mechanisms to update
shared data. However, interleaving of a malicious thread execution with benign threads may
allow it to unduly race with benign threads and corrupt shared data structures. This in turn
may lead to corrupted pointer usage by benign threads, and subvert data and control flow
integrity.

5. Attacks against the defense mechanism. A malicious extension may directly corrupt the
data state used by runtime monitor engine. Specially for instrumentation based approaches
such as SFI[29], there is a threat of malicious code bypassing security checks by jumping across

them. In addition, approaches that track metadata such as taint-tracking [23], suffer from the
possibility of exploiting concurrency of data and metadata access, to cause the metadata to
be out of sync with the corresponding data. All of these could be exploited to evade runtime
detection.

6. Subverting program logic. Program logic can be extremely complicated and creates de-
pendencies between data variables in the program. There may be direct data dependence
between data that is directed copied from one variable to another, or updated through point-
ers. Other dependencies like control dependencies and implicit information flow may be
exploited to evade detection.

An extension may exploit various kinds of dependencies inherent in the program logic. If
the defense is insecure, it may craft its code to use these dependencies to corrupt variables
that eventually affect the target data, without being detected. Finally, it is possible that it
may find such dependences in the host code and modify an seemingly unimportant variable
to have the host application perform an unintended action. We discuss these in more detail
later in the chapter.

2.2 Limitations of Previous Approaches

Previous works have proposed to address this problem by limiting memory sharing, and by using
small security-aware APIs. However, some of these techniques, like XFI [15, 29] are fault isolation
techniques designed to limit the damage of programming errors in extensions, and hence do not
defend against malicious extensions. As a result, these techniques are not designed to consider all
the possible attacks outlined.

XFI limits the set of addresses that the extension has legitimate access to, and prohibits it
from calling functions that are outside the API. Extending the basic XFI technique to deal with
powerful extensions such as flash players and document viewer libraries used in browsers, has
practical limitations. Host-extension APIs tend to be large and involve complicated data structures
to enhance programmability and flexibility. For instance, a media player may use a number of host
API functions: a network API for communicating with an Internet site originating a media stream,
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a window API for displaying video content and user interaction, file API for storing temporary files
(or preferences files), and so on. As a result, even after limiting accesses to certain functions, it
becomes far too cumbersome to sift through such large APIs to identify which functions can be safely
exposed to untrusted extensions, and if so, with which parameter combinations. It is reasonable
to expect that these libraries designed for non-malicious clients do not have comprehensive input
validation checks that would be needed at a security-sensitive interface. Besides, extensions can
implicitly communicate with host application by simply modifying shared data structures without
making any API calls..

To tackle these problems, sharing may be restricted, but such restrictions typically negate the
main benefits of shared memory. For instance, if we restrict sharing by predefining the address
ranges that can be shared, we complicate programming by requiring data to be copied back and
forth into these regions before each API call and/or return. Worse, one has to decide ahead of time
which pointers in a linked data structure would need to be accessed during a call, and the targets
of all such pointers would need to be copied. This can be expensive in terms of performance, as
well as the programming effort required to identify the regions to be copied and to write the code
to do the same. Such copying may even break the semantics of shared mutable data structures and
leave the application unusable.

A different approach to the problem of detection malicious behavior at runtime, is taken in [14].
This technique may be effective as a technique to detect malware that is currently available, but
is not directly applicable as proactive containment mechanism to deal with malware specifically
crafted to evade detection. As a simple example, consider the malicious extension that leaks
sensitive data by using covert channels like implicit flows. Besides, to build any confidentiality
policy there should be a basis to ensure low-level integrity to build on. This integrity seems to be
assumed in their work.

2.3 Policy Enforcement Based on Secure Attribution of Actions

Our approach is based on the intuition that unlike the APIs exposed to extensions, which have
flexibility as the primary objective, security-oriented APIs tend to be smaller, and carefully control
how shared memory is used for communicating data cross the API. For instance, the system-
call API on Linux consists of a couple of hundred functions rather than hundreds of thousands.
Moreover, the kernel code that implements system calls is memory protected from application code
that invokes these calls. It is much easier to define and enforce security policies with such APIs, as
evidenced by the rich variety of practical policy enforcement tools[24] based on this API.

In contrast to memory region based confinement approaches, we develop an approach that
enables securing extensions that rely on complex APIs. Our approach achieves this by moving
policy enforcement from the extension API to other APIs that can be secured easily, such as the
system-call API. Instead of eagerly enforcing security policies at the bulky host-extension interface
and memory access locations in the extension, enforcement is delayed until control-flow reaches
a system call. At this interface, security properties of interest can be easily expressed and safely
enforced.

Security-sensitive API functions may be invoked by the trusted host application as well as the
untrusted extension. In addition, extension code may call browser callback functions to perform
its intended action, or may simply modify the data used in arguments to system calls. Thus, our
approach tries to identify the “control context” in which a system call is made. Specifically, we use
secure attribution of operations, to attribute system calls to one of the three contexts : (a) plug-in,

(b) host application, or (c) a host-application function called by a plug-in. Different system-call
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based sandboxing policies are enforced based on this attribution, thereby enabling plug-in operations
to be sandboxed without having to restrict operations being performed by the host. This technique
has the advantage that it simplifies policy development, ensuring that certain high-level security
objectives are achieved without having to expend enormous efforts in developing or customizing
policies for each specific plug-in or module. Policies already developed in previous works [24, 27]
for stand-alone application , are shown to be applicable with little or no modifications to selective
contain extensions offering similar functionality.

This problem of identifying contexts in which function calls are invoked has been investigated
by researchers in past. Anomaly detection techniques such as those which use return addresses from
the stack[17]. The detection mechanisms employed are based on some benign assumptions based
on the structure of the call stack and data integrity at the point of invoking system calls. Thus, the
attribution mechanism is insecure and attackers can spoof the return address information to evade
detection. Unlike techniques such as these, stack inspection capabilities are built into the the design
of certain higher level languages such as Java. This has been used for inline reference monitoring[16]
by certain tools. Our technique provides this context information in an in-circumventable secure
way on binaries. It uses program instrumentation and protection of monitor state to achieve this.

The primary basis to track which data and function pointers are controlled by the plugin is
information flow tracking or taint-tracking [23]. Different transformations are used for trusted
and untrusted code. For untrusted code, the transformation is very simple: every byte of data
written by it is marked as tainted. Trusted code is transformed to perform taint-propagation. In
particular, the result of an arithmetic or logical operation is tainted if any of the operands are
tainted. Similarly, the result of an assignment is tagged as tainted if the right-hand side expression
is tainted. By propagating the “taint” information for all data in memory, we effectively identify
which data is controlled by the untrusted code. Similarly, we identify all indirect control transfers
made through tainted pointers (including return addresses), as belonging to the context of the
untrusted code. In addition to providing control context information, taint propagation provides a
secondary line of defense for checking integrity, giving fundamental low-level guarantees to enforce
higher level policies on it.

Moreover, this approach requires no require any access to the host or plug-in source code.
Instead, it is implemented by rewriting their binaries. In the chapter 6, we show the robustness
of the approach to deal with real applications, and how the performance overhead of the whole
approach is kept below 100% by means of static analysis based optimizations. Our experimental
results improve upon previously reported binary based taint-tracking approaches [25] by a factor
of 4.

2.3.1 Policy Enforcement

Using fine-grained taint information, we can now support a wide range of security policies for
confining untrusted extensions, while providing roughly the same level of flexibility, power, and
ease of policy development as with previous works on securing stand-alone untrusted applications.
Specifically, the following kinds of policies can be supported.

• System-call based sandboxing. A system call can be attributed to an extension if the
current control-flow is tainted, or if its arguments are tainted. No policies are enforced on
system calls attributed to the trusted host application. For system calls attributed to the
extension, we enforce a sandboxing policy that is appropriate for a stand-alone application
providing the same functionality. For example, a document viewer plugin may allowed to
display a certain temporary file downloaded by the browser on user consent, but prevented
from performing any network communication. By further limiting any tainted data from
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being written out through network write system call, we can prevent leakage of sensitive user
data in the browser directly to a remote attacker, through the actions of the plugin.

In general, this basic approach can be further refined, e.g., to ignore taint on system-call
arguments that don’t significantly impact security. Moreover, if some extension API functions
are known to incorporate adequate input validation, then we can untaint the arguments to
such functions at the point of call. This is often referred to as endorsement. Finally, we may
introduce finer granularity in attribution, e.g., distinguish between system calls made directly
by an extension from those that are made by the host application on behalf of the extension.

• Information-flow based OS Integrity. There has been a resurgence of interest in infor-
mation flow based mandatory access control (e.g., in Windows Vista) due to its potential
for ensuring OS integrity in the face of an alarming rise in malware. These techniques are
currently applicable to stand-alone applications. They tag any file created by an untrusted
application as having low-integrity, while files created by trusted applications are tagged as
having high-integrity; and impose a policy that prevents untrusted applications from writing
to high-integrity files. Using our approach, these techniques can now be extended to work
with shared-memory extensions. Specifically, if a file write operation is attributed to an exten-
sion, then the file can be marked as having low integrity, while files modified only by system
calls attributed to the host application may be marked as having high integrity. We can also
enforce a policy that prevents system calls attributed to the extension from modifying any
high-integrity files.

• Confidentiality policies. For stand-alone untrusted applications, confidentiality is achieved
by (a) preventing writes to the network (or public files, i.e., files that may be read subsequently

by unauthorized principals), or (b) preventing reads from files that contain confidential data.

Using our approach, both these policies can now be enforced on extensions. To achieve (a),
we simply enforce a policy that prevents tainted data from being written to network or public
files.

To achieve (b), we need enhanced information flow tracking that keeps track of confidentiality
in addition to taint. Since our taint-tracking implementation is capable of maintaining 8-bits
of taint per (32-bit) word, it is easy to designate one of these bits to store confidentiality
information. Information to be kept confidential from a plug-in, such as data read from
sensitive files or sensitive data received over the network, is marked as confidential. Finally,
a policy is enforced that prevents untrusted extension (or any code executing on behalf of it)
from accessing data marked as confidential.

• Untrusted host applications with trusted extensions. It is often desirable to provide
additional privileges to untrusted applications in a controlled way. An untrusted program
may be permitted to overwrite a local file if the user consents to this. This consent may be
obtained through a trusted library that performs appropriate checks and interacts with the
user to get her permission. To illustrate this idea, consider a web server that hosts public web
pages, in addition to password-protected pages that are accessed using SSL. We may want
to restrict the access to these password-protected documents only if the access is performed
through the web server’s SSL module.

As another example of a trusted extension, consider an untrusted application for which we
want to provide very restricted network access, e.g., a plug-in that should be permitted to
communicate with the domain that provided its content, but not others. Note that such a
plug-in may still need to do a host name lookup. We could permit this by stating that it
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can call a trusted library function gethostbyname which will in turn initiate the necessary
network communication to perform the lookup, rather than trying to write a low-level policy
that permits access to any DNS server in the world.

Our attribution-based approach can naturally handle trusted extensions. When an extension
function is invoked by an untrusted host application, the arguments are untainted, and a
control-flow context flag is set to indicate that execution is no longer under the control of the
untrusted host. System calls that result due to the invocation of this trusted function will
now be attributed to the trusted extension, and hence will be permitted. However, system
calls made directly by the host application (or using extension functions that are not trusted

in this way) will be attributed to the untrusted host application and appropriate policies will
be enforced.

Delayed Vs Eager Enforcement The primary benefit of delayed enforcement (embodied in our

approach) is that it simplifies security policy development, and allows more applications to execute
successfully. Otherwise, we would be forced to write policies on safe access to a large number of
functions, and moreover, be required to decide safety right at the point of invocation of each such
function. In addition, our approach makes a more realistic expectation on the trusted application
code — rather than assuming that every host application function that is callable by an extension
can protect itself from malformed input data, it provides a uses taint propagation as a foundation
defense technique. This allows policies of various kinds to prevent control or data subversion of the
host application functions.

The drawback of delayed enforcement is that it becomes possible for a malicious (or buggy)
extension to corrupt or confuse its host application to the point that it crashes, or simply does not
perform its function as intended. However, this would usually lead to a system crash and would
alert the user. To minimize such effects, any policies that can be easily specified and safely enforced
at the extension API should be enforced, e.g., we may prevent an extension from writing to the
stack memory used by thread(s) executing trusted code.

2.3.2 Instrumentation for Taint-Tracking

We maintain the taint information in an array tagmap. For a location l, tagmap[l] indicates if this
location is tainted or not. Tag space could be allocated statically, or using an on-demand allocation
as in [31]. We associate 8 bits of taint with each 32-bit word. This sacrifices some accuracy in
taint-tracking for byte arrays, as the same taint byte is used for all 4 bytes in a word, but this
doesn’t raise any significant issues in our application. Availability of 8-bits of taint means that we
can capture (a) multiple levels of data integrity, (b) track information flow from multiple sources,

or (c) track data confidentiality in addition to integrity.
In addition to memory, taint bits need to be maintained for each register. For the purposes

of this discussion, it is useful to think of this data as being stored in virtual registers. In the
code snippets in Figure 2.1, we use a virtual register r t to store the taint associated with a CPU
register r. Additional virtual registers VR1 through VR3 will be used for address computation (i.e.,

computing the location of tagmap[l] from l) and taint-tag computation. Since virtual registers
will ultimately be realized using memory, the instrumentation shown in Figure 2.1 uses them like a
memory operand rather than a register operand. Since registers are part of thread-specific processor
state (which is saved and restored by the OS/thread libraries on each thread switch), to preserve
the semantics of virtual registers, they need to be stored in storage locations that are unique to
each thread. On Linux/x86, thread-specific data pointer is accessed using the GS segment register.
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mov eax, VR1
mov ecx, VR2
lahf
mov eax, VR3
lea [ebp+0x1c], eax
shr 0x2, eax
mov ebp t, cl
or [eax+tagmap], cl
or ebx t, cl
mov cl, [eax+tagmap]
mov VR3, eax
sahf
mov VR2, ecx
mov VR1, eax
add ebx, [ebp+0x1c]

(a)

mov eax, VR1

lahf
mov eax, VR3
lea [ebp+0x1c], eax
shr 0x2, eax

mov 0x1, [eax+tagmap]
mov VR3, eax
sahf

mov VR1, eax
add ebx, [ebp+0x1c]

(b)

Figure 2.1: Instrumentation for an add in (a) trusted code and in (b) untrusted code.

Specifically, we use an offset from the pointer at memory gs:0x0, to point to thread-specific storage
where virtual registers are stored.

Figure 2.1 shows the basic taint-tracking instrumentation for trusted and untrusted code for
an add instruction that adds the ebx register to memory location ebx+0x1c, leaving the result
in the memory. The first step is to save eax and ecx registers so that they could be used in
the instrumentation. Next, we save the CPU condition flags in eax so that they aren’t clobbered
by the newly introduced taint-related computations. (We use sahf/lahf instruction combination,

which moves the flags into or out of ah register, instead of the more expensive pushf/popf sequence

[25].) The flags are then moved into VR3 to free eax for address computation, i.e., to compute the
address where the taint tags of the memory operand are located. In the trusted code, which does
taint propagation, we treat the data accessed using a pointer to be tainted if the pointer itself is
tainted. This is why cl, which is used to compute the taint tag of the result of the add operation, is
initialized with the tag of the pointer ebp. Next, we compute the logical “or” of this value with the
taint of the two operands to add. The result is then stored as the taint of the destination operand,
[ebp+0x1c]. Finally, the original values of the flags and registers are restored, and the original add
instruction is inserted into the instrumented code.

Note that constants have a taint tag of zero, and hence binary operations that have a constant
operand need not update the taint tag at all. A few exceptions that require special handling are
instruction patterns of “xor reg, reg” or “sub reg, reg” which are pervasively used to clear a register,
complex instructions such as string instructions which logically implement the semantics of more
than one basic instruction, and instructions that have implicit operands such as “leave”.

Instrumentation for untrusted code differs in one important way: any write by the untrusted
code causes the corresponding taint tag to be set, so we move the constant “1” into tagmap instead
of performing any computations on operand taint tags. This simplification (over trusted code)

avoids the need for a few additional save/restores of registers, thus decreasing the instrumentation
size significantly.
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<BenignFunc>:

Ct = 1
· · ·

· · ·

call [edx]
Ct = 1
· · ·

· · ·

Ct = 0

<UntrustedFunc>:

Cu = 1
Ct = 0
· · ·

· · ·

call [edx]
Cu = 1
· · ·

· · ·

Cu = 0

Figure 2.2: Scheme showing the points at which context flag bits are set and reset in a trusted
function BenignFunc and an untrusted function UntrustedFunc . If only Ct is set, the program is
in trusted context. If only Cu is set, the program is in untrusted context. If both bits are set, the
program runs in trusted context on behalf of the untrusted code.

2.3.3 Instrumentation for Attribution

Attribution of sensitive operations (such as system calls) is based on two factors: the control-flow
context in which the operation is invoked, and the taint information associated with its parameters.
This section describes how control-flow context is attributed.

At any given instant, a thread of program execution could be in one of three control-flow
contexts: (a) untrusted code (b) trusted code, and (c) trusted code called on behalf of the untrusted
code. Our instrumentation uses two context flags Ct and Cu to track these contexts. Ct is set
whenever execution is within the body of a trusted function, while Cu is set when there is a
untrusted function active anywhere on the current call stack for a given thread. Specifically:

• Ct is set at the beginning of each trusted function, and immediately after any call in its body.
It is reset at the beginning of every untrusted function. It is also reset immediately following
all calls within untrusted code.

• Cu is set at the beginning of each untrusted function and immediately following every call in
its body. It is reset at the end of each untrusted function. Cu is also set whenever a call is
made using a tainted pointer.

We point out that the instrumentation in Figure 2.2 are specifically designed to avoid knowing
the call target address for computing the context flags. This is important because such address
lookups are expensive at runtime, and may add unnecessary complexity in the system.

2.3.4 Integrity of Program Flow and semantics of the ABI

To ensure control flow integrity [6], we first perform a static inspection of the untrusted code during
disassembly to ensure that the program is assembled in a benign way. In this phase, we check that
no static intra-procedural jumps cause program execution to continue in the middle of instructions.
All static calls are checked to be to a valid entry point in the function. In case of optimizations, such
as tail-call elimination, functions may not return to their caller but instead to a sibling function.
These transfers are statically determinable and explicitly allowed. The code is checked to confirm
to alignment restrictions of the ABI, such as all function starts being 4-byte aligned. No control
transfers are allowed to be made outside the disassembled code section of the executable. In shared
libraries on Linux, external control transfers are limited through a procedure linkage table (PLT)
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mechanism which uses a function pointer dynamically updated by the runtime linker. These calls
are statically identified and appropriate function pointer integrity is maintained by checking the
taint information with them at runtime.

Runtime checking is needed for all indirect calls and returns from functions in untrusted code.
Control is allowed to follow to valid function entry points and return targets respectively. To
implement this, we associate tag bits with each valid function start and return point. In our
approach, all valid function starts and return points are given the same value. Tag values are not
stored inline in the code as in [6], but in a separate read-only array of bits, added statically as a
section in the executable binary. Indirect jumps, such as those typically generated in jump tables,
are checked at runtime to transfer control to valid basic block starts.

For the trusted code, control flow integrity property is assumed applied by the compiler. Only
the runtime checking of indirect control transfers, including returns from functions, is performed
to ensure that these code pointers are unmodified by untrusted code. Specifically, we check if the
associated taint information indicates that they are untainted. Control transfers through tainted
pointers cause the Cu flag to be dynamically set, indicating that the untrusted code controls the
execution context. Appropriate policies for untrusted context become active from this point.

Semantics of the ABI are specifically enforced on control transfers that cross the host-extension
interface. For example, on Linux/x86 most ABI require that callee-saved registers and ESP are
unmodified across a call. This may be enforced by implementing a protected shadow stack, where
these values are pushed upon the cross-domain control transfer and checked upon return. Like all
other taint information, the protected shadow stack is prevented from corruption.

2.4 Effectiveness of the Defense

In this section, we argue that this defense forms a secure basis for enforcing policies at security APIs
such as system call API. The first observation is the mechanism allows us to determine the context
of a function call by using the context information encoded in the Cu and Ct flags. Note that the
plugin can not stray outside the API without causing the control context to switch to untrusted.
Indirect control transfers and direct external calls appropriately set the context to untrusted when
the code pointers are tainted. As a result, attacks such as function pointer corruption are rendered
ineffective, as the attacker achieves nothing more than it would by calling the function directly.
Moreover, this approach is more realizable in practice because it implies no knowledge of which
host functions are callable by the extension. Indeed, if this information were made available or
inferred by other means, additional restrictions can be easily integrated in our system by using
control transfer tag checking as detailed earlier.

Control flow subversion is prevented in our approach by enforcement of control flow integrity in
untrusted code, and by runtime checking of code pointer integrity based on taint information. Our
mechanism never allows execution of code undiscovered at disassembly. This deters the attacker
that aims to achieve a significant objective from using obfuscation to evade disassembly, since
execution of undiscovered or injected code triggers an alert. Signals and other exceptional flows
that originate in the untrusted code get automatically handled, as the Cu will be set.

All data written by the untrusted code is tainted. In addition, all static data in the extension,
which is typically a shared library, is initialized as tainted. Thus, taint information for arguments
at sensitive API functions, allows us to detect which arguments may be under attacker control.
Further, whenever the pointer of a data access is tainted, the corresponding data write is also
marked tainted. This mitigates the threat of corrupting higher level pointers that eventually leads
to malicious data values.
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Our technique is designed to defend against attacks that target our specific technique by corrupt-
ing any instrumentation data. The most obvious target in this context is the tagmap. Untrusted
code may attempt to overwrite the tagmap directly, or by exploiting memory errors in trusted
code. This attack is prevented using the technique described in [31]. In particular, note that any

instructions in (trusted or untrusted code) that writes into a memory location m within the tagmap

will be preceded by an instruction that updates tagmap[m]. By leaving tagmap[l] unmapped for all
locations l that fall within the tagmap array, such an instruction will cause a memory exception,
causing the program to be aborted. Note that this technique can be extended to protect all data
structures that are used by our instrumentation since none of that data needs to be accessed by
the original code. Thus, other data used by the instrumentation, including (a) memory allocated

for virtual registers, (b) data structures used to represent allowable jump or call targets, and (c)

data structures used for policy-checking, (d) data that ensure ABI semantics at the host-extension
interface such as the shadow stack, can also be protected from corruption.

Finally, we address the threat of exploiting the program logic and concurrency inherent in multi-
threaded applications, to propagate untrusted data without propagating corresponding taint. First,
we point out the malicious code can not achieve this directly by using its own program logic, since
all data written by it is marked tainted. This addresses the use of all covert channels such as
implicit flows in specially crafted malware to corrupt program variables without propagating taint.
We argue that tracking data dependences through pointers in the trusted code, in addition to this
kind of marking in untrusted code significantly weakens attack capabilities in practice. For the
sake of discussion, consider the case of an attacker that intends to write into a trusted file, such as
a file maintained by the browser to store persistent cookie information of the user. Realistically,
to achieve this the attacker should be able to control (i.e., choose any arbitrary value for) either
the file pointer , or the data being written to the file write operation. One slightly subtle way the
attacker may achieve this is by corrupting pointers used by trusted code, to trick it to inadvertently
perform the operation for the attacker. However, our tracking of such pointer corruption will result
in the data accessed by the pointer to be tainted, thus defeating the attacker objective. As can be
seen, attackers that enjoy unbounded freedom in today’s systems to arbitrarily corrupt data and
function pointers, are highly limited in the control they exert in presence of this technique. We
point out that attackers have to find existing indirect (or control) dependences and covert channels
in benign host programs, to carry out their exploits. These channels are not considered a significant
practical threat as evidenced in most prior works on taint tracking [31, 23], that do not track control
dependence and implicit flow in benign code.

To complete the discussion of ways in which attacks can cause our tracking to miss propagating
corresponding taint, we consider concurrency attacks. The problem is simple - taint information
and data access operations are not performed atomically. This could result in two kinds of races
– write-write and read-write races. We do not worry about races where untainted data is written
whereas the corresponding taint tag ends up being “unsafe”. Such as case would only potentially
flag safe data as unsafe leading to false triggers, but can not be used by the attacker to corrupt
data without being detected. The problematic case is the reverse – at a policy enforcement point
the data is marked with “safe” taint, whereas it actually contains “unsafe” values controlled by
the untrusted code. In subsequent discussion, this dangerous condition is referred to as DC, and
must be carefully avoided in the design. This problem could be addressed by using appropriate
synchronization mechanisms in the taint monitor code to ensure that data access and taint tag
accesses happen atomically. Practically, performing lock synchronizations at instruction granularity
will lead to unacceptable performance. Fortunately, on the x86 architecture there is surprisingly
efficient way to prevent this dangerous condition from occurring.
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For the purpose of discussion, let us assume that memory load/store operations in the target
instruction set either write a memory location using a register, or read the contents of a memory in
a register. The main design idea is that in the untrusted code, we perform taint marking before as
well as after the data access, whereas for the trusted code, we reverse the order of taint and data
access based on whether the instruction is a memory load or a memory write operation. In trusted
code, taint access follows the data access for memory load instructions, and the exact reverse for
memory write instructions. The justification for this technique is explained next, and is based
on the assumption that no two benign threads race with each other for a data access. This is a
reasonable claim : correct multi-threaded program threads are likely to employ appropriate locking
mechanisms to ensure mutual exclusion in accessing shared data. The only problem is when a
malicious thread tries to interfere with the data access with other benign threads. There are two
kinds of races possible :

• Write-Write races. In this case, both the benign thread B, and the untrusted thread U ,
write to the same data. If both threads propagate “unsafe” or “1” taint, then there is no
issue. However, if B writes a “0”, it intends to write benign data in the location where U

writes untrusted data simultaneously. To prevent condition DC from occurring, the taint
write operation in B happens before the data write, whereas the opposite happens for U in
our scheme. Even with arbitrary interleaving of the 2 operations in B and U , it is simple to
check that DC becomes impossible.

• Read-Write races. The untrusted thread U performs three operations after instrumentation
- writes a “1” taint denoted by operation T1u, writes unsafe data denoted by Du and finally
writes taint again denoted by operation T2u. The benign thread B reads data in operation
Rt, and then reads the associated taint in operation Tt. For condition DC to occur given the
ordering of taint reads and data reads, there are only two cases possible:

(a) The benign thread reads tainted data, but before it reads the associated taint, the taint
is cleared. This can happen only if the writing thread is a benign thread. This would be a
race between two benign threads — a violation of our assumptions.

(b) Du precedes Rt, T2u follows Tt, and the taint value read in Tt is “0”. This is not possible
because operation T1t ensures that taint read in Rt is marked “1”. Again, between T1t

and Tt, the taint can not be cleared by another benign thread, as this is violation of our
assumptions. Thus, condition DC does not occur.

Therefore, we reason that condition DC is never possible in our scheme. Our assumptions
about architecture are largely true for the x86. On the x86, instructions can have at most one
memory operand with some rare exceptions that need special handling such as string operations.
All indirect memory references use registers as base and index, so there is still only one memory
operand involved in each instruction. Other than the load/store operations, there are arithmetic
instructions of the form ‘‘ x = x op y’’ which may read and write memory locations if ‘‘x’’
happens to be a memory location. However, in such a case ‘‘y’’ has to be a register which is
a thread-specific data. We point out that our scheme naturally deals with this as no new race
conditions are introduced beyond those outlined. This is because semantics for taint propagation
for such instructions, requires to check the taint for the register operand ’’y’’ – iff the taint is
‘‘1’’ the corresponding taint operation is to store a ‘‘1’’ taint for ‘‘x’’. Thus, this is exactly
like the case of a conditional store instruction that equivalently “writes unsafe data in x”. This
is handled correctly in the scheme, and adds no special cases. We also point out that the basic
technique scales to more than one benign thread operating alongside the untrusted thread, and
leave out the rigorous argument for brevity.
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Chapter 3

Static Binary Analysis and Rewriting

Program transformation has played a major role in enforcing various kinds of security policies
on critical applications. Fine-grained system call based sandboxing, inline reference monitoring
and fine-grained taint tracking are some examples of well-developed techniques that have heavily
relied on program transformation. Much of these are based on source-source transformation or
on instrumentation during compilation. Using tools such as [12, 21], previous works have shown
that heavy-weight instrumentation such as taint-tracking is practical, even though the technique
typically introduces more than one instrumented operation per source operation. When deal-
ing with binaries, most systems today turn to dynamic instrumentation based infrastructures like
DynamoRio[18, 20, 9] which defer the instrumentation to runtime when the code is first executed.
However, such techniques suffer for extremely high performance overheads to be deployed in prac-
tical use. There is little evidence of robust static techniques for performing such fine-grained
instrumentation on binaries. Vulcan is an infrastructure developed by Microsoft that is fairly ro-
bust, but relies on much symbolic and debugging information that is embedded in executables for
its analysis. Similarly, Diablo is a similar tool for GCC based tool chain. However, relying on this
information when dealing with untrusted code is questionable, and for most stripped applications
on platforms like Linux such information is simply not available for third party code. Other tech-
niques [22] are quasi-static as they combine runtime disassembly with static techniques, but there
has been no evidence of heavy-weight instrumentation such as taint-tracking using these.

Working on binaries has some advantages over source code. Techniques developed to work on
binary applications have direct applicability to a large set of programs. Programs may be written
in different higher-level languages and compiled by different compilers, and yet can be transformed
in a single framework. Machine code semantics offer a common platform and moreover, it serves a
natural interface to address low-level attacks such as memory corruption.

Binary instrumentation has the unique application in security – it is often the only way to
deal with third-party software for which source code is unavailable or untrusted. Even for benign
programs such as web browsers, dealing with source code for transformation has important practical
problems. This is largely because of following reasons :

• Large host systems have complex build processes. For example, compilation of many systems,
generates source code on-the-fly during compilation based on templates. Understanding and
modifying complex build systems of each application, to intercept all the generated code
compilation can be a challenging and cumbersome experience.

• During compilation, programs are heavily optimized and additional code for implementing
language features such as polymorphism and runtime type checking are introduced.
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• High-level languages such as C allow programmers to write assembly code which is typically
untransformed in compiler or source instrumentation. Besides, all code available as hand-
written assembly is not amenable for these forms of transformation. Many popular web
browsers use hand-written assembly in libraries used for providing OS and platform dependent
services.

More generally, transformation as well as program analysis has been limited on source code by
the problems of separate compilation and those mentioned above. This is because most production
compilers today process one source unit at a time, such as a function or a file. These units are
linked together to form a executable binary after compilation. As a result, most analysis that
work on source are limited to function or file scope, rather than the whole-program. Link time
transformation, besides being completely compiler (or tool-chain) dependent, can be as challenging
as transforming binaries and have limited applicability because they rely on information derived
from source such as static relocations. In this regard, analysis on binaries offers a much better
option for several whole-program analysis and transformation of executables.

Robust transformation and scalable whole-program analysis has problems when dealing with
raw binaries. First, static disassembly of stripped binaries is a hard problem. Several techniques
have addressed these issues with static approaches [26] and quasi-static approaches [22, 5] and
better techniques are being investigated in the research community. A second limitation of working
with binaries is the lack of high-level program structure to perform various powerful static analysis.
We address this limitation by developing techniques for recover some higher-level program structure
and develop a new static alias analysis algorithm suitable for COTS binaries. Further, we show the
effectiveness of performing static analysis based optimizations to lowering performance penalties
by applying it in the context of fine-grained taint-tracking. In particular, we achieve performance
overheads 4 times better than those developed by previous binary-based works.

In this chapter, we present the design of a static analysis and a robust transformation sys-
tem called BinStat. BinStat is designed for ELF file format on Linux/x86 and performs analy-

sis/transformation on both shared libraries and cooked executables. Due to the practical limitations
of disassembly of stripped binaries, BinStat currently relies on symbolic information for the dis-
assembly step. It does not use any symbolic or relocation information for any other analysis or
transformation with the aim that once better disassembly techniques are developed, all techniques
it employs will remain fully applicable to stripped COTS binaries.

3.1 Design

The basic design of the framework consists of the following components - a disassembly engine,
a static analysis framework, and an instrumentation engine. For disassembly, we start with the
assumption that the entry points of functions are identified. Next, we perform a recursive traversal
based disassembly of the program. The disassembly engine relies on techniques used in [32]. The
basic static analysis subsystem is described first, followed by the program transformation subsystem.

3.1.1 Challenges in Binary Analysis

Our approach is primarily targeted for binary code and utilizes sound static analysis for performing
optimizations. There is relatively little evidence of sound sophisticated static analysis techniques
employed for instrumentation at the binary level. This is largely because analyzing memory accesses
has been hard on x86 binaries, specially in the absence of symbolic or debugging information. The
main problems are due to indirect references which are impossible to reason about due to memory
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struct ABC {int a;};

struct ABC array[10], minimum = {0};

int (*compare) (int, int) = subtract;

struct ABC get_min (struct ABC* x) {

struct ABC temp = minimum;
if (compare_lesser_than (x, &minimum))

temp = *x;

return temp;
}

int subtract (int a, int b) {

return (a - b);

}

int compare_lesser_than (struct ABC* x, struct ABC* y) {
return compare (x->a, y->a);

}

void main () {

int i = 0, int size = 10;

for (i = 1; i < size; i++) {

minimum = get_min (&array [i]);
}

}

Figure 3.1: A simple C program that finds the minimum element in an array.

aliasing, in general. However, these problems exists at source code in higher level languages such as
C and C++; yet compiler optimizations are able to improve performance by many factors. A deeper
understanding reveals that a lot of this bias is attributed to the semantic gap between binaries and
source code, such as the scope and type information associated with variables. In binaries, there is
no notion of program variables, a very weak notion of types (associated with sizes of operands in

instructions), and no information about scope.
However, most of the binary code used today is compiled by benign compilers. Even most

CPU architecture designs mirror higher language designs, such as support for call instructions
similar to a function call in higher level languages, and for implementing stack-based language
runtime by providing special stack manipulation instructions that implicitly use ESP. Also, compilers
have been much more successful reasoning about local variables since they can reason about their
scope in a sound way. In the context of code instrumentation, many source based instrumentation
techniques have relied on such optimizations in the past by “piggybacking” on standard compiler
optimizations to achieve performance. For example, [31] introduces local taint variables for local
program variables during source transformation, which later gets optimized by the compiler to get
significant performance gains. Therefore, the focus in our analysis to recover enough information
about memory accesses that correspond to “function local” variables in the programs. In fact, this
is a reasonable strategy to adopt based on the practical observation in previous works [31] that
programs do often use local variables for computation.

We begin by first demonstrating some of the challenges in binary analysis of x86 code using a
contrived example in figure 3.1. The example captures the some of the features that is common
in large applications written in languages in C/C++ that designed for extensibility, such as use of
indirect function pointers, passing parameters by reference and use of aggregate structures. The
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<get pc thunk bx> :
mov [esp], ebx

ret

<subtract> :

mov 4[esp], eax
sub 8[esp], eax

ret

<compare lesser than> :

push ebx

sub 8, esp
mov 20[esp], eax

call get pc thunk bx

add STATIC DATA OFF 1, ebx

mov [eax], eax

mov eax, 4[esp]
mov 16[esp], eax
mov [eax], eax

mov eax, [esp]
mov offset funcptr [ebx], eax

call [eax]

add 8, esp

pop ebx

ret

<get min>:

sub 28, esp

mov ebx, 12[esp]

call get pc thunk bx

add STATIC DATA OFF 2, ebx

· · ·

mov ebp, 24[esp]

mov 32[esp], ebp

· · ·

call compare lesser than

· · ·

mov esi, [ebp]

mov ebp, eax

mov 24[esp], ebp

add 28, esp

ret 4

<main> :

lea 4[esp], ecx

and -16, esp

push -4[ecx]

push ebp, edi, esi, ebx

· · ·

lea 20[esp], edx

Z: mov edx, 16[esp]

mov array offset[ebx], eax

mov minimum offset[ebx], ebp

lea 4[eax], esi

lea 40[eax], edi

.L11: mov 16[esp], eax

X: mov esi, 4[esp]

add 4, esi

Y: mov eax, [esp]

call get min

sub 4, esp

cmp edi, esi

· · · jne .L11

pop ecx, ebx, esi, edi, ebp

lea -4[ecx], esp

ret

.

Figure 3.2: Binary code for the C program in Figure 3.1

corresponding assembly code is shown in Figure 3.2, when compiled for production use as a shared
library using “gcc” and typical optimizations (with command line arguments gcc-4.1 -O2 -fPIC

-fomit-frame-pointer).
The C program shown in Figure3.1 finds the smallest element in the array array. The ele-

ments of the array are structure aggregates, the comparison function for which is implemented by
compare lesser than function. It calls a function subtract through a function pointer compare

to perform its operation. The assembly code in the example is pruned for conciseness, and certain
instructions are clubbed together to enhance readability. Using this as the primary example, we
outline some of the difficulties with analyzing memory accessing in binary code.

First, the accesses to variables in the program are no longer explicit. Upon closer inspection it
is seen that all static data references are resolved through a indirect pointer obtained by adding a
constant value(STATIC DATA OFF 1 in function compare lesser than). The base pointer is implic-
itly returned by the function get pc thunk bx in the register ebx. However, this is one instance
of the way that “gcc” generates these references, and several others exists. State-of-the-art anal-
ysis tools use pattern matching based approaches for detecting accesses to memory locations - for
instance, IDAPro treats ESP and EBP based accesses to be stack accesses. These techniques may
miss important cases or give spurious results which result in subsequent being unsound. Most local
variable accesses use ESP as a base pointer, but not all. The function main uses the register ECX

as a pointer to access local variable on the stack since the value of ESP may change during the
initial stack alignment operations (to 16 byte boundary) in main. Typically, EBP is used as a frame
pointer to access stack parameters as well, but can be eliminated for this purpose in production
code as shown in this example. Therefore, the access to formal parameter for function get min at
this point would be missed without performing analysis. Therefore, recovering some notion of local
variable accesses in a sound way without missing any cases is a hard problem.
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A second difficulty is that information about returned and formal parameters of a function
is lost after compilation. It is not apparent without analysis that instructions X and Y push
parameters to function get min on stack, while instruction Z does not store an actual parameter.
Return values are usually returned in EAX as specified by the ABI, but other values of interest may
be returned implicitly in other registers, such as the pointer implicitly returned in register EBX by
the get pc thunk bx function. Furthermore, source code based approaches can perform aggressive
optimizations since they reason about the effects of executing a function on local variables. For
example, the source transformer can ascertain that the call to get min in main modifies no local
variables, and thus can allocate local storage for the loop counter i in main. Note that, as an effect
of further optimizations in the compiler the variable i and taint metadata propagation code for it
can be eliminated from the loop. Our analysis aims to reason about such properties and can infer
that i is not updated as a side-effect of the call.

Third, there are other implicit features introduced by the compilation process. For example,
the function get min deallocates the return structure pointer passed(at instruction Y in main) as
a parameter before exiting, thereby leaving the stack pointer ESP unrestored after its execution.
Again, this is only one instance of how stack memory is managed between activations of functions,
and there are several other complications. Our analysis is able to monitor the effect of execution
on the stack pointer, and therefore can reason about stack usage in an inter-procedural manner.

Finally, consider a generalization of the above case - identifying which variables (or registers)
are left unchanged in the execution of the function. It is not easy to reason from the binary that the
compiler generates code for function get min such that even though EBP is modified in the function,
it is left restored at the exit from the function. This requires reasoning not only about registers
and memory, but also about aliasing, stack conventions and parameter passing. Our technique can,
in general, identify which operands at any two points in the program, definitely contain the same
value. It uses symbolic values to achieve this. Furthermore, our analysis is powerful enough to deal
with capturing arithmetic on symbolic values, allowing us to extend the design to compute simple
arithmetic expressions using symbolic values.

Our goal is to reason about variables in the function local scope using a static analysis. We
describe the basic technique in section 3.1.2. We further show that this biased model of accu-
rately tracking local variables references enables us to reason about higher level properties that
complement alias analysis techniques developed on source code. In particular, we show that it is
possible to reason about indirect references by asserting that a large set of local scalar variables can
never be involved in computed memory accesses in section 3.1.3. Of course, our assumptions are
made for benign programs. These assumptions may be violated by untrusted code or even in pres-
ence of memory errors. If the application of such analysis is for security and sound optimizations,
additional runtime checks are needed.

Our analysis is modular and proceeds in a passes, with each pass comprising of a per-function
analysis and summarization of the properties of each function. These summaries are used at call
sites to refine the summary of the caller functions. Therefore, our analysis is scalable and can
naturally handle external code or functions called indirectly through function pointers for which
the called code may be unavailable or statically indeterminable.

3.1.2 Stack Variable Analysis

At source code level, there is a well-formed notion of program variables and associated scope.
However, during the compilation process much of this information is lost. Compilers typically
allocate stack local temporaries and registers to hold the same program variable at different points
in the program, making it difficult to recognize original program variables at the binary level.
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Absence of type information associated with program objects makes it impossible to determine the
sizes of some program objects such as arrays, and to distinguish between scalar variables, record
fields and temporary variable accesses. Although it is possible to access some of this information by
referring to the relocation and debugging information, our approach does not rely on this. Instead,
we perform a static analysis referred to as the stack variable analysis, which allows us to infer some
notion of local variables.

Stack analysis uses a simple abstraction for modelling function local data objects. It uses a set
of abstract data objects called abstract variables or a-vars. The idea behind the a-vars abstraction
is that accesses to local variables and parameters in the programs written in higher level languages
appear as either static stack-frame offsets or register accesses. For example, a compiler typically
allocate fixed stack locations or registers in the activation record of a function, to a functions local
variables statically. Consequently, we define an a-vars to be the set of contiguous locations between
two such consecutive stack offsets, or it may be a register.

A function activation record may have several instances at runtime. Therefore, to model the
dependence between stack memory objects, we can not use their static addresses. In our abstraction
of the memory, we associate an function variable store or FVS with each function, which is the
set of all a-vars that are accessed in the scope of the function. The FVS of each function can be
thought of as a set of a-vars that are used or defined in the body of the function. Our model does
not associate any a-vars with global or heap memory. In order to recover information about a-vars,
we need to reason about values stored in registers as well as memory.

We recover the information about a-vars by using abstract interpretation on a abstract do-
main, that constitutes symbolic values as well as integer domains. By modelling the value of the
stack pointer register ESP at the entry of a function as a symbolic constant “BaseSP”(base of

the activation record), we can track integer-valued and stack-pointer based addresses uniformly in
instructions. This is important because as can be seen from figure 3.2, compilers typically use
simple integer arithmetic on the stack addresses and ESP for allocating stack space for local vari-
ables and accessing them, as well as for pointer arithmetic for aggregate structure accesses. The
ability to abstractly model memory local to a function further enables other analyzes to explicitly
track and reason about function local data objects from other memory objects. Hence, transforma-
tion and analysis built on top of this framework is not forced to be imprecise due to conservative
assumptions, when reasoning about data dependencies in the presence of memory aliasing.

Formally, we define our abstract domain be elements of a lattice described in figure3.3. The
intuitive semantics of each of these domain values is as follows:

• A LocalAddressRange denoted by BaseSP + [k1, k2], where k1, k2 are integers ∈ [−∞, +∞],
and BaseSP is a symbolic value for the value of ESP register at runtime for a given activation
of the analyzed function. This value specifies the address range of consecutive bytes at offset
k1 through k2 from the base of activation record, i.e the value of the ESP at the point of
function entry.

• A SymValRange denoted by X ′ + [k1, k2], where k1, k2 are integers ∈ [−∞, +∞], and X ′ is
a symbolic value. Intuitively, this captures simple arithmetic operation on symbolic values
using constant, which may be useful in applications that recover aggregate field accesses.
Symbolic values are introduced whenever we statically do not know the value of a variable,
and lets us reason about the relation between the values of two variables.

• A set LocalAddress (F), which indicates the set of all possible addresses in the activation
record of a function F.
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Figure 3.3: The lattice of abstract values used in stack variable analysis.

• An integer Constant (k), which specifies a statically known integer value k ∈ [−∞, +∞]. Note
that we do not distinguish between non-local addresses such as addresses of global memory
and constant operands.

• An integer Constant, specifying all integer values ∈ [−∞, +∞], but not including the range

corresponding to the set LocalAddress (F), where “F” is the function being currently analyzed.

• A symbolic value ⊤, denoting an unknown value, including possibly all local stack addresses.

• A symbolic value ⊥ denoting a false.

The basic goal of this analysis is recovering the following sets for a given function F:

• Set1 that models the effect of execution of F on the value of the ESP. ESP may be unchanged,
changed by a statically inferable constant, or may be analyzed to be an unpredictable value
⊤. Therefore, the result of this analysis is a singleton set containing the abstract value of the
ESP at the point of return from F.

• Set2 that models the maximum size of the activation record of F. This is a singleton set with
a abstract value that may be a constant, or ⊤ in some rare cases.

• Set3 is the set of a-vars accessed in F represented by their addresses.

Note that the values and sets we aim to compute depend on the effect of the functions that
are called by F. For example, if a function changes the value of ESP by “k”, it has an effect in
its caller at the point of the call. Therefore, the analysis uses multiple passes. It starts with the
base cases that called functions leave the ESP value unchanged, and access no a-vars. In the first
pass, each function is analyzed separately and a summary set representing the first approximation
of its effect is generated. In subsequent passes, this summary information is used to refine the
abstract computation at function call points. As a result, better approximations of summary sets
are produced after each pass, until a fixed point is reached. The analysis is modular and works well
for programs that use external libraries the code for which is unavailable. These summaries can
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be generated before hand for externally called function, using similar analysis or using information
present at the compilation stage. In case that is not possible, worst case summarizations can be
assumed and the analysis remains sound.

Within each pass of the analysis, we aim to over-approximate the set of actual runtime values
with abstract values that an a-var can hold at each program point. For this purpose, each a-var
M is mapped to an initial symbolic value M ′, treated identical to abstract value Constant, at the
start of the abstract execution of a function. With these initial conditions, we perform an abstract
interpretation using abstract operations similar to those defined in [8] corresponding to each of the

machine instructions encountered. Unlike [8], we do not model the stride information and use no
affine-relation analysis since our goals do not need this. Typically, there is a small subset of the
x86 instructions that we have to deal with because addresses values are not involved with most
instructions. The result of other operations can conservatively result in value ⊤. In case of loops,
we may encounter successive approximations that are elements of an infinitely ascending chain, such
as when incrementing addresses or integers in a loop. In such cases, we must perform widening[10]
at least once in each cycle. In particular, when performing widening, the operation for widening
LocalAddressRange value approximations, confines the widened range of addresses to limit the range
of offsets from BaseSP to the either the whole activation record of the caller function(denoted by

BaseSP + [0,∞], or to the activation record of the callee (denoted by BaseSP + [−∞, 0]), based
on the initial value in the approximation. This leads to some imprecision when dealing with arrays,
and can be further improved using techniques in [8] at the expense of some complexity. During
this analysis, Set2 can be computed by keeping track of the minimum negative offset for ESP at
any point.

With this information, there are additional sets that we can compute, for a given function F :

• Set4 The set of initial symbolic values for a-vars, that are possibly used before being clobbered
in F.

• Set5 The set of a-vars the values of which remain unchanged as an overall effect of executing
F in any context.

Using the results of the previous sets, computation of these sets can done in a similar multi-pass
iterative fashion, refining the sets at each step. For Set4, we start with the initial safe approximation
consisting of the entire Set3. In subsequent interpretation passes, we subtract the set of definitely
defined a-vars at each instruction, and use the standard union operation at join points. Set5 can
be computed after the abstract interpretation passes are complete. It will be the set of a-vars X

that contain their initial symbolic values X ′ after the execution of all final return points in F.
The analysis assumes that programs follows a “standard” compilation model, i.e the stack

grows downwards, and a standard call activation results in pushing the actual parameters on the
stack, followed by the return address, and this is followed by the callee’s function activation.
Also, our analysis verifies that EBP left unchanged across a call activation, whereas ESP is either
left unchanged or modified by a statically inferable constant. Wherever this is not possible, it
optimistically assumes that they are unchanged, placing appropriate runtime checks before the
next use of these registers. Although, typical OS dependent x86 ABI defines other registers, called
caller-saved registers to be left unchanged across function calls, our analysis makes no assumption
about these. There is two more implicit assumptions in our analysis :

1. All addresses of stack local memory are explicitly generated by the function and passed to
other functions through memory or registers, whenever necessary. The effect of calling a
function that takes the address of its parameter in memory and uses can be equivalently
viewed as this case, and such cases are detected and computed in our function summaries.
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2. Stack based variables are used only during the lifetime of the function activation they belong
to, i.e deallocated stack memory is unused after the function exits.

Our assumptions are unrestrictive in practice, because they follow from the basic understanding
of how compilers generate code, or programmers hand-write assembly. Assumption 1 basically
follows from the fact that portable code for each function is generated assuming nothing about
the internal layouts of the other functions active on the call stack. Addresses of stack objects
are typically passed by copy, rather than inferred by arbitrary means using the value of the stack
pointer register and runtime properties of the activation stack. Assumption 2 is typically the result
of bugs in the program - indeed, our analysis detects most of these cases and issues static warnings
about such illegal uses of deallocated memory.

3.1.3 Alias Analysis

Any analysis that reasons about values of memory based objects has to deal with the possible effects
of aliasing, in order to be sound. The problem is even more acute in x86 architecture binaries, where
direct memory accesses are typically fewer than 20%. Without any analysis, most indirect memory
updates could update any memory location. Based on our stack analysis, we observed that most
accesses through base pointer (ESP) and frame pointer (EBP) are statically resolvable to a single
a-var. Moreover, we show that a coarse alias analysis based on the stack analysis, that can further
separate a-vars that can never be accessed in indirect memory accesses, based on the assumptions
about a “standard” compilation model earlier.

In real-world programs, there several problems that complicate this analysis on binaries. First,
sizes of original program data objects is unknown. For example, any accesses to elements of
arrays on stack appear to access all memory in the activation record. Similarly, as is typical in
implementations of C++ objects, the base address of aggregates could be passed as parameters to
other functions, which can be used to access any data in the activation record by using offsets that
are statically unknown in the caller. In general, once the address of a variable escapes the scope
of the function, potentially all the memory in the activation record is accessible. Second, due to
undecidability of pointer analysis, call graphs are incomplete in the presence of indirect calls and due
possibility of exceptional control flows such as in common implementations of “setjmp/longjmp”
and signals. Third, several language features such as “alloca” and variable argument functions that
access statically indeterminable size of memory in the callers, make it impossible to completely
reason about a-vars in all functions.

Therefore, we limit our goal to finding the set of all unsafe functions, i.e functions that possibly
have any of its a-vars accessible in indirect memory references. Again, we leverage on static analysis
to do this. We classify any function which satisfies any of the following properties as unsafe :

1. Performs an indirect call which could possibly escape local addresses, i.e at the point of the
call, are any addresses of local variables are stored in local memory or registers.

2. Calls a variable argument function that may access addresses of local variables. Again, we
use information about whether addresses of local variables are stored in local memory range
used as parameters or registers, for this purpose.

3. Has potential arrays on stack, or modifies ESP such that its value becomes unknown - such
as the case of “alloca”.

4. Passes the address of any of its local a-vars as a parameter to a function, or potentially stores
it to non-local memory, or returns it as a return value.
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5. Calls a function that “escapes” the address of any of the passed actual parameters.

Property 1 requires us to know the state of all local memory and whether it contains any ad-
dresses of local variables. Properties 2, and 5 rely on the results of stack analysis to get information
about the a-vars that correspond to in and out parameters and registers. Property 3 is a simple
check based on the results of the stack analysis - if the over-approximated set of abstract values
indicates that at any point, registers involved in indirect references refer to the address ranges
contain < BaseSP + ∞ > or < BaseSP −∞ >, the access is to potential stack array. Function
that use “alloca” allocate a statically unknown amount from the SP, which either results in the SP
pointing to the range < BaseSP + k, BaseSP −∞ > or having the abstract value ⊤.

All other functions are considered safe. We assume that statically indeterminable indirect
memory references can never refer to the local a-vars of a safe function. As a result, our analysis
infers that all functions in the C program shown of Figure 3.1 are “safe”, i.e no local variable of
any function can be accessed in the indirect memory references.

3.1.4 Binary Instrumentation Framework

In order to deal with practical systems, we developed a fine-grained instruction-level instrumen-
tation framework that is applicable to executables as well as shared libraries that use the ELF
format on Linux. Our design is robust in the face of typical compiler optimizations such as frame
pointer omission and tail calls, compiler idiomatic ways of generating PC-relative accesses, typical
hand-written assembly. It also deals with the common implementations of UNIX signals as well as
C++ exceptions.

The first step in our analysis is that of disassembling a binary using well-known techniques [32].
During disassembly, we also construct the control flow graph for each function, and record all its
entry points. Due to limitations of existing static disassembly techniques mentioned earlier, this
step requires information in the binary that identifies the start of each function. This information
is normally present in executables as well as shared libraries, unless they are explicitly “stripped.”
Since other steps in our analysis and instrumentation don’t require any symbol information, we
can eliminate this limitation when static disassembly techniques are improved.

The second step performs the actual instrumentation, introducing code for taint-tracking and
other security checks. This instrumentation typically introduces one or more additional instructions
for each instruction in the original binary. As a result, function bodies expand, requiring them to
be relocated. Rather than overwriting the original code, which can cause problems in the presence

of indirect calls and jumps1, we store the instrumented version in a separate code region. Jumps
are introduced from the original function entry points to the corresponding entry points in the

instrumented version2 The rest of the original code is replaced with an invalid opcode so that any
jumps into that code results in a runtime exception. This is done so that (a) implementation bugs

that result in such jumps would be promptly identified and fixed, and (b) attempts to evade security
checks by executing uninstrumented code version will be caught.

Maintaining Application Correctness

1An indirect call to a function f would jump to the beginning address of f in the original code, which may fall in
the middle of another function if we we replaced the original code with the instrumented version.

2A slight complication in this regard is that there may not be enough space available for writing a 5-byte jump
instruction — this may be because of a function entry point that is very close to its end. In such a case, we search
for 5 bytes of space in a region that is within 128 bytes of the original address, insert the jump at that place, and
introduce a 2-byte jump instruction to jump to this instruction. In the worst case, we can use a 1-byte code, using a
software interrupt as in the case of [22].
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100: call 105

105: pop esi

106: add 0x200, esi

200: call 300

205: add 0x200, ebx

· · ·

300: mov [esp], ebx

302: ret

Figure 3.4: Two common sequences in PIC code.

To ensure that the instrumentation does not change the semantics of the program, we must
make the instrumentation transparent to the application. There are many corner cases that need
to be handled in order to deal with real applications on Linux. Instrumentation that is necessary
for basic program functioning must not make any unnecessary assumptions about memory usage
such as stack convention. Note that our instrumentation weaves logic for a new execution thread
- such as the taint program, into the original. The basic philosophy in the design is to keep things
simple – avoid any changes to the original program, and use a logically separate address space for
the instrumentation. Our application to taint based sand-boxing uses separate tagmap addresses
from the application, uses thread-specific storage wherever necessary, uses specialized I/O routines,
manages all its internal memory allocation on its own, and ensures that all shared resources such
as C library code are used in a re-entrant way. These are similar to the design principles outlined
in [11].

Since our framework provides a bare-bones support and services for instrumentation, the most
important challenge it faces is maintaining address space transparency. The approach primar-
ily relocates code blocks leaving all data in place, we must make the change of code addresses
transparent. One challenge is posed by code that computes data addresses or targets of (indirect)
control-transfer from the address of an instruction. Such code is commonly used for computing
the addresses of static data objects in the position-independent code (PIC) found in shared li-
braries. Different compilers may use different techniques in this context, with two of the common
code sequences shown in Figure 3.4. Other possible uses of instruction addresses include pointers
computed using PC relative offsets, and the use of PC value to compute the address of exception
handling code with certain implementations of C++ exceptions via exception tables. The correct-
ness of such code relies on the relative distances between code objects (and distances between code

and data objects), and hence it needs to be modified after to ensure its correct operation after
instrumentation.

The basic problem is as follows - a code address should be used in control transfer instructions,
but may occasionally be used in direct data or indirect data references. The strategy to use is
to identify all uses of code addresses and for data references the values should be identical to the
original program. For control transfer instructions such as return, the translated addresses need
to be used to transfer control to translated code.

Early works [32] have used compiler-specific (usually version-specific) instruction sequence
matching to deal with such code. A comprehensive design philosophy is developed for dynamic
translation systems such as [18, 20] by leaving all return addresses unchanged as if the program is
untransformed, and using a table-lookup at runtime to translate the code addresses at runtime for
control transfer instructions. Our design tries to achieve the same in a different way. We aim to
identify all sequences that access return addresses (code addresses, more generally) in a uniform
way using a static analysis described later to achieve fair robustness. Specifically, we analyze the
callee code to check if it uses the return address for any purpose other than returning. For each
such use, e.g., a mov of a return address to register R, we introduce an instruction that adds a
constant k to R, where k is the difference between the original location of the call instruction and
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its new location in the instrumented code. In effect, this intercepts all uses of code addresses in
non-control transfer instructions and fixes them up at runtime. Practically, the approach used in
dynamic translation systems seems more robust, as our approach makes an optimistic assump-
tion that all references to return addresses are statically identifiable. We may miss some cases
when return address may be accessed using techniques that our static analysis cannot precisely
reason about such as indirect memory references using global pointers, although our technique has
successfully handled the common cases we have encountered in our limited experience. Our sug-
gested approach does have important benefits during incremental development of the tool. In the
alternative technique, the application would not run until all control transfers in all libraries are
transformed. Detecting the smaller set of accesses that use code addresses in non-control transfer
operations in a uniform way deals with almost all cases. This is beneficial to proceed with devel-
opment; once the instrumentation is stable enough we can switch to the alternative technique for
even more complete robustness.
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Chapter 4

Optimization Techniques For Binary

Taint Tracking

Performance is a critical factor for deploying proactive defense techniques on end host applications.
End users will typically turn off security mechanisms as “nuisance”, if it interferes with their
business. This is certainly true for most applications we target : if we slow down plugins used for
viewing real-time streaming media or for displaying documents downloaded by the user, it will be
glaringly visible and will impact the usability of the system. Therefore, we focus on optimizations to
reduce the overhead of our technique. The primary overhead in our approach is due to fine-grained
instrumentation for taint tracking, and is the primary subject for optimization.

Fine-grained dynamic information flow tracking has become a very powerful tool in computer
security, having found extensive use in detecting a wide range of attacks, malware analysis, and
so on. However, previously reported works on binary taint tracking have incurred large overheads
- 37 times slowdown in [23], with recent improvements to an overhead of 3.6 times in [25]. Most
of these techniques have used dynamic code instrumentation for reasons of robustness. Dynamic
translation systems[18, 20, 9] typically incur large overheads because of two main reasons :

• Overhead of code analysis and instrumentation is incurred at runtime. This indirectly affects
the choice of optimizations, since expensive analysis required for them are avoided.

• Dynamic methods can not perform perform sound static analysis in the absence of complete
flow-graphs, thereby limiting the kinds of analysis applicable.

Moreover, there is significant overhead incurred whenever the dynamic translation framework
discovers a new block of code that it has to dynamically transform. This is typically not reported in
research experiments because tests are run for a long time and the average values are not indicative
of the initial startup overhead. However, from a practical standpoint this is a significant drawback
for usability in interactive applications such as viewing documents online, as users will not wait for
minutes for the plugin and the host to respond.

We address these fundamental limitations by shifting the analysis and instrumentation burden
offline without sacrifing robustness. Using our static binary rewriter BinStat, we transform binary
versions of several large applications such as Firefox and Konqueror(default browser on KDE).

Further, we develop techniques to lower performance for taint tracking below 90%, which bests the
contemporary techniques by a factor of 4. At the same time, we maintain the soundness of taint
tracking, i.e to never miss propagation of taint metadata for data, and do not neglect any avenues
of attacks outlined earlier. Our technique are applicable to real multi-threaded applications on
Linux/x86 and requires no additional hardware features such as dedicated registers as assumed in
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[25]. We describe these general optimizations that can be used in binary taint-tracking in section
4.2. These optimizations are used to implement our confinement of shared memory extensions.

Information flow techniques have much wider application than our application such as cyber
attack detection, signature generation and enforcement of OS integrity. There are several other
optimization techniques that may be applicable in a more traditional setting of taint propagation
on benign code where attacks due to concurrency inherent in multi-threaded programs is not a
practical issue. Under these assumptions, a much more sophisticated set of optimizations become
possible using the techniques described in Chapter 3, that recover sufficient higher level program
structure. These are subsequently described as higher-level optimizations in Section4.3. Some of
these have wider applicability to other metadata propagation approaches such as memory error
checking, as well as to techniques applicable on source code.

4.1 Basic Transformation

Our primary focus in this thesis is to perform general taint tracking on binary code which has been
used extensively in security applications. In particular, our technique associates one byte of taint
data with each four byte word in memory. Sharing of taint data between adjescent bytes of a word
can lose precision when dealing with character arrays, but does not sacrifice the ability to detect
attacks.

Taint propagation requires an initial marking phase, that defines the interface for untrusted
input. This is usually a set of I/O interface functions such as file or network API. Data received

from untrusted sources such program inputs from network or I/O reads, is marked potentially
“unsafe” by setting the associated taint data to 1. In other applications such as our approach of
confining extensions, this data may correspond to all data originating from the untrusted plugin.
As this data is manipulated by the program, the corresponding taint bits of operands are updated.
More specifically, the application is instrumentated in its binary form to perform taint propagation,
i.e, marking the results of any logical, arithmetic or assignment instruction as tainted if and only
if any of its input operands is tainted. The form of taint tracking described here is largely same
as what is performed on the host application, with some policy changes with regards to making it
secure in presence of untrusted extensions. These changes are minor including reversing of taint
and data accesses and some operations for accessing misaligned accesses. We eliminate these in the
discussion below and focus on the crux of the instrumentation technique that is generally been used
in taint tracking works[31]. Similar to most previous works, we do not track control dependence,
as this is sufficient to address a wide range of attacks and at the same time has low false positives.

For general information flow tracking, in addition to taint propagation security checks have to
be added as governed by an application specific policy. For example, to detect all code-injection
attacks the policy has to enable checking of each computed control transfer. As another completely
different application in sandboxing, the checks have to ensure that the argument data passed to a
security sensitive operation such as execve system call is never tainted.

Taint information for memory is stored in a separate byte array referred to as the tagmap.
Taint for registers can be stored in a special area that is specific to each thread. On the Linux
platform, thread specific data is stored in a separate data segment accessible by using %gs:0x0[11].
The program transformation is a simple rule driven procedure, that takes an original program
instruction as input and outputs a corresponding taint operation based on an action table indexed
by an opcode. Taint operations use the tagmap, register taint data and the address of program
memory operands for performing the taint propagation. For all further optimizations, we refer to
the set of taint operations as the equivalent taint program. Program execution interleaves between
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add ebx, edx

cmp ebx, 0

mov ebx, [ebp+0x1c]

je 0x40000

movd eax, xmm0

movd xmm1, eax

movd esi, xmm1

test 0xa, al

jz L1

or 0x8, al

L1: add ebx, edx

cmp ebx, 0

lahf

test 0x42, al

lea [ebp+0x1c], esi

shr 2, esi

setnz [tagmap+esi]

sahf

mov ebx, [ebp+0x1c]

movd xmm1, esi

movd eax, xmm1

movd xmm0, eax

je 0x40000

movd eax, xmm0

movd xmm1, eax

movd esi, xmm1

test 0xa, al

jz L1

or 0x8, al

L1: add ebx, edx

cmp ebx, 0

test 0x42, al

setnz [ebp+0x801c]

mov ebx, [ebp+0x1c]

movd xmm1, esi

movd eax, xmm1

movd xmm0, eax

je 0x40000

movd eax, xmm0

add ebx, edx

cmp ebx, 0

movb 0, [ebp+0x801c]

mov ebx, [ebp+0x1c]

movd xmm0, eax

je 0x40000

Figure 4.1: Figure shows (a) Untransformed code snippet. (b) Instrumented code after flag-liveness
optimization. (c) Instrumented code after taint-stack optimization. (d)Fastpath version of instru-
mented code.

executing original program instructions and instructions of the taint program, and therefore a
context switch is performed between the two logical threads of execution. It is useful to think
of all the state required for performing the taint operation as well as the context switch to be
stored in virtual taint registers. We employ some optimizatation techniques described in [25],
to reduce this overhead such as by using cheaper lahf/sahf instructions, and performing a flag
register liveness analysis across the function. An additional cost in our system is that of saving and
restoring physical registers used virtual taint registers, since we assume no availability of dedicated
registers for instrumentation, based on the practical observation that code for production use is
unlikely to have any general purpose register unused. Instead we use static analysis based methods
to perform the register re-allocation, described later in the chapter. The tagmap array can be
allocated statically in memory or by using an on-demand allocation as in [31].

4.2 General Optimizations

Our basic instrumentation required an expensive context switch from application code to the
taint monitor at each instruction, requiring save/restore for physical registers needed to perform
taint-related operations. As can be seen in Figure 2.1, this typically adds 10 to 20 instrumentation
instructions for every instruction in the original program. Worse, about 10 additional memory
references are added for each original memory reference, and has a base overhead of about 10 times
slowdown. We describe five optimizations we implement based on our sound static analysis. The
first three of these optimizations are generally applicable to both trusted and untrusted code, while
the others are safe only in the context of trusted code.

• Reducing Monitor State for Fast Context Switch. As a first optimization, we optimized
the saving and restoring of registers in two ways. First, we reduced the number of registers
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required by our taint monitor. Initially we required 4 physical registers — 3 for realizing the
virtual registers in Figure 2.1 and 1 for a pointer to the thread-specific register taint data.
We identified an interesting way to eliminate one of these registers by using the CPU flags
to perform taint computation. Second, we packed the taint for all CPU registers into a 8-bit
quantity, i.e 1 bit of taint per register on the x86. This 8-bits plus 8-bits needed for saving
flags could share a single 32-bit register, thus reducing the total register requirement to 2 from
the original 4. The effect of these low-level optimizations can be seen in Figure 4.2, which
also shows the effects of several additional optimizations described below. The technique
of storing the taint bits of all registers within a single CPU register allows more efficient
instrumentation: the taint of multiple registers can be checked using a single instruction.

As a second optimization, we further reduced the number of memory operations by utilizing
certain architectural features of Pentium. Specifically, we employed XMM registers (which

are rarely used is general-purpose code) as a backup for registers needed for instrumentation,
instead of saving them to memory. These registers are not used by compilers since they
are much slower than CPU registers — they provide access times comparable to that of L1
cache, i.e., their access times are comparable to memory. However, they provide an important
benefit in the context of thread-specific instrumentation, as they are private for each thread.

• Register use optimization. The goal of this optimization is to reduce the context switch
overhead by improving the selection of physical registers that are used as virtual registers. We
divide each application code basic block into sub-blocks such that each sub-block has at least
two unused registers. These registers can be used for taint computation. Their values needs to
be saved only once per sub-block instead of once every instruction. Other more complicated
ways of performing optimizations such as performing new register assignment after rewriting
the whole program may yield slightly better performance. However, our design leaves the
original instruction’s memory and register usage untouched. Therefore, the design is simpler,
aids debugging during development and may later aid automated reasoning about correctness
– in this regard, separating taint program code from the original has significant gain.

• Flag liveness optimization. Our basic instrumentation saves flag before each snippet
of instrumentation code and restores them afterwards. This is wasteful since flag values
aren’t live in most parts of the original code. Typically, fflags are set by an arithmetic
instruction (e.g., cmp) just before a conditional branch, which uses the flag values. Based on
this observation, we implemented a sound static analysis for flag liveness, and eliminated the
sahf/lahf instructions when they are not live.

• Use of dedicated taint stack. We split the tag space into two regions: one containing taint
data for stack, and the other (i.e., the global tagmap array) for all other memory. Actually,
there is one taint-stack for each thread stack. The taint stack is located at a fixed offset from
the main stack, and holds the taint values corresponding to the stack data. (For simplicity of

illustration, this offset is assumed to be 0x8000 in Figure 4.2.) Use of taint stack avoids the
need for address computation for local variables, as well as bit-shift computations. This can
be a significant gain for most code, since local variables often account for the vast majority
of memory accesses made by most programs [31].

If an access can be statically determined to be within the stack, then the corresponding taint
updates are directed to the taint stack, or else they go to the global tagmap. However,
for indirect accesses, a two-step operation is needed: to obtain the taint for an address a,
tagmap[a] is first accessed. One of the bits in tagmap[a] indicates if a is on the stack, and
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if so, the taint update is directed to the stack, i.e., to the location a + X where X if the
offset between stacks and taint stacks. (Note that by assuming a constant value for X, we

restrict all stacks to have size less than X.) This two-step process increases the costs of
taint update of indirect memory references, so the optimization may not work well for some
programs that perform far more static memory accesses as compared to local variables. We
point out that this two-step process is necessary for ensuring soundness of taint data in the
case where arbitrary memory corruption can happen between any two instructions, such as
the one addressed in that concurrency attacks outlined in previous chapters.

Local variables and parameters are accessed using constant offsets from EBP or ESP. We
can direct the taint updates for such accessed to the taint stack only if EBP (and/or ESP)
are known to point to the stack region. We verify this at the beginning of each function,
and perform a static analysis to verify if this condition will continue to hold throughout
the execution of the function, using static analysis techniques in BinStat. This analysis
succeeds on about 75% of the functions we have analyzed, but for the rest, it fails due to
our conservative modelling of indirect calls and setjmp/longjmp, and several features such
as alloca, hand written assembly, callee functions that de-allocate parameters before return,
frame-pointer elimination optimization, and involvement of ESP in arithmetic instructions
(other than those used to align the stack to alignment boundaries). For those 25% of functions,

EBP- (or ESP-) relative accesses are handled in the same way described above for indirect
memory references. The same is done for all stack accesses made by untrusted code since it
is difficult to perform sound static analysis on untrusted code — such code may violate many
assumptions made by such analysis.

• Generating multiple code versions. The intuition behind this optimization is that for
a large part of the program execution, the host system has very little memory interaction
with the untrusted code and therefore spends considerable time propagating “safe” data from
one memory to another. To utilize this bias, we develop two versions of the trusted code: a
fastpath version that operates when all the registers are untainted, and a slowpath version
that propagates taint as normal in the presence of tainted registers.

The fastpath is considerably faster than the slowpath, as it requires no taint propagation
for registers (as their taint will be zero), and only a single write operation for clearing the
memory taint for store operations. Memory load operations are the only possible way any
register could get tainted; hence such instructions require a memory taint check and transfer
of control to slowpath version, if necessary. Figure 4.2 shows the fastpath code. Figure 4.2
shows the slow path code, with one change: instructions to check if register taint is zero are
added to the end of each basic block, causing a transfer to the fastpath version in that case.

Although conceptually similar to the fastpath optimization developed in [25], our fastpath
optimization is more advanced due to the use of better static analysis. For instance, they
have to perform runtime checks at the beginning of each code block if the registers are
tainted, whereas we infer this by static analysis. Second, since their fastpath performs no
taint update operations, it can be used only if all memory locations that are written in the
block are untainted at the start of the code block.

4.3 Higher-level Optimizations

Static instrumentation systems have a critical advantage over the dynamic instrumentation systems
- the ability to analyze the complete flow graph of a function, thereby enabling reasoning about
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stronger properties at each instruction. Also, the analysis and instrumentation overhead is shifted
offline, which affords the possibility of much deeper analysis that yields results closer to optimal. We
perform three basic optimizations considering the semantics of taint program. Previous approaches
[23, 25] have not fully utilized instrumentation specific semantics, and therefore have not been able
to apply optimizations analogous to those applied in compilers for the taint program semantics.

4.3.1 Tag Sharing

The general intuition behind this optimization is that it possible to perform static taint tracking
on the taint program, falling back to dynamic updates only when there is static indeterminable
ambiguity in taint values. During the static taint analysis on the program, we introduce symbolic
taint variables whenever we load statically unknown taint values. These taint variables can be
logically shared by multiple program variables at a given program point. This eliminates the need
to propagate taint for variables within the same tag variable.

Most previous works in taint tracking associate a storage view for associating taint metadata
with data, i.e access to a metadata for data X, is f(X), where f is a function to compute the address
for metadata stored for X such as an array lookup operation. The function f is invariant across the
whole program, which results in certain inefficiency in accessing taint metadata. This is typically
because compiled code uses several temporary memory and registers imposed by architectural
constraints, such as limiting at most one memory operand for most instructions on the Intel 32-bit
x86. Consider the common case of a program data which has a long live range. On a register starved
architecture such as 32-bit x86, it is stored in function local temporaries being moved in and out
of registers when used. Associating taint metadata data using a storage view, the taint operations
would mirror the original program, copying taint metadata for these temporaries multiple times.
Logically, we can eliminate many of these taint operations, if we can statically infer that each
program point, the metadata access is located in an already allocated taint variable shared by
other variables.

Based on our ability to statically analyze the whole program flow graph for a function, we
perform standard analyses on the taint program. We first represent the program in SSA form,
giving a new tag variable whenever we can not precisely identify which tag variable is accessed
using our static analysis and at φ nodes. Then, treating taint for constants as “0”, we can perform
analysis similar to constant propagation. Using this, it is possible to recover a certain set of
variables that require no dynamic taint tracking - such variable i in main of Figure 3.1 which is
only involved in arithmetic with constants. Further, we perform a similar flow-sensitive common
subexpression elimination to determine that many SSA operands share the same tag variables. For
example in figure 3.2, just before instruction at .L11 in function main, esi, edi and eax share
the tag variable. Further, in the loop with the help of our analysis we can ascertain two facts -

• Registers esi and edi are left unchanged by the execution of get min.

• They are only involved in pointer arithemetic and comparision operations, both of which do
not change the taint associated with them.

As a result, esi and edi can share the tag variable throughout the execution of the loop body.
As a final optimization, we perform liveness analysis for taint variables which is followed by

dead code elimination for taint operations. This removes much of the taint processing for the push

and pop instructions in main of figure 3.2. All of this has an additional impact on register pressure
and cache performance incurred by the taint program.
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In order to enable the tag sharing optimization, we must not sacrifice soundness of the taint
tracking, i.e we should never miss marking the “unsafe” data with “unsafe” taint. For this reason,
we must treat memory locations that could be accessed in indirect memory references and as side-
effects of executing other functions conservatively. For non-local variables, we associate their taint
using the standard storage view, i.e by associating a corresponding position in the tagmap array.
For local variables we rely on our stack analysis and alias analysis to decide which function local
variables are suitable for this optimizations. Stack based variables of functions that are checked to
be “safe functions”, are optimized, because their references are identified statically and they can
never be accessed in indirect memory accesses. Even for “unsafe” functions that are marked only
because they call indirect functions or variable argument functions, they could later be selectively
treated suitable for this optimization, with the additional care that virtual taint registers used for
storing taint variables are flushed before an unsafe function call to their tagmap locations.

4.3.2 Virtual Taint Caches

Our ability to selectively distinguish stack-based accesses from other accesses, enables another
optimization. Similar to our use of al in Figure 4.2 to hold taint data for registers, we can now
use virtual taint caches for virtual registers used in the taint program. Specifically, for most local
stack variables that we recover in our static analysis, we can associate fast taint access for them.
These caches are implemented as thread-specific general purpose registers.

In order to perform this optimization, we first represent the taint program in a static single
assignment or SSA form. Then, we build an interference graph for all taint program variables.
We perform a greedy graph-coloring algorithm to decide if the number of bits required to allocate
register taint bits to all taint variables is lesser than a constant k, (fixed to be 54 in our implemen-

tation currently). If so, we perform a graph-coloring based register allocation for taint data. Using
techniques described in section 4.2, we find free registers and use those for allocation the virtual
taint cache, just as done for virtual taint registers .

As with the tag sharing optimization, we must be sure that cached taint data is in sync with
the taint tagmap data, whenever a local stack variable can be accessed in an indirect reference, or
as a side-effect of a call. This is referred to as a taint cache flush. To do so, we identify points in the
programs where the taint for a stack based variable must reside in the tagmap to avoid unsoundness
due to associating two locations with taint data. Such points could be function call locations or
indirect memory accesses. For most stack data of nearly 75% of the functions which are “safe”
cache flushing is unnecessary, since they can never be involved in indirect memory references. This
achieves significant speedup in taint access for a large part of the program execution, leading to
high performance gains.

Whenever possible memory errors becomes a concern in the application, caching can lead to
some unsoundness that should be eliminated. Essentially, this is because there are two physical
locations for the same taint data - one in the tagmap and other in the cache. In our approach, this
can be handled as follows. We make all stack variables for “safe” functions inaccessible by using
one bit called the permission bit in the tag map. Since only a few functions are found to be unsafe,
we can explicitly set their permission bits to accessibile or “1” at entry, as only its local variables
are supposed to be accessibile indirectly. We check this permission bit before any indirect memory
access in the program. Any memory errors that access cached local tag variables will be caught at
runtime as the permission checking will fail.
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4.3.3 FastPath for Local Variables

This optimization a simple extension for the fastpath technique described earlier. It combines the
benefits of fastpath with those of storing taint data in caches which are implemented as bits in
general purpose registers.

We generate two versions of code as outlined earlier - a fastpath version and a slowpath one.
The fastpath version assumes that all registers and stack based local variables have “safe” or “0”
taint. As a result, further checking of taint at memory loads from stack resident memory, and
clearing of taint data for local variables is avoided. As a result, for the code in Figure 4.2, we
eliminate all taint tracking and the code looks same as the uninstrumented version.

The control switches from fastpath to slowpath only upon checks on non-stack memory loads.
Switching back from slowpath to fastpath is fast, as it requires checking of all virtual caches which
are largely based on registers. For functions that may have taint data for local stack variables in
the tagmap (or taint stack), this check may be performed at a coarser granularity such as at start

of “cold blocks” or the optimization may be eliminated all together for “unsafe” functions (as done

in current implementation).
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Chapter 5

Implementation

BinStat is built with modifications to [32], with some changes to its disassembly engine. It uses a
library called udis86 for performing all instruction level functions. For instrumentation, there is a
string based interface to a modified version of nasm assembler, which acts as instruction assembler.
The total size of all the code in the BinStat framework, including code for taint processing and
optimizations is around 90KLOCs. Most of the code is C++ based, while some parts are written
in C.

For interception of system calls, the C Lib is transformed using BinStat. Specifically, only basic
blocks that make system calls are transformed for interception. Transforming shared libraries such
as the C and C++ libraries for taint propagation requires handling of many special cases and is not
fully done yet. Additional limitations are imposed due to certain dynamic ELF relocations that the
dynamic linker fixes up at runtime by updating addresses in the original program code section. To
make these updates happen in transformed code, such dynamic relocation information has to be
rewritten. Some of the libraries in Mozilla Firefox have these - thus have not been transformed yet.
Whereas most libraries for Konqueror have been successfully transformed, libraries in Firefox pose
more problems. The suspect in these cases seems to be some handling some transparency issues as
pointed out in [11].

Implementation for confining untrusted code is also limited. The CFI checks and ABI semantics
are currently not implemented. Also, data concurrency attacks require out-of-order data and taint
access, which is also currently ignored in the implementation.

The optimizations are basically tested on small to medium size programs consisting largely of
the SPEC benchmarks and some CPU intensive applications such as pdf-to-ps converters, and the
like. The basic robustness of the transformation engine is well tested transforming large programs
such as Firefox and Konqueror. The static analysis is implemented with a few approximations
- higher level optimizations are only applied on what functions are classified as “safe”. This is
overly conservative and better results may be possible once the design is fully realized. A possible
unsoundness in the results given exists because of a bug of the optimistic handling of PIC calls -
we currently assume that external calls made using PIC code uses no arguments.
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Chapter 6

Experiments and Evaluation

6.0.4 Policy development and enforcement

The primary goal of these experiments was to show that it is relatively easy to apply well-known
policies for stand-alone applications to their plug-in counterparts. In most of our experiments, we
had to make no changes to the sample policies, with requirement for some adjustments to be made
when browser performs certain actions on behalf of the plugin.

Our primary target in policy enforcement experiments was Konqueror, since it supports many
more plugins available as shared libraries than the Linux version of Firefox.

• Konqueror kpdf viewer plugin. For the purpose of evaluation we considered libkpdfpart.so
which has 3143 functions and pervasively uses the KDE UI libraries for it actions. We applied
existing policies developed for similar document viewer, taken from [27]. The basic policy
applied was to allow only file reads, and restrict file writes to files “owned” by the application
(basically, its preference files). This default policy doesn’t permit the extension to make any
network reads and writes. We relaxed this policy so that it could write a log file for debugging
purposes, since the plugin we used was compiled from source and had default debug logging
enables. As an aside, this also confirmed the correctness in capturing the behavior of the
plugin when calling browser functions.

These policy restrictions were imposed on system calls that had tainted arguments, or were
made with the context flag Cu set. For system calls where none of these conditions hold, no
restrictions were applied. As a result, browser functionality wasn’t restricted in any way by
this policy.

• Firefox with VLC media player plug-in In this experiment we used a media player with
Firefox. To this plugin we applied a policy developed in [24] for a stand-alone version of a

similar player (“kmplayer”). This policy restricts the player to make network accesses to a
local DNS server and to remote web sites, but disallows writes to any files not owned by it.
Policies that further restrict its network access to improve security can also be applied. For
example, we can restrict the plugin to make socket connections and data transmission system
calls to a local DNS server, and a specific URL that the browser has explicitly provided to the
plug-in — typically the URL of the streaming media file that the medial player was invoked
with.

• Apache mod config log module. In this experiment we took the case of an extension that
is less trusted than its host system, specifically, a logging extension of the Apache web server
that performs a simple operation such as recording information about requests received by
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Program Untrusted Trusted Trusted Trusted
(Unopt.) (Slow

Path)
(Fast
Path)

alvinn 37 613 364 123

ammp 15 254 154 64

art 15 288 129 34

compress 75 1130 350 100

equake 17 265 109 29

espresso 72 1106 380 93

go 108 874 359 100

gzip 139 874 530 101

m88ksim 60 1293 344 80

parser 123 1545 457 112

Average 66 824 318 83
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Figure 6.1: Execution overheads in percentage (%) for the general optimizations described in section
4.2.

the server into log files in a specified (“logs”) directory. As a policy for such a plugin, we
restrict writes of data tainted by this library to only files in the “logs” directory.

6.0.5 Effectiveness of Optimizations

For measuring performance improvements due to our optimizations, we tested our performance
on 10 CPU intensive programs from the SPEC95 INT benchmarks. All programs were compiled
with gcc-4.1 with typical O2 optimization levels.

6.0.6 Evaluation of General Optimizations

Our basic transformation incurs an overhead ranging from 2.5 to 15 times with an average of 8.3
times. Our low-level optimizations reduces this overhead fairly uniformly on all programs, by about
200%.

Our sub-block optimization yield a significant improvement of about 200%− 230%. The reason
for this can be related intuitively to our results in Table 6.2, which shows that an average number of
instructions requiring taint-tracking per sub-block is 2.27. This is roughly equivalent to eliminating
the need to save/restore registers atleast 55% of the instructions. This translates to eliminating

roughly 6 register to XMM (or memory) transfer operations for these 55% instructions, as can be
inferred from the transformation shown in Figure 4.2.

Similarly, we achieve a 140% reduction in flag save restore, since our static analysis results show
that less than 10% of the instrumented instructions require flag saves after the eflags register
liveness analysis. This reduction does not have as much of an impact as our sub-block optimization,
because flag/save restores require only a lahf/sahf and register to register movement instructions
involving eax, which are relatively cheaper as compared to memory accesses.

Our taint stack optimization gives us an additional improvement of varying from 5% − 120%
depending upon the nature of the program, with an average of 60%. From Table 6.2, we can see
that only about a 20% of the accesses are statically unresolvable. While our transformation makes
indirect accesses more expensive, it optimizes the rest. However, it must be borne in mind that
the static figures are not exactly representative of the way compilers generate code: minimizing the
number of memory accesses in loops. This is why these reductions are not as dramatic.
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Program Unresol Stack Static FlagsLive Ins/SBlock

alvinn 19.2 75.0 5.8 8.75 1.77

ammp 31.5 61.3 7.2 7.04 1.77

art 13.1 57.1 29.8 2.7 2.30

compress 16.1 5.1 32.9 5.5 2.57

equake 21.4 57.3 21.3 7.5 2.52

espresso 30.7 62.5 8.8 4.7 2.70

go 30.9 63.4 5.7 5.8 2.18

gzip 19.5 52.3 28.2 7.3 2.27

m88ksim 16.5 67.0 16.5 4.95 2.39

parser 28.8 62.8 8.4 4.67 2.32

Average 22.7 60.9 16.4 5.89 2.27

Figure 6.2: Static analysis results for local analysis of functions: memory accesses identified to be
in different categories (stack, static, or unresolved), the percentage instructions that required a flag
save, and the average number of instructions requiring taint tracking in each block.

Our fastpath optimization performance is hard to accurately measure as it depends upon the
memory interaction between the trusted and untrusted components. Therefore, we present the
performance of the fastpath and slowpath codes separately. Since the transfer between the two
versions requires a simple test reg, reg and jmp, the switching overhead is minimal. As can be
seen, this optimization improves the performance of the host system drastically, since systems such
as browsers and servers will largely operate in fastpath mode, involving little interaction with

common extensions. Previous work[25] that optimize based on this same observation have shown

that this ratio is typically 98% on server programs such as Apache. Using this as a metric, we
expect overheads incurred by our approach to be below 90%.

Our performance overheads are much better than those previously reported. The fast path
overheads are comparable to source-code based taint transformation techniques [31] that have
yielded the best performance figures to date. As compared to binary-based techniques, the best
reported results are about 3.6 times [25]. Some of this improvement is because these systems are
implemented of dynamic translation frameworks that do not enable complete benefits of static
analysis based aggressive optimizations.

Finally, our performance for the untrusted code is shown in Figure 6.1. The performance
numbers are comparable to the fastpath version of trusted code even though taint has to be written
to destination memory only in the case of store operations. This is mainly because our design
incorporates thread-safe tainting, which requires taint marking to be performed before and after
each memory store operation.

6.0.7 Evaluation of higher-level optimizations

Figure 6.3 shows the incremental effects of applying higher level optimizations. These are applied
incrementally on the slowpath version of the code after performing the general optimizations.
We have currently not implemented the common subexpression elimination on taint variables.
Each SSA operand is given an associated taint variable that is given register bit storage that
is updated from the tagmap dynamically. Therefore, the tag sharing optimization reduces the
number of tracked variables and results in reducing the performance penalty by nearly 90% of the
base execution of the uninsrumented program. This also includes elimination of tainting due to
constant propagation of “0” taint that eliminates variables which always have “0” taint. Tags are
stored in register caches - we utilize part of VR1 and another virtual register VR4 to get 56 bits of
storage for taint data for local variables.
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Program Basic Tag
Sharing

Taint
Liveness

Fast
Path

alvinn 364 245 242 134

ammp 154 121 89 60

art 129 67 35 7

compress 350 220 150 79

equake 109 68 60 30

espresso 380 292 103 38

go 359 295 178 79

gzip 530 397 228 100

m88ksim 344 180 100 52

parser 457 328 167 99

Average 318 221 135 68
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Figure 6.3: Execution overheads in percentage (%) for the high level optimizations described in
section 4.3.

Further, based on placing the security checks at function entry and exits we perform taint
liveness analysis, pruning away unnecessary taint updates for local variables. Of course, all taint
updates for non-local and unsafe local variables are performed. The result is a further reduction to
a 139% over the uninsrumented code execution.

Finally, we perform the fast path optimization on the local variables as well as registers. The
dominant execution falls in the fast path code and this runs at a overhead of 67%.

6.0.8 Robustness of Binary Transformation system

To test the robustness of our basic instrumentation system we transformed various stand-alone
applications with taint transformation, as well as shared libraries and we successfully tested to
work properly. Apart from the experiments highlighted in this section we have transformed a
variety of stand-alone applications such as gimp-2.2, gaim, pdftops, xmms, and a statically linked
version of Firefox (56K functions) as well as a dynamically linked one (242 functions). These have
been running on our Ubuntu system for the past few days.

In order to get useful taint information at the lowest interface, we transformed 12 KDE libraries
(written in C++) such as kdelibs 3.5.6, kdebase 3.5.6, kdecore, kdegraphics, and 5 similar ones

in Firfox. The binary versions of the browsers themselves are relatively small (242 functions in

Firefox, and 11 in Konqueror), while most of the functionality lies in the libraries (6.6K functions

in libkdecore, 8.0K functions in libkio, 7.9K functions in libkdeui).
For plugins, we experimented with several other library versions of media players such as gxine

and Open helix player, limited only by the availability of binaries with enough symbol information
for disassembly.

6.0.9 Defense against Attacks

To evaluate the effectiveness of our implementation, we used several synthetic attacks. For this
purpose, we simply treated a logger module in Apache web server as untrusted, modifying its source
to perform attacks on Apache. Specifically, we tested against:

• function pointer corruption attacks by corrupting the GOT entry for write library call in
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libapr-1.so, and checked that the control context at the next system call is correctly iden-
tified as being made in the context of untrusted code.

• To detect attacks against direct corruption of data and data pointers, the logger module
was programmed to corrupt certain known global buffers in the SSL module. As a result of
the attack, these buffers got tainted. As a result of operations performed by SSL module
subsequently, this taint propagated to a write system call. Since we don’t expect any data
written by the SSL module to be tainted, the attack gets detected at this point.

• For evaluating our defenses against ABI violations, we corrupted all callee-saved registers,
and our system recovered from this attack by restoring those registers.

• To check our system call interception works as expected, we modified the source of our sample
plugins to perform invalid system calls (unexpected system calls or with unexpected argument

tainting), and successfully detected them.
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