
Defeating Memory Error Exploits Using
Automated Software Diversity

A Dissertation Presented

by

Sandeep Bhatkar

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2007

Stony Brook University

The Graduate School

Sandeep Bhatkar

We, the dissertation committee for the above candidate for

the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor R. C. Sekar, (Advisor)
Computer Science Department, Stony Brook University

Professor Scott Stoller, (Chairman)
Computer Science Department, Stony Brook University

Professor Rob Johnson, (Committee Member)
Computer Science Department, Stony Brook University

Professor Somesh Jha, (External Committee Member)
Computer Science Department, University of Wisconsin

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Defeating Memory Error Exploits Using Automated

Software Diversity

by

Sandeep Bhatkar

Doctor of Philosophy

in

Computer Science

Stony Brook University

2007

The vast majority of today’s security vulnerabilities, accounting for as much

as 88% of US-CERT advisories in the past few years, are caused by memory

errors such as buffer overflows, heap overflows, integer overflows, and format-

string bugs. Previous research has developed techniques for preventing known

attack classes exploiting these vulnerabilities. However, attackers quickly de-

veloped alternative exploits to circumvent these protections. In contrast to

these approaches, comprehensive memory error detection techniques can help

track down memory-related bugs, as well as provide full runtime protection

from known and future exploits of buffer overflows. However, they typically

introduce very high overheads, slowing down programs by a factor of 2 or

iii

more; or require significant modifications to existing code that is too expensive

in practice. In contrast, we develop low-overhead techniques that can provide

probabilistic protection against all memory error exploits, while preserving full

code compatibility. Our techniques are based on automated software diversity.

In this dissertation, we undertake a systematic study of possible automated

transformations that can defeat memory error exploits, and develop (a) ad-

dress space randomization, which disrupts exploits by making it difficult to

predict the object that would be overwritten as a result of a memory corrup-

tion attack, and (b) data space randomization, which randomizes the interpre-

tation of overwritten data. These randomization techniques make the effect

of memory-error exploits non-deterministic, with only a very small chance of

success. Thus, an attacker is forced to make several attack attempts, and each

failed attempt typically results in crashing the victim program thereby mak-

ing it easy to detect the attack. Our implementation approaches are based on

automatic source-level or (where feasible) binary-level transformations. We

present experimental results on several large pieces of software.

iv

To my loving wife Bertille,

my wonderful daughter Lisa,

and my parents.

Contents

List of Tables ix

List of Figures x

Acknowledgments xi

1 Introduction 1

1.1 Dissertation Organization . 6

2 Memory Error Vulnerabilities 7

2.1 Buffer Overflows . 8

2.1.1 Stack Buffer Overflows 8

2.1.2 Static Buffer Overflows 9

2.1.3 Heap Overflow and Double Free Attacks 10

2.1.4 Integer Vulnerabilities 11

2.2 Format String Vulnerabilities 13

3 Motivation for Diversity-Based Defense 14

4 Address Space Randomization 19

4.1 Overview of the Technique . 19

4.2 Implementation Approaches 23

4.2.1 Operating System-Based Transformation 23

4.2.2 System Tools-Based Transformation 25

4.2.3 Binary Transformation 25

vi

4.2.4 Source Code Transformation 26

4.3 Binary-Only Transformation Approach 27

4.3.1 Code/Data Transformations 28

4.3.2 Stack Transformations 28

4.3.3 Heap Transformations 31

4.3.4 Shared Library Transformations 32

4.3.5 SELF: a Transparent Security Extension for ELF Binaries 34

4.4 Source Code Transformation Approach 44

4.4.1 Static Data Transformations 44

4.4.2 Code Transformations 48

4.4.3 Stack Transformations 51

4.4.4 Heap Transformations 53

4.4.5 Shared Library Transformations 54

4.4.6 Other Randomizations 55

4.4.7 Other Implementation Issues 57

4.5 Performance Results . 58

4.5.1 Binary-Only Transformations 58

4.5.2 Source Code Transformations 59

4.6 Effectiveness . 63

4.6.1 Memory Error Exploits 64

4.6.2 Attacks Targeting ASR 70

5 Data Space Randomization 73

5.1 Transformation Approach . 75

5.1.1 Pointer Analysis . 77

5.1.2 Determination of Masks Using Points-to Graph 81

5.2 Implementation . 83

5.2.1 Implementation Issues 86

5.3 Performance Results . 91

5.4 Effectiveness . 92

5.4.1 Memory Error Exploits 92

5.4.2 Attacks Targeting DSR 95

vii

6 Related Work 97

6.1 Runtime Guarding . 97

6.2 Runtime Bounds and Pointer Checking 97

6.3 Compile-Time Analysis Techniques 98

6.4 Randomizing Code Transformations 98

6.4.1 System Call Randomization 99

6.4.2 Instruction Set Randomization 100

6.4.3 Pointer Randomization 100

6.4.4 Address Space Randomization 101

7 Conclusions 102

viii

List of Tables

1 Runtime performance overhead introduced by binary-only ASR

transformations. 58

2 Test programs and workloads for performance evaluation of

source code-based ASR transformations. 60

3 Performance overhead introduced by the source code-based ASR

transformations on Apache. 61

4 Runtime performance overheads introduced by the source code-

based ASR transformations on benchmark programs. 62

5 Distribution of variable accesses in the source code-based ASR

transformations. 63

6 Calls and buffer stack allocations in the source code-based ASR

transformations. 64

7 Runtime performance overhead introduced by transformations

for DSR. 91

ix

List of Figures

1 Stack smashing attack: a buffer overflow in which the current

function’s return address is replaced with a pointer to injected

code. 8

2 Potential locations of padding inserted between stack frames. . 29

3 Format of a typical SELF object file. 37

4 Layout and interpretation of a SELF memory block descriptor. 39

5 (a) Example program, (b) Points-to graph computed by a flow-

insensitive analysis, (c) Points-to graphs computed at different

program points using flow-sensitive analysis. 79

6 Figure (a) above shows a sample C program for which points-

to graph is computed. Figures (b) and (c) show the points-to

graphs computed by Andersen’s algorithm and Steensgaard’s

algorithm respectively. 80

7 Properties of Steensgaard’s points-to graph: Each node has at

most one outdegree and zero or more indegree. Typically a con-

nected component in Steensgaard’s graph has a tree like struc-

ture as shown in the Figure. However, there is a possibility

of only one cycle, which is formed by an edge from the root

node to one of the nodes in the component. In the above graph

component, such an edge is represented by a dashed line. . . 82

8 A sample example illustrating basic DSR transformations. . . 84

x

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. R. Sekar,

for providing me motivation, encouragement and support during the course of

the Ph.D. program. I have been greatly benefited from his professional and

personal advice. I am truly inspired by his passion, enthusiasm and boundless

energy for undertaking practical research that addresses real world problems.

I wish to follow his footsteps in my career as a researcher.

I want to thank my dissertation committee members Prof. Scott Stoller,

Prof. Rob Johnson, and Prof. Somesh Jha for their insightful comments and

suggestions.

I feel privileged to have been a member of Secure Systems Lab. The lab

provided me access to excellent computing facilities needed for my research.

Most of all, the folks in the lab made it a wonderful workplace. I am especially

grateful to Daniel C. DuVarney for his immense help and guidance during the

initial stage of this dissertation work. I also want to acknowledge a number

of other lab mates who, either directly or indirectly, have provided assistance

in my research: V.N. Venkatakrishnan, Wei Xu, Zhenkai Liang, Abhishek

Chaturvedi, Weiqing Sun, Vishwas Nagaraja, Shruthi Murthy, and Yogesh

Chauhan. I very much appreciated Ajay Gupta’s table tennis lessons that

brought some welcome relief from stressful times at work. I would like to

mention other lab members with whom I have had enjoyable experience: Prem

Uppuluri, Alok Tongaonkar, Krishna Kumar, Divya Padbhanabhan, Mohan

Channa, Tapan Kamat, Varun Katta, Tianning Li, and several others. It was

a pleasure meeting these people, and I thank them all.

In addition, I would like to thank my other friends in Stony Brook, in

particular, Rahul Agarwal, Pavan Vaddadi, Dipti Saha, and Abhiram Govin-

daraju, for their friendship and support.

Finally, my special thanks are to my family: my parents for their contin-

ued support; my brother Sachin for always showing interest in my progress;

for my wonderful infant daughter Lisa for bringing immense joy and happiness

in my life; and most notably my wife Bertille for her patience, understanding,

and care.

CHAPTER 1

Introduction

In recent years, a vast majority of the security attacks have targeted vulnera-

bilities due to memory errors in C and C++ programs. Since 2003, CERT/CC

(now US-CERT) [10] has issued 136 distinct advisories involving COTS soft-

ware, of which 119 (around 88%) are due to memory errors. We can totally

avoid these vulnerabilities by developing more reliable and secure software

using type-safe and memory-safe languages such as Java and ML. However,

these languages provide little control over memory management and data rep-

resentation. This control is the main reason that C and C++ are continued

to be preferred languages for writing systems software. Moreover, software

producers are obsessed with faster runtime performance of C and C++ pro-

grams. These facts indicate that C and C++ languages will continue to be

used, and hence memory errors will be a dominant source of vulnerabilities in

the foreseeable future.

To date, a number of attacks which exploit memory errors have been

developed. The earliest of these to achieve widespread popularity was the

stack smashing attack [17, 33], in which a stack-allocated buffer is intention-

ally overflowed so that a return address stored on the stack is overwritten

with the address of injected malicious code (see Figure 1). To thwart such

attacks, several attack-specific approaches were developed, which, in one way

or another, prevent undetected modifications to a function’s return address.

They include the StackGuard [17] approach of putting canary values around

1

the return address, so that stack smashing can be detected when the canary

value is clobbered; saving a second copy of return address elsewhere [13, 5];

and others [20].

The difficulty with the above approaches is that while they are effective

against stack smashing attacks, they can be defeated by attacks that modify

code pointers in the static or heap area. In addition, attacks where control-

flow is not changed, but security-critical data such as an argument to chmod or

execve system call are changed, are not addressed. Moreover, recently several

newer forms of attacks such as integer overflows, heap overflows, and format-

string attacks have emerged: 54 of the 119 memory error related CERT/CC

advisories since 2003 are attributed to these newer forms of attacks. (Note that

some advisories report multiple vulnerabilities together.) This indicates that

new types of memory error related vulnerabilities will continue to be discovered

in the future. Therefore, we need to address all the existing exploits as well

as exploits which may be discovered in the future.

While we can totally eliminate memory error exploits by using com-

plete memory error detection techniques, unfortunately existing techniques

face a few problems that prevent their widespread acceptance. Backwards-

compatible bounds checking [25] and its descendant CRED [42] are associated

with high overheads, sometimes exceeding 1000%. Lower overheads are re-

ported in [53], but the overheads can still be over 100% for some programs.

Overheads are low in approaches such as CCured [34] and Cyclone [24], but

they have compatibility issues with legacy C code. Precompiled libraries pose

additional compatibility problems with these techniques. Finally, CCured and

Cyclone both rely on garbage collection instead of explicit memory manage-

ment model used in C programs, which can pose another obstacle to their

widespread acceptance.

Having considered the progress of research towards defeating memory

error exploits, we feel that there is a need for a middle ground between attack-

specific and complete memory detection techniques: an approach that offers

broad protection, but does not compromise performance or code compatibility.

In this dissertation, we explore use of software diversity as a means to achieve

2

this objective. As a first step towards this direction, we observe that memory

error vulnerabilities are a part of a broader issue: vulnerabilities of software

monocultures.

Prevalence of software monocultures in today’s networked computing en-

vironments is considered to be a serious threat to computer security. Because

of software monocultures, an attacker capable of exploiting even a single vul-

nerability in an application can compromise multiple instances of the appli-

cation across the Internet. For instance, over 90% of the world’s computers

run Microsoft’s operating systems. Thus, a virus or a worm capable of ex-

ploiting a vulnerability in Microsoft’s software could potentially harm most

of the computers in the world. Because of the Internet, worms and viruses

can spread very fast over the network leaving insufficient time for users and

administrators to patch their systems. Time and again, we have seen worms

such as Slammer, Blaster and Code Red that have exploited vulnerabilities of

software monocultures to launch such large-scale attacks.

Diversity-based defenses are motivated by the vulnerabilities of software

monocultures. These defenses introduce diversity in software systems in such

a way that the attackers are forced to customize their techniques. The inten-

tion is to cause significant increase in the attack workload, thereby reducing

its propagation rate. One of the first proposed approaches for software di-

versity was N -version programming [4], wherein N different versions of the

same software component are implemented independently by N programming

teams. The assumption underlying this approach is that the probability of

different teams introducing the same software faults is small. This approach

is not practical primarily because of the high cost involved in manual develop-

ment and maintenance of different versions. Hence, approaches that introduce

diversity automatically are more desirable.

Automatic introduction of diversity also presents some practical chal-

lenges. For instance, it is hard to automatically create diversity at the level

of functional behavior of programs such as design and algorithms. For this

reason, diversity-based defense is unsuitable for vulnerabilities that involve de-

sign or logical errors such as input validation errors and configuration errors.

3

Given this limitation, we need to consider automatic program transformations

that preserve functional behavior. To introduce diversity, such transforma-

tions need specification of intended program behavior, which is usually not

available. One of the alternatives is to make transformations that preserve

programming language semantics as they are readily available. This implies

that we can only change low-level program parameters that are not fixed by

language semantics. Such parameters include the interface to the operating

system, the program memory layout, and representation of data and code. Un-

fortunately on existing platforms, these parameters lack diversity, thus leading

to vulnerabilities that are exploited by many attacks. It turns out that all the

attacks on memory errors also exploit the lack of diversity in these low level

program parameters.

Several recent defense techniques have been based on introducing diver-

sity in the low level program parameters. Some of them require changes to

the operating systems or require architecture-level support. Whereas in this

dissertation, our focus is on automated program transformation techniques.

In our diversity-based approach, we do not detect memory errors or their

exploits, but rather target a different goal. Our goal is to maintain the benign

program behavior, but disrupt only the attack behavior. What this means is

that attackers can still launch attacks, however, the attacks typically cause

a program to behave unpredictably, but do not compromise its security. All

known attacks on memory errors are based on corrupting some critical data

in the writable memory of a process. For a successful attack, the attackers are

required to know two things: (1) location of the critical data in the memory,

and (2) how the critical data is used in the program. For instance, in a

stack smashing attack, an attacker needs to know the relative location of the

return address from the stack buffer, as well as the absolute location of the

buffer. Also, the attacker needs to know how the return address will be used,

which in this particular case is the common knowledge that the return address

represents the location where control is transfered after a function’s return.

Based on this understanding of memory error exploits, we disrupt the attack

behavior by making the effect of memory errors non-deterministic. To this end,

4

we have developed two randomization techniques to automatically introduce

the diversity needed for disrupting attack behaviors:

• Our first technique Address Space Randomization (ASR) comprehen-

sively randomizes absolute locations of all code and data objects, as well

as their relative distances. This causes memory errors to corrupt random

objects. So it becomes difficult for an attacker to know which objects

are corrupted in a memory error, and also the attacker cannot control

a memory error to corrupt a security-critical object of her choice. Ad-

ditionally, in the case of attacks involving pointer data corruption, the

attacker does not know the value to be used for overwriting the pointer

data as all the objects are located at random addresses.

• Our second randomization technique Data Space Randomization (DSR)

makes the use of corrupted data highly unpredictable by randomizing the

representation of data objects. This causes attacker’s corrupted data to

be interpreted with a random value. As a result, an application may be-

have unpredictably, and in most cases, it may crash, but at least the se-

curity would not be compromised. DSR technique is designed to provide

stronger protection than that of ASR. DSR achieves this by providing

larger range of randomizations, and by overcoming a few weaknesses of

ASR technique.

With these techniques, we address the principal weakness of memory

errors: their predictable effect. This, as we shall show, enables our approach

to provide broad protection against a wide range of memory error exploits.

However, the protection provided is probabilistic, meaning that attackers still

have a chance of success. Nonetheless, we shall show that for all known classes

of attacks, the odds of success are very low. We present two implementation

approaches for ASR: (1) a binary-level transformation that mainly performs

absolute address randomizations, and (2) a source-level transformation that

performs fine grained relative as well as absolute address randomizations. Our

implementation approach for DSR is based on a source-level transformation.

5

The average runtime overheads for ASR and DSR techniques are around 10%

and 15% respectively.

1.1 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we describe

some of the common memory error vulnerabilities. In Chapter 3, we pro-

vide our motivation behind developing diversity-based defense techniques. In

Chapter 4, we present our address space randomization technique. Chapter 5

describes our data space randomization technique. Related work is covered in

Chapter 6. Finally, we conclude this dissertation in Chapter 7.

6

CHAPTER 2

Memory Error Vulnerabilities

This chapter gives an overview of various memory error vulnerabilities ex-

ploited by attackers. Typically, an attacker exploits a memory error vulnera-

bility to corrupt some data in the writable memory of a process. The exploits

can be divided based on the attack mechanism and the attack effect. The

primary attack mechanisms known today are:

• Buffer overflows. These can be further subdivided, based on the memory

region affected: namely, stack, heap or static area overflows. We note

that integer vulnerabilities also fall into this category.

• Format string vulnerabilities.

Attack effects can be subdivided into:

• Non-pointer corruption. This category includes attacks that target security-

critical data, e.g., a variable holding the name of a file executed by a

program.

• Pointer corruption. Attacks in this category are based on overwriting

data or code pointers. In the former case, the overwritten value may

point to injected data that is provided by the attacker, or existing data

within the program memory. In the latter case, the overwritten value

may correspond to injected code that is provided by the attacker, or

existing code within the process memory.

7

void f(const int *A, int n)
{
 int buf[100];
 int i = 0;
 while (i < n) {
 buf[i] = A[i++];
 }
 ...
}

buf[0]

...

buf[98]

buf[99]

Base Ptr

Return Addr

n

A

In
cr

ea
si

ng
 a

dd
re

ss
es

St
ac

k
gr

ow
th

buf[101]

Injected code starts here

Figure 1: Stack smashing attack: a buffer overflow in which the current func-
tion’s return address is replaced with a pointer to injected code.

2.1 Buffer Overflows

A buffer overflow occurs when the data written to a buffer, due to insufficient

or incorrect bounds checking, corrupts the data in the memory region adjacent

to the buffer. Depending upon where the buffer is located, overflows can occur

in the stack, static data, or the heap area of the memory.

2.1.1 Stack Buffer Overflows

These overflows typically target the return address, saved base pointer or other

pointer-type local variables.

Figure 1 shows an example of a stack smashing attack. On the left of

the figure, there is a vulnerable piece of code. The function f() includes the

definition of a local variable buf whose memory is allocated on the stack. In the

body of the function, there is a while loop with a buffer overflow vulnerability

that ends up writing past the boundary of buf. On the right of the figure,

there is a snapshot of the stack frame corresponding to an invocation of the

8

function f(). Here the stack is growing in the downward direction, and the

addresses are increasing in the upward direction.

As a result of an overflow in buf, the adjacent memory gets corrupted. In

this case, this memory includes the base pointer, the return address, param-

eters to the function f(), and so on. In a typical stack smashing attack, an

attacker exploits the overflow to overwrite the return address with a pointer

to the buffer buf. In addition, in the same overflow, the attacker injects ma-

licious code into the buffer. Thus when the function returns, the control is

automatically transferred to the attacker’s injected malicious code.

In a similar way, the attacker can also corrupt function pointers appearing

on the stack. Also, the attacker can make the corrupted pointer point to an

existing code to gain control. For instance, the attacker can make the control

transfer to standard C library functions such as execve and system that are

already mapped in the memory when the program is running. All that is

required is to pass appropriate command argument to these functions from

the stack. Typically the command used is /bin/sh, which gives a shell to the

attacker. If the program is run with a root privilege as in the case of setuid to

root servers, then the attacker gets a root shell.

Other variations of this attack include corrupting base pointer, or other

stack allocated security-critical data such as user-ids, the file name argument

of execve command, and so on.

2.1.2 Static Buffer Overflows

Like stack buffer overflows, buffer overflows in the static data region can be

exploited to corrupt either function pointers or other security-critical data.

In the static data region, certain function pointers can be always found at

predictable locations. For instance, in the memory image of an ELF binary,

addresses of shared library functions are stored in the section .got containing

the global offset table (GOT), and addresses corresponding to constructor and

destructor function calls are stored in sections .ctors and .dtors respectively.

These sections are present in static data region and are popular targets of static

9

buffer overflows.

2.1.3 Heap Overflow and Double Free Attacks

In a typical implementation of a heap memory management, the heap’s book-

keeping data structure is stored around the blocks of memory allocated for

malloc requests. So if there is an overflow in the memory allocated in the

heap, the data structures get corrupted resulting in erroneous behavior of the

heap. The way corrupted data structure is interpreted by the heap manage-

ment code, gives attackers an ability to overwrite an arbitrary word of memory

with an arbitrary value [26]. Double free attacks exploit a similar corruption

which occurs in a buggy code that tries to free the same block twice [2]. In

both these types of attacks, the vulnerable code pertains to operations over

doubly-link lists associated with either free or allocated chunks of memory.

For example, the code for deleting an element N from a doubly-link list is

implementation as follows:

N->next->prev = N->prev; // statement 1

N->prev->next = N->next; // statement 2

Here, the values N->next and N->prev are a part of the heap data structure

that an attacker can corrupt. The statement 1 is equivalent to *(N->next

+ C) = N->prev, where C is a constant associated with the offset of the field

prev of a doubly-link list element. Thus by corrupting the heap memory cor-

responding to N->next and N->prev with values (A - C) and V respectively,

an attacker gets an ability to corrupt a word at the memory address A with a

value V.

The other buffer overflow attacks require knowledge of the relative dis-

tance of a buffer from the data to be corrupted. This distance could change

every execution of the victim program, or even during runtime. If the distance

is fixed, it is still difficult to identify it without having the proper knowledge of

the memory layout of the program. On the other hand, in the heap overflows

described above, the relative distance of the heap data structure from the heap

buffer is fixed. An attacker can identify this distance just by knowing the type

10

of the heap buffer. As heap overflows give an ability to corrupt a data at a

chosen absolute address, their exploits are absolute address-dependent.

The memory for C++ objects dynamically created using new operator

is allocated in the heap region. A C++ object typically has a pointer to a

virtual function table (vtable) containing addresses of virtual functions used

for dynamic dispatching. Attackers also exploit heap overflows to corrupt

pointers to vtable, and make them point to their injected table of pointers.

Thus, dynamic dispatching of virtual functions results in the transfer of control

to the locations chosen by the attackers.

2.1.4 Integer Vulnerabilities

An integer type in C language has a fixed width in terms of number of bytes

depending upon the underlying machine representation. For instance, on 32-

bit architectures, types short and int have width of typically 2 and 4 bytes

respectively. Also, a machine representation has a specific format for represent-

ing signed or unsigned integers (e.g., two’s complement vs. one’s complement).

At a high level, integer vulnerabilities arise because programmers do not take

into account the machine representation of integers while writing code involv-

ing integer computations. The integer vulnerabilities could be of following

types:

• Overflows and underflows. An arithmetic operation, such as a sum

or multiplication, over two or more integers may result in a value greater

than the maximum value possible for the machine representation. Such

a value when assigned to the fixed width integer representation, gets

changed in an undefined manner. Typically, the value “wraps around”

from a large positive value to a small negative one. This effect is called

integer overflow. Similarly, when the computation results in a value

smaller than the minimum value possible with the machine representa-

tion, the effect is called integer underflow. In this case, the value typically

“wraps around” from a small negative value to a large positive one.

Due to the wrap-around, boolean conditions which test the values of

11

integers resulting from arithmetic overflow or underflow are often incor-

rectly evaluated. For example, if i is sufficiently large, the expression

i + 5 can overflow, resulting in a negative value, and causing the con-

dition i + 5 > limit to evaluate to false, when it should be true. This

effectively disables the bounds checking, allowing an overflow attack to

be performed in spite of the bounds checking. In the most common form

of this attack, the integer value is used as an index into an array, giving

attackers an ability to corrupt an arbitrary word in the memory.

• Signedness bugs. Signedness bugs occur when an unsigned integer is

interpreted as signed, or when a signed integer is interpreted as unsigned.

Following example illustrates this problem.

1. char gbuf[100];

2. int copybuf(char *buf, int len) {

3. if (len > 100) return -1;

4. else return strncpy(gbuf, buf, len);

5. }

In the above code, a check on line 3 is performed on the length of buf

before copying it into gbuf. Here the problem is that the last parameter

len of strncpy is interpreted as an unsigned integer, whereas the check

on line 3 is performed on a signed integer. So for example, if a negative

value is passed in len, it is possible to escape the check on line 3, but

when strncpy interprets the negative integer, it is interpreted with a

large positive value. Thus, strncpy causes a buffer overflow in gbuf

past its boundary.

The overflows and underflows described before can also result in similar

confusion in the interpretation of signed and unsigned integers.

• Truncation errors. When an integer with a larger width is assigned to

a smaller width integer, a truncation error occurs. For instance, a type

cast from an int to a short discards the leading bytes of an integer.

12

This causes wrong interpretation of the resulting integer value, which

could be exploited in different ways as described before.

2.2 Format String Vulnerabilities

A format-string vulnerability [44] occurs whenever a program contains a call

to the printf family of functions with a first parameter (format string) that

is provided by an attacker. The common form of this attack uses the some-

what obscure %n format parameter, which takes a pointer to an integer as an

argument, and writes the number of bytes printed so far to the location given

by the argument. The number of bytes printed can be easily controlled by

printing an integer with a large amount of padding, e.g., %432d. The printf

function assumes that the address to write into is provided as an argument,

i.e., it is to be taken from the stack. If the attacker-provided format string is

stored on the stack, and if printf can be tricked into extracting arguments

from this portion of the stack, then it is possible for an attacker to overwrite an

arbitrary, attacker-specified location in memory with attacker-specified data.

Certain types of format-string vulnerabilities are exploited by information

leakage attacks. As an example, consider sprintf function that takes an

attacker-provided format-string and then prints the output into a buffer which

is then sent back to the attacker. Now if the attacker sends a format string

such as "%x %x %x %x", 4 words from the top of the stack will be printed and

disclosed to the attacker. In this way, the attacker can inspect the contents of

the stack, and if the stack is known to contain pointers to objects, then the

attacker can learn locations of these objects.

13

CHAPTER 3

Motivation for Diversity-Based

Defense

This chapter provides our intuition behind using diversity-based defense against

exploits of memory errors. First we understand all the attack techniques and

also the role of memory errors which lead to exploitable vulnerabilities.

The goal of an attacker is to cause the target program to execute attack-

effecting code. This code itself may be provided by the attacker (injected

code), or it may already be a part of the program (existing code). A direct

way to force execution of such code is through a change to the control-flow

of the program. This requires the attacker to change a code pointer stored

somewhere in memory, so that it points to the code chosen by the attacker.

In such a case, when the corrupted code pointer is used as the target of a

jump or call instruction, the program ends up executing the code chosen by

the attacker. Some natural choices for such code pointers include the return

address (stored on the stack), function pointers (stored on the stack, the static

memory region, or the heap), the global offset table (GOT) used in dynamic

linking, and buffers storing longjmp data. An indirect way to force execution

of attack-effecting code is to change security-critical data that is used by the

program in its normal course of execution. Examples of such data include

arguments to a chmod or execve system call, variables holding security-critical

data such as a flag indicating whether a user has successfully authenticated or

14

not, etc. In summary, the success of an exploit of a vulnerability depends on

the following two factors:

1. The vulnerability allows corruption of a critical target data. A vulner-

ability involving a memory error may allow corruption of data only in

specific ways. For example, a buffer overflow attack requires the knowl-

edge of the relative distance of the buffer from the target data. On

the other hand, in a heap overflow or format-string attack, the attacker

needs to know the absolute location of the target data. Thus, depend-

ing on the type of the vulnerability, its exploits may either be relative

address-dependent or absolute address-dependent.

2. The target data is overwritten with a correct value. The target data cor-

rupted in an exploit is either a pointer value or non-pointer data. Since

code sections cannot be overwritten in most modern operating systems,

there are three possible types of data: code-pointer, data-pointer, and

non-pointer data. An attack involving corruption of pointer values re-

quires the attacker to know the absolute address of a data or code object

for overwriting the pointer values. Therefore, this kind of attack is abso-

lute address-dependent. In contrast, a non-pointer data can be corrupted

with a value that is independent of memory addresses. Hence attacks on

non-pointer data depend only on the first factor mentioned above.

We now try to understand how memory errors lead to security vulnerabilities.

For this, it is helpful to know how memory is allocated for a program.

A program’s memory consists of different regions such as code, data,

the stack, and the heap. In most modern operating systems, a program’s

code and data regions are mapped at fixed addresses in the memory, and also

the relative distances between the individual data and code objects remain

fixed. Memory for objects on the stack and the heap is allocated dynamically.

However, for a given program execution, the stack and the heap objects are

allocated at predictable locations, and these locations can be learnt using

memory monitoring tools such as debuggers.

15

The attack techniques mentioned above exploit a particular weakness of

memory errors, which is that the effect of memory errors is predictable. To

illustrate this, we will first describe different types of memory errors, and then

show how attackers exploit predictable effect of each of these types. Intuitively,

a memory error occurs in C programs when the object accessed via a pointer

expression is different from the one intended by the programmer. The intended

object is called the referent of the pointer. Memory errors can be classified

into spatial and temporal errors:

I. A spatial error occurs when dereferencing a pointer that is outside the

bounds of its referent. It may be caused as a result of:

(a) Dereferencing non-pointer data, e.g., a pointer may be (incorrectly)

assigned from an integer, and dereferenced subsequently. If an at-

tacker has control over the non-pointer value assigned to the target

pointer, she can make the pointer dereference to access any object

as objects are located at predictable locations in the memory.

(b) Dereferencing uninitialized pointers. This case differs from the first

case only when a memory object is reallocated. The contents of

uninitialized pointers may become predictable if the previous use of

the same memory location can be identified. For instance, suppose

that during an invocation of a function f, its local variable v holds

a valid pointer value. If f is invoked immediately by its caller, then

v will continue to contain the same valid pointer even before its

initialization. This gives attackers an opportunity to exploit the

predictable value of the pointer.

(c) Valid pointers used with invalid pointer arithmetic. The most com-

mon form of memory access error, namely, out-of-bounds array ac-

cess, falls in this category. Since relative distances between memory

objects are predictable, attackers can determine the target object

accessed as a result of invalid pointer arithmetic.

II. A temporal error occurs when dereferencing a pointer whose referent no

longer exists, i.e., it has been freed previously. If the invalid access goes

16

to an object in the free memory, then it causes no errors. But if the

memory has been reallocated, then temporal errors allow the contents

of the reallocated object to be corrupted using the invalid pointer. The

result of such errors become predictable only when the purpose of reuse

of the memory location is predictable.

It may appear that temporal errors, and errors involving uninitialized

pointers, are an unlikely target for attackers. In general, it may be

hard to exploit such errors if they involve heap objects, as heap alloca-

tions tend to be somewhat unpredictable. However, stack allocations are

highly predictable, so these errors can be exploited in attacks involving

stack-allocated variables.

Based on our understanding of various attack techniques and types of memory

errors, we conclude that a memory error which allows corruption of a crit-

ical data value leads to a security vulnerability. As locations of objects in

the memory are predictable, attackers can determine the data corrupted in a

memory error, and in most cases attackers can actually control the effect of the

memory error to corrupt the data of their choice. Additionally, attackers are

also able to control the use of corrupted data value. If the data corresponds

to a pointer, attackers know the pointer value to be used for corruption as lo-

cations of objects are predictable; value of a non-pointer data is independent

of memory addresses, so attackers do not need any information to corrupt it.

As a first step towards a comprehensive solution, our diversity-based de-

fense approach seeks to make the effect of memory errors unpredictable. To

achieve this, we need to randomize the objects that are corrupted as a result

of a memory error vulnerability, and/or randomize the use of corrupted value.

To this end, we have developed two randomization techniques.

Our first technique ASR randomizes absolute and relative distances of

all the objects in the memory. The effect of this is that the objects that are

corrupted become unpredictable, and also the use of corrupted pointer data

becomes unpredictable. Note that this technique can not make the use of

corrupted non-pointer data unpredictable.

17

Our second technique DSR randomizes the representation of data. In

this technique, attacker can determine the data object that gets corrupted in

a memory error. However, on corruption, the object gets assigned a wrong

value because of its randomized representation. The wrong value of the object

results in an unpredictable interpretation of the object.

Since our approach uses randomization, the protection offered is proba-

bilistic. This means that attackers still have a chance of success. However,

as we shall show later, our approach performs comprehensive randomizations

leaving a very small chance of success for attackers. So attackers are forced to

make many attempts on average before an attack succeeds, with each unsuc-

cessful attack causing the target program to crash, increasing the likelihood

that the attack will be detected. Moreover, an attack that succeeds against

one victim will not succeed against another victim, or even for a second time

against the same victim. This aspect makes it particularly effective against

large-scale attacks such as Code Red, since each infection attempt requires

significantly more resources, thereby greatly reducing the propagation rate of

such attacks.

The randomization techniques will be described in more details in subse-

quent sections.

18

CHAPTER 4

Address Space Randomization

4.1 Overview of the Technique

This technique makes the memory locations of program objects (including

code as well as data objects) unpredictable. This is achieved by randomizing

the absolute locations of all objects, as well as the relative distance between

any two objects. These objectives can be achieved using a combination of the

following transformations:

I. Randomize the base addresses of memory regions. By changing

the base addresses of code and data segments by a random amount, we

can alter the absolute locations of data resident in each segment. If the

randomization is over a large range, say, between 1 and 100 million, the

virtual addresses of code and data objects become highly unpredictable.

Note that this does not increase the physical memory requirements; the

only cost is that some of the virtual address space becomes unusable.

The details depend on the particular segment:

1. Randomize the base address of the stack. This transformation has

the effect of randomizing all the addresses on the stack. A classical

stack smashing attack requires the return address on the stack to

be set to point to the beginning of a stack-resident buffer into which

the attacker has injected malicious code. This becomes very difficult

19

when the attacker cannot predict the address of such a buffer due

to randomization of stack addresses. Stack-address randomization

can be implemented by subtracting a large random value from the

stack pointer at the beginning of the program execution.

2. Randomize the base address of the heap. This transformation ran-

domizes the absolute locations of data in the heap, and can be per-

formed by allocating a large block of random size from the heap.

It is useful against attacks where attack code is injected into the

heap in the first step, and then a subsequent buffer overflow is used

to modify the return address to point to this heap address. While

the locations of heap-allocated data may be harder to predict in

long-running programs, many server programs begin execution in

response to a client connecting to them, and in this case the heap

addresses can become predictable. By randomizing the base address

of the heap, we can make it difficult for such attacks to succeed.

3. Randomize the starting address of dynamically-linked (shared) li-

braries. This transformation has the effect of randomizing the lo-

cation of all code and static data associated with shared libraries.

This will prevent existing code attacks (also called return-into-libc

attacks), where the attack causes a control-flow transfer to a loca-

tion within the library that is chosen by the attacker. It will also

prevent attacks where static data is corrupted by first corrupting

a pointer value. Since the attacker does not know the absolute lo-

cation of the data to be corrupted, it becomes difficult to use this

strategy.

4. Randomize the locations of routines and static data in the exe-

cutable. This transformation has the effect of randomizing the

locations of all functions in the executable, as well as the static

data associated with the executable. The effect is similar to that of

randomizing the starting addresses of shared libraries.

20

We note that all of the above four transformations are also implemented

in the PaX ASLR [36] system, but their implementation relies on ker-

nel patches rather than program transformations. The following three

classes of transformations are new to our system. The first two of them

have the effect of randomizing the relative distance between the locations

of two routines, two variables, or between a variable and a routine. This

makes it difficult to develop successful attacks that rely on adjacencies

between data items or routines. In addition, it introduces additional

randomization into the addresses, so that an attacker that has somehow

learned the offsets of the base addresses will still have difficulty in craft-

ing successful attacks. As an effect of the last class of transformation,

certain attacks become impossible.

II. Permute the order of variables/routines. Attacks that exploit rel-

ative distances between objects, such as attacks that overflow past the

end of a buffer to overwrite adjacent data that is subsequently used in

a security-critical operation, can be rendered difficult by a random per-

mutation of the order in which the variables appear. Such permutation

makes it difficult to predict the distance accurately enough to selectively

overwrite security-critical data without corrupting other data that may

be critical for continued execution of the program. Similarly, attacks

that exploit relative distances between code fragments, such as partial

pointer overflow attacks (see Section 4.6.2), can be rendered difficult by

permuting the order of routines. There are three possible rearrangement

transformations:

1. permute the order of local variables in a stack frame

2. permute the order of static variables

3. permute the order of routines in shared libraries or the routines in

the executable

III. Introduce random gaps between objects. For some objects, it is not

possible to rearrange their relative order. For instance, local variables

21

of the caller routine have to appear at addresses higher than that of the

callee. Similarly, it is not possible to rearrange the order of malloc-

allocated blocks, as these requests arrive in a specific order and have to

be satisfied immediately. In such cases, the locations of objects can be

randomized further by introducing random gaps between objects. There

are several ways to do this:

1. Introduce random padding into stack frames. The primary purpose

of this transformation is to randomize the distances between vari-

ables stored in different stack frames, which makes it difficult to

craft attacks that exploit relative distances between stack-resident

data. Additionally, gaps could be introduced within the variables

stored in the same stack frame. The size of the padding should be

relatively small to avoid a significant increase in memory utilization.

2. Introduce random padding between successive malloc allocation re-

quests.

3. Introduce random padding between variables in the static area.

4. Introduce gaps within routines, and add jump instructions to skip

over these gaps.

IV. Introduce inaccessible memory regions between objects. The

main purpose of this transformation is to isolate buffer variables from

other variables, so that any buffer overflow cannot corrupt non-buffer

variables. The transformation can be implemented by separating buffer

variables from other variables, and by introducing inaccessible (neither

readable nor writable) memory pages between them. For additional pro-

tection, we can introduce inaccessible pages periodically within the mem-

ory region containing the buffer variables. This is to bound the span of

buffer-to-buffer overflows.

Similarly, we can introduce inaccessible pages within the code segment

of the memory. Since absolute and relative addresses of routines are

22

randomized, attackers are forced to guess code addresses. The inacces-

sible pages provide additional protection because any guessed addresses

within the inaccessible pages would result in immediate program crash.

4.2 Implementation Approaches

There are two basic issues concerning the implementation of the transforma-

tions mentioned in the previous section. The first implementation issue is

concerned with the time when the randomization amounts are determined.

Possible choices here are (a) transformation time, (b) beginning of program

execution, and (c) continuously changing during execution. Clearly, choice (c)

increases the difficulty of attacks, and is hence preferred from the point of secu-

rity. Choices (a) or (b) may be necessitated due to performance or application

binary interface compatibility considerations. For instance, it is not practical

to remap code at different memory locations during program execution, so we

cannot do any better than (b) for this case.

The second issue concerns the timing of the transformations: they may

be performed at compile-time, link-time, installation-time, or load-time. Gen-

erally speaking, higher performance can be obtained by performing transfor-

mations closer to compilation time. On the other hand, by delaying trans-

formations, we avoid making changes to system tools such as compilers and

linkers. In contrast to these options, there exists an alternative approach that

does not require transformation of applications — incorporating randomizing

transformations as a part of operating system functionality. In this section,

we describe some of the possible implementation approaches.

4.2.1 Operating System-Based Transformation

Virtual memory layout of a process is determined by the underlying operating

system. Typically, the code generated for an executable uses absolute virtual

addresses (determined at link-time) to access code and data objects. There-

fore, the operating system is forced to map code and data segments of the

23

executable at fixed virtual memory addresses in order to ensure correct execu-

tion. On the other hand, a shared library contains position-independent code

(PIC), which allows it to be mapped to almost any virtual address. However

in most cases, the dynamic linker maps shared libraries at predictable virtual

addresses.

Memory for stack and heap objects is allocated dynamically at runtime.

However, the base addresses of the stack and the heap are predictable. For

example, the base of the stack of all the processes in RedHat Linux systems

on 32 bit x86 architectures is fixed at the virtual address 0xC0000000. On the

same platform, the base of the heap is different for each program and is fixed

at an address following the end of the data segment of the program. Hence

the base of the heap is also predictable for each program and it remains the

same for different execution runs of the program. As a result of this, for a

given execution path, even the individual heap and stack objects are allocated

at the same addresses for different runs of the program.

Some of the address space randomization features can be easily imple-

mented as a part of operating system functionality. For instance, simple oper-

ating system changes can be done to achieve absolute address randomization

by randomizing the base addresses of different memory regions, e.g., the oper-

ating system can choose random addresses to assign the base of the stack and

shared libraries. Randomization of code and data segments of an executable

is a difficult task for an operating system, and it involves significant increase

in the performance overheads [36]. A practical approach is to compile an exe-

cutable with PIC so that it can be mapped at random virtual addresses just

like shared libraries. As the heap follows the data segment of the executable,

its base address is automatically randomized.

The main benefit of this approach is that it is transparent to existing

applications; source code of applications is not required, and there is no need

to modify existing tools such as compilers or linkers. This approach, however,

cannot be used for performing relative address randomizations. This is because

relative address randomization requires information about the internal details

of a program to control memory allocation for individual code or data objects,

24

and an operating system has no way of getting this information directly from

program binaries.

4.2.2 System Tools-Based Transformation

We can use modified system tools such as compilers and linkers to transform

programs for randomizations. There are some difficulties associated with this

approach. As an example, consider the option of using modified compilers.

The problem here is that the compilers are language-specific, and so typically

there are different compilers to handle different languages. Even for the same

language, there may exist multiple compilers distributed by multiple vendors.

Thus implementing the required transformations using compilers is not a good

option because in order to make the approach widely applicable and practical,

we need to modify all the compilers. The same problem applies to the other

system tools such as linkers, assemblers, and loaders.

4.2.3 Binary Transformation

A binary transformation approach is preferable because it does not require

changes to the system tools. Moreover, performing transformations at binary-

level means that the transformations can be applied to proprietary software

that is distributed in binary-only form. This makes it easier for the approach

to be widely accepted and used. Binary transformations can be performed

statically or dynamically.

Static Binary Transformation. It is well known that binary analysis and

transformations are complex problems. More specifically, binary files lack

sufficient relocation information to distinguish code from data, which makes

it difficult to disassemble instructions correctly. Other contributing factors

include: variable instruction size, indirect jump or call instructions, etc. (Refer

to Section 4.3 for additional information.) Due to these issues and a few

others, existing binary analysis and editing tools have restricted applications.

25

Consequently, some of our transformations, more specifically, those required

for relative distance randomizations are not possible on binaries.

Dynamic Binary Transformation. The difficulties associated with static

analysis of binaries can be overcome by dynamic analysis. For example, for

accurate and complete disassembly of code, it is necessary to identify the

target of an indirect jump or call instruction. Static analysis may not be able

to identify the target as it could be the result of a computation performed

at runtime. On the other hand, the dynamic analysis technique can find

out the target at runtime and continue the analysis with disassembly from

that target address. In order to perform the randomizing transformations,

additional effort is needed to transform the analyzed code at runtime. For fine

grained randomizations, the transformations would be required at the level of

individual instructions. Considering that a lot of work is required for analysis

as well as transformation of binaries at runtime, the runtime performance is

likely to be high. DynamoRIO [9] is a popular dynamic binary transformation

tool because it incorporates various optimizations to minimize the runtime

overheads for basic analysis of binaries. Even so, these overheads could be high

in the range of 20% to 70%. So the actual overheads would be much higher if

we also consider the overheads due to instruction-level transformations.

This approach is dependent on the ability of binary transformation tools,

which in turn depends on architectures and binary file formats. However, the

approach itself is independent of programming languages, binary file formats,

and even the operating system.

4.2.4 Source Code Transformation

Availability of source code gives more freedom for performing the randomizing

transformations. It allows all the transformations required for absolute as well

as relative address randomizations. The only problem with this approach is

that it is language-dependent. Nevertheless, the approach is transparent to

the system tools and the operating system.

26

In this dissertation, we present two implementation approaches for ASR.

The first approach, which is based on a binary-level transformation, is useful

for software that is distributed in binary-only form. This approach mainly

provides absolute address randomization, and is effective against most of the

known exploits of memory errors. The second approach, which is based on

a source code transformation, improves over the first approach by providing

absolute as well as relative address randomizations. As a result, it offers wider

protection against memory error exploits.

Our implementation targets Intel x86 architectures running ELF-format [35]

executables on a Linux operating system.

4.3 Binary-Only Transformation Approach

In our implementation of transformation of programs at binary-level, we have

added our transformation code in LEEL binary-editing tool [54]. One of the

complications associated with this implementation approach is that on most

architectures, safe rewriting of machine code is not always possible. This is

due to the fact that data may be intermixed with code, and there may be indi-

rect jumps and calls. These two factors make it difficult to extract a complete

control-flow graph, which is necessary in order to make sure that all code is

rewritten as needed, without accidentally modifying any data. Most of our

transformations are simple and not impacted by the difficulty of extracting

an accurate control-flow graph. For instance, the stack base randomization

requires instrumentation of only one routine, and it doesn’t need the control-

flow graph of that routine. However, a few transformations (e.g., stack frame

padding) are dependent on control-flow graphs of routines. This is a chal-

lenge when some routines cannot be accurately analyzed. Therefore, we take

a conservative approach to overcome this problem — rewriting only those rou-

tines that can be completely analyzed. Further details can be found in the

description of relevant transformations.

27

4.3.1 Code/Data Transformations

Relocation of a program’s code (text) and data segments is desirable in order

to prevent attacks which modify a static variable or jump to existing pro-

gram code. The easiest way to implement this randomization is to convert

the program into a shared library containing position-independent code. In

the case of GCC, such code is generated using the compiler option -fPIC. The

final executable is created by introducing a new main function which loads

the shared library generated from the original program (using dlopen) and

invokes the original main. This allows random relocation of the original pro-

gram’s code and data segments at a page-level granularity. (Finer granularity

of randomization is achieved by using the link-time shared library transfor-

mation described in a later subsection.) Since position-independent code is

less efficient than its absolute address-dependent counterpart, it introduces a

modest amount of extra runtime overhead.

An alternative approach is to relocate the program’s code and data at

link-time. In this case, the code need not be position-independent, so no run-

time performance overhead is incurred. Link-time relocation of the base ad-

dress of code and data segments can be accomplished by simple modifications

to the linker script used by the linker.

Our implementation supports both of these approaches. Section 4.5.1

presents the runtime overheads we have observed with both the approaches.

4.3.2 Stack Transformations

Stack base address randomization: The base address of the stack is

randomized by extra code which is added to the code segment of the

program. The code is spliced into the execution sequence by inserting

a jump instruction at the beginning of main routine. The new code

generates a random number between 1 and 108, and decrements the stack

pointer by this amount. In addition, the memory region corresponding

to this “gap” is write-protected using mprotect system call. The write-

protection ensures that any buffer overflow attack that overflows beyond

28

Stack
growth

Low Address

High Address

parameters

return address

 previous base pointer

local variables

padding

(1) Padding between
 base pointer and
 local variables

(2) Padding before
 function parameters

local variables

 previous base pointer

return address

parameters

padding

Figure 2: Potential locations of padding inserted between stack frames.

the base of the stack into the read-only region will cause the victim

program to crash.

Random stack frame padding: Introducing padding within stack frames

requires that extra storage be pushed onto the stack during the initial-

ization phase of each subroutine. There are two basic implementation

issues that arise.

The first issue is the randomization of the padding size, which could

be static or dynamic. Static randomization introduces practically no

runtime overhead. Dynamic randomization requires the generation of a

random number at regular intervals. Additionally, the amount of extra

code required for each function preamble is significant. Moreover, if

the randomization changes the distance between the base of the stack

frame and any local variable (from one invocation of a function to the

next) then significant changes to the code for accessing local variables

29

are required, imposing even more overheads. For these reasons, we have

currently chosen to statically randomize the padding, with a different

random value used for each routine.

The second issue concerns the placement of the padding. As shown in

Figure 2, there are two basic choices: (1) between the base (or frame)

pointer and local variables, or (2) before parameters to the function:

1. Between the base pointer and local variables.

This requires transformation of the callee to modify the instruction

which creates the space for the local variables on the stack. Local

variables are accessed using instructions containing fixed constants

corresponding to their offset from the base pointer. Given that the

padding is determined statically, the transformation simply needs

to change the constants in these instructions. The main benefit

of this approach is that it introduces a random gap between local

variables of a function and other security-critical data on the stack,

such as the base pointer and the return address, and hence makes

typical stack smashing attacks difficult.

2. Before parameters to the function.

This is done by transforming the caller. First, the set of argument-

copying instructions is located (usually PUSH instructions). Next,

padding code is inserted just before these instructions. The pri-

mary advantage of this approach is that the amount of padding

can change dynamically. Disadvantages of the approach are (a) in

the presence of optimizations, the argument-pushing instructions

may not be contiguous, which makes it difficult to determine where

the padding is to be introduced, and (b) it does not make stack

smashing attacks any harder since the distance between the local

variables and the return address is left unchanged.

We have implemented the first option. As mentioned earlier, extraction

of accurate control-flow graphs can be challenging for some routines. To

30

ensure that our transformation does not lead to an erroneous program,

the following precautions are taken:

• Transformation is applied to only those routines for which accu-

rate control-flow graphs can be extracted. The amount of padding

is randomly chosen, and varies from 0 to 256, depending on the

amount of storage consumed by local variables, and the type of in-

structions used within the function to access local variables (byte-

or word-offset). From our experience on instrumentation of differ-

ent binaries, we have found that around 95 − 99% of the routines

are completely analyzable.

• Only functions which have suitable behavior are instrumented. In

particular, the function must have at least one local variable and

manipulate the stack in a standard fashion in order to be instru-

mented. Moreover, the routines should be free of non-standard

operations that reference memory using relative addressing with

respect to the base pointer.

• Only in place modification of the code is performed. By in place,

we mean that the memory layout of the routines is not changed.

This is done in order to avoid having to relocate the targets of any

indirect calls or jumps.

These precautions have limited our approach to instrument only 65%

to 80% of the routines. We expect that this figure can be improved to

90+% if we allow modifications that are not in-place, and by using more

sophisticated analysis of the routines.

4.3.3 Heap Transformations

The base address of the heap can be randomized using a technique similar to

the stack base address randomization. Instead of changing the stack pointer,

code is added to allocate a randomly-sized large chunk of memory, thereby

31

making heap addresses unpredictable. In order to randomize the relative dis-

tances between heap data, a wrapper function is used to intercept calls to

malloc, and randomly increase the sizes of dynamic memory allocation re-

quests by 0 to 25%. On some operating systems, including Linux, the heap

follows the data segment of the executable. In this case, randomly relocating

the executable causes the heap to also be randomly relocated.

4.3.4 Shared Library Transformations

In the ELF binary file format, the program header table (PHT) of an exe-

cutable or a shared library consists of a set of structures which hold informa-

tion about various segments of a program. Loadable segments are mapped to

virtual memory using the addresses stored in the p vaddr fields of the struc-

tures (for more details, see [35]). Since executable files typically use (non-

relocatable) absolute code, the loadable segments must reside at the addresses

specified by p vaddr in order to ensure correct execution.

On the other hand, shared object segments contain position-independent

code (PIC), which allows them to be mapped to almost any virtual address.

However, in our experience, the dynamic linker almost always chooses to map

them starting at p_vaddr, e.g., this is the case with libc.so.6 (the Standard C

library) on RedHat Linux distributions. The lowest loadable segment address

specified is 0x42000000. Executables start at virtual address 0x08048000,

which leaves a large amount of space (around 927 MB) between the executable

code and the space where shared libraries are mapped. Typically, every process

which uses the dynamically-linked version of libc.so.6 will have it mapped

to the same base address (0x42000000), which makes the entry points of the

libc.so.6 library functions predictable. For example, if we want to know the

virtual address where function system() is going to be mapped, we can run

the following command:

$ nm /lib/i686/libc.so.6 | grep system

42049e54 T __libc_system

2105930 T svcerr_systemerr

32

42049e54 W system

The third line of the output shows the virtual address where system is

mapped.

In order to prevent existing code attacks which jump to library code in-

stead of injected code, the base address of the libraries should be randomized.

There are two basic options for doing this, depending on when the random-

ization occurs. The options are to do the randomization (1) once per process

invocation, or (2) statically. The trade-offs involved are as follows:

1. Dynamically randomize library addresses using mmap. The dynamic linker

uses mmap system call to map shared libraries into memory. The dynamic

linker can be instrumented to instead call a wrapper function to mmap,

which first randomizes the load address and then calls the original mmap.

The advantage of this method is that in every program execution, shared

libraries will be mapped to different memory addresses.

2. Statically randomize library addresses at link-time. This is done by dy-

namically linking the executable with a “dummy” shared library. The

dummy library need not be large enough to fill the virtual address space

between the segments of the executable and standard libraries. It can

simply introduce a very large random gap (sufficient to offset the base

addresses of the standard libraries) between the load-addresses of its

text and data segments. Since shared libraries use relative addressing,

the segments are mapped along with the gap.

On Linux systems, the link-time gap can be created by using the ld

options -Tbss, -Tdata and -Ttext. For example, consider a dummy

library which is linked by the following command:

$ ld -o libdummy.so -shared dummy.o -Tdata 0x20000000

This causes the load address of the text segment of libdummy.so to

be 0x00000000 and the load address of data segment to be 0x20000000,

33

creating a gap of size 0x20000000. Assuming the text segment is mapped

at address 0x40014000 (Note: addresses from 40000000 to 40014000

are used by the dynamic linker itself: /lib/ld-2.2.5.so), the data

segment will be mapped at address 0x60014000, thereby offsetting the

base address of /lib/i686/libc.so.6.

The second approach does not provide the advantage of having a freshly

randomized base address for each invocation of the program, but does have

the benefit that it requires no changes to the loader or rest of the system.

With this approach, changing the starting address to a different (random) lo-

cation requires the library to be re-obfuscated (to change its preferred starting

address). Our implementation supports both the above approaches.

A potential drawback of the above approaches is that they do not provide

sufficient range of randomization on 32-bit architectures. In particular, with a

page size of 4096 (= 212) bytes on Linux, uncertainty in the base address of a

library cannot be much larger than 216, which makes them susceptible to brute-

force attacks [45]. We address this problem by a link-time transformation, i.e.,

a binary-level transformation. However, we will describe this transformation

when we discuss our source code transformation approach. Using this link-

time transformation, we can increase the space of randomization for shared

libraries up to 226 addresses.

4.3.5 SELF: a Transparent Security Extension for ELF

Binaries

Ideally, we would like to choose an implementation approach purely based on

binary transformations. Such an approach is desirable as it facilitates trans-

formation of propriety software distributed only in binary form. Moreover,

the approach would be independent of programming languages. Also, we do

not need to alter system tools such as compilers and linkers. Unfortunately,

existing binary rewriting techniques offer inadequate support to implement all

of our randomizing transformations. For instance, in our current implemen-

tation, we are unable to apply transformations required for randomization of

34

relative distances between code and data objects.

In this section, we first describe problems associated with analysis and

transformation of binaries. We then propose an extension to a binary file

format ELF (Executable and Linking Format), which contains additional in-

formation that allows proper analysis and transformation of binary files.

Limitations of binary rewriting techniques stem from the difficulties asso-

ciated with analysis of binaries. For any kind of analysis or transformation on

binaries, it is important to be able to retrieve information from binaries and

also to manipulate it. However, many practical difficulties arise in statically

analyzing a binary file.

Problems with existing formats: Some of the difficulties encountered

with current binary file formats are:

• Distinguishing code from data: The fundamental problem in decoding

machine instructions is that of distinguishing code (i.e., instructions)

from data within an executable. Machine code in the text segment often

contains data embedded between machine instructions. For example,

in C programming language, typical compilers generate code for a case

statement as an indirect jump to an address loaded from some location

in a jump table. This table, which contains the target addresses, is also

placed along the instructions in the text segment. Another example is

that of the data inserted in instructions for alignment purpose, presum-

ably to improve instruction-fetch hit rates. Such data causes disassembly

problems in architectures such as Intel x86, which has a dense instruc-

tion set. Thus, most data bytes are likely to appear as valid beginning

bytes of instructions. This is a major source of problem for disassembly

based on linear sweep algorithm [43], which in the process of decoding

bytes sequentially, misinterprets the embedded data as instructions.

• Indirect jumps/calls: One of the ways to avoid misinterpretation of data

as instructions is to use recursive traversal disassembly algorithm [43]

in which disassembly starts from the entry point of the program, and

35

whenever there is a jump instruction, it continues along the control-flow

successors of the instruction. However, this approach fails to obtain com-

plete disassembly in presence of indirect jumps because of the difficulty

involved in identifying the targets of the instructions. A similar diffi-

culty to statically predicting the targets of function calls is presented by

indirect call instructions.

• Variable-length instruction sets: Unlike RISC architectures, in which

all instructions are fixed-sized, CISC architectures (such as x86) often

have variable-length instructions, which complicates their disassembly.

In presence of variable-length instructions, a single disassembly error in-

creases the likelihood of errors in disassembly of many of the subsequent

instructions. On the other hand, a disassembly error in fixed-length

instructions does not propagate to subsequent instructions.

• Distinguishing address and non-address constants: It is difficult to dis-

tinguish between addresses and non-address constants. Making this dis-

tinction is necessary in order to perform any modification to a binary

which causes code or data to be relocated. For existing binary file for-

mats, there is no general mechanism to correctly make this distinction

in every case.

• Instructions generated through non-standard mechanisms: Sometimes

executables contain instructions generated through non-standard mecha-

nisms (such as hand-written assembly code). Such instruction sequences

may violate high-level invariants that one normally assumes hold true for

compiler generated code. For example, in many mathematical libraries

it not uncommon for control to branch from one function into middle

of another, or fall through from one function into another, instead of

using a function call. This kind of code complicates analysis of binaries

considerably.

36

ELF header

Program header table
(Optional)

.text

.rodata

.plt

.rel.got

.data

.bss

.got

. . .

. . .
.self

.rel.self

. . .

Section header table

Linking View

Sections

ELF header

Program header table

.text

.rodata

.plt

.rel.got

.data

.bss

.got

. . .

. . .
.self

.rel.self

. . .
Section header table

(Optional)

Code segment

Data segment

Execution View

Other information

Figure 3: Format of a typical SELF object file.

4.3.5.1 ELF format

ELF files fall into the following three types:

• Executable files containing code and data suitable for execution. This

specifies the memory layout of the process image of a program.

• Relocatable (object) files containing code and data suitable for linking

with other object files to create an executable or a shared object file.

• Shared object files (shared libraries) containing code and data suitable

for the link editor (ld) at the link-time and the dynamic linker (ld.so)

at runtime.

A binary file typically contains various headers that describe the orga-

nization of the file, and a number of sections which hold various information

about the program such as instructions, data, read-only-data, symbol table,

relocation tables and so on.

Executable and shared object files (as shown in the execution view of

Figure 3) are used to build a process image during execution. These files must

37

have a program header table, which is an array of structures, each describing

a segment or other information needed to prepare the program for execution.

An object file segment contains one or more sections. Typically, a program has

two segments: (1) a code segment comprised of sections such as .text (in-

structions) and .rodata (read-only data) (2) a data segment holding sections

such as .data (initialized data) and .bss (uninitialized data). The code seg-

ment is mapped into virtual memory as a read-only and executable segment so

that multiple processes can use the code. The data segment has both read and

write permissions and is mapped exclusively for each process into the address

space of that process.

A relocatable file (as shown in the linking view of Figure 3) does not

need a program header table as the file is not used for program execution. A

relocatable file has sufficient relocation information in order to link with other

similar relocatable files. Also, every relocatable file must have a section header

table containing information about the various sections in the file.

By default, an ELF executable file or a shared object file does not con-

tain relocation information because it is not needed by the loader to map

the program into process memory. Relocation information identifies address-

dependent byte-streams in the binary that need modification (relocation) when

the linker re-maps the binary to different addresses. A single entry in a reloca-

tion table usually contains the following: (1) an offset corresponding to either

the byte-offset from the beginning of the section in a relocatable file, or the

virtual address of the storage unit in an executable file, and (2) information

about the type of relocation (which is processor specific) and a symbol table

index with respect to which the relocation will be applied. For example, a

call instruction’s relocation entry would hold the symbol table index of the

function being called.

Many binary tools rely on relocation information for analysis and trans-

formation of binaries. Transformation of a binary file often requires modifica-

tions in which the subsequences of the machine code are moved around. When

this is done, the data referenced by relocation entries must be updated to re-

flect the new position of corresponding code in the executable. In the absence

38

Tag Address Alignment Width

Field Meaning
Tag Summary of block contents
Address Starting address of block
Alignment Alignment requirements of block
Width Block size in bytes

Figure 4: Layout and interpretation of a SELF memory block descriptor.

of relocation information, binary tools resort to nontrivial program analysis

techniques [31, 14, 54, 37]. These techniques are inadequate and hence the tools

adopt conservative strategies, thereby restricting the their efficacy in perform-

ing various transformations. Also, due the fact that relocation information

is not required for execution, many linkers do not have option flags to retain

the information in the executables. In addition, even the presence of reloca-

tion information does not help in certain kinds of binary transformations. In

particular, the relocation table does not give sufficient information about the

data and instructions used in the machine code. Hence, certain transforma-

tions which require complete disassembly of instructions and modification of

data are not possible. The SELF extension, described in the following section,

is specifically intended to deal with this problem.

4.3.5.2 SELF extension

The SELF extension will reside in a section named .self which will be in-

dicated by the section header table in both execution and linking views as

shown the Figure 3. The purpose of the extension is to provide additional in-

formation about instructions and data used in various sections. As discussed

before, much of the information is available in relocation tables and symbol

table. An object file compiled with the debug flag option contains debug in-

formation which can also provide useful information such as type and size of

data, addresses of functions, etc. However, in a typical software distribution

39

model, binary files are compiled with optimizations which render debug in-

formation incorrect. Also, binaries are stripped, which means that they do

not have a symbol table. Here, the objective is to distribute slim and efficient

binaries containing no superfluous information and which are not easy to re-

verse engineer. The SELF extension is designed with these objectives in mind.

It concisely captures only the relevant information required to perform post-

link-time transformations of binary code. This information is described in the

form of a table of memory block descriptors. A memory block is a contiguous

sequence of bytes within a program’s memory. Each memory block descriptor

has four fields, as shown in Figure 4. The fields are interpreted as follows:

1. Memory Tag - type of the block of memory. This includes various kinds

of data and code and their pointers. Also includes a bit which indicated

whether or not it is safe to relocate the block.

2. Address - the virtual address of a block of memory within the data or

code of the shared object/executable. This field is meaningful only for

executable or shared object files where locations of code and data of the

program have been finalized.

3. Alignment - this indicates alignment constraints for certain type of data

or instructions.

4. Width - size of data for the entries that correspond to a certain data

related memory tag.

During code generation, the compiler adds entries to the table depending

upon the memory tag of data or instructions. The memory tags fall into the

following categories:

• Data stored between instructions. This memory tag corresponds to data

used in the code, either in the form of jump tables or padding bytes

which are used to enforce alignment restrictions. This helps to identify

and disassemble all of the machine instructions in the program.

40

• Code address. Code addresses appear in the program mainly in the form

of operands corresponding to targets of jump or call instructions. The

addresses could be used in instructions either as relative displacements

or as absolute values stored in register or memory. Also, there could be

other types of instructions which use code addresses. Typical examples

are (1) a PUSH instruction used to pass a constant function-address as

a parameter to a callback function and (2) code addresses contained

in jump tables. During transformation of binaries, the code at these

addresses might be relocated. Therefore, such operands or locations

must be changed to point to the new addresses.

• Data address constant. Static data in the program is referenced using

data address constants in the instructions. Entries of these types are

required if the data segment of the binary undergoes reorganization.

• Offset from the GOT (global offset table). This corresponds to the con-

stant offsets which are used to access static data in position-independent

code (PIC). Such offsets will be modified if the GOT or the data is

relocated.

• Offset used to obtain base address of the GOT. This pertains mainly

to x86-specific position-independent code generated for shared objects.

For this purpose, the code is generated in such a way that the %EBX

register is assigned the value of the GOT’s base address. During the

generation of this code, a constant value is used which corresponds to

the relative offset of the program counter from the GOT. This constant

requires modification if the GOT or the code containing the program

counter undergoes relocation during binary transformation.

• PLT (procedure linkage table) entry address. In an executable or a shared

library, a position-independent function call (e.g., a shared library func-

tion) is directed to a PLT entry. The PLT entry in turn redirects it to

its absolute location, which is resolved by the dynamic linker at runtime.

41

Code addresses associated with these function calls need different mem-

ory tags as some binary transformation may require relocation of only

the PLT.

• Offset from base pointer. This memory tag identifies the locations of

constant offsets from the base pointer (%EBP) that are used by instruc-

tions which access stack-allocated objects. These constants have to be

changed if there is a binary transformation that relocates stack-allocated

objects.

• Routine entry point. This memory tag identifies the entry points of all

the routines in the code segment.

• Stack data. Stack data is mainly associated with the local variables of

functions in the program. Memory for such data is allocated on the stack

dynamically during function invocations. Therefore, the virtual memory

addresses of stack data can not be determined statically. However, each

stack data is allocated on the stack at a fixed constant negative offset

from the base pointer. The address field in an entry of this tag contains

this offset instead of the virtual memory address.

• Static data. Static data corresponds to different storage units allocated

in the code segment for global or static variables used by the program.

This memory tag is used to identify the locations of each such storage

unit in the code segment.

Apart from these, there are other memory locations which contain data

required for dynamic linking. The entries of these types are retained in the

binary file and hence we do not require to save them separately. The above

types are all that is needed to effectively disassemble executables and thereby

make program analysis and transformation of executables possible.

For static or stack-allocated data, additional information is available

through the fields alignment and width of the entries. A compiler generates

the memory layout of the program data depending on their types. Data could

42

either have scalar or aggregate types. A datum of a scalar type holds a single

value, such as an integer, a character, a float value, etc. An aggregate type,

such as an array, structure, or union, consists of one or more scalar data type

objects. The ABI (application binary interface) of a processor architecture

specifies different alignment constraints for different data types in order to

access the data in an optimum way. Scalar types align according to their nat-

ural architectural alignment, e.g., in the Intel IA-32 architecture, the integer

type requires word (4 byte) alignment. The alignment of an aggregate type

depends on how much space it occupies and how efficiently the processor can

access the individual scalar members objects within it. The data entries hold

alignment and width of only the scalar and the aggregate objects and not for

the members inside the aggregate objects. Thus, relocation can be performed

only on the scalar or the aggregate objects as a whole.

4.3.5.3 SELF generation

Generating SELF from within a compiler is a straightforward process, as most

of the information required can be gleaned directly from the compiler’s internal

symbol tables. Also required will be a .rel.self section, which will contain

the relocation entries used by the linker to update the .self section when

the program layout is finalized. A good implementation strategy for adding

a SELF generation option to a typical compiler is to modify the code used

to generate debugging information, since there is a lot of overlap between the

debugging information and SELF. The .self section contents can be viewed as

a copy of the debugging information with unneeded information removed, such

as variable names and types, and extra information added, such as information

about pointers embedded within machine instructions.

4.3.5.4 Application to address space randomization

Using the SELF extension, binary files can be analyzed completely, enabling

all the randomizing transformations that we proposed. In particular, we can

implement relative address randomizations on binary files, which was otherwise

43

impossible. For instance, we can permute the order of static data objects.

For this we simply need to modify the instructions in the code segment that

contain static data addresses. Similarly we can randomize the base addresses

of the data and code segments, permute the order of routines, introduce gaps

between objects, and so on.

4.4 Source Code Transformation Approach

In our binary transformation approach, we are able to achieve all the absolute

address randomizations, but not all the relative address randomizations. On

the other hand, working with source code gives us more flexibility in imple-

menting all the absolute as well as the relative address randomizations.

The main component of this implementation approach is a source code

transformer which uses CIL [32] as the front-end, and Objective Caml as the

implementation language. CIL translates C code into a high-level intermediate

form which can be transformed and then emitted as C source code, consider-

ably facilitating the implementation of our transformation.

Our implementation also includes a small platform-specific component

that supports transformations involving executable code and shared libraries.

The implementation of these components are described in greater details

below. Although the source code transformation is fairly easy to port to

different operating systems, the description below refers specifically to our

implementation on an x86/Linux system.

4.4.1 Static Data Transformations

One possible approach to randomize the location of static data is to recompile

the data into position-independent code (PIC). This is the approach taken

in PaX ASLR [36], as well as in the binary transformations described in the

previous section. A drawback of this approach is that it does not protect

against relative address attacks, e.g., an attack that overflows past the end of

a buffer to corrupt a security-critical data that is close to the buffer. Moreover,

44

an approach that relies only on changes to the base address is very vulnerable

to information leakage attacks, where an attacker may mount a successful

attack just by knowing the address of any static variable, or the base address

of the static area. Finally, on operating systems such as Linux, the base

address of different memory sections for any process is visible to any user with

access to that system, and hence the approach does not offer much protection

from this class of attacks.

For the reasons described above, our approach is based on permuting the

order of static variables at the beginning of program execution. In particu-

lar, for each static variable v, an associated (static) pointer variable v ptr

is introduced in the transformed program. All accesses to the variable v are

changed to reference (*v ptr) in the transformed program. Thus, the only

static variables in the transformed program are these v ptr variables, and the

program no longer makes any reference to the original variable names such as

v.

At the beginning of program execution, control is transferred to an ini-

tialization function introduced into the transformed program. This function

first allocates a new region of memory to store the original static variables.

This memory is allocated dynamically so that its base address can be chosen

randomly. Next, each static variable v in the original program is allocated

storage within this region, and v ptr is updated to point to the base of this

storage.

To permute the order of variables, we proceed as follows. If there are n

static variables, a random number generator is used to generate a number i

between 1 and n. Now, the ith variable is allocated first in the newly allocated

region. Now, there are n− 1 variables left, and one can repeat the process by

generating a random number between 1 and n − 1 and so on.

Note that bounds-checking errors dominate among memory errors. Such

errors occur either due to the use of an array subscript that is outside its

bounds, or more generally, due to incorrect pointer arithmetic. For this reason,

our transformation separates buffer-type variables, which can be sources of

bounds-checking errors, from other types of variables. Buffer-type variables

45

include all arrays and structures/unions containing arrays. In addition, they

include any variable whose address is taken, since it may be used in pointer

arithmetic, which can in turn lead to out-of-bounds access.

All buffer-type variables are allocated separately from other variables. In-

accessible memory pages (neither readable nor writable) are introduced before

and after the memory region containing buffer variables, so that any buffer

overflows from these variables cannot corrupt non-buffer variables. The order

of buffer-type variables is randomized as mentioned above. In addition, inac-

cessible pages are also introduced periodically within this region to limit the

scope of buffer-to-buffer overflows.

Finally, all of the v ptr variables are write-protected. Note that the

locations of these variables are predictable, but this cannot be used as a basis

for attacks due to write-protection.

We illustrate the exact implementation steps through an example code:

int a = 1;

char b[100];

extern int c;

void f() {

while (a < 100) b[a] = a++;

}

We transform the above declarations, and also add an initialization function

to allocate memory for the variables defined in the source file as shown below:

int *a_ptr;

char (*b_ptr) [100];

extern int *c_ptr;

void __attribute__ ((constructor)) data_init() {

struct {

void *ptr;

unsigned int size;

46

BOOL is_buffer;

} alloc_info[2];

alloc_info[0].ptr = (void *) &a_ptr;

alloc_info[0].size = sizeof(int);

alloc_info[0].is_buffer = FALSE;

alloc_info[1].ptr = (void *) &b_ptr;

alloc_info[1].size = sizeof(char [100]);

alloc_info[1].is_buffer = TRUE;

static_alloc(alloc_info, 2);

(*a_ptr) = 1;

}

void f() {

while ((*a_ptr) < 100)

(*b_ptr)[(*a_ptr)] = (*a_ptr)++;

}

For the initialization function data init(), we use constructor at-

tribute so that it is invoked automatically before execution enters main().

Each element in the array alloc info stores information about a single static

variable, including the location of its pointer variable, its size, etc. Memory al-

location is done by the function static alloc, which works as follows. First,

it allocates the required amount of memory by using a mmap. (Note that mmap

allows its caller to specify the start address and length of a segment, and this

capability is used to randomize the base address of static variables.) Second, it

randomly permutes the order of static variables specified in alloc info, and

introduces gaps and protected memory sections in-between some variables.

Finally, it zeroes out the memory allocated to static variables. After the call

to static alloc, code is added to initialize those static variables that are

explicitly initialized.

Other than the initialization step, the rest of the transformation is very

47

simple: replace the occurrence of each static variable to use its associated

pointer variable, i.e., replace occurrence of v by (*v ptr).

All of the v ptr variables are write-protected by initialization code that

is introduced into main. This code first figures out the boundaries of the data

segment, and then uses the mprotect system call to apply the write protection.

Section .got contains the GOT, whose randomization will be discussed

in the context of randomization of PLT in Section 4.4.6.

4.4.2 Code Transformations

As with static data, one way to randomize code location is to generate PIC

code, and map this at a randomly chosen location at runtime. But this ap-

proach has several drawbacks as mentioned before, so our approach involves

randomizing at a much finer granularity. Specifically, our randomization tech-

nique works at the granularity of functions. To achieve this, a function pointer

f ptr is associated with each function f. It is initialized with the value of f.

All references to f are replaced by (*f ptr).

The above transformation avoids calls using absolute addresses, thereby

laying the foundation for relocating function bodies in the binary. But this is

not enough: there may still be jumps to absolute addresses in the code. With

C-compilers, such absolute jumps are introduced while translating switch

statements. In particular, there may be a jump to location jumpTable[i],

where i is the value of the switch expression, and jumpTable is a constant

table constructed by the compiler. The ith element of this table contains the

address of the corresponding case of the switch statement. To avoid absolute

address dependency introduced in this translation, we transform a switch into

a combination of if-then-else and goto statements. Efficient lookup of case

values can be implemented using binary search, which will have O(log N) time

complexity. However, in our current implementation we use sequential search.

In theory, this transformation can lead to decreased performance, but we have

not seen any significant effect due to this change in most programs.

48

On a binary, the following actions are performed to do the actual random-

ization. The entire code from the executable is read. In addition, the location

of functions referenced by each f ptr variable is read from the executable.

Next, these functions are reordered in a random manner, using a procedure

similar to that used for randomizing the order of static variables. Random

gaps and inaccessible pages are inserted periodically during this process in

order to introduce further uncertainty in code locations, and to provide addi-

tional protection. The transformation ensures that these gaps do not increase

the overall space usage for the executable by more than a specified parameter

(which has the value of 100% in our current implementation). This limit can

be exceeded if the original code size is smaller than a threshold (32KB).

After relocating functions, the initializations of f ptr variables are changed

so as to reflect the new location of each function. The transformed binary can

then be written back to the disk. Alternatively, the transformation could be

done at load-time, but we have not implemented this option so far.

It is well known that binary analysis and transformation are very hard

problems [37]. To ease this problem, our transformation embeds “marker”

elements, such as an array of integers with predefined values, to surround

the function pointer table. These markers allow us to quickly identify the

table and perform the above transformation, without having to rely on binary

disassembly.

As a final step, the function pointer table needs to be write-protected.

Actual transformation of source code is shown through following example:

char *f();

void g(int a) { ... }

void h() {

char *str;

char *(*fptr)();

...

fptr = &f;

str = (*fptr)();

g(10);

49

}

The above code will be transformed as follows:

void *func_ptrs[] =

{M1, M2, M3, M4, (void *)&f, (void *)&g,

M5, M6, M7, M8};

char *f();

void g(int a) { ... }

void h() {

char *str;

char *(*fptr)();

...

fptr = (char *(*)())func_ptrs[4];

str = (*fptr)();

(*((void (*)(int)) (func_ptrs[5])))(10);

}

The function pointer array in each source file contains locations of func-

tions used in that file. The func ptrs array is bounded on each end with a

distinctive, 128-bit pattern that is recorded in the marker variables M1 through

M8. This pattern is assumed to be unique in the binary, and can be easily

identified when scanning the binary. The original locations of functions can

be identified from the contents of this array. By sorting the array elements,

we can identify the beginning as well as the end of each function. (The end

of a function is assumed to just precede the beginning of the next function

in the sorted array.) Now, the binary transformation simply needs to ran-

domly reorder function bodies, and change the content of the func ptr array

to point to these new locations. We adapted LEEL binary-editing tool [54] for

performing this code transformation.

In our current implementation, we do not reorder functions at load time.

Instead, the same effect is achieved by modifying the executable periodically.

50

4.4.3 Stack Transformations

To change the base address of the stack, our transformation adds initialization

code that subtracts a large random number (of the order of 108) from the

stack pointer. In addition, all of the environment variables and command line

arguments are copied over, and the original contents erased to avoid leaving

any data that may be useful to attackers (such as file names) at predictable

locations. Finally, the contents of the stack above the current stack pointer

value are write-protected. (An alternative to this approach is to directly mod-

ify the base address of the stack, but this would require changes to the OS

kernel, which we want to avoid. For instance, on Linux, this requires changes

to execve implementation.). In our current implementation, this initialization

is done inside the loader code which is executed before the invocation of main.

The above transformation changes the absolute locations of stack-resident

objects, but has no effect on relative distances between objects. One possible

approach to randomize relative distances is to introduce an additional level of

indirection, as was done for static variables. However, this approach will intro-

duce high overheads for each function call. Therefore we apply this approach

only for buffer-type local variables. Buffer-type variables include those whose

address is explicitly or implicitly used in the program. For each buffer-type

variable, we introduce a pointer variable to point to it, and then allocate the

buffer itself on a second stack called the buffer stack. Consider a local vari-

able declaration char buf[100] within a function, func. This variable can be

replaced by a pointer with the following definition:

char (*buf ptr)[100]

On entry of func, memory for buf is allocated using:

buf ptr = bufferstack alloc(sizeof(char [100]))

Allocations of multiple buffers are performed in a random order similar to static

variables. Also, the allocator function allocates extra memory of a random size

(currently limited to a maximum of 30%) between buffers, thereby creating

51

random gaps between adjacent buffers. Finally, all occurrences of buf in the

body of func are replaced with (*buf ptr).

Our transformation does not change the way other types of local variables

are allocated, so they get allocated in the same order. However, since the

addresses of these variables never get taken, they cannot be involved in attacks

that exploit knowledge of relative distances between variables. In particular,

stack smashing attacks become impossible, as the return address is on the

regular stack, whereas the buffer overflows can only corrupt the buffer stack.

In addition, attacks using absolute addresses of stack variables do not work,

as the absolute addresses are randomized by the (random) change to the base

address of the stack.

Note that function parameters may be buffer-type variables. To eliminate

the risk of overflowing them, we copy all buffer-type parameters into local vari-

ables, and use only the local variables from there on. Buffer-type parameters

are never accessed in code, so there is no possibility of memory errors involv-

ing them. (An alternative to this approach is to ensure that no buffer-type

variables are passed by value. But this requires the caller and callee code to

be transformed simultaneously, thereby potentially breaking the separate file

compilation approach.)

As a final form of stack randomization, we introduce random gaps be-

tween stack frames. This makes it difficult to correlate the locations of local

variables across function invocations, thereby randomizing the effect of unini-

tialized pointer access and other temporal errors. Before each function call,

code is added to decrement stack pointer by a small random value. After the

function call, this padding is removed. The padding size is a random number

generated at runtime, so it will vary for each function invocation.

Introduction of random-sized gaps between stack frames is performed

using the alloca function, which is converted into inline assembly code by

gcc. There are two choices on where this function is invoked: (a) immediately

before calling a function, (b) immediately after calling a function, i.e., at the

beginning of the called function. Note that option (b) is weaker than option

(a) in a case where a function f is called repeatedly within a loop. With (a),

52

the beginning of the stack frame will differ for each call of f . With (b), all calls

to f made within this loop will have the same base address. Nevertheless, our

implementation uses option (b), as it works better with some of the compiler

optimizations.

Handling setjmp/longjmp. The implementation of buffer stack needs to

consider subroutines such as setjmp() and longjmp(). A call to setjmp()

stores the program context which mainly includes the stack pointer, the base

pointer and the program counter. A subsequent call to longjmp() restores the

program context and the control is transferred to the location of the setjmp()

call. To reflect the change in the program context, the buffer stack needs to be

modified. Specifically, the top of buffer stack needs to be adjusted to reflect

the longjmp. This is accomplished by storing the top of the buffer stack as a

local variable in the main stack and restoring it at the point of function return.

As a result, the top of buffer stack will be properly positioned before the first

allocation following the longjmp. (Note that we do not need to change the

implementation of setjmp or longjmp.)

4.4.4 Heap Transformations

Heap-related transformations may have to be implemented differently, depend-

ing on how the underlying heap is implemented. For instance, suppose that

a heap implementation allocates as much as twice the requested memory size.

In this case, randomly increasing a request by 30% will not have much effect

on many memory allocation requests. Thus, some aspects of randomization

have to be matched to the underlying heap implementation.

For randomizing the base of heap, we could make a dummy malloc()

call at the beginning of program execution, requesting a big chunk of memory.

However, this would not work for malloc() as implemented in GNU libc: for

any chunk larger than 4 KB, GNU malloc returns a separate memory region

created using the mmap system call, and hence this request doesn’t have any

impact on the locations returned by subsequent malloc’s.

53

We note that malloc uses the brk system call to allocate heap memory.

This call simply changes the end of the data segment. Subsequent requests

to malloc are allocated from the newly extended region of memory. In our

implementation, a call to brk is made before any malloc request is processed.

As a result, locations returned by subsequent malloc requests will be changed

by the amount of memory requested by the previous brk. The length of the

extension is a random number between 0 and 108. The extended memory is

write-protected using the mprotect system call.

To randomize the relative distance between heap objects, calls to malloc()

are intercepted by a wrapper function, and the size of the request increased

by a random amount, currently between 0% and 30%.

Additional randomizations are possible as well. For instance, we can

intercept calls to free, so that some of the freed memory is not passed on to

malloc, but simply result in putting the the buffer in a temporary buffer. The

implementation of the malloc wrapper can be modified to perform allocations

from this buffer, instead of passing on the request to malloc. Since heap

objects tend to exhibit a significant degree of randomness naturally, we have

not experimented with this transformation.

4.4.5 Shared Library Transformations

Ideally, shared libraries should be handled in the same way as executable code:

the order of functions should be randomized, and the order of static variables

within the libraries should be randomized. However, shared libraries are shared

across multiple programs. Randomization at the granularity of functions, if

performed at load time on shared libraries, will create copies of these shared

libraries, and thus rule out sharing. To enable sharing, randomization can be

performed on the disk image of the library rather than at load time. Such

randomization has to be performed periodically, e.g., at every restart of the

system.

A second potential issue with shared libraries is that their source code

may not be available. In this case, the base address of the shared library

54

can be randomized in a manner similar to [36] or the technique used in the

previous section. However, this approach does not provide sufficient range of

randomization on 32-bit architectures. In particular, with a page size of 4096

(= 212) bytes on Linux, uncertainty in the base address of a library cannot be

much larger than 216, which makes them susceptible to brute-force attacks [45].

We address this problem by a link-time transformation to prepend each shared

library with junk code of random size between 0 and page size. The size of

this junk code must be a multiple of 4, so this approach increases the space of

randomization to 216 ∗ 212/4 = 226.

Load-time randomization has been implemented by modifying the dy-

namic linker ld.so so that it ignores the “preferred address” specified in a

shared library, and maps it at a random location. Note that there is a boot-

strapping problem with randomizing ld.so itself. To handle this problem,

our implementation modifies the preferred location of ld.so, which is honored

by the operating system loader. This approach negatively impacts the ability

to share ld.so among executables, but this does not seem to pose a signifi-

cant performance problem due to the relatively small size and infrequent use

(except during process initialization) of this library.

4.4.6 Other Randomizations

Randomization of PLT and GOT. In a dynamically linked ELF exe-

cutable, calls to shared library functions are resolved at runtime by the dy-

namic linker. The GOT (global offset table) and the PLT (procedure linkage

table) play crucial roles in resolution of library functions. The GOT stores the

addresses of external functions, and is a part of the data segment. The PLT,

which is a part of the code segment, contains entries that call addresses stored

in the GOT.

From the point of view of an attacker looking to access system functions

such as execve, the PLT and the GOT provide “one-stop shopping,” by con-

veniently collecting together the memory locations of all system functions in

one place. For this reason, they have become a common target for attacks.

55

For instance,

• if an attacker knows the absolute location of the PLT, then she can

determine the location within the PLT that corresponds to the external

function execve, and use this address to overwrite a return address in a

stack smashing attack. Note that this attack works even if the locations

of all functions in the executable and libraries have been randomized

• if an attacker knows the absolute location of the GOT, she can calculate

the location corresponding to a commonly used function such as the read

system call, and overwrite it with a pointer to attack code injected by

her. This would result in the execution of attack code when the program

performs a read.

It is therefore necessary to randomize the locations of the PLT and the GOT,

as well as the relative order of entries in these tables. However, since the GOT

and the PLT are generated at link-time, we cannot control them using a source

code transformation. One approach for protecting the GOT is to use the eager

linking option, and then write-protect it at the beginning of the main program.

An alternative approach that uses lazy linking (which is the default on Linux)

is presented in [52].

The main complication in relocating the PLT is to ensure that any refer-

ences in the program code to PLT entries be relocated. Normally, this can be

very difficult, because there is no way to determine through a static analysis of

a binary whether a constant value appearing in the code refers to a function,

or is simply an integer constant. However, our transformation has already

addressed this problem: every call to an entry e in the PLT will actually be

made using a function pointer e ptr in the transformed code. As a result, we

treat each entry in the PLT as if it is a function, and relocate it freely, as long

as the pointer e ptr is correctly updated.

Randomization of read-only data. The read-only data section of a pro-

gram’s executable consists of constant variables and arrays whose contents

are guaranteed not to change when the program is being run. Attacks which

56

corrupt data cannot harm read-only data. However, if their location is pre-

dictable, then they may be used in some attacks that need meaningful argu-

ment values, e.g., a typical return-to-libc attack will modify a return address

on the stack to point to execve, and put pointer arguments to execve on the

stack. For this attack to succeed, an attacker has to know the absolute loca-

tion of a string constant such as /bin/bash which may exist in the read-only

section.

Note that our approach already makes return-to-libc attacks very diffi-

cult. Nevertheless, it is possible to make it even more difficult by randomizing

the location of potential arguments in such attacks. This can be done by in-

troducing variables in the program to hold constant values, and then using the

variables as arguments instead of the constants directly. When this is done,

our approach will automatically relocate these constants.

4.4.7 Other Implementation Issues

Random number generation. Across all the transformations, code for

generation of random numbers is required to randomize either the base ad-

dresses or the relative distances. For efficiency, we use pseudo-random num-

bers rather than cryptographically generated random numbers. The pseudo-

random number generator is seeded with a real random number read from

/dev/urandom.

Debugging support. Our transformation provides support for some of the

most commonly used debugging features such as printing a stack trace. Note

that no transformations are made to normal (i.e., non-buffer) stack variables.

Symbol table information is appropriately updated after code rewriting trans-

formations. Moreover, conventions regarding stack contents are preserved.

These factors enable off-the-shelf debuggers to produce stack traces on trans-

formed executables.

Unfortunately, it isn’t easy to smoothly handle some aspects of trans-

formation for debugging purposes. Specifically, note that accesses to global

variables (and buffer-type local variables) are made using an additional level

57

Program Combination (1) Combination (2)
% Overhead % Overhead

tar -1 0
wu-ftpd 0 2

gv 0 2
bison 1 8
groff -1 13
gzip -1 14

gnuplot 0 21

Table 1: Runtime performance overhead introduced by binary-only ASR trans-
formations.

of indirection in the transformed code. A person attempting to debug a trans-

formed program needs to be aware of this. In particular, if a line in the source

code accesses a variable v, he should know that he needs to examine (*v ptr)

to get the contents of v in the untransformed program. Although this may

seem to be a burden, we point out that our randomizing transformation is

meant to be used only in the final versions of code that are shipped, and not

in debugging versions.

4.5 Performance Results

4.5.1 Binary-Only Transformations

We have collected performance data on the implementation of randomization

using binary-only transformations. The following randomizations were imple-

mented:

• relocating the base of the stack, heap, and code regions

• introduction of random gaps within stack frames, and at the end of mem-

ory blocks requested by malloc. The stack frame gaps were determined

58

statically for each routine, while the malloc gaps can change with each

malloc request.

We studied two different approaches for randomizing the start address of the

executable:

• Combination 1: static relocation performed at link-time.

• Combination 2: dynamic relocation performed at load-time.

Both approaches incorporate all of the transformations mentioned above. Note

that dynamic relocation requires the executable be compiled into position-

independent code, which introduces additional runtime overheads.

Table 1 shows the runtime performance overheads due to the two com-

binations of transformations. All measurements were taken on an 800 MHz,

Pentium III, 384 MB RAM machine with RedHat 7.3 Linux operating system.

Average execution (system + user) time was computed over 10 runs. The

overheads measured were rounded off to the nearest integral percentage.

From the table, we see that combination (1) incurs essentially no runtime

overhead.

Combination (2) has noticeable runtime overhead. This is because it

requires position-independent code, which is less efficient, since it performs

extra operations before every procedure call, and every access to static data.

On the other hand, when code is already being distributed in a shared library

form, combination (2) provides broad protection against memory error exploits

without any additional overhead.

4.5.2 Source Code Transformations

We have collected data on the performance impact of the source code-based

randomizing transformations. The transformations were divided into the fol-

lowing categories, and their impact was studied separately.

• Stack: transformations which randomize the stack base, move buffer-

type variables into the buffer stack, and introduce gaps between stack

frames.

59

Program Workload

Apache-1.3.33 WebStone 2.5, client connected over 100 Mbps network

sshd-OpenSSH 3.5p1 Run a set of commands from ssh client

wu-ftpd-2.8.0 Run a set of different ftp commands

bison-1.35 Parse C++ grammar file

grep-2.0 Search a pattern in files of combined size 108 MB

bc-1.06 Find factorial of 600

tar-1.12 Create a tar file of a directory of size 141 MB

patch-2.5.4 Apply a 2 MB patch-file on a 9 MB file

enscript-1.6.4 Convert a 5.5 MB text file into a postscript file

ctags-5.4 Generate tag file of 6280 C source code files

with total 17511 lines

gzip-1.2.4 Compress a 12 MB file

Table 2: Test programs and workloads for performance evaluation of source
code-based ASR transformations.

• Static data: transformations which randomize locations of static data.

• Code: transformations which reorder functions.

• All: all of the above, plus randomizing transformations on heap and

shared libraries.

Table 2 shows the test programs and their workloads. Table 4 shows

runtime performance overheads due to each of the above categories of trans-

formations. The original and the transformed programs were compiled using

gcc-3.2.2 with -O2 optimization, and executed on a desktop running RedHat

Linux 9.0 with 1.7 GHz Pentium IV processor, and 512 MB RAM. Execution

times were averaged over 10 runs.

For Apache server, we studied its performance separately after apply-

ing all the transformations. To measure performance of the Apache server

accurately, heavy traffic from clients is required. We generated this using

WebStone [50], a standard web server benchmark. We used version 2.5 of

this benchmark, and ran it on a separate computer that was connected to the

server through a 100 Mbps network. We ran the benchmark with two, sixteen

60

Degradation (%)
#clients Connection Response

Rate Time

2-clients 1 0
16-clients 0 0
30-clients 0 1

Table 3: Performance overhead introduced by the source code-based ASR
transformations on Apache.

and thirty clients. In the experiments, the clients were simulated to access the

web server concurrently, randomly fetching html files of size varying from 500

bytes to 5 MB. The benchmark was run for a duration of 30 minutes, and the

results were averaged across ten such runs. Results were finally rounded off to

the nearest integral values.

We analyzed the performance impact further by studying the execution

profile of the programs. For this, we instrumented programs to collect addi-

tional statistics on memory accesses made by the transformed program. Specif-

ically, the instrumentation counts the total number of accesses made to local

variables, variables on buffer stack, global variables and so on.

Table 5 shows the dynamic profile information. (We did not consider

servers in this analysis due to the difficulties involved in accurately measuring

their runtimes.) From this result, we see that for most programs, the vast

majority of memory accesses are to local variables. Our transformation doesn’t

introduce any overheads for local variables, which explains the low overheads

for most programs in Table 4. Higher overheads are reported for programs that

perform a significant number of global variable accesses, where an additional

memory access is necessitated by our transformation.

A second source of overhead is determined by the number of function

calls made by a program. This includes the overhead due to the additional

level of indirection for making function calls, the number of allocations made

on buffer stack, and the introduction of inter-stack-frame gap. To analyze

61

Orig. % Overheads
Program CPU Stack Static Code All

time

grep 0.33 0 0 0 2
tar 1.06 2 2 1 4

patch 0.39 2 0 0 4
wu-ftpd 0.98 2 0 6 9

bc 5.33 7 1 2 9
enscript 1.44 8 3 0 10

bison 0.65 4 0 7 12
gzip 2.32 6 9 4 17
sshd 3.77 6 10 2 19

ctags 9.46 10 3 8 23

Avg. Overhead 5 3 3 11

Table 4: Runtime performance overheads introduced by the source code-based
ASR transformations on benchmark programs.

this overhead, we instrumented the transformed programs to collect number

of function calls and number of buffer stack allocations. The results, shown in

Table 6, illustrate that programs that make a large number of function calls

per second, e.g., ctags and gzip incur higher overheads. Surprisingly, bison

also incurs high overheads despite making small number of function calls per

second. So we analyzed bison’s code, and found that it contains several big

switch statements. This could be the main reason behind the high overheads,

because our current implementation performs sequential lookup for the case

values. However, with binary search-based implementation, we should be able

to get better performance.

We point out that the profile information cannot fully explain all of the

variations in overheads, since it does not take into account some of the factors

involved, such as register usage, compiler optimizations, and the effect of cache

hits (and misses) on the additional pointer dereferences introduced in the

transformed program. Nevertheless, the profile information provides a broad

indication of the likely performance overheads due to each program.

62

Program %age of variable accesses
Local Global

(non-buffer) (buffer) (static)

grep 99.9 0.004 0.1
bc 99.3 0.047 0.6

tar 96.5 0.247 3.2
patch 91.8 1.958 6.2

enscript 90.5 0.954 8.5
bison 88.2 0.400 10.9
ctags 72.9 0.186 26.9
gzip 59.2 0.018 40.7

Table 5: Distribution of variable accesses in the source code-based ASR trans-
formations.

4.6 Effectiveness

Effectiveness can be evaluated experimentally or analytically. Experimental

evaluation involves running a set of well-known exploits (such as those reported

on www.securityfocus.com) against vulnerable programs, and showing that

our transformation stops these exploits. We have not carried out a detailed

experimental evaluation of effectiveness because today’s attacks are quite lim-

ited, and do not exercise our transformation at all. In particular, they are all

based on a detailed knowledge of program memory layout. We have manu-

ally verified that our transformation changes the memory locations of global

variables, local variables, heap-allocated data and functions for each of the

programs discussed in the previous section. It follows from this that none of

the existing buffer overflow attacks will work on the transformed programs.

In contrast with the limitations of an experimental approach, an analyt-

ical approach can be based on novel attack strategies that haven’t been seen

before. Moreover, it can provide a measure of protection (in terms of the prob-

ability of a successful attack), rather than simply providing an “yes” or “no”

answer. For this reason, we rely primarily on an analytical approach in this

section. We first analyze memory error exploits in general, and then discuss

63

Program # calls calls/ Buffer
sec. stack

allocations
×106 ×106 per sec. per call

grep 0.02 0.06 24K 0.412
tar 0.43 0.41 57K 0.140

bison 2.69 4.11 423K 0.103
bc 22.56 4.24 339K 0.080

enscript 9.62 6.68 468K 0.070
patch 3.79 9.75 166K 0.017
gzip 26.72 11.52 0K 0.000

ctags 251.63 26.60 160K 0.006

Table 6: Calls and buffer stack allocations in the source code-based ASR
transformations.

attacks that are specifically targeted at randomization.

4.6.1 Memory Error Exploits

Recall from Chapter 2 that memory error exploits are based on corrupting

some data in the writable memory of a process. For the purpose of over-

writing, the exploits use different attack mechanisms such as buffer overflows

and format string vulnerabilities. The targeted data for overwriting is either

a pointer or non-pointer data. The randomizations make the attacker’s job

difficult in two ways. First, the overwrite step becomes difficult. Second,

in the attack involving overwrite of a pointer data, the attacker is forced to

guess the correct value of the pointer. Thus, for a specific vulnerability V, the

probability of a successful attack A that exploits it is given by:

P (A) = P (Owr) ∗ (P (Eff1) ∗ P (Eff2) ∗ ... ∗ P (EffN)), where N > 0, and

P (Owr): probability that V can be used to overwrite a specific data item of

interest to the attacker,
P (Effi): probability of correctly guessing the value to be used for overwriting

the ith pointer.

64

Note that some attacks (e.g., heap overflows) involve corrupting multiple

pointers. In absolute address randomization, once one address is guessed,

other addresses can be derived as relative distances are fixed. In such a case,

typically P (Owr) = P (Eff2)∗P (Eff3)∗ ...∗P (EffN) = 1. On the other hand,

relative address randomization produces multiplicative effect, further reducing

the probability of a successful attack.

In arriving at the above formula, we make either of the following assump-

tions:

• (a) the program is re-randomized after each failed attack. This happens

if the failure of the effect causes the victim process to crash, (say, due to

a memory protection fault), and it has to be explicitly restarted.

• (b) the attacker cannot distinguish between the failure of the overwrite

step from the failure of the effect. This can happen if (1) the overwrite

step corrupts critical data that causes an immediate crash, making it

indistinguishable from a case where target data is successfully overwrit-

ten, but has an incorrect value that causes the program to crash, or

(2) the program incorporates error-handling or defense mechanisms that

explicitly masks the difference between the two steps.

Note that (a) does not hold for typical server programs that spawn children

to handle requests, but (b) may hold. If neither of them hold, then the proba-

bility of a successful attack is given by min(P (Owr), P (Eff1) ∗ P (Eff2) ∗ ... ∗

P (EffN)).

We estimate the probability factors for various types of attacks, separately

for the two implementation approaches.

4.6.1.1 Estimating P (Owr)

We estimate P (Owr) separately for each attack type.

Buffer overflows

65

• Stack buffer overflows. These overflows typically target the return ad-

dress, saved base pointer or other pointer-type local variables.

In the binary transformation approach, the stack padding creates an un-

certainty of the order of 128 bytes in the distance between the vulnerable

buffer and the return address or the base pointer. However, attacker can

still successfully corrupt the return address (or the base pointer) by writ-

ing to the stack buffer a block containing copies of guessed address G

(enough copies to be relatively sure that the return address is overwrit-

ten). Another disadvantage is that the other local variables in the same

stack frame are not protected from corruption.

In the source code transformation approach, the buffer stack transfor-

mation makes these attacks impossible, since all buffer-type variables

are on the buffer stack, while the target data is on the main stack. At-

tacks that corrupt one buffer-type variable by overflowing the previous

one are possible, but unlikely. As shown by our implementation results,

very few buffer-type variables are allocated on the stack. Moreover, it

is unusual for these buffers to contain pointers (or other security-critical

data) targeted by an attacker.

• Static buffer overflows. The binary transformation approach provides no

protection from these overflows.

In contrast, the source code transformation approach is very effective

against this type of attacks. As in the case of stack overflows, the likely

targets are simple pointer-type variables. However, such variables have

been separated by our transformation from buffer-type variables, and

hence they cannot be attacked.

For attacks that use an overflow from one buffer to the next, the random-

ization introduced by our transformation makes it difficult to predict the

target that will be corrupted by the attack. Moreover, unwritable pages

have been introduced periodically in-between buffer-type static variables,

and these will completely rule out some overflows. To estimate the prob-

ability of successful attacks, let M denote the maximum size of a buffer

66

overflow, and S denote the granularity at which inaccessible pages are

introduced between buffer variables. Then the maximum size of a useful

attack is min(M,S). Let N denote the total size of memory allocated for

static variables. The probability that the attack successfully overwrites

a data item intended by the attacker is given by min(M,S)/N . With

nominal values of 4KB for the numerator and 1MB for the denominator,

the likelihood of success is about 0.004.

• Heap overflows. Heap transformations are similar in the binary and the

source code-based approaches. Therefore, the probability of the over-

write step is same for both the approaches.

In general, heap-allocations are non-deterministic, so it is hard to pre-

dict the effect of overflows from one heap block to the next. This un-

predictability is further increased by our transformation to randomly

increase the size of heap-allocation requests. However, control data ex-

ist in heap blocks, and these can be more easily and reliably targeted.

For instance, heap overflow attacks generally target two pointer-valued

variables that are used to chain free blocks together, and appear at their

beginning.

The transformation to randomly increase malloc requests makes it harder

to predict the start address of the next heap block, or its allocation state.

However, the first difficulty can be easily overcome by writing alternating

copies of the target address and value many times, which ensures that

the control data will be overwritten with 50% probability. We believe

that the uncertainty on allocation state doesn’t significantly decrease

the probability of a successful attack, and hence we conclude that our

randomizations do not significantly decrease P (Owr). However, as dis-

cussed below, P (Eff) is very low for such attacks.

Format string attacks. These attacks exploit the (obscure) "%n" format

specifier. The specifier needs an argument that indicates the address into

which the printf-family of functions will store the number of characters that

67

have been printed. This address is specified by the attacker as a part of

the attack string itself. The inter frame padding implemented in the binary

transformation does not help in this case. On the other hand, in the source

code-based implementation, the argument corresponding to the "%n" format

specifier will be taken from the main stack, whereas the attack string will

correspond to a buffer-type variable, and be held on the buffer stack (or the

heap or in a global variable). As a result, there is no way for the attacker to

directly control the address into which printf-family of functions will write,

and hence the usual form of format-string attack will fail.

It is possible, however, that some useful data pointers may be on the

stack, and they could be used as the target of writes. The likelihood of finding

such data pointers on the stack is relatively low, but even when they do exist,

the inter-stack frame gaps of the order of 28 bytes implemented in both of our

approaches reduces the likelihood of successful attacks to 4/28 = 0.016. This

factor can be further decreased by increasing the size of inter-frame gaps in

functions that call printf-family of functions.

In summary, the source code transformation approach significantly reduces

the success probability of most likely attack mechanisms, which include (a)

overflows from stack-allocated buffers to corrupt return address or other pointer-

type data on the stack, (b) overflows from a static variable to another, and

(c) format-string attacks. This is a far better improvement over binary trans-

formation approach which has a very little effect on P (Owr), or other address

space randomization-based techniques [36, 52, 21] which have no effect at all

on P (Owr). Their preventive ability is based entirely on reducing P (Eff)

discussed in the next section.

4.6.1.2 Estimating P (Eff)

Corruption of non-pointer data. This class of attacks target security-

critical data such as user-ids and file names used by an application. With our

technique, as well as with the other address space randomization techniques,

it can be seen that P (Eff) = 1, as they have no bearing on the interpretation

68

of non-pointer data. The most likely location of such security-critical data is

the static area, where our approach provides protection in the form of a small

P (Owr). This contrasts with the other approaches that provide no protection

from this class of attacks.

Pointer corruption attacks.

• Corruption with pointer to existing data. The probability of correctly

guessing the absolute address of any data object is determined primarily

by the amount of randomization in the base addresses of different data

areas.

In both of our implementation approaches, this quantity can be in the

range of 227, but since the objects will likely be aligned on a 4-byte

boundary, the probability of successfully guessing the address of a data

object is of the order of 2−25.

• Corruption with pointer to injected data. Guessing the address of some

buffer that holds attacker-provided data is no easier than guessing the

address of existing data objects. However, the odds of success can be

improved by repeating the attack data many times over. If it is repeated

k times, then the odds of success is given by k × 2−25. If we assume

that the attack data is 16 bytes and the size of the overflow is limited to

4KB, then k has the value of 28, and P (Eff) is 2−17.

• Corruption with pointer to existing code. The probability of correctly

guessing the absolute address of any code object is determined primarily

by the amount of randomization in the base addresses of different code

areas.

In the binary transformation-based approach, the uncertainty in the lo-

cations of functions within the executable is 227/4 = 225, so P (Eff) is

bounded by 2−25.

In the source code-based implementation, the uncertainty in the loca-

tions of functions within the executable is 216/4 = 214. We have already

69

argued that the randomization in the base address of shared libraries can

be as high as 2−26, so P (Eff) is bounded by 2−14. This probability can be

decreased by performing code randomizations at load-time. When code

randomizations are performed on disk images, the amount of “gaps” in-

troduced between functions is kept low (of the order of 64KB in the

above calculation), so as to avoid large increase in the size of files. When

the randomization is performed in main memory, the address space of

randomization can be much larger, say, 128MB, thereby reducing the

probability of successful attacks to 2−25.

• Corruption with pointer to injected code. Code can be injected only in

data areas, and it does not have any alignment requirements (on x86

architectures). Therefore, the probability of guessing the address of the

injected code is 2−27. The attacker can increase the success probability

by using a large NOP-padding before the attack code. If a padding of

the order of 4KB is used, then P (Eff) becomes 4K × 2−27 = 2−15.

4.6.2 Attacks Targeting ASR

The other address space randomization approaches and also our binary transformation-

based approach are vulnerable to the classes of attacks described below. We

describe how our source code transformation-based approach defends against

them.

• Information leakage attacks.

Programs may contain vulnerabilities that allow an attacker to “read”

the memory of a victim process. For instance, the program may have a

format string vulnerability such that the vulnerable code prints into a

buffer that is sent back to the attacker. (Such vulnerabilities are rare,

as pointed out in [45].) Armed with this vulnerability, the attacker can

send a format string such as "%x %x %x %x", which will print the values

of 4 words near the top of the stack at the point of the vulnerability.

If some of these words are known to point to specific program objects,

70

e.g., a function in the executable, then the attacker knows the locations

of these objects.

We distinguish between two kinds of information leakage vulnerabilities:

chosen pointer leakage and random pointer leakage. In the former case,

the attacker is able to select the object whose address is leaked. In

this case, the attacker can use this address to overwrite a vulnerable

pointer, thereby increasing P (Eff) to 1. With random pointer leakage,

the attacker knows the location of some object in memory, but not the

one of interest to him. Since relative address randomization makes it

impossible in general to guess the location of one memory object from

the location of another memory object, random pointer leakages don’t

have the effect of increasing P (Eff) significantly.

For both types of leakages, note that the attacker still has to successfully

exploit an overflow vulnerability. The probability of success P (Owr) for

this stage was previously discussed.

The specific case of format-string information leakage vulnerability lies

somewhere between random pointer leakage and chosen pointer leakage.

Thus, the probability of mounting a successful attack based on this vul-

nerability is bounded by P (Owr).

• Brute force and guessing attacks.

Apache and similar server programs pose a challenge for address space

randomization techniques, as they present an attacker with many simul-

taneous child processes to attack, and rapidly re-spawn processes which

crash due to bad guesses by the attacker. This renders them vulnerable

to attacks in which many guesses are attempted in a short period of time.

In [45], these properties were exploited to successfully attack a typical

Apache configuration within a few minutes. This attack doesn’t work

with our source code transformation-based approach, as it relies on stack

smashing. A somewhat similar attack could be mounted by exploiting

some other vulnerability (e.g., heap overflow) and making repeated at-

tempts to guess the address of some existing code. As discussed earlier,

71

this can be done with a probability between 2−14 to 2−26. However, the

technique used in [45] for passing arguments to this code won’t work

with heap overflows.

• Partial pointer overwrites.

Partial pointer overwrites replace only the lower byte(s) of a pointer,

effectively adding a delta to the original pointer value. These are made

possible by off-by-one vulnerabilities, where the vulnerable code checks

the length of the buffer, but contains an error that underestimates the

size of buffer needed by 1.

These attacks are particularly effective against randomization schemes

which only randomize the base address of each program segment and

preserve the memory layout. By scrambling the program layout, our ap-

proach negates any advantage of a partial overwrite over a full overwrite.

72

CHAPTER 5

Data Space Randomization

The basic idea of this approach is to randomize representation of different

data objects, so that even if an attacker can predictably corrupt a data object,

the effect of this corruption cannot be predicted. One way to modify data

representation is to xor each data object in the memory with a different random

mask (encryption), and to unmask it (decryption) before its use. Now, even if

an attacker uses a buffer overflow to overwrite a variable x with a value v, it

will be interpreted as v ⊕ mx by the program, where mx is the random mask

(unknown to attacker) associated with x. Thus, the use of the random and

wrong value v ⊕mx may cause an application to crash, but is very unlikely to

compromise it.

As compared to ASR, DSR provides a much larger range of randomiza-

tion. For instance, on 32-bit architectures, we can randomize integers and

pointers over a range of 232 values, which is much larger than the range pos-

sible with ASR. Moreover, DSR can address the weakness of ASR concerning

its inability to randomize relative distance between two data objects because

of certain languages semantics. For instance, ASR cannot randomize relative

distances between the fields of the same structure. An interesting point to be

noted here is that even the complete memory error detections techniques do

not provide protection from overflows within the fields of a structure because

according to C language specifications, an overflow within a structure is not

considered as a memory error.

73

Previous approaches have used data space randomization technique in

restricted forms. Instruction set randomization approaches [6, 28] use ran-

domized representation of only the code objects, thus providing protection

against only the injected code attacks. The PointGuard [16] approach ran-

domizes only the pointer representation: a single random mask is used for

xor’ing all the pointers. Their transformation approach is dependent on the

accuracy of type information, which may not be always available. In particu-

lar, their transformations are unsound if a variable is an alias associated with

the data of pointer as well as non-pointer types, but this fact cannot be in-

ferred from just the type information. As a concrete example, consider the

standard C library function bzero which takes an untyped parameter. This

function may be used to zero out different structures containing combinations

of pointer and non-pointer data. However, the type information of a structure

that is passed as a parameter is not available in the body of bzero, because of

which the transformation will end up assigning null value to a pointer present

in the structure. Such a pointer is expected to have a value equal to the ran-

dom mask, but its null value will cause the program to malfunction. Similar

problem is faced with unions that store pointer and non-pointer values in the

same memory location.

In contrast to the previous approaches, we undertake a more general

interpretation of data space randomization, wherein all types of data can be

randomized. This allows us to protect not only pointer type data, but also non-

pointer security-critical data such as file names, command names, user ids, and

so on. Furthermore, our approach uses different random masks for different

data. This is particularly useful in defeating data corruption attacks that

involve overflows into adjacent data. In addition, it also provides protection

from exploits of a vulnerability that reveals the value of a masked variable,

making it possible for attackers to retrieve masks of all other variables.

74

5.1 Transformation Approach

Our transformation approach for DSR is based on a source-to-source transfor-

mation of C programs. The basic transformations are very simple. For each

data variable v, we introduce another variable m_v which stores the mask value

to be used for randomizing the data stored in v using a xor operation. The

mask is a random number that can be generated at the beginning of program

execution or during runtime. The size of m_v depends on the size of the data

stored in v. Ideally, we can store a fixed size (say, word length) random num-

ber in the mask variable, and depending on the size of the associated variable,

we can generate bigger or smaller masks from the random number. However,

for simplicity of notation, we will use mask variables having the same size as

that of the variables being masked.

The variables appearing in expressions and statements are transformed as

follows. Values assigned to variables are randomized. Thus, after every state-

ment that assigns a value to a variable v, we add the statement v = v ^ m_v

to randomize the value of the variable in the memory. Also, wherever a vari-

able is used, its value is first derandomized. This is done by replacing v with

v ^ m_v.

So far the transformations seem straightforward, but we have not yet

considered a case in which variable data is accessed indirectly by dereferencing

pointers. This concerns aliasing in C language. As an example, consider

following code snippet:

int x, y, z, *ptr;

...

ptr = &x;

...

ptr = &y;

...

L1: z = *ptr;

In the above code, the expression *ptr is an alias for either x or y. Since

*ptr is used in the assignment statement at L1, we need to unmask it before

75

using its value in the assignment. Therefore, the line should be transformed

as:

z = m_z ^ (m_starptr ^ *ptr),

where m_z and m_starptr are respectively masks of z and *ptr. Unfortu-

nately, statically we cannot determine the mask m_starptr to be used for

unmasking; it can be the mask of either variable x or y.

One way to address this problem is to dynamically track the masks to

be used for referents1 of all the pointers. This requires storing additional

information (henceforth called metadata) about pointers. Similar information

is maintained in some of the previous techniques that detect memory errors.

In particular, they store metadata using different data structures such as splay

tree [25] and fat pointers [3, 34]. These metadata storing techniques lead to

either high performance overheads or code compatibility problems. For this

reason, we chose to avoid dynamic tracking of masks.

Our solution to the above problem is based on using static analysis. More

specifically, we use the same mask for variables that can be pointed by a com-

mon pointer. Thus, when the pointer is dereferenced, we know the mask to be

used for its referents statically. This scheme requires “points-to” information

which can be obtained by using pointer analysis. In the above example, from

the results of any conservative pointer analysis technique, we can conclude

that both variables x and y can be pointed by the pointer variable ptr. Hence

we can use the same mask for both x and y, and this mask can be then used

for unmasking *ptr, i.e., m_x = m_y = m_starptr.

Since our method statically determines the masks, it is likely to yield

better performance than a dynamic tracking-based method. Moreover, our

method does not create any code compatibility problems. However, there is

one potential problem with this solution: if two adjacent objects are assigned

the same mask, and there is a vulnerability that allows corruption of one

object using an overflow from the other object, then an attacker can exploit

the vulnerability to corrupt the overwritten object with a correct value. Our

solution addresses this problem. The idea is something similar to what we

1A referent of a pointer is an object that the pointer points to.

76

did in ASR. The objects which are responsible for overflows correspond to

buffer-type data objects. We access buffer-type data using an extra level of

indirection (refer to Section 4.4.1) using pointers. The memory for buffer-

type data is allocated either at the beginning of program execution or during

runtime. If two buffers have the same mask, we ensure that the memory for

these buffers is allocated in different memory regions, so that an overflow from

one buffer into the other becomes impossible.

For the static data buffers, memory regions are created at the beginning

of program execution. Whereas for stack data buffers with the same mask, we

maintain multiple buffer stacks in different memory regions, and we allocate

memory for the buffers in different stacks. Maintaining multiple buffer stacks

could be an expensive operation. However, typically programs contain very

few buffer-type stack data objects as compared to other data objects. Thus,

in practice, we need only a small number of buffer stacks, and they can be

efficiently maintained. For the heap objects, memory regions are created at

runtime.

5.1.1 Pointer Analysis

Pointer analysis is a compile-time analysis that attempts to determine what

storage locations a pointer can point to.

As mentioned before, we use pointer analysis to determine the masks of

all the variables. In this section, we first identify the precision requirements for

our pointer analysis, and then provide details on the kind of pointer analysis

that we use.

Ideally, we need a distinct mask for each variable. Unfortunately, pres-

ence of pointers in C language potentially forces assignment of the same masks

for different variables. As a result, variables are divided into different equiva-

lence classes. All the variables in a class are assigned the same mask, and those

belonging to different classes are assigned different masks. The number of the

equivalence classes depend on the precision of pointer analysis. Intuitively,

greater the precision, there will be more number of the equivalence classes. To

77

illustrate this point, consider the program in Figure 5(a), and points-to graph

computed for this program using flow-insensitive and flow-sensitive pointer

analyses in Figure 5(b) and Figure 5(c) respectively. Points-to graph captures

points-to information in the form of a directed graph, wherein a node repre-

sents an equivalence class of symbols and edges represent pointer relationships.

The flow-insensitive analysis computes the points-to information for the over-

all program. According to this information, the same mask is required for

variables x, y and z. On the other hand, the flow-sensitive analysis computes

the points-to information for each program point, and hence it is more precise.

Using this analysis, variables x and y need the same mask, however, the extra

precision permits a different mask for the variable z.

A pointer analysis is, in general, computationally undecidable [39]. As

a result, existing pointer analysis algorithms use approximations that provide

varying degree of precision and efficiency. The worst-case time complexities

of these algorithms range from linear to exponential. We need to consider the

time complexity, for the analysis to be efficient and scalable. There are several

factors that affect precision and efficiency of analysis. Here are some of the

important factors:

• Flow-sensitivity: whether the solution is computed for the whole pro-

gram or for each program point

• Context-sensitivity: whether calling context of a function is consid-

ered while analyzing the function

• Modeling of heap objects: whether heap objects are named by allo-

cation site, or more sophisticated shape analysis is used

• Modeling of aggregate objects: whether elements of aggregate ob-

jects such as structures, unions, and arrays are distinguished or collapsed

into one object

• Representation of alias information: whether explicit alias informa-

tion is used, or a more compact points-to graph representation is used

78

void main() {

 ...
 if (...) {
 p = &x;
 else {
 p = &y;
 }

 p = &z;
 ...

 ...
}

L2: w = *p;

L1: w = *p;

(a) (b) (c)

 int *p, x, y, z, w;

x y z

L2

L1

x y

p

p

z

p

Figure 5: (a) Example program, (b) Points-to graph computed by a flow-
insensitive analysis, (c) Points-to graphs computed at different program points
using flow-sensitive analysis.

We need to consider these factors while choosing the analysis. Algorithms

involved in existing flow-sensitive analyses [11, 19, 51, 40] are very expensive in

terms of time complexity (high order polynomials). All the context-sensitive

approaches have exponential time complexity. We avoid these two types of

analyses as they do not scale to large programs. Among the flow-insensitive

and context-insensitive algorithms, Andersen’s algorithm [1] is considered to

be the most precise algorithm. This algorithm has the worst case cubic time

complexity, which is still high for it to be used on large programs. On the

other hand, Steensgaard’s algorithm [47] has linear time complexity, but it

gives less precise results. Interestingly, as we shall show in the next section,

it turns out that the results of Andersen’s and Steensgaard’s analyses give us

the same equivalence classes of variable masks. Therefore, we implemented

Steensgaard’s algorithm for our purpose.

79

s2 = &s4;
s2 = &s5;
s3 = &s6;
foo(&s2);
foo(&s3);

void foo(int **s1) { ...}

s4 s5 s6

s2 s3

s1

(a)

(b) (c)

s1

s2, s3

s4, s5, s6

Figure 6: Figure (a) above shows a sample C program for which points-to
graph is computed. Figures (b) and (c) show the points-to graphs computed
by Andersen’s algorithm and Steensgaard’s algorithm respectively.

80

5.1.2 Determination of Masks Using Points-to Graph

Consider points-to graphs computed by Steensgaard’s and Andersen’s algo-

rithms as shown in Figure 6. Points-to information computed by Andersen’s

algorithm is more precise than that computed by Steensgaard’s algorithm. For

instance, according to Steensgaard’s graph, s2 may point to s6. However, this

relationship appears unlikely if we look at the program. Andersen’s graph

does not capture this relationship, hence it is more precise. In Steensgaard’s

analysis, two objects that are pointed by the same pointer are unioned into

one node. This may lead to unioning of the points-to sets of formerly distinct

objects. This kind of unioning makes the algorithm faster, but results in less

precise output as shown in the above example.

Now let us see how we can use the points-to information to determine the

equivalence classes of masks for the above example; we do this for Andersen’s

graph. Objects s2 and s3 can be accessed using the pointer dereference *s1.

This suggests that s2 and s3 should have the same mask, and therefore they

belong to the same equivalence class. Similarly, pointer dereference **s1 can

be used to access any of the objects pointed by s2 or s3. This implies that the

objects pointed by s2 and s3 should have the same mask, and hence objects

s4, s5 and s6 should be merged into the same equivalence class. This merging

is similar to the unioning operation in Steensgaard’s algorithm. Therefore, the

equivalence classes of masks will be the same even in the case of Steensgaard’s

graph. For the above example, the complete set of equivalence classes of masks

is {{s1}, {*s1, s2, s3}, {**s1, *s2, *s3, s4, s5, s6}}.

As Steensgaard’s and Andersen’s graphs are equivalent from the point

of view of determining masks, it makes sense to use Steensgaard’s algorithm

for our purpose as it is more efficient than Andersen’s algorithm. So we for-

mally define the procedure for determining masks using Steensgaard’s points-to

graphs.

In general, a points-to graph of a program consists of disconnected com-

ponents. Hence we consider the procedure only for one component which can

be similarly applied to all the graph components. For this, let us first look at

the properties of a Steensgaard’s points-to graph. The unioning operation in

81

Figure 7: Properties of Steensgaard’s points-to graph: Each node has at most
one outdegree and zero or more indegree. Typically a connected component in
Steensgaard’s graph has a tree like structure as shown in the Figure. However,
there is a possibility of only one cycle, which is formed by an edge from the root
node to one of the nodes in the component. In the above graph component,
such an edge is represented by a dashed line.

82

Steensgaard’s algorithm enforces following properties in the points-to graph.

A node in the graph has at most one outdegree and zero or more indegree.

Owing to this, a connected component in the graph assumes a tree like struc-

ture, where a node can have multiple children corresponding to the indegree

edges, but at most one parent depending on the presence of an outdegree edge.

However, this does not imply that the component is always a tree. There is a

possibility that the root node of the tree like structure may have an outward

edge pointing to any of the nodes in the component, resulting in a cycle. Fig-

ure 7 shows such an edge as a dashed line in a typical connected component

of a Steensgaard’s points-to graph.

We assign a distinct mask to each node of the points-to graph. Note that

a node may correspond to multiple variables. The mask of the node is thus

used for masking all of its variables.

The mask of an object that is accessed using a pointer dereference is

determined as follows. Let ptr be the pointer variable. First, the node N

corresponding to the pointer variable is located in the points-to graph. For the

object *ptr, its mask is the mask associated with the parent node parent(N).

Similarly, the mask of **ptr is the mask associated with parent(parent(N)),

and so on. Since each node has at most one parent, we can uniquely determine

the masks of objects accessed through pointer dereferences. Note that this

procedure also works for dereferences of a non-pointer variable that stores an

address because points-to graph captures the points-to relation involved. The

procedure for deferences of pointer expressions involving pointer arithmetic is

similar.

5.2 Implementation

Our transformation approach is applicable to C programs. We use CIL as the

front end, and Objective Caml as the implementation language. We describe

our implementation approach for a 32-bit x86 architecture and Linux operating

system.

As a first step in the transformation of a program, we first perform pointer

83

int *p1, *p2, **pp1, **pp2, intval;

int main()

{
...

p1 = &intval;

pp1 = &p1;

pp2 = pp1;

p2 = *pp2;

...

}

intval

p1 p2

pp1 pp2
(mask1)

(mask3)

(mask2)

(mask4)

(a) A sample C code (b) Points-to graph for the code

static unsigned int mask1, mask2, mask3, mask4;

int *p1, *p2, **pp1, **pp2, intval;

int main()

{ ...

p1 = &intval;

p1 = (int *)((unsigned int)p1 ˆ mask3);

pp1 = &p1;

pp1 = (int **)((unsigned int)pp1 ˆ mask1);

pp2 = (int **)((unsigned int)pp1 ˆ mask1);

pp2 = (int **)((unsigned int)pp2 ˆ mask2);

p2 = (int *)((unsigned int)(*((int **)

((unsigned int)pp2 ˆ mask2))) ˆ mask3);

p2 = (int *)((unsigned int)p2 ˆ mask4);

...

}
static void (attribute ((constructor)) drr init)()

{ ...

drr maskassign(mask1); drr maskassign(mask2);

drr maskassign(mask3); drr maskassign(mask4);

...

}

(c) Transformed code for the code in (a)

Figure 8: A sample example illustrating basic DSR transformations.

84

analysis in order to determine masks associated with different data. Our cur-

rent implementation supports Steensgaard’s pointer analysis. The analysis

has linear time complexity, and is thus scalable. One of the limitation of our

current implementation is that it is based on whole program analysis and trans-

formation. The whole program analysis approach requires a merged source file.

The CIL toolkit provides an option to automatically generate such a merged

file. Sometimes this kind of merging can fail due to type mismatch of variable

declarations present in different files. Such cases can be handled by manual

changes to the declarations. Notwithstanding this limitation, with some ex-

tra effort, our implementation could have been also extended to a separate

file compilation-based transformation approach. Even with the current imple-

mentation approach, we have demonstrated its practicality by transforming

several large “real-world” programs without any manual changes.

In the second step, we generate points-to graph, from which we then

compute the equivalence classes needed for assigning random masks to data

variables. In the third step, we transform the code as per the transformations

described in the previous section.

The example shown in Figure 8 illustrates the above transformation

steps.2 To mask pointers p1, p2, pp1, pp2, we respectively introduce mask

variables mask3, mask4, mask1, and mask2. Each of these mask variables are

initialized with a different random value using the macro __drr_maskassign

in the constructor function __drr_init() that is automatically invoked before

the start of the execution in main(). The statements are transformed in such

a way that if a variable is assigned a value, the value is masked and then stored

in the memory; if a variable is used, its masked value is unmasked before its

use.

Now we discuss a few issues concerning the basic implementation ap-

proach.

2This example does not show the effect of transformations for optimizations discussed

later in this section.

85

5.2.1 Implementation Issues

5.2.1.1 Overflows within structures

According to C language specifications, overflows within structures are not

considered as memory errors. However, attackers can potentially exploit such

overflows also. For instance, an overflow from an array field inside a structure

corrupting adjacent fields in the same structure may lead to an exploitable vul-

nerability. Thus, it is desirable to have some protection from these overflows.

Unfortunately, complete memory error detection techniques do not provide

defense against these types of overflows. ASR too fails to address this problem

due to the inherent limitation of not being able to randomize relative distances

between fields of a structure because of language semantics. DSR can be used

to provide some level of protection in this case. The basic idea is to use field-

sensitive points-to analysis so that we can assign different masks to different

fields of the same structure.

Our current implementation does not support field-sensitive points-to

analysis. As a part of future enhancement, we plan to implement Steensgaard’s

points-to analysis [46] to handle field-sensitivity. The time complexity of this

analysis, as reported in [46], is likely to be close to linear in the size of the

program in practice. Hence, this enhancement would not affect the scalability

of our approach. Moreover, it does not increase runtime performance overhead.

5.2.1.2 Optimization

Masking of all the data may obviously lead to poor runtime performance. To

improve performance, we have developed a few interesting runtime optimiza-

tions.

• Avoid masking of all the data. If we mask and unmask each type of data,

we are expected to get high runtime performance overhead. If, somehow,

we can avoid masking of all the data, we can reduce the overhead. An

obvious question that arises here is whether we can avoid masking of

some data without compromising the protection level offered by DSR.

We show that this is possible.

86

To understand how this is possible, we first note that the essential goal

of DSR is to prevent predictable interpretation of corrupted data. We

achieve this goal as follows. We mask only pointer and buffer-type data,

and make corruption of non-masked data either very difficult or impos-

sible.

Attacks which corrupt data are either absolute address-dependent or rel-

ative address-dependent. In an absolute address-dependent attack, an

attacker needs to corrupt a pointer data with a correct address. This

is almost impossible as pointers are masked. An important point to be

noted here is that absolute address-dependent attack may target corrup-

tion of either a pointer, or non-pointer value. In the case of non-pointer

data corruption, the attack involves multiple steps, one of which is cor-

ruption of a pointer to the non-pointer data. Unsuccessful corruption of

pointer objects defeats attacks of both the cases.

A relative address-dependent attack typically involves a buffer overflow

corrupting some data at a predictable distance from the buffer. Since

we mask all buffer-type data, the attacker cannot corrupt any buffer

with a predictable value. Moreover, the attacker also cannot exploit

buffer overflow to corrupt any adjacent data, because such data will

be corrupted with a random mask (that of the buffer) unknown to the

attacker. Furthermore, we separate memory for buffer-type data from

other data with inaccessible memory pages. Owing to this, overflows

from buffers into non-buffers become impossible.

As a further optimization, we avoid masking of pointers allocated on the

main stack. The protection to such pointers is obtained in the following

way. It is impossible to exploit buffer overflows in order to corrupt these

pointers. And we make absolute address-dependent attacks difficult by

randomizing the base of the main stack as we did in ASR. Because of this,

the absolute addresses of the main stack data are highly randomized. So

attackers cannot predict the locations of the non-masked pointers on the

main stack, thereby making it difficult to corrupt them using absolute

87

address-based attack.

This optimization works very well in practice. Recall from Table 5 that

relatively high percentage of data accesses are to the stack-allocated

non-buffer-type data. As we do not add to the overhead in accessing

these data objects, we gain significant performance improvement. Actual

experiments to study the impact of this optimization would give us a

better understanding, but we are leaving that analysis for future work.

Nevertheless, the Table 5 itself serves as a good empirical evidence of

huge gains obtained through this optimization.

• Use of local mask variables wherever possible. For static data (global)

variables, we store their mask variables in the static memory region.

For local data variables, which require masking, we store their masks

in local data variables. These local mask variables have the same scope

and lifetime as that of the variables that they mask. They are initialized

with random mask values at the function entry point. Because the local

mask variables are of simple data type (more precisely unsigned integers)

and tend to go into registers, access to these variables are usually much

faster.

We only use local mask variables for those local variables that have no

aliases, or in particular whose addresses are not taken. For a variable

whose address is taken, it may be accessed in the scope of its function

f , but in the body of a different function, say g, that is invoked from f .

Such an access is possible using aliases, and for such accesses, we need to

ensure that appropriate mask variables are used. This requires tracking

all aliases to make sure that accesses to these aliases are performed with

the same local mask variable. This is rather difficult, especially when

the local variables are passed beyond the function scope.

To keep the transformation conservative yet simple, we restrict the use

of local mask variables only to mask the local variables whose addresses

are not assigned to other variables, i.e., there are no aliases to those local

variables.

88

5.2.1.3 Masking heap objects

Heap objects are typically allocated using standard C library functions such

as malloc and calloc. If we treat heap objects as buffer-type data and mask

them, we will get natural protection from their exploitable corruption. How-

ever, there is a potential issue involving buffer-to-buffer overflows within the

heap. For buffer-to-buffer overflows, DSR protection is provided by ensuring

that the adjacent buffers are masked with different random masks. This re-

quires taking control of memory allocations for buffer-type data. We have

shown how this is done for the static and the stack-allocated buffers. Whereas

for heap objects, we do not have control over their memory allocations. As

a result, there exists a possibility of adjacent heap objects having the same

mask, and hence successful buffer-to-buffer overflow attacks are also possible.

Thus, it is important to address this problem.

Ideally, we can get strongest protection if we are able to mask each heap

data object with a different random mask. However, as we saw in the previ-

ous section, aliasing does not permit this. Aliasing may occur when a pointer

may point to different heap objects. A common form of aliasing occurs in

the way heap objects are created dynamically. For instance, the statement

charPtr = (char *) malloc(100), if executed in a loop, results in charPtr

pointing to multiple heap objects. These heap objects, which are aliased to-

gether, require the same mask. The heap objects with the same mask should

be allocated in different memory regions to prevent overflows among them. For

this, we need to take control of heap-allocations. This implies that we need

to either change implementation of existing heap code or wrap the allocation

functions and take control of heap allocations. As heap objects tend to be

large in numbers, we may need to create several memory regions each with

minimum of a page size, separated by an inaccessible page. With a limited

address space, especially for 32 bit architectures, it may not be always possible

to create sufficient number of memory regions. In which case, we can randomly

select memory regions and allocate the heap objects. In our current imple-

mentation, we take control of heap-allocations and use a simple scheme to ran-

domly distribute heap objects over different memory regions. We also perform

89

relative address randomization on heap objects that are located in the same re-

gion. More complex address space randomization based-transformations, e.g.,

DieHard technique [7], can be also efficiently implemented.

5.2.1.4 Coping with untransformed libraries

Ideally, all the libraries used by an application need to undergo the transfor-

mations. However, in practice, source code may not be available for some

libraries. Such libraries cannot be directly used with our DSR technique.

Untransformed shared libraries affect our transformations in two ways.

First, certain external shared library functions may produce points-to relation-

ships that our pointer analysis step could miss. Examples of such functions

include memcpy() and bcopy() present in glibc. As a concrete example, con-

sider an assignment statement x = y that could be emulated using function

call memcpy((void *)&x, (void *)&y, sizeof(x)). In pointer analysis, the

effect the statement x = y is such that any object that y points to may now

be pointed by x also. However, this effect will not be captured in the case

of memcpy() function as its code is not available for analysis. Currently, such

functions are modeled manually to capture their effect in pointer analysis.

Second, if external variables or library function arguments are masked,

their use in the library would result in an erroneous behavior. For instance,

the arguments to library function strcpy(char *dest, const char *src)

include pointers to two character arrays (i.e., buffer-type data), each of which

could be masked with a different random mask. Invocation of this function

would result in failure because the data present in the arrays is masked and

would appear as a random byte-stream very different from characters. Thus

failure could result from — missing terminating character ’\0’, buffer over-

flow, copying with wrong mask, and so on.

One option to deal with this problem is to identify such external data

and avoid masking it. However, this would result in a weaker protection level.

Other option is to identify and flag warnings for such external data during

transformation, and also give an interface to the users so that they can provide

code to unmask data before corresponding external function call and mask it

90

Program % Overhead

patch-1.06 4
tar-1.13.25 5
grep-2.5.1 7
ctags-5.6 11

gzip-1.1.3 24
bc-1.06 27

bison-1.35 28

Average 15

Table 7: Runtime performance overhead introduced by transformations for
DSR.

again after the call.

In our current implementation, we do not mask external variables. Here

we assume that external library data is protected by ASR. Also, for those

library function call arguments which are masked, we provide an interface in

the form of wrapper functions, allowing users to mask and unmask the data

at entry and exit points of library calls. This interface provides access to the

data as well as their masks. This way of coping with untransformed libraries

could be also implemented as an automatic transformation. However, our

current implementation supports only the manual transformation. For the

test programs used in our experiments, we added 52 wrapper glibc functions.

5.3 Performance Results

Table 7 shows the runtime overheads, when the original and the transformed

programs were compiled using gcc-3.2.2 with optimization flag -O2, and run

on a desktop running RedHat Linux 9.0 with 1.7 GHz Pentium IV processor

and 512 MB RAM. We used the same workload for the test programs as in the

experimentations of ASR, and execution times were averaged over 10 runs.

For DSR transformations, the runtime overhead depends mainly on mem-

ory accesses that result in masking and unmasking operations. In IO-intensive

91

programs, such as tar and patch, most of the execution time is spent in IO

operations, and hence we see low overheads for such programs. On the other

hand, CPU-intensive programs are likely to spend substantial part of the ex-

ecution time in performing memory accesses. That is why we observe higher

overheads for CPU-intensive programs. The average overhead is around 15%,

which is slightly higher than the overheads that we see for ASR technique.

Nonetheless, DSR technique is still practical and provides much stronger level

of protection.

5.4 Effectiveness

For the reasons mentioned in Section 4.6, we use an analytical approach instead

of an experimental approach in evaluating the effectiveness of DSR technique.

5.4.1 Memory Error Exploits

In Section 4.6, we considered the effect of transformations on different types of

attacks. Here too, we will use the same method. In particular, we will compute

the probability of a successful attack in terms of P (Owr) and P (Eff).

5.4.1.1 Estimating P (Owr)

We estimate P (Owr) separately for each attack type.

Buffer overflows

• Stack buffer overflows.

Memory for all the buffer-type local variables is allocated on a buffer

stack. So for the stack buffer overflows, which typically target the

main stack data, such as the return address and the saved base pointer,

P (Owr) is 0 because it is impossible to cause an overflow from a buffer

stack to the main stack.

92

Attacks that corrupt a buffer-type variable by overflowing another buffer-

type variable in the same buffer stack is possible. However, such attacks

have very low probability of success (P (Eff) = 2−32) because we ensure

that the buffers on the same buffer stack have different masks.

• Static buffer overflows.

Static buffers are separated from static non-buffers with inaccessible

pages. So static buffer overflows cannot be used for corrupting non-

buffer static data.

Overflows from a static buffer into another buffer that is allocated in a

different memory region are impossible. However, buffer-to-buffer over-

flows within the same static data region are possible. For such overflows,

protection is provided in the form of relative address randomization. But

more importantly, we ensure that all the buffers in the same region have

different masks. For this reason, successful corruption using such over-

flows is nearly impossible (P (Eff) = 2−32). Note that this protection

is guaranteed only when we are able to create the required number of

separate memory regions. This may not be always possible as the avail-

able virtual address space may not be sufficient and because of the facts

that each region has to be at least a page size and there exists at least

one inaccessible page between two adjacent regions. However, in our

experience, this case never arises for static data buffers. The number

of required regions depends on the size of the largest equivalence class

of masks. In our experiments, we found that this number is typically

small, less than 150 for all our test programs. So if consider 150 differ-

ent regions, each of an average 4 page size, we require a virtual address

space of less than 3 MB. However, this scenario is very different for heap

objects, which we will consider in heap overflows, as discussed next.

• Heap overflows. One of the type of heap overflows is an attack targeting

heap control data consisting of two pointer-valued variables appearing

at the end of the target heap block. The overwrite step of this attack is

93

easily possible, however, the corruption of pointers involve guessing the

mask of the target heap object, which is very difficult.

Overflows from one heap block to the next are possible. However, such

overflows are useless if the two heap objects are masked with different

masks. And in fact we try to ensure that the adjacent heap objects

have different associated masks. However, heap objects tend be large in

numbers, and moreover, aliasing may force us to assign the same mask to

several heap objects. An important point to be noted in this case is that

the number of different memory regions required for heap objects is a

property of input to the program, rather than the program itself. Hence

we use a probabilistic approach, and distribute heap objects randomly

over a bounded number of different memory regions. Moreover, we also

perform relative address randomizations over heap objects. We believe

that these transformations are instrumental in significant decrease in the

probability P (Owr).

Format string attacks. P (Owr) for format string attacks is estimated in

the same way as in ASR.

In summary, DSR technique significantly reduces the success probability of

most likely attack mechanisms by reducing P (Owr). For attacks with high

P (Owr) values, now we demonstrate that a very low P (Eff) gives us strong

protection.

5.4.1.2 Estimating P (Eff)

Corruption of non-pointer data. Unlike ASR which has no bearing on the

interpretation of non-pointer data (i.e., P (Eff) = 1), DSR technique makes

the interpretation of corrupted non-pointer data highly non-deterministic.

In DSR transformations, non-pointer data can be either masked or un-

masked. For unmasked non-pointer data, protection is provided in the form

of a small P (Owr). A successful attack involving corruption of a masked non-

pointer data requires correctly guessing the mask value. The probability of

94

correctly guessing a mask value is 2−32. However, in a buffer-to-buffer over-

flow attack, where the target and the source buffers have the same mask, an

attacker can successfully corrupt a non-pointer data in the target buffer with-

out guessing its mask value. Protection against these attacks is additionally

provided in the form of a small P (Owr).

Pointer corruption attacks. Pointers could be either masked or unmasked.

For unmasked pointers, protection is provided in the form a small P (Owr).

The probability of a successful masked pointer corruption is 2−32. This proba-

bility is applicable to attacks involving corruption of pointers to point to either

existing code or data.

For attacks that corrupt pointers to point to injected code or data, the

odds of success can be improved by repeating the attack data many times

over. For an overflow with 4K limit, a 16 byte data or code can be repeated 28

number of times. Therefore, the probability of a successful pointer corruption

in this case is 2−24.

5.4.2 Attacks Targeting DSR

Some of the attacks that target the weaknesses in ASR, can also be used

against DSR technique.

• Information leakage attack.

This attack allows an attacker to read memory of a victim process.

Known examples of such an attack include format string attacks that

allow inspection of main stack contents. This could be exploited to leak

the values of any local mask variables stored on the stack. This causes

the value of P (Eff) to become 1 for corrupting the corresponding buffer

stack data. However, an attacker still has to overcome the low probabil-

ity P (Owr) of the overwrite step.

If a masked data is leaked, it does not help in retrieving other masks

because they are independently assigned.

95

• Brute force and guessing attacks.

These attacks particularly become very difficult because of very low prob-

ability values of P (Owr) and/or P (Eff).

• Partial pointer overwrites.

These attacks involve corruption of the lower byte(s) of a pointer. Since

pointers are masked, we obtain protection against these attacks. Al-

though P (Eff) may have a high value for these attacks, the attacks

could still be very difficult because of low P (Owr) values.

96

CHAPTER 6

Related Work

6.1 Runtime Guarding

These techniques transform a program to prevent corruption of return ad-

dresses or other specific values. StackGuard [17] provides a gcc patch to gen-

erate code that places canary values around the return address at runtime, so

that any overflow which overwrites the return address will also modify the ca-

nary value, enabling the overflow to be detected. StackShield [5] and RAD [13]

provide similar protection, but keep a separate copy of the return address in-

stead of using canary values. Libsafe and Libverify [5] are dynamically loaded

libraries which provide protection for the return address without requiring

recompilation. ProPolice [20] further improves these approaches to protect

pointers among local variables. FormatGuard [15] transforms source code to

provide protection from format-string attacks.

6.2 Runtime Bounds and Pointer Checking

Several techniques [29, 3, 48, 25, 23, 27, 34, 42, 53] have been developed to

prevent buffer overflows and related memory errors by checking every memory

access. These techniques currently suffer from one or more of the following

drawbacks: runtime overheads that can often be over 100%, incomaptibility

97

with legacy C-code, and changes to the memory model or pointer semantics.

6.3 Compile-Time Analysis Techniques

These techniques [22, 41, 49, 18, 30] analyze a program’s source code to detect

potential array and pointer access errors. Although useful for debugging, they

are not very practical since they suffer from high false alarm rates, and often

do not scale to large programs.

6.4 Randomizing Code Transformations

Our randomization techniques are instances of the broader idea of introduc-

ing diversity in nonfunctional aspects of software, an idea first suggested by

Forrest, Somayaji, and Ackley [21]. The basic idea is that the diverse software

replicas maintain the same functionality, but differ only in their implementa-

tion details. This makes diverse replicas less prone to sharing common vulner-

abilities. In the context of memory error vulnerabilities, several recent works

have demonstrated the usefulness of introducing automated diversity in the

low level program parameters, such as memory layout and instruction set, as

a practical defense. Diversity in the low level parameters is effective because

attacks typically depend on the precise knowledge of these parameters. Di-

versity gives probabilistic protection. The level of protection depends on how

much diversity is introduced. Recently, Pucella and Schneider [38] have shown

that diversity is a form of probabilistic type checking., in which type-incorrect

operations cause programs to halt with some probability. While strong typing

(no memory errors) offers complete protection against memory errors, it is not

practical because of high overheads involved in dynamic type checking. On

the other hand, the effect of diversity in the form of probabilistic type checking

can be efficiently obtained with varying degree of protection.

We provide an overview of several recent works on diversity-based de-

fenses and compare our work with them.

98

6.4.1 System Call Randomization

Some exploits inject attack code containing instructions to make direct system

calls in order to interact with the operating system. Following instructions

show how system call execve("/bin/sh") is invoked in a Linux operating

system running on an x86 architecture.

<setup arguments of execve>

movl $0xb, %eax

int $0x80

The constant value 0xb corresponding to the index of the system call execve

is first loaded in the register eax and then an interrupt instruction int $0x80

is invoked, thereby transferring the control to the kernel code which handles

execution of the system call.

A possible defense against the above attack is to randomize the mapping

of system calls [12]. Against this defense, attackers are forced to guess the

system call numbers. If a wrong number is used, the correct system call will

not be made. The implementation of this technique requires recompilation of

the kernel with the randomized system call mapping. Additionally, it requires

rewriting of existing binaries such that the old system call numbers are replaced

to reflect the new mapping.

This approach has several disadvantages. First, re-randomization of sys-

tem call number mapping is not practical as it would require kernel recompi-

lation and rewriting of all the binaries. Second, the static instrumentation of

binaries is a complicated task (see Section 4.3.5), and it might not be always

feasible. Dynamic instrumentation approach [9] can be used, but it causes

moderate increase in the performance overheads. Third, the defense is effec-

tive against only the injected code attacks, but is vulnerable to other types of

attacks such as existing code attacks and attacks on security sensitive data.

99

6.4.2 Instruction Set Randomization

In this approach [28, 6], process-specific instruction set is randomized with a

private randomization key. Each instruction is interpreted by a virtual ma-

chine which first derandomizes the instruction and then passes it over to the

processor for execution. As an alternative, the architecture of processors can

be modified to directly interpret the randomized instructions with the help of

the private key.

This approach also provides limited protection as it counters only the

injected code attacks.

6.4.3 Pointer Randomization

PointerGuard [16] approach randomizes (“encrypts”) representation of all the

stored pointer values. The encryption is achieved by xor’ing pointer values

with a random integer mask generated at the beginning of program execution.

This provides protection against any attack that involves corruption of pointer

values. For a successful attack, attackers are forced to guess the value of the

random integer mask to generate a desired pointer value for corruption.

The principal disadvantage of this approach is that it does not protect

against attacks that do not corrupt pointer values, e.g., a buffer overflow to

corrupt adjacent security-critical data. It should also be noted that Point-

Guard is dependent on the availability of accurate type information. Many

C-language features, such as the ability to operate on untyped buffers (e.g.,

bzero or memcpy), functions that take untyped parameters (e.g., printf),

unions that store pointers and integer values in the same location, can make

it difficult or impossible to get accurate type information, which means that

the corresponding pointer value(s) cannot be protected.

Our DSR technique does not suffer from these issues. The technique

sound as it addresses aliasing between pointers and non-pointers. Moreover,

it also provides protection against non-pointer data corruption attacks.

100

6.4.4 Address Space Randomization

Other address space randomization techniques [36, 52, 21] were primarily fo-

cused only on randomizing the base address of different sections of memory. In

contrast, our address space randomization technique implements randomiza-

tions at a much finer granularity, achieving relative as well as absolute address

randomization. Moreover, it makes certain types of buffer overflows impos-

sible. Interestingly, our ASR implementation can achieve all of this, while

incurring runtime overheads comparable to that of the other techniques.

101

CHAPTER 7

Conclusions

In this dissertation, we presented software diversity-based techniques to defend

against exploits of memory errors. Previous defense techniques either offered

incomplete protection, or were impractical to use because of problems such

as high runtime overheads and/or code incompatibility. On the other hand,

we showed that by randomizing the effect of memory errors, we can develop

practical defense mechanisms against a broad range of memory error exploits.

In this regard, we presented two randomization techniques.

By re-arranging various code and data objects in the memory space of

the program, our first technique, address-space randomization, addresses the

basis of the attacks — predictable locations of code and data objects. This

technique comprehensively randomizes absolute as well as relative addresses

of all the objects in the memory. Our initial implementation was based on

binary-level program transformation for a wide potential impact. With this

approach, we could achieve the absolute address randomization of all the mem-

ory regions, and some level of relative address randomization in only the stack

and the heap area. However, for comprehensive randomizations, we need rela-

tive address randomization in code and data regions also. Transformation for

these randomizations on binaries is not always feasible due to the difficulties

associated with binary analysis. To counter this problem, we proposed an

enhancement to ELF binary file format to augment binaries with an extra sec-

tion that contains the information required to safely perform the randomizing

102

transformations. We also presented an alternative implementation strategy

in case source code is available. It involves a source-to-source transformation

that produces self-randomizing programs, which performs all the absolute and

relative address randomizations at load-time or continuously at runtime. Ex-

perimental and analytical evaluation established that our approach is practi-

cal as it incurs low overheads, completely blocks a number of known exploits,

and provides probabilistic protection against other exploits with a very small

chance of success. We have released the transformation tool [8] for ASR under

GPL.

Our second randomization technique, data space randomization, is based

on randomization of data representation. The basic idea is to randomize the

representation by xor’ing each data object with a random mask. Using this

technique, we showed how the use of any corrupted data becomes highly unpre-

dictable. When an attacker corrupts a data in the process memory, the victim

program will first xor the data with its random mask before using it. As a

result, the data will have an interpretation different from what the attacker

intended. Similar idea was suggested before in the PointGuard technique, but

for randomization of only the pointer representations. Our work showed im-

provement over PointGuard in two significant ways. First, we showed that we

can apply our technique to any type of data – pointer or non-pointer data.

Moreover, we showed that different data can have different representations by

xor’ing them with different random masks. Second, our technique is sound,

i.e., it does not break any correct program, whereas PointGuard technique

breaks programs. PointGuard technique is not sound because it does not han-

dle aliasing between pointer and non-pointer data. On the other hand, we

presented a sound way to handle such aliasing. So effectively, what we get is

a sound approach that provides strong and comprehensive protection against

all the exploits of memory errors. For this reason, data space randomization

technique is expected to become the next-frontier in the line of defense against

memory error exploits.

In software industry, often computer security is totally overlooked in fa-

vor of increased performance, productivity and budgetary concerns. Security

103

has mostly been regarded as an afterthought. Security features are added only

after attacks are discovered. Very often the features, which are added in ad-hoc

manners, do not provide comprehensive protection against attacks. As mod-

ern software systems are becoming progressively complex, we are seeing more

and more number vulnerabilities and their attacks, many of which are capable

of causing significant damages. It is high time security be considered as a

core component of software development process. The research presented in

this dissertation offers some new directions for incorporating practical security

mechanisms into the development process. The defense techniques presented in

this dissertation are fully automated, needing little or no programmer interven-

tion, and can be seamlessly applied using the existing compiler infrastructures.

Their key features such as comprehensive protection, no compatibility issues,

and low overheads, are attractive in terms of finding widespread acceptance.

In countering the most important class of attacks of the past decade, these

techniques would form a formidable arsenal of tools for software developers.

The techniques would also empower administrators and common users to de-

fend their software without having to depend on vendors to provide patches

for vulnerabilities.

104

Bibliography

[1] L. O. Andersen. Program analysis and specialization for the C program-

ming language. PhD Thesis, DIKU, University of Copenhagen, May 1994.

Available at ftp.diku.dk/pub/diku/semantics/papers/D-203.dvi.Z.

[2] Anonymous. Once upon a free Phrack, 11(57), August 2001.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all

pointer and array access errors. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 290–301, Orlando,

Florida, June 1994.

[4] A. Avižienis. The N-version approach to fault-tolerant software. IEEE

Transactions on Software Engineering, 11(12):1491–1501, December 1985.

[5] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against

stack smashing attacks. In USENIX Annual Technical Conference, pages

251–262, Berkeley, CA, June 2000.

[6] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanović, and

D. D. Zovi. Randomized instruction set emulation to disrupt binary code

injection attacks. In ACM conference on Computer and Communications

Security (CCS), Washington, DC, October 2003.

[7] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory safety

for unsafe languages. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 158–168, Ottawa, Canada,

June 2006.

105

[8] S. Bhatkar. Transformation tool for comprehensive ad-

dress space randomization. Available for download from

http://www.seclab.cs.sunysb.edu/asr, 2005.

[9] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for

adaptive dynamic optimization. In International Symposium on Code

Generation and Optimization, March 2003.

[10] CERT advisories. Published on World-Wide Web at URL

http://www.cert.org/advisories, September 2007.

[11] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and

structures. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 296–310, June 1990.

[12] M. Chew and D. Song. Mitigating buffer overflows by operating system

randomization. Technical Report CMU-CS-02-197, Carnegie Mellon Uni-

versity, December 2002.

[13] T. Chiueh and F. Hsu. RAD: A compile-time solution to buffer overflow

attacks. In IEEE International Conference on Distributed Computing

Systems, Phoenix, Arizona, April 2001.

[14] C. Cifuentes, M. van Emmerik, N. Ramsey, and B. Lewis. The university

of queensland binary translator (UQBT) framework. Technical report,

The University of Queensland, Sun Microsystems, Inc, 2001.

[15] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. Format-

Guard: Automatic protection from printf format string vulnerabilities.

In USENIX Security Symposium, Washington, DC, 2001.

[16] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard: Protect-

ing pointers from buffer overflow vulnerabilities. In USENIX Security

Symposium, Washington, DC, August 2003.

[17] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,

P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive

106

detection and prevention of buffer-overflow attacks. In USENIX Security

Symposium, pages 63–78, San Antonio, Texas, January 1998.

[18] N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manip-

ulations in C programs via integer analysis. In Static Analysis Sympo-

sium, volume 2126 of Lecture Notes in Computer Science, pages 194–212.

Springer Verlag, June 2001.

[19] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interproce-

dural points-to analysis in the presence of function pointers. In ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 242–256, June 1994.

[20] H. Etoh and K. Yoda. Protecting from stack-smashing

attacks. Published on World-Wide Web at URL

http://www.trl.ibm.com/projects/security/ssp/main.html, June 2000.

[21] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer

systems. In Workshop on Hot Topics in Operating Systems, pages 67–72,

Los Alamitos, CA, 1997. IEEE Computer Society Press.

[22] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers.

In ACM SIGPLAN Conference on Programming Language Design and

Implementation, Atlanta, GA, May 1999.

[23] R. Hastings and B. Joyce. Purify: A tool for detecting memory leaks and

access errors in C and C++ programs. In USENIX Winter Conference,

pages 125–138, Berkeley, CA, USA, January 1992.

[24] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.

Cyclone: a safe dialect of C. In USENIX Annual Technical Conference,

Monterey, CA, June 2002.

[25] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds check-

ing for arrays and pointers in C programs. In International Workshop on

Automated and Algorithmic Debugging, pages 13–26, 1997.

107

[26] M. Kaempf. Vudo malloc tricks. Phrack, 11(57), August 2001.

[27] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: An interpreter-based pro-

gramming environment for the C language. In USENIX Summer Confer-

ence, pages 161–171, San Francisco, CA, June 1988.

[28] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection

attacks with instruction-set randomization. In ACM conference on Com-

puter and Communications Security (CCS), pages 272–280, Washington,

DC, October 2003.

[29] S. C. Kendall. Bcc: run–time checking for C programs. In USENIX

Summer Conference, El. Cerrito, CA, 1983.

[30] D. Larochelle and D. Evans. Statically detecting likely buffer overflow vul-

nerabilities. In USENIX Security Symposium, Washington, DC, August

2001.

[31] J. R. Larus and E. Schnarr. EEL: Machine-independent executable edit-

ing. In ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 291–300, La Jolla, California, June 1995.

[32] S. McPeak, G. C. Necula, S. P. Rahul, and W. Weimer. CIL: Interme-

diate language and tools for C program analysis and transformation. In

Conference on Compiler Construction, 2002.

[33] Mudge. How to write buffer overflows. Published on World-Wide Web at

URL http://www.insecure.org/stf/mudge buffer overflow tutorial.html,

1997.

[34] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting

of legacy code. In ACM Symposium on Principles of Programming Lan-

guages (POPL), pages 128–139, Portland, OR, January 2002.

[35] M. L. Nohr. Understanding ELF Object Files and Debugging Tools. Num-

ber ISBN: 0-13-091109-7. Prentice Hall Computer Books, 1993.

108

[36] PaX. Published on World-Wide Web at URL http://pax.grsecurity.net,

2001.

[37] M. Prasad and T. Chiueh. A binary rewriting defense against stack-based

buffer overflow attacks. In USENIX Annual Technical Conference, San

Antonio, TX, June 2003.

[38] R. Pucella and F. Schneider. Independence from obfuscation: A semantic

framework for diversity. In IEEE Computer Security Foundations Work-

shop, pages 230–241, Venice, Italy, July 2006.

[39] G. Ramalingam. The undecidability of aliasing. ACM Transactions

on Programming Languages and Systems (TOPLAS), 16(5):1467–1471,

September 1994.

[40] E. Ruf. Context-insensitive alias analysis reconsidered. In ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, pages 13–22, June 1995.

[41] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array

indices, and accessed memory regions. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 182–195,

Vancouver, British Columbia, Canada, 2000.

[42] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow detector.

In Network and Distributed System Security Symposium, pages 159–169,

San Diego, CA, February 2004.

[43] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code

revisited. In IEEE Working Conference on Reverse Engineering, October

2002.

[44] scut. Exploiting format string vulnerabilities. Published on World-Wide

Web at URL http://www.team-teso.net/articles/formatstring, March

2001.

109

[45] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh.

On the effectiveness of address-space randomization. In ACM confer-

ence on Computer and Communications Security (CCS), pages 298–307,

Washington, DC, October 2004.

[46] B. Steensgaard. Points-to analysis by type inference of programs with

structures and unions. In Conference on Compiler Construction, LNCS

1060, pages 136–150, April 1996.

[47] B. Steensgaard. Points-to analysis in almost linear time. In ACM Sym-

posium on Principles of Programming Languages (POPL), pages 32–41,

January 1996.

[48] J. L. Steffen. Adding run-time checking to the portable C compiler.

Software-Practice and Experience, 22(4):305–316, April 1992.

[49] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards

automated detection of buffer overrun vulnerabilities. In Network and

Distributed System Security Symposium, San Diego, CA, 2000.

[50] WebStone, the benchmark for web servers.

http://www.mindcraft.com/webstone.

[51] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer anal-

ysis for C programs. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 1–12, June 1995.

[52] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization

for security. In Symposium on Reliable and Distributed Systems (SRDS),

Florence, Italy, October 2003.

[53] W. Xu, D. C. DuVarney, and R. Sekar. An efficient and backwards-

compatible transformation to ensure memory safety of C programs. In

ACM SIGSOFT International Symposium on the Foundations of Software

Engineering, Newport Beach, CA, November 2004.

110

[54] L. Xun. A linux executable editing library. Masters Thesis, 1999. available

at http://www.geocities.com/fasterlu/leel.htm.

111

