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Abstract
We present an approach and system for real-time recon-
struction of attack scenarios on an enterprise host. To
meet the scalability and real-time needs of the problem,
we develop a platform-neutral, main-memory based, de-
pendency graph abstraction of audit-log data. We then
present efficient, tag-based techniques for attack detec-
tion and reconstruction, including source identification
and impact analysis. We also develop methods to reveal
the big picture of attacks by construction of compact, vi-
sual graphs of attack steps. Our system participated in a
red team evaluation organized by DARPA and was able
to successfully detect and reconstruct the details of the
red team’s attacks on hosts running Windows, FreeBSD
and Linux.

1 Introduction
We are witnessing a rapid escalation in targeted cyber-
attacks (“Enterprise Advanced and Persistent Threats
(APTs)”) [1] conducted by skilled adversaries. By
combining social engineering techniques (e.g., spear-
phishing) with advanced exploit techniques, these adver-
saries routinely bypass widely-deployed software protec-
tions such as ASLR, DEP and sandboxes. As a result,
enterprises have come to rely increasingly on second-
line defenses, e.g., intrusion detection systems (IDS), se-
curity information and event management (SIEM) tools,
identity and access management tools, and application
firewalls. While these tools are generally useful, they
typically generate a vast amount of information, making
it difficult for a security analyst to distinguish truly sig-
nificant attacks — the proverbial “needle-in-a-haystack”
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— from background noise. Moreover, analysts lack the
tools to “connect the dots,” i.e., piece together fragments
of an attack campaign that span multiple applications or
hosts and extend over a long time period. Instead, sig-
nificant manual effort and expertise are needed to piece
together numerous alarms emitted by multiple security
tools. Consequently, many attack campaigns are missed
for weeks or even months [7, 40].

In order to effectively contain advanced attack cam-
paigns, analysts need a new generation of tools that not
only assist with detection but also produce a compact
summary of the causal chains that summarize an attack.
Such a summary would enable an analyst to quickly as-
certain whether there is a significant intrusion, under-
stand how the attacker initially breached security, and
determine the impact of the attack.

The problem of piecing together the causal chain of
events leading to an attack was first explored in Back-
tracker [25, 26]. Subsequent research [31, 37] improved
on the precision of the dependency chains constructed by
Backtracker. However, these works operate in a purely
forensic setting and therefore do not deal with the chal-
lenge of performing the analysis in real-time. In contrast,
this paper presents SLEUTH,1 a system that can alert an-
alysts in real-time about an ongoing campaign, and pro-
vide them with a compact, visual summary of the activity
in seconds or minutes after the attack. This would enable
a timely response before enormous damage is inflicted
on the victim enterprise.

Real-time attack detection and scenario reconstruction
poses the following additional challenges over a purely
forensic analysis:

1. Event storage and analysis: How can we store the
millions of records from event streams efficiently
and have algorithms sift through this data in a matter
of seconds?

1SLEUTH stands for (attack) Scenario LinkagE Using provenance
Tracking of Host audit data.
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Fig. 1: SLEUTH System Overview

2. Prioritizing entities for analysis: How can we assist
the analyst, who is overwhelmed with the volume of
data, prioritize and quickly “zoom in” on the most
likely attack scenario?

3. Scenario reconstruction: How do we succinctly
summarize the attack scenario, starting from the at-
tacker’s entry point and identifying the impact of the
entire campaign on the system?

4. Dealing with common usage scenarios: How does
one cope with normal, benign activities that may
resemble activities commonly observed during at-
tacks, e.g., software downloads?

5. Fast, interactive reasoning: How can we provide
the analyst with the ability to efficiently reason
through the data, say, with an alternate hypothesis?

Below, we provide a brief overview of SLEUTH, and
summarize our contributions. SLEUTH assumes that at-
tacks initially come from outside the enterprise. For ex-
ample, an adversary could start the attack by hijacking
a web browser through externally supplied malicious in-
put, by plugging in an infected USB memory stick, or
by supplying a zero-day exploit to a network server run-
ning within the enterprise. We assume that the adversary
has not implanted persistent malware on the host before
SLEUTH started monitoring the system. We also assume
that the OS kernel and audit systems are trustworthy.

1.1 Approach Overview and Contributions
Figure 1 provides an overview of our approach. SLEUTH
is OS-neutral, and currently supports Microsoft Win-
dows, Linux and FreeBSD. Audit data from these OSes
is processed into a platform-neutral graph representation,
where vertices represent subjects (processes) and objects
(files, sockets), and edges denote audit events (e.g., op-
erations such as read, write, execute, and connect). This
graph serves as the basis for attack detection as well as
causality analysis and scenario reconstruction.

The first contribution of this paper, which addresses
the challenge of efficient event storage and analysis, is
the development of a compact main-memory dependence
graph representation (Section 2). Graph algorithms on
main memory representation can be orders of magnitude

faster than on-disk representations, an important factor
in achieving real-time analysis capabilities. In our ex-
periments, we were able to process 79 hours worth of
audit data from a FreeBSD system in 14 seconds, with
a main memory usage of 84MB. This performance rep-
resents an analysis rate that is 20K times faster than the
rate at which the data was generated.

The second major contribution of this paper is the de-
velopment of a tag-based approach for identifying sub-
jects, objects and events that are most likely involved in
attacks. Tags enable us to prioritize and focus our anal-
ysis, thereby addressing the second challenge mentioned
above. Tags encode an assessment of trustworthiness and
sensitivity of data (i.e., objects) as well as processes (sub-
jects). This assessment is based on data provenance de-
rived from audit logs. In this sense, tags derived from
audit data are similar to coarse-grain information flow la-
bels. Our analysis can naturally support finer-granularity
tags as well, e.g., fine-grained taint tags [42, 58], if they
are available. Tags are described in more detail in Sec-
tion 3, together with their application to attack detection.

A third contribution of this paper is the development of
novel algorithms that leverage tags for root-cause iden-
tification and impact analysis (Section 5). Starting from
alerts produced by the attack detection component shown
in Fig. 1, our backward analysis algorithm follows the
dependencies in the graph to identify the sources of the
attack. Starting from the sources, we perform a full im-
pact analysis of the actions of the adversary using a for-
ward search. We present several criteria for pruning these
searches in order to produce a compact graph. We also
present a number of transformations that further simplify
this graph and produce a graph that visually captures the
attack in a succinct and semantically meaningful way,
e.g., the graph in Fig. 4. Experiments show that our tag-
based approach is very effective: for instance, SLEUTH
can analyze 38.5M events and produce an attack scenario
graph with just 130 events, representing five orders of
magnitude reduction in event volume.

The fourth contribution of this paper, aimed at tackling
the last two challenges mentioned above, is a customiz-
able policy framework (Section 4) for tag initialization
and propagation. Our framework comes with sensible



defaults, but they can be overridden to accommodate be-
haviors specific to an OS or application. This enables
tuning of our detection and analysis techniques to avoid
false positives in cases where benign applications exhibit
behaviors that resemble attacks. (See Section 6.6 for de-
tails.) Policies also enable an analyst to test out “alternate
hypotheses” of attacks, by reclassifying what is consid-
ered trustworthy or sensitive and re-running the analysis.
If an analyst suspects that some behavior is the result of
an attack, they can also use policies to capture these be-
haviors, and rerun the analysis to discover its cause and
impact. Since we can process and analyze audit data tens
of thousands of times faster than the rate at which it is
generated, efficient, parallel, real-time testing of alter-
nate hypotheses is possible.

The final contribution of this paper is an experimen-
tal evaluation (Section 6), based mainly on a red team
evaluation organized by DARPA as part of its Trans-
parent Computing program. In this evaluation, attack
campaigns resembling modern APTs were carried out on
Windows, FreeBSD and Linux hosts over a two week pe-
riod. In this evaluation, SLEUTH was able to:
• process, in a matter of seconds, audit logs contain-

ing tens of millions of events generated during the
engagement;

• successfully detect and reconstruct the details of
these attacks, including their entry points, activities
in the system, and exfiltration points;

• filter away extraneous events, achieving very high re-
ductions rates in the data (up to 100K times), thus
providing a clear semantic representation of these at-
tacks containing almost no noise from other activities
in the system; and

• achieve low false positive and false negative rates.
Our evaluation is not intended to show that we detected
the most sophisticated adversary; instead, our point is
that, given several unknown possibilities, the prioritized
results from our system can be right on spot in real-time,
without any human assistance. Thus, it really fills a gap
that exists today, where forensic analysis seems to be pri-
marily initiated manually.

2 Main Memory Dependency Graph
To support fast detection and real-time analysis, we store
dependencies in a graph data structure. One possible op-
tion for storing this graph is a graph database. How-
ever, the performance [39] of popular databases such
as Neo4J [4] or Titan [6] is limited for many graph al-
gorithms unless main memory is large enough to hold
most of data. Moreover, the memory use of general
graph databases is too high for our problem. Even
STINGER [16] and NetworkX [5], two graph databases

optimized for main-memory performance, use about 250
bytes and 3KB, respectively, per graph edge [39]. The
number of audit events reported on enterprise networks
can easily range in billions to tens of billions per day,
which will require main memory in the range of several
terabytes. In contrast, we present a much more space-
efficient dependence graph design that uses only about
10 bytes per edge. In one experiment, we were able to
store 38M events in just 329MB of main memory.

The dependency graph is a per-host data structure. It
can reference entities on other hosts but is optimized for
the common case of intra-host reference. The graph rep-
resents two types of entities: subjects, which represent
processes, and objects, which represent entities such as
files, pipes, and network connections. Subject attributes
include process id (pid), command line, owner, and tags
for code and data. Objects attributes include name, type
(file, pipe, socket, etc.), owner, and tags.

Events reported in the audit log are captured using la-
beled edges between subjects and objects or between two
subjects. For brevity, we use UNIX names such as read,
connect, and execve for events.

We have developed a number of techniques to reduce
storage requirements for the dependence graph. Wher-
ever possible, we use 32-bit identifiers instead of 64-bit
pointers. This allows a single host’s dependence graph
to contain 4 billion objects and subjects. The number of
objects/subjects in our largest data set was a few orders
of magnitude smaller than this number.

While our design emphasizes compact data structures
for objects and subjects, compactness of events is far
more important: events outnumber objects and subjects
by about two orders of magnitude in our largest data
set. Moreover, the ratio of events to objects+subjects in-
creases with time. For this reason, we have developed
an ultra-compact representation for events that can use
as little as 6 bytes of storage for many events.

Events are stored inside subjects, thereby eliminating
a need for subject-to-event pointers, or the need for event
identifiers. Their representation uses variable-length en-
coding, so that in the typical case, they can use just 4
bytes of storage, but when needed, they can use 8, 12, or
16 bytes. Most events operate on an object and have a
timestamp. Since a per-subject order of events is main-
tained, we dispense with microsecond granularity for
timestamps, instead opting for millisecond resolution. In
addition, we store only relative time since the last event
on the same subject, which allows us to do with 16-bits
for the timestamp in the typical case2. Objects are ref-
erenced within events using an index into a per-subject
table of object identifiers. These indices can be thought
of like file descriptors — they tend to have small val-

2Longer intervals are supported by recording a special “timegap”
event that can represent millions of years.



ues, since most subjects use a relatively small number
of objects. This enables object references to be repre-
sented using 8 bits or less. We encode event names for
frequently occurring events (e.g., open, close, read and
write) using 3 bits or less. This leaves us with several
bits for storing a summary of event argument informa-
tion, while still being within 32 bits.

We can navigate from subjects to objects using the
event data stored within subjects. However, forensic
analysis also requires us to navigate from objects to sub-
jects. For this purpose, we need to maintain event infor-
mation within objects using object-event records. Object
event records are maintained only for a subset of events:
specifically, events such as read and write that result
in a dataflow. Other events (e.g., open) are not stored
within objects. Object-event records are further shrunk
by storing a reference to the corresponding subject-event
record, instead of duplicating information.

As with subject-event records, we use a variable-
length encoding for object-event records that enables
them to be stored in just 16 bits in the most common
case. To see how this is possible, note that objects tend
to be operated on by a single subject at a time. Typically,
this subject performs a sequence of operations on the ob-
ject, e.g., an open followed by a few reads or writes,
and then a close. By allowing object-event records to
reuse the subject from their predecessor, we can avoid the
need for storing subject identifiers in most records. Next,
we allow object-event records to store a relative index
for event records within subjects. Two successive event
records within a subject that operate on the same object
are likely to be relatively close to each other, say, with
tens or hundreds of events in-between. This means that
the relative index stored with object-event record can be
12 bits or less in most cases, thus allowing these records
to be 16 bits or less in the typical case.

This design thus allows us to store bidirectional times-
tamped edges in as little as 6 bytes (4 bytes for a subject-
event record and 2 bytes for an object-event record). In
experiments with larger data sets, the total memory use
of our system is within 10 bytes per event on average.

Our variable length encoding allows us to represent
full information about important (but rare) events, such
as rename, chmod, execve, and so on. So, compactness is
achieved without losing any important information. Al-
though such encoding slows down access, access times
are still typically less than 100ns, which is many orders
of magnitude faster than disk latencies that dominate ran-
dom access on disk-resident data structures.

3 Tags and Attack Detection
We use tags to summarize our assessment of the trust-
worthiness and sensitivity of objects and subjects. This
assessment can be based on three main factors:

• Provenance: the tags on the immediate predecessors
of an object or subject in the dependence graph,

• Prior system knowledge: our knowledge about the
behavior of important applications, such as remote
access servers and software installers, and important
files such as /etc/passwd and /dev/audio, and

• Behavior: observed behavior of subjects, and how
they compare to their expected behavior.

We have developed a policy framework, described in
Section 4, for initializing and propagating tags based on
these factors. In the absence of specific policies, a de-
fault policy is used that propagates tags from inputs to
outputs. The default policy assigns to an output the low-
est among the trustworthiness tags of the inputs, and the
highest among the confidentiality tags. This policy is
conservative: it can err on the side of over-tainting, but
will not cause attacks to go undetected, or cause a for-
ward (or backward) analysis to miss objects, subjects or
events.

Tags play a central role in SLEUTH. They provide im-
portant context for attack detection. Each audited event
is interpreted in the context of these tags to determine its
likelihood of contributing to an attack. In addition, tags
are instrumental for the speed of our forward and back-
ward analysis. Finally, tags play a central role in scenario
reconstruction by eliminating vast amounts of audit data
that satisfy the technical definition of dependence but do
not meaningfully contribute to our understanding of an
attack.

3.1 Tag Design
We define the following trustworthiness tags (t-tags):

• Benign authentic tag is assigned to data/code re-
ceived from sources trusted to be benign, and whose
authenticity can be verified.

• Benign tag reflects a reduced level of trust than be-
nign authentic: while the data/code is still believed to
be benign, adequate authentication hasn’t been per-
formed to verify the source.

• Unknown tag is given to data/code from sources
about which we have no information on trustworthi-
ness. Such data can sometimes be malicious.

Policies define what sources are benign and what forms
of authentication are sufficient. In the simplest case,
these policies take the form of whitelists, but we support
more complex policies as well. If no policy is applicable
to a source, then its t-tag is set to unknown.

We define the following confidentiality tags (c-tags),
to reason about information stealing attacks:

• Secret: Highly sensitive information, such as login
credentials and private keys.



• Sensitive: Data whose disclosure can have a signif-
icant security impact, e.g., reveal vulnerabilities in
the system, but does not provide a direct way for an
attacker to gain access to the system.

• Private: Data whose disclosure is a privacy concern,
but does not necessarily pose a security threat.

• Public: Data that can be widely available, e.g., on
public web sites.

An important aspect of our design is the separation
between t-tags for code and data. Specifically, a subject
(i.e., a process) is given two t-tags: one that captures its
code trustworthiness (code t-tag) and another for its data
trustworthiness (data t-tag). This separation significantly
improves attack detection. More importantly, it can sig-
nificantly speed up forensic analysis by focusing it on
fewer suspicious events, while substantially reducing the
size of the reconstructed scenario. Note that confiden-
tiality tags are associated only with data (and not code).

Pre-existing objects and subjects are assigned initial
tags using tag initialization policies. Objects represent-
ing external entities, such as a remote network connec-
tion, also need to be assigned initial tags. The rest of the
objects and subjects are created during system execution,
and their tags are determined using tag propagation poli-
cies. Finally, attacks are detected using behavior-based
policies called detection policies.

As mentioned before, if no specific policy is provided,
then sources are tagged with unknown trustworthiness.
Similarly, in the absence of specific propagation policies,
the default conservative propagation policy is used.

3.2 Tag-based Attack Detection
An important constraint in SLEUTH is that we are limited
to information available in audit data. This suggests the
use of provenance reflected in audit data as a possible ba-
sis for detection. Since tags are a function of provenance,
we use them for attack detection. Note that in our threat
model, audit data is trustworthy, so tags provide a sound
basis for detection.

A second constraint in SLEUTH is that detection
methods should not require detailed application-specific
knowledge. In contrast, most existing intrusion detec-
tion and sandboxing techniques interpret each security-
sensitive operation in the context of a specific application
to determine whether it could be malicious. This requires
expert knowledge about the application, or in-the-field
training in a dynamic environment, where applications
may be frequently updated.

Instead of focusing on application behaviors that tend
to be variable, we focus our detection techniques on the
high-level objectives of most attackers, such as backdoor
insertion and data exfiltration. Specifically, we com-
bine reasoning about an attacker’s motive and means. If

an event in the audit data can help the attacker achieve
his/her key high-level objectives, that would provide the
motivation and justification for using that event in an at-
tack. But this is not enough: the attacker also needs the
means to cause this event, or more broadly, influence it.
Note that our tags are designed to capture means: if a
piece of data or code bears the unknown t-tag, then it
was derived from (and hence influenced by) untrusted
sources.

As for the high-level objectives of an attacker, sev-
eral reports and white papers have identified that the fol-
lowing steps are typical in most advanced attack cam-
paigns [1, 2, 3]:

1. Deploy and run attacker’s code on victim system.

2. Replace or modify important files, e.g.,
/etc/passwd or ssh keys.

3. Exfiltrate sensitive data.
Attacks with a transient effect may be able to avoid the
first two steps, but most sophisticated attacks, such as
those used in APT campaigns, require the establishment
of a more permanent footprint on the victim system. In
those cases, there does not seem to be a way to avoid one
or both of the first two steps. Even in those cases where
the attacker’s goal could be achieved without establish-
ing a permanent base, the third step usually represents an
essential attacker goal.

Based on the above reasoning, we define the follow-
ing policies for attack detection that incorporate the at-
tacker’s objectives and means:
• Untrusted code execution: This policy triggers an

alarm when a subject with a higher code t-tag exe-
cutes (or loads) an object with a lower t-tag3.

• Modification by subjects with lower code t-tag: This
policy raises an alarm when a subject with a lower
code t-tag modifies an object with a higher t-tag.
Modification may pertain to the file content or other
attributes such as name, permissions, etc.

• Confidential data leak: An alarm is raised when un-
trusted subjects exfiltrate sensitive data. Specifically,
this policy is triggered on network writes by subjects
with a sensitive c-tag and a code t-tag of unknown.

• Preparation of untrusted data for execution: This
policy is triggered by an operation by a subject with a
code t-tag of unknown, provided this operation makes
an object executable. Such operations include chmod
and mprotect4,5.

3Customized policies can be defined for interpreters such as bash
so that reads are treated the same as loads.

4Binary code injection attacks on today’s OSes ultimately involve a
call to change the permission of a writable memory page so that it be-
comes executable. To the extent that such memory permission change
operations are included in the audit data, this policy can spot them.

5Our implementation can identify mprotect operations that occur



It is important to note that “means” is not diluted just
because data or code passes through multiple intermedi-
aries. For instance, the untrusted code policy does not
require a direct load of data from an unknown web site;
instead, the data could be downloaded, extracted, uncom-
pressed, and possibly compiled, and then loaded. Re-
gardless of the number of intermediate steps, this policy
will be triggered when the resulting file is loaded or exe-
cuted. This is one of the most important reasons for the
effectiveness of our attack detection.

Today’s vulnerability exploits typically do not involve
untrusted code in their first step, and hence won’t be de-
tected by the untrusted code execution policy. However,
the eventual goal of an attacker is to execute his/her code,
either by downloading and executing a file, or by adding
execute permissions to a memory page containing un-
trusted data. In either case, one of the above policies can
detect the attack. A subsequent backward analysis can
help identify the first step of the exploit.

Additional detector inputs can be easily integrated into
SLEUTH. For instance, if an external detector flags a sub-
ject as a suspect, this can be incorporated by setting the
code t-tag of the subject to unknown. As a result, the re-
maining detection policies mentioned above can all ben-
efit from the information provided by the external detec-
tor. Moreover, setting of unknown t-tag at suspect nodes
preserves the dependency structure between the graph
vertices that cause alarms, a fact that we exploit in our
forensic analysis.

The fact that many of our policies are triggered by un-
trusted code execution should not be interpreted to mean
that they work in a static environment, where no new
code is permitted in the system. Indeed, we expect soft-
ware updates and upgrades to be happening constantly,
but in an enterprise setting, we don’t expect end users to
be downloading unknown code from random sites. Ac-
cordingly, we subsequently describe how to support stan-
dardized software updating mechanisms such as those
used on contemporary OSes.

4 Policy Framework
We have developed a flexible policy framework for tag
assignment, propagation, and attack detection. We ex-
press policies using a simple rule-based notation, e.g.,

exec(s,o) : o.ttag < benign→ alert("UntrustedExec")

This rule is triggered when the subject s executes a (file)
object o with a t-tag less than benign. Its effect is to raise
an alert named UntrustedExec. As illustrated by this
example, rules are generally associated with events, and
include conditions on the attributes of objects and/or sub-
jects involved in the event. Attributes of interest include:

in conjunction with library loading operations. This policy is not trig-
gered on those mprotect’s.

Event Direction Alarm Tag
trigger trigger

define init
read O→S read propRd

load, execve O→S exec propEx
write S→O write propWr

rm, rename S→O write
chmod, chown S→O write, modi f y

setuid S→S propSu

Table 2: Edges with policy trigger points. In the direction column, S
indicates subject, and O indicates object. The next two columns indi-
cate trigger points for detection policies and tag setting policies.

• name: regular expressions can be used to match ob-
ject names and subject command lines. We use Perl
syntax for regular expressions.

• tags: conditions can be placed on t-tags and c-tags of
objects and/or subjects. For subjects, code and data
t-tags can be independently accessed.

• ownership and permission: conditions can be placed
on the ownership of objects and subjects, or permis-
sions associated with the object or the event.

The effect of a policy depends on its type. The effect of
a detection policy is to raise an alarm. For tag initial-
ization and propagation policies, the effect is to modify
tag(s) associated with the object or subject involved in
the event. While we use a rule-based notation to specify
policies in this paper, in our implementation, each rule is
encoded as a (C++) function.

To provide a finer degree of control over the order in
which different types of policies are checked, we asso-
ciate policies with trigger points instead of events. In ad-
dition, trigger points provide a level of indirection that
enables sharing of policies across distinct events that
have a similar purpose. Table 2 shows the trigger points
currently defined in our policy framework. The first col-
umn identifies events, the second column specifies the
direction of information flow, and the last two columns
define the trigger points associated with these events.

Note that we use a special event called define to de-
note audit records that define a new object. This pseudo-
event is assumed to have occurred when a new object
is encountered for the first time, e.g., establishment of
a new network connection, the first mention of a pre-
existing file, creation of a new file, etc. The remaining
events in the table are self-explanatory.

When an event occurs, all detection policies associated
with its alarm trigger are executed. Unless specifically
configured, detection policies are checked only when the
tag of the target subject or object is about to change.
(“Target” here refers to the destination of data flow in an
operation.) Following this, policies associated with the
event’s tag triggers are tried in the order in which they
are specified. As soon as a matching rule is found, the



tags specified by this rule are assigned to the target of the
event, and the remaining tag policies are not evaluated.

Our current detection policies are informally described
in the previous section. We therefore focus in this section
on our current tag initialization and propagation policies.

4.1 Tag Initialization Policies
These policies are invoked at the init trigger, and are used
to initialize tags for new objects, or preexisting objects
when they are first mentioned in the audit data. Recall
that when a subject creates a new object, the object in-
herits the subject’s tags by default; however, this can be
overridden using tag initialization policies.

Our current tag initialization policy is as follows. Note
the use of regular expressions to conveniently define ini-
tial tags for groups of objects.

init(o): match(o.name,"^IP:(10\.0|127)")→
o.ttag = BENIGN AUTH,o.ctag = PRIVATE

init(o): match(o.name,"^IP:")→
o.ttag = UNKNOWN,o.ctag = PRIVATE

init(o): o.type == FILE→
o.ttag = BENIGN AUTH,o.ctag = PUBLIC

The first rule specifies tags for intranet connections, iden-
tified by address prefixes 10.0 and 127 for the remote
host. It is useful in a context where SLEUTH isn’t de-
ployed on the remote host6. The second rule states that
all other hosts are untrusted. All preexisting files are as-
signed the same tags by the third rule. Our implementa-
tion uses two additional policies that specify c-tags.

4.2 Tag Propagation Policies
These policies can be used to override default tag propa-
gation semantics. Different tag propagation policies can
be defined for different groups of related event types, as
indicated in the “Tag trigger” column in Table 2.

Tag propagation policies can be used to prevent
“over-tainting” that can result from files such as
.bash history that are repeatedly read and written by
an application each time it is invoked. The following pol-
icy skips taint propagation for this specific file:

propRd(s,o): match(o.name,"\.bash_history$")→ skip7

Here is a policy that treats files read by bash, which is an
interpreter, as a load, and hence updates the code t-tag.

propRd(s,o): match(s.cmdline,"^/bin/bash$")→
s.code ttag = s.data ttag = o.ttag,s.ctag = o.ctag

Although trusted servers such as sshd interact with un-
trusted sites, they can be expected to protect themselves,

6If SLEUTH is deployed on the remote host, there will be no define
event associated with the establishment of a network connection, and
hence this policy won’t be triggered. Instead, we will already have
computed a tag for the remote network endpoint, which will now prop-
agate to any local subject that reads from the connection.

7Here, “skip” means do nothing, i.e., leave tags unchanged.

and let only authorized users access the system. Such
servers should not have their data trustworthiness down-
graded. A similar comment applies to programs such as
software updaters and installers that download code from
untrusted sites, but verify the signature of a trusted soft-
ware provider before the install.

propRd(o,s): match(s.cmdline,"^/sbin/sshd$")→ skip

Moreover, when the login phase is complete, typically
identified by execution of a setuid operation, the pro-
cess should be assigned appropriate tags.

propSu(s): match(s.cmdline,"^/usr/sbin/sshd$")→
s.code ttag = s.data ttag = BENIGN,s.ctag = PRIVATE

5 Tag-Based Bi-Directional Analysis
5.1 Backward Analysis
The goal of backward analysis is to identify the entry
points of an attack campaign. Entry points are the nodes
in the graph with an in-degree of zero and are marked
untrusted. Typically they represent network connections,
but they can also be of other types, e.g., a file on a USB
stick that was plugged into the victim host.

The starting points for the backward analysis are the
alarms generated by the detection policies. In particu-
lar, each alarm is related to one or more entities, which
are marked as suspect nodes in the graph. Backward
search involves a backward traversal of the graph to iden-
tify paths that connect the suspect nodes to entry nodes.
We note that the direction of the dependency edges is
reversed in such a traversal and in the following discus-
sions. Backward search poses several significant chal-
lenges:
• Performance: The dependence graph can easily con-

tain hundreds of millions of edges. Alarms can easily
number in thousands. Running backward searches on
such a large graph is computationally expensive.

• Multiple paths: Typically numerous entry points are
backward reachable from a suspect node. However,
in APT-style attacks, there is often just one real entry
point. Thus, a naive backward search can lead to a
large number of false positives.

The key insight behind our approach is that tags can be
used to address both challenges. In fact, tag computation
and propagation is already an implicit path computation,
which can be reused. Furthermore, a tag value of un-
known on a node provides an important clue about the
likelihood of that node being a potential part of an at-
tack. In particular, if an unknown tag exists for some
node A, that means that there exists at least a path from
an untrusted entry node to node A, therefore node A is
more likely to be part of an attack than other neighbors
with benign tags. Utilizing tags for the backward search
greatly reduces the search space by eliminating many ir-



relevant nodes and sets SLEUTH apart from other sce-
nario reconstruction approaches such as [25, 31].

Based on this insight, we formulate backward ana-
lyis as an instance of shortest path problem, where tags
are used to define edge costs. In effect, tags are able
to “guide” the search along relevant paths, and away
from unlikely paths. This factor enables the search to
be completed without necessarily traversing the entire
graph, thus addressing the performance challenge. In ad-
dition, our shortest path formulation addresses the multi-
ple paths chalenge by by preferring the entry point clos-
est (as measured by path cost) to a suspect node.

For shortest path, we use Dijkstra’s algorithm, as it
discovers paths in increasing order of cost. In particular,
each step of this algorithm adds a node to the shortest
path tree, which consists of the shortest paths computed
so far. This enables the search to stop as soon as an entry
point node is added to this tree.

Cost function design. Our design assigns low costs to
edges representing dependencies on nodes with unknown
tags, and higher costs to other edges. Specifically, the
costs are as follows:

• Edges that introduce a dependency from a node with
unknown code or data t-tag to a node with benign
code or data t-tag are assigned a cost of 0.

• Edges introducing a dependency from a node with
benign code and data t-tags are assigned a high cost.

• Edges introducing dependencies between nodes al-
ready having an unknown tag are assigned a cost of 1.

The intuition behind this design is as follows. A be-
nign subject or object immediately related to an unknown
subject/object represents the boundary between the ma-
licious and benign portions of the graph. Therefore, they
must be included in the search, thus the cost of these
edges is 0. Information flows among benign entities are
not part of the attack, therefore we set their cost to very
high so that they are excluded from the search. Infor-
mation flows among untrusted nodes are likely part of
an attack, so we set their cost to a low value. They will
be included in the search result unless alternative paths
consisting of fewer edges are available.

5.2 Forward Analysis
The purpose of forward analysis is to assess the impact
of a campaign, by starting from an entry point and dis-
covering all the possible effects dependent on the entry
point. Similar to backward analysis, the main challenge
is the size of the graph. A naive approach would identify
and flag all subjects and objects reachable from the entry
point(s) identified by backward analysis. Unfortunately,
such an approach will result in an impact graph that is too
large to be useful to an analyst. For instance, in our ex-

periments, a naive analysis produced impact graphs with
millions of edges, whereas our refined algorithm reduces
this number by 100x to 500x.

A natural approach for reducing the size is to use a
distance threshold dth to exclude nodes that are “too far”
from the suspect nodes. Threshold dth can be interac-
tively tuned by an analyst. We use the same cost met-
ric that was used for backward analysis, but modified to
consider confidentiality8. In particular, edges between
nodes with high confidentiality tags (e.g., secret) and
nodes with low code integrity tags (e.g., unknown pro-
cess) or low data integrity tags (e.g., unknown socket)
are assigned a cost of 0, while edges to nodes with be-
nign tags are assigned a high cost.

5.3 Reconstruction and Presentation
We apply the following simplifications to the output of
forward analysis, in order to provide a more succinct
view of the attack:
• Pruning uninteresting nodes. The result of forward

analysis may include many dependencies that are not
relevant for the attack, e.g., subjects writing to cache
and log files, or writing to a temporary file and then
removing it. These nodes may appear in the results
of the forward analysis but no suspect nodes depend
on them, so they can be pruned.

• Merging entities with the same name. This simplifi-
cation merges subjects that have the same name, dis-
regarding their process ids and command-line argu-
ments.

• Repeated event filtering. This simplification merges
into one those events that happen multiple times (e.g.,
multiple writes, multiple reads) between the same en-
tities. If there are interleaving events, then we show
two events representing the first and the last occur-
rence of an event between the two entities.

6 Experimental Evaluation
6.1 Implementation
Most components of SLEUTH, including the graph
model, policy engine, attack detection and some parts of
the forensic analysis are implemented in C++, and con-
sist of about 9.5KLoC. The remaining components, in-
cluding that for reconstruction and presentation, are im-
plemented in Python, and consist of 1.6KLoC.

6.2 Data Sets
Table 3 summarizes the dataset used in our evaluation.
The first eight rows of the table correspond to attack cam-

8Recall that some alarms are related to exfiltration of confidential
data, so we need to decide which edges representing the flow of confi-
dential information should be included in the scenario.



Dataset
Duration

(hh-mm-ss) Open
Connect +

Accept Read Write
Clone +

Exec
Close +

Exit
Mmap /
Loadlib Others

Total # of
Events

Scenario
Graph

W-1 06:22:42 N/A 22.14% 44.70% 5.12% 3.73% 3.88% 17.40% 3.02% 100K Fig. 15
W-2 19:43:46 N/A 17.40% 47.63% 8.03% 3.28% 3.26% 15.22% 5.17% 401K Fig. 5
L-1 07:59:26 37% 0.11% 18.01% 1.15% 0.92% 38.76% 3.97% 0.07% 2.68M Fig. 12
L-2 79:06:39 39.58% 0.08% 12.19% 2% 0.83% 41.28% 3.79% 0.25% 38.5M -
L-3 79:05:13 38.88% 0.04% 11.81% 2.35% 0.95% 40.98% 4.14% 0.84% 19.3M Fig. 16
F-1 08:17:30 9.46% 0.40% 24.65% 40.86% 2.10% 12.55% 9.08% 0.89% 701K Fig. 13
F-2 78:56:48 11.78% 0.42% 16.60% 44.52% 2.10% 15.04% 8.54% 1.01% 5.86M Fig. 14
F-3 79:04:54 11.31% 0.40% 19.46% 45.71% 1.64% 14.30% 6.16% 1.03% 5.68M Fig. 4

Benign 329:11:40 11.68% 0.71% 26.22% 30.03% 0.63% 15.42% 14.32% 0.99% 32.83M N/A

Table 3: Dataset for each campaign with duration, distribution of different system calls and total number of events.

paigns carried out by a red team as part of the DARPA
Transparent Computing (TC) program. This set spans
a period of 358 hours, and contains about 73 million
events. The last row corresponds to benign data collected
over a period of 3 to 5 days across four Linux servers in
our research laboratory.

Attack data sets were collected on Windows (W-1
and W-2), Linux (L-1 through L-3) and FreeBSD (F-1
through F-3) by three research teams that are also part
of the DARPA TC program. The goal of these research
teams is to provide fine-grained provenance information
that goes far beyond what is found in typical audit data.
However, at the time of the evaluation, these advanced
features had not been implemented in the Windows and
FreeBSD data sets. Linux data set did incorporate finer-
granularity provenance (using the unit abstraction devel-
oped in [31]), but the implementation was not mature
enough to provide consistent results in our tests. For this
reason, we omitted any fine-grained provenance included
in their dataset, falling back to the data they collected
from the built-in auditing system of Linux. The FreeBSD
team built their capabilities over DTrace. Their data also
corresponded to roughly the same level as Linux audit
logs. The Windows team’s data was roughly at the level
of Windows event logs. All of the teams converted their
data into a common representation to facilitate analysis.

The “duration” column in Table 3 refers to the length
of time for which audit data was emitted from a host.
Note that this period covers both benign activities and
attack related activities on a host. The next several
columns provide a break down of audit log events into
different types of operations. File open and close op-
erations were not included in W-1 and W-2 data sets.
Note that “read” and “write” columns include not only
file reads/writes, but also network reads and writes on
Linux. However, on Windows, only file reads and writes
were reported. Operations to load libraries were reported
on Windows, but memory mapping operations weren’t.
On Linux and FreeBSD, there are no load operations,
but most of the mmap calls are related to loading. So,
the mmap count is a loose approximation of the num-

ber of loads on these two OSes. The “Others” column
includes all the remaining audit operations, including
rename, link, rm, unlink, chmod, setuid, and so on.
The last column in the table identifies the scenario graph
constructed by SLEUTH for each campaign. Due to space
limitations, we have omitted scenario graphs for cam-
paign L-2.

6.3 Engagement Setup

The attack scenarios in our evaluation are setup as fol-
lows. Five of the campaigns (i.e., W-2, L-2, L3, F-2, and
F3) ran in parallel for 4 days, while the remaining three
(W-1, L-1, and F-1) were run in parallel for 2 days. Dur-
ing each campaign, the red team carried out a series of
attacks on the target hosts. The campaigns are aimed at
achieving varying adversarial objectives, which include
dropping and execution of an executable, gathering intel-
ligence about a target host, backdoor injection, privilege
escalation, and data exfiltration.

Being an adversarial engagement, we had no prior
knowledge of the attacks planned by the red team. We
were only told the broad range of attacker objectives de-
scribed in the previous paragraph. It is worth noting that,
while the red team was carrying out attacks on the tar-
get hosts, benign background activities were also being
carried out on the hosts. These include activities such
as browsing and downloading files, reading and writing
emails, document processing, and so on. On average,
more than 99.9% of the events corresponded to benign
activity. Hence, SLEUTH had to automatically detect and
reconstruct the attacks from a set of events including both
benign and malicious activities.

We present our results in comparison with the ground
truth data released by the red team. Before the release
of ground truth data, we had to provide a report of our
findings to the red team. The findings we report in this
paper match the findings we submitted to the red team.
A summary of our detection and reconstruction results is
provided in a tabular form in Table 7. Below, we first
present reconstructed scenarios for selected datasets be-
fore proceeding to a discussion of these summary results.
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Fig. 4: Scenario graph reconstructed from campaign F-3.

6.4 Selected Reconstruction Results

Of the 8 attack scenarios successfully reconstructed by
SLEUTH, we discuss campaigns W-2 (Windows) and F-3
(FreeBSD) in this section, while deferring the rest to Sec-
tion 6.10. To make it easier to follow the scenario graph,
we provide a narrative that explains how the attack un-
folded. This narrative requires manual interpretation of
the graph, but the graph generation itself is automated.
In these graphs, edge labels include the event name and a
sequence number that indicates the global order in which
that event was performed. Ovals, diamonds and rectan-
gles represent processes, sockets and files, respectively.
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Fig. 5: Scenario graph reconstructed from campaign W-2.

Campaign W-2. Figure 5 shows the graph recon-
structed by SLEUTH from Windows audit data. Although
the actual attack campaign lasted half an hour, the host
was running benign background activities for 20 hours.
These background activities corresponded to more than
99.8% of the events in the corresponding audit log.
Entry: The initial entry point for the attack is Firefox,
which is compromised on visiting the web server
129.55.12.167.
Backdoor insertion: Once Firefox is compromised, a ma-
licious program called dropper is downloaded and ex-
ecuted. Dropper seems to provide a remote interactive
shell, connecting to ports 443 and then 4430 on the attack
host, and executing received commands using cmd.exe.
Intelligence gathering: Dropper then invokes cmd.exe

multiple times, using it to perform various data gath-
ering tasks. The programs whoami, hostname and
netstat are being used as stand-ins for these data
gathering applications. The collected data is written to
C:\Users\User1\Documents\Thumbs\thumbit\test\thumbs.db.
Data exfiltration: Then the collected intelligence is exfil-
trated to 129.55.12.51:9418 using git.
Clean-up: Dropper downloads a batch file called
burnout.bat. This file contains commands to clean up
the attack footprint, which are executed by cmd.exe (see
edges 11,12, 31-33).

Campaign F-3. (Figure 4). Under the command of
an attacker who uses stolen ssh credentials, sshd forks
a bash process. Note that though there is no direct ev-
idence from the audit data about the stolen ssh creden-
tials, because of the subsequent events (scp) from this
shell, we conclude this as a sign of an attacker that uses
stolen ssh credentials.



Next the attacker, invokes scp,
which downloads a file into location
/var/dropbear latest/dropbearFREEBSD.tar, which
is then uncompressed. The file dropbearscript is
next read and interpreted by sh. This action cre-
ates the process dropbearkey, which writes to /usr/

local/etc/dropbear/dropbear ecdsa host key and
/usr/local/etc/dropbear/dropbear rsa host key.
Next, another sudo process created by bash starts
another dropbear process which reads these two keys
for future use (presumably to assist in connecting to a
remote host).

Dropbear next starts a shell process, which executes
a series of commands ls, bash, uname, ps, all of which
write to a file /usr/home/user/procstats.

Finally, dropbear starts a bash process, which uses
scp to download a file called /usr/home/user/archiver,
and executes that file. The resulting process, called
archiver, reads the file /usr/home/user/procstats,
which contains the data output earlier, and exfiltrates this
information to 128.55.12.167:2525.

Summary. The above two graphs were constructed au-
tomatically by SLEUTH from audit data. They demon-
strate how SLEUTH enables an analyst to obtain compact
yet complete attack scenarios from hours of audit data.
SLEUTH is able to hone in on the attack activity, even
when it is hidden among benign data that is at least three
orders of magnitude larger.

6.5 Overall Effectiveness
To assess the effectiveness of SLEUTH in capturing es-
sential stages of an APT, in Table 6, we correlate pieces
of attack scenarios constructed by SLEUTH with APT
stages documented in postmortem reports of notable
APT campaigns (e.g., the MANDIANT [3] report). In
7 of the 8 attack scenarios, SLEUTH uncovered the
drop&load activity. In all the scenarios, SLEUTH cap-
tured concrete evidence of data exfiltration, a key stage
in an APT campaign. In 7 of the scenarios, commands
used by the attacker to gather information about the tar-
get host were captured by SLEUTH.

Another distinctive aspect of an APT is the injection of
backdoors to targets and their use for C&C and data exfil-

Dataset
Drop
&
Load

Intelligence
Gathering

Backdoor
Insertion

Privilege
Escalation

Data
Exfiltration

Cleanup

W-1 X X X X
W-2 X X X X X
L-1 X X X X X
L-2 X X X X X X
L-3 X X X X X X
F-1 X X
F-2 X X X X
F-3 X X X

Table 6: SLEUTH results with respect to a typical APT campaign.

Dataset Entry
Entities

Programs
Executed

Key
Files

Exit
Points

Correctly
Identified
Entities

Incorrectly
Identified
Entities

Missed
Entities

W-1 2 8 7 3 20 0 0
W-2 2 8 4 4 18 0 0

L-1 2 10 7 2 20 0 1
L-2 2 20 11 4 37 0 0
L-3 1 6 6 5 18 0 0

F-1 4 13 9 2 13 0 1
F-2 2 10 7 3 22 0 0
F-3 4 14 7 1 26 0 0

Total 19 89 58 24 174 0 2

Table 7: Attack scenario reconstruction summary.

tration. In this regard, 6 of the 8 scenarios reconstructed
by SLEUTH involve backdoor injection. Cleaning the at-
tack footprint is a common element of an APT campaign.
In our experiments, in 5 of the 8 scenarios, SLEUTH un-
covered attack cleanup activities, e.g., removing dropped
executables and data files created during the attack.

Table 7 shows another way of breaking down the at-
tack scenario reconstruction results, counting the number
of key files, network connections, and programs involved
in the attack. Specifically, we count the number of at-
tack entry entities (including the entry points and the pro-
cesses that communicate with those entry points), attack-
related program executions, key files that were gener-
ated and used during the campaign, and the number of
exit points used for exfiltration (e.g., network sockets).
This data was compared with the ground truth, which
was made available to us after we obtained the results.
The last two columns show the incorrectly reported and
missed entities, respectively.

The two missed entities were the result of the fact that
we had not spent any effort in cataloging sensitive data
files and device files. As a result, these entities were fil-
tered out during the forward analysis and simplification
steps. Once we marked the two files correctly, they were
no longer filtered out, and we were able to identify all of
the key entities.

In addition to the missed entities shown in Table 7,
the red team reported that we missed a few other attacks
and entities. Some of these were in data sets we did not
examine. In particular, campaign W-2 was run multiple
times, and we examined the data set from only one in-
stance of it. Also, there was a third attack campaign W-3
on Windows, but the team producing Windows data sets
had difficulties during W-3 that caused the attack activ-
ities not to be recorded, so that data set is omitted from
the results in Table 7. Similarly, the team responsible
for producing Linux data sets had some issues during
campaign L-3 that caused some attack activities not to
be recorded. To account for this, Table 7 counts only the
subset of key entities whose names are present in the L-3
data set given to us.

According to the ground truth provided by the red



Dataset Log Size
on Disk

# of
Events

Duration
hh:mm:ss

Packages
Updated

Binary
Files
Written

Server 1 1.1G 2.17M 00:13:06 110 1.8K
Server 2 2.7G 4.67M 105:08:22 4 4.2K
Server 3 12G 20.9M 104:36:43 4 4.3K
Server 4 3.2G 5.09M 119:13:29 4 4.3K

Table 8: False alarms in a benign environment with software upgrades
and updates. No alerts were triggered during this period.

team, we incorrectly identified 21 entities in F-1 that
were not part of an attack. Subsequent investigation
showed that the auditing system had not been shutdown
at the end of the F-1 campaign, and all of these false pos-
itives correspond to testing/administration steps carried
out after the end of the engagement, when the auditing
system should not have been running.

6.6 False Alarms in a Benign Environment

In order to study SLEUTH’s performance in a benign
environment, we collected audit data from four Ubuntu
Linux servers over a period of 3 to 5 days. One of these
is a mail server, another is a web server, and a third is
an NFS/SSH/SVN server. Our focus was on software
updates and upgrades during this period, since these up-
dates can download code from the network, thereby rais-
ing the possibility of untrusted code execution alarms.
There were four security updates (including kernel up-
dates) performed over this period. In addition, on a
fourth server, we collected data when a software upgrade
was performed, resulting in changes to 110 packages.
Several thousand binary and script files were updated
during this period, and the audit logs contained over 30M
events. All of this information is summarized in Table 8.

As noted before, policies should be configured to per-
mit software updates and upgrades using standard means
approved in an enterprise. For Ubuntu Linux, we had
one policy rule for this: when dpkg was executed by
apt-commands, or by unattended-upgrades, the pro-
cess is not downgraded even when reading from files
with untrusted labels. This is because both apt and
unattended-upgrades verify and authenticate the hash
on the downloaded packages, and only after these verifi-
cations do they invoke dpkg to extract the contents and
write to various directories containing binaries and li-
braries. Because of this policy, all of the 10K+ files
downloaded were marked benign. As a result of this, no
alarms were generated from their execution by SLEUTH.

6.7 Runtime and Memory Use

Table 9 shows the runtime and memory used by SLEUTH
for analyzing various scenarios. The measurements were
made on a Ubuntu 16.04 server with 2.8GHz AMD
Opteron 62xx processor and 48GB main memory. Only a
single core of a single processor was used. The first col-

Dataset Duration Memory Runtime
(hh:mm:ss) Usage Time Speed-up

W-1 06:22:42 3 MB 1.19 s 19.3 K
W-2 19:43:46 10 MB 2.13 s 33.3 K

W-Mean 6.5 MB 26.3 K

L-1 07:59:26 26 MB 8.71 s 3.3 K
L-2 79:06:39 329 MB 114.14s 2.5 K
L-3 79:05:13 175 MB 74.14 s 3.9 K

L-Mean 177 MB 3.2 K
F-1 08:17:30 8 MB 1.86 s 16 K
F-2 78:56:48 84 MB 14.02 s 20.2 K
F-3 79:04:54 95 MB 15.75 s 18.1 K

F-Mean 62.3 MB 18.1 K

Table 9: Memory use and runtime for scenario reconstruction.

umn shows the campaign name, while the second shows
the total duration of the data set.

The third column shows the memory used for the de-
pendence graph. As described in Section 2, we have de-
signed a main memory representation that is very com-
pact. This compact representation enables SLEUTH to
store data spanning very long periods of time. As an ex-
ample, consider campaign L-2, whose data were the most
dense. SLEUTH used approximately 329MB to store
38.5M events spanning about 3.5 days. Across all data
sets, SLEUTH needed about 8 bytes of memory per event
on the larger data sets, and about 20 bytes per event on
the smaller data sets.

The fourth column shows the total run time, including
the times for consuming the dataset, constructing the de-
pendence graph, detecting attacks, and reconstructing the
scenario. We note that this time was measured after the
engagement when all the data sets were available. Dur-
ing the engagement, SLEUTH was consuming these data
as they were being produced. Although the data typically
covers a duration of several hours to a few days, the anal-
ysis itself is very fast, taking just seconds to a couple of
minutes. Because of our use of tags, most information
needed for the analysis is locally available. This is the
principal reason for the performance we achieve.

The “speed-up” column illustrates the performance
benefits of SLEUTH. It can be thought of as the num-
ber of simultaneous data streams that can be handled by
SLEUTH, if CPU use was the only constraint.

In summary, SLEUTH is able to consume and analyze
audit COTS data from several OSes in real time while
having a small memory footprint.

6.8 Benefit of split tags for code and data
As described earlier, we maintain two trustworthiness
tags for each subject, one corresponding to its code, and
another corresponding to its data. By prioritizing detec-
tion and forward analysis on code trustworthiness, we cut
down vast numbers of alarms, while greatly decreasing



Dataset
Untrusted
execution

Modification by
low code t-tag subject

Preparation of untrusted
data for execution

Confidential
data leak

Single t-tag Split t-tags Single t-tag Split t-tags Single t-tags Split t-tags Single t-tag Split t-tags
W-1 21 3 1.2 K 3 0 0 6.1 K 11
W-2 44 2 3.7 K 108 0 0 20.2 K 18

L-1 60 2 53 5 1 1 19 6
L-2 1.5 K 5 19.5 K 1 280 8 122 K 159
L-3 695 5 26.1 K 2 270 0 62.1 K 5.3 K

Average Reduction 45.39x 517x 6.24x 112x

Table 10: Reduction in (false) alarms by maintaining separate code and data trustworthiness tags. The average reduction shows the average factor
of reduction we get for alarms generation when using split trustworthiness tag over single trustworthiness tag.

the size of forward analysis output.
Table 10 shows the difference between the number of

alarms generated by our four detection policies with sin-
gle trustworthiness tag and with the split trustworthiness
(code and integrity) tags. Note that the split reduces the
alarms by a factor of 100 to over 1000 in some cases.

Table 11 shows the improvement achieved in forward
analysis as a result of this split. In particular, the in-
creased selectivity reported in column 5 of this table
comes from splitting the tag. Note that often, there is
a 100x to 1000x reduction in the size of the graph.

6.9 Analysis Selectivity
Table 11 shows the data reduction pipeline of the analy-
ses in SLEUTH. The second column shows the number
of original events in each campaign. These events in-
clude all the events in the system (benign and malicious)
over several days with an overwhelming majority having
a benign nature, unrelated to the attack.

The third column shows the final number of events that
go into the attack scenario graph.

The fourth column shows the reduction factor when
a naive forward analysis with single trustworthiness tag
(single t-tag) is used from the entry points identified by
our backward analysis. Note that the graph size is very
large in most cases. The fifth column shows the reduction
factor using the forward analysis of SLEUTH— which is
based on split (code and data) trustworthiness tags. As

Dataset
Initial
# of

Events

Final
# of

Events

Reduction Factor
Single
t-tag

Split
t-tag

SLEUTH
Simplif. Total

W-1 100 K 51 4.4x 1394x 1.4x 1951x
W-2 401 K 28 3.6x 552x 26x 14352x

L-1 2.68 M 36 8.9x 15931x 4.7x 74875x
L-2 38.5 M 130 7.3x 2971x 100x 297100x
L-3 19.3 M 45 7.6x 1208x 356x 430048x

F-1 701 K 45 2.3x 376x 41x 15416x
F-2 5.86 M 39 1.9x 689x 218x 150202x
F-3 5.68 M 45 6.7x 740x 170x 125800x

Average Reduction 4.68x 1305x 41.8x 54517x

Table 11: Comparison of selectivity achieved using forward analysis
with single trustworthiness tags, forward analysis with split code and
data trustworthiness tags, and finally simplifications.

can be seen from the table, SLEUTH achieved two to
three orders of magnitude reduction with respect to sin-
gle t-tag based analysis.

The output of forward analysis is then fed into the sim-
plification engine. The sixth column shows the reduction
factor achieved by the simplifications over the output of
our forward analysis. The last column shows the overall
reduction we get over original events using split (code
and data) trustworthiness tags and performing the sim-
plification.

Overall, the combined effect of all of these steps is
very substantial: data sets consisting of tens of millions
of edges are reduced into graphs with perhaps a hundred
edges, representing five orders of magnitude reduction
in the case of L-2 and L-3 data sets, and four orders of
magnitude reduction on other data.
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6.10 Discussion of Additional Attacks
In this section, we provide graphs that reconstruct at-
tack campaigns that weren’t discussed in Section 6.4.
Specifically, we discuss attacks L-1, F-1, F-2, W-1, and
L-3. Attack L-1. In this attack (Figure 12), firefox
is exploited to drop and execute via a shell the file
mozillanightly. The process mozillanightly first
downloads and executes mozillaautoup, then starts a
shell, which spawns several other processes. Next, the
information gathered in file netrecon.log is exfiltrated
and the file removed.

Attack F-1. In this attack (Figure 13), the nginx

server is exploited to drop and execute via shell the file
dropper. Upon execution, the dropper process forks
a shell that spawns several processes, which write to a
file and reads and writes to sensitive files. In addition,
dropper communicates with the IP of the attacker. We
report in the figure the graph related to the restoration
and administration carried out after the engagement, as
discussed in Section 6.5.

Attack F-2. The start of this attack (Figure 14) is sim-
ilar to F-1. However, upon execution, the dropper pro-
cess downloads three files named recon, sysman, and
mailman. Later, these files are executed and used which
are used to exfiltrate data gathered from the system.

Attack W-1. In this attack (Figure 15), firefox

is exploited twice to drop and execute a file
mozillanightly. The first mozillanightly process
downloads and executes the file photosnap.exe,
which takes a screenshot of the victim’s screen and
saves it to a png file. Subsequently, the jpeg file
is exfiltrated by mozillanightly. The second
mozillanightly process downloads and executes two

files: 1) burnout.bat, which is read, and later used to
issue commands to cmd.exe to gather data about the
system; 2) mnsend.exe, which is executed by cmd.exe

to exfiltrate the data gathered previously.
Attack L-3. In this attack (Figure 16), the file

dropbearLINUX.tar is downloaded and extracted.
Next, the program dropbearkey is executed to create
three keys, which are read by a program dropbear,
which subsequently performs exfiltration.

7 Related Work
In this section, we compare SLEUTH with efforts from
academia and open source industry tools. We omit com-
parison to proprietary products from the industry as there
is scarce technical documentation available for an in-
depth comparison.

Provenance tracking and Forensics Several logging
and provenance tracking systems have been built to mon-
itor the activities of a system [21, 41, 23, 22, 13, 45, 9]
and build provenance graphs. Among these, Backtracker
[25, 26] is one of the first works that used dependence
graphs to trace back to the root causes of intrusions.
These graphs are built by correlating events collected by
a logging system and by determining the causality among
system entities, to help in forensic analysis after an attack
is detected.

SLEUTH improves on the techniques of Backtracker
in two important ways. First, Backtracker was meant
to operate in a forensic setting, whereas our analysis
and data representation techniques are designed towards
real-time detection. Setting aside hardware comparisons,
we note that Bactracker took 3 hours for analyzing au-
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dit data from a 24-hour period, whereas SLEUTH was
able to process 358 hours of logs in a little less than 3
minutes. Secondly, Backtracker relies on alarms gener-
ated by external tools, therefore its forensic search and
pruning cannot leverage the reasons that generated those
alarms. In contrast, our analysis procedures leverage the
results from our principled tag-based detection methods
and therefore are inherently more precise. For example,
if an attack deliberately writes into a well-known log file,
Backtracker’s search heuristics may remove the log file
from the final graph, whereas our tag-based analysis will
prevent that node from being pruned away.

In a similar spirit, BEEP [31] and its evolution Pro-
Tracer [37] build dependence graphs that are used for
forensic analysis. In contrast, SLEUTH builds depen-

dence graphs for real-time detection from which scenario
subgraphs are extracted during a forensic analysis. The
forensic analysis of [31, 37] ensures more precision than
Backtracker [25] by heuristically dividing the execution
of the program into execution units, where each unit rep-
resents one iteration of the main loop in the program.
The instrumentation required to produce units is not al-
ways automated, making the scalability of their approach
a challenge. SLEUTH can make use of the additional pre-
cision afforded by [31] in real-time detection, when such
information is available.

While the majority of the aforementioned systems op-
erate at the system call level, several other systems track
information flows at finer granularities [24, 8, 31]. They
typically instrument applications (e.g., using Pin [35]) to
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track information flows through a program. Such fine-
grained tainting can provide much more precise prove-
nance information, at the cost of higher overhead. Our
approach can take advantage of finer granularity prove-
nance, when available, to further improve accuracy.

Attack Detection A number of recent research efforts
on attack detection/prevention focus on “inline” tech-
niques that are incorporated into the protected system,
e.g., address space randomization, control-flow integrity,
taint-based defenses and so on. Offline intrusion detec-
tion using logs has been studied for a much longer period
[15, 36, 19]. In particular, host-based IDS using system-
call monitoring and/or audit logs has been investigated
by numerous research efforts [57, 32, 47, 55, 18, 29].

Host-based intrusion detection techniques mainly fall
into three categories: (1) misuse-based, which rely on
specifications of bad behaviors associated with known
attacks; (2) anomaly-based [19, 32, 47, 20, 30, 11, 48],
which rely on learning a model of benign behavior
and detecting deviations from this behavior; and (3)
specification-based [27, 54], which rely on specifications
(or policies) specified by an expert. The main drawback
of misuse-based techniques is that their signature-based
approach is not amenable to detection of previously un-
seen attacks. Anomaly detection techniques avoid this

drawback, but their false positives rates deter widespread
deployment. Specification/policy-based techniques can
reduce these false positives, but they require application-
specific policies that are time-consuming to develop
and/or rely on expert knowledge. Unlike these ap-
proaches, SLEUTH relies on application-independent
policies. We develop such policies by exploiting prove-
nance information computed from audit data. In particu-
lar, an audit event is analyzed to determine if it advances
an attacker’s high-level objectives, thereby providing a
motive for the attack; while the provenance derived from
the entire audit history is used to determine if the attacker
had the means to influence this event.

Information Flow Control (IFC) IFC techniques as-
sign security labels and propagate them in a manner sim-
ilar to our tags. Early works, such as Bell-LaPadula
[10] and Biba [12], relied on strict policies. These strict
policies impact usability and hence have not found fa-
vor among contemporary OSes. Although IFC is avail-
able in SELinux [34], it is not often used, as users prefer
its access control framework based on domain-and-type
enforcement. While most above works centralize IFC,
decentralized IFC (DIFC) techniques [59, 17, 28] em-
phasize the ability of principals to define and create new
labels. This flexibility comes with the cost of nontrivial



changes to application and/or OS code.
Although our tags are conceptually similar to those

in IFC systems, the central research challenges faced in
these systems are very different from SLEUTH. In par-
ticular, the focus of IFC systems is enforcement and pre-
vention. A challenge for IFC enforcement is that their
policies tend to break applications. Thus, most recent ef-
forts [50, 38, 33, 53, 51, 52, 49] in this regard focus on
refinement and relaxation of policies so that compatibil-
ity can be preserved without weakening security. In con-
trast, neither enforcement nor compatibility pose chal-
lenges in our setting. On the other hand, IFC systems do
not need to address the question of what happens when
policies are violated. Yet, this is the central challenge we
face: how to distinguish attacks from the vast number of
normal activities on the system; and more importantly,
once attacks do take place, how to tease apart attack ac-
tions from the vast amounts of audit data.

Alert Correlation Network IDSs often produce myr-
iad alerts. Alert correlation analyzes relationships
among alerts, to help users deal with the deluge. The
main approaches, often used together, are to cluster sim-
ilar alerts, prioritize alerts, and identify causal relation-
ships between alerts [14, 43, 46, 44, 56]. Furthermore,
they require manually supplied expert knowledge about
dependencies between alert types (e.g., consequences
for each network IDS alert type) to identify causal re-
lationships. In contrast, we are not interested in clus-
tering/statistical techniques to aggregate alerts. Instead,
our goals are to use provenance tracking to determine
causal relationships between different alarms to recon-
struct the attack scenario, and to do so without relying
on (application-dependent) expert knowledge.

8 Conclusion
We presented an approach and a system called SLEUTH
for real-time detection of attacks and attack reconstruc-
tion from COTS audit logs. SLEUTH uses a main mem-
ory graph data model and a rich tag-based policy frame-
work that make its analysis both efficient and precise. We
evaluated SLEUTH on large datasets from 3 major OSes
under attack by an independent red team, efficiently re-
constructing all the attacks with very few errors.
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