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Abstract

Despite the wide publicity received by buffer over-
flow attacks, the vast majority of today’s security
vulnerabilities continue to be caused by memory
errors, with a significant shift away from stack-
smashing exploits to newer attacks such as heap
overflows, integer overflows, and format-string at-
tacks. While comprehensive solutions have been
developed to handle memory errors, these solu-
tions suffer from one or more of the following prob-
lems: high overheads (often exceeding 100%), in-
compatibility with legacy C code, and changes to
the memory model to use garbage collection. Ad-
dress space randomization (ASR) is a technique that
avoids these drawbacks, but existing techniques for
ASR do not offer a level of protection compara-
ble to the above techniques. In particular, attacks
that exploit relative distances between memory ob-
jects aren’t tackled by existing techniques. More-
over, these techniques are susceptible to informa-
tion leakage and brute-force attacks. To overcome
these limitations, we develop a new approach in
this paper that supports comprehensive randomiza-
tion, whereby the absolute locations of all (code and
data) objects, as well as their relative distances are
randomized. We argue that this approach provides
probabilistic protection against all memory error ex-
ploits, whether they be known or novel. Our ap-
proach is implemented as a fully automatic source-
to-source transformation which is compatible with
legacy C code. The address-space randomizations
take place at load-time or runtime, so the same copy
of the binaries can be distributed to everyone — this
ensures compatibility with today’s software distri-
bution model. Experimental results demonstrate an
average runtime overhead of about 11%.

1 Introduction

A vast majority of security vulnerabilities reported
in recent years have been based on memory errors in

C (and C++) programs. In the past two years, the
CERT Coordination Center (now US-CERT) [5] has
issued about 54 distinct advisories involving COTS
software, of which 44 (over 80%) are due to mem-
ory errors. In spite of the wide publicity received by
buffer overflow attacks, the fraction of vulnerabili-
ties attributed to memory errors has grown steadily
in the past ten years or so.

Even as techniques such as “stack-guarding”
[10] have been developed to defeat the most com-
mon form of exploit, namely stack-smashing, newer
forms of attacks continue to be discovered. The frac-
tion of memory error exploits attributed to newer
forms of attacks such as heap overflows, integer
overflows, and format-string attacks have increased
significantly in the past two years: 22 of the 44
CERT/CC advisories in the past two years are at-
tributed to these newer forms of attacks, as opposed
to 32 that were attributed to stack-smashing. (Note
that some advisories report multiple vulnerabilities
together.) This spate of new memory-related at-
tacks suggests that new ways to exploit memory er-
rors will continue to be discovered, and hence these
errors will likely to be the principal source of cyber
attacks in the foreseeable future.

We can, once for all, eliminate this seemingly
endless source of vulnerabilities by adding complete
memory error protection. Unfortunately, existing
techniques such as backwards-compatible bounds
checking [18] and its descendant CRED [28] are as-
sociated with high overheads, sometimes exceeding
1000%. Lower overheads are reported in [34], but
the overheads can still be over 100% for some pro-
grams. Approaches such as CCured [24] and Cy-
clone [17] can bring down this overhead signifi-
cantly, but aren’t compatible with legacy C code.
Nontrivial programming effort is often required to
port existing C programs so that they can work
with these tools. Precompiled libraries can pose
additional compatibility problems. Finally, these
two approaches rely on garbage collection instead of



the explicit memory management model used in C
programs, which can pose another obstacle to their
widespread acceptance.

Whereas the above approaches are concerned
with preventing all invalid memory accesses, we
present an approach with a more limited goal: it
only seeks to ensure that the results of any invalid
access are unpredictable. We show that this goal can
be achieved with a much lower runtime overhead of
about 10%. Our approach avoids the compatibility
issues mentioned above with complete memory er-
ror protection techniques. Although the protection
provided by our approach is only probabilistic, we
show that for all known classes of attacks, the odds
of success are very small.

Our approach is based on the concept of ad-
dress obfuscation [4], whose goal is to obscure the
location of code and data objects that are resident in
memory. Several techniques have been developed to
achieve such obfuscation using randomization tech-
niques [14, 25, 4, 33]. Although these techniques
can provide protection against most known types of
memory error exploits, they are vulnerable to sev-
eral classes of attacks including relative-address at-
tacks, information leakage attacks, and attacks on
randomization [29]. More importantly, they do not
provide systematic protection against all memory
error exploits, which means that other attacks on
these techniques will likely continue to be discov-
ered in the future. In contrast, the approach devel-
oped in this paper is aimed at protecting against all
memory error exploits, whether they be known or
unknown.

1.1 Overview of Approach

Our approach makes the memory locations of pro-
gram objects (including code as well as data objects)
unpredictable. This is achieved by randomizing the
absolute locations of all objects, as well as the rela-
tive distance between any two objects.

We adopted a program transformation based
approach to perform the randomizations. Ideally,
the transformations can be applied on program bi-
naries. However, due to the difficulties associated
with analysis of binaries, we need additional infor-
mation to be present in the binaries in order to
make the transformations feasible [12]. This re-
quires changes to the system tools such as compil-
ers and linkers, which are used to generate binaries.
Our current implementation avoids this option, and
instead uses a source-to-source transformation on
C programs. Note that a particular randomization
isn’t hard-coded into the transformed code. Instead,
the transformation produces a self-randomizing pro-

gram: a program that randomizes itself each time
it is run, or continuously during runtime. This
means that the use of our approach doesn’t, in any
way, change the software distribution model that is
prevalent today. Software providers can continue to
distribute identical copies of program binaries to all
users.

In our approach, the location of code objects
is randomized using binary transformation at load-
time. Static data objects are randomized at the
beginning of program execution. Stack objects are
continuously randomized throughout runtime. The
key techniques used in achieving this randomization
are outlined below.

• Randomizing stack-resident variables. Our
approach randomizes the locations of stack-
allocated variables continuously at runtime. It is
based on:

– Shadow stack for buffer-type variables. A sepa-
rate stack is used for allocating arrays, as well
as structures whose addresses are taken. By
separating buffer-type variables, any overflow
attacks are prevented from corrupting informa-
tion such as return address or local variables
that have pointer types. Moreover, to random-
ize the effect of overflows from one buffer-type
variable to the next, we randomize the order of
allocation of these buffer variables in a different
way for each call.

– Randomizing the base of activation records. To
obscure the location of other stack-resident
data, we randomize the base of the stack, as well
as introduce random-sized gaps between succes-
sive stack frames.

• Randomizing static data. The location of each
static variable, as well the relative order of these
variables, is determined at the start of execution
of the transformed program. Our transformation
converts every access to a static variable to use
an additional level of indirection, e.g., an access
v is converted into something like (*v ptr). At
the beginning of program execution, the location
of the variable v is determined, and this value
is stored in v ptr. Note that, in effect, the only
static variables left in the transformed program
are the pointer variables such as v ptr. Although
these variables have predictable locations, attacks
on them are prevented by storing them in read-
only memory.

• Randomizing code. Code is randomized at the
granularity of individual functions. Our tech-
nique associates a function pointer f ptr with
each function f, and transforms every call into



an indirect call using f ptr. The order of differ-
ent functions can now be freely permuted in the
binary, as long as f ptr is updated to reflect the
new location of the function body for f. Although
the location of f ptr variables are predictable, at-
tacks on them are prevented by write-protecting
them.

In addition to these steps, our approach randomizes
the base of the heap, gaps between heap allocations,
and the location of functions in shared libraries.

1.2 Impact of Comprehensive Randomiza-
tion on Memory Error Exploits

Intuitively, a memory error occurs in C programs
when the object accessed via a pointer expression
is different from the one intended by the program-
mer. The intended object is called the referent of
the pointer. Memory errors can be classified into
spatial and temporal errors:

I. A spatial error occurs when dereferencing a
pointer that is outside the bounds of its referent.
It may be caused as a result of:

(a) Dereferencing non-pointer data, e.g., a
pointer may be (incorrectly) assigned from an
integer, and dereferenced subsequently. Our
randomization makes the result of this derefer-
encing unpredictable. The same integer value,
when interpreted as a pointer, will reference dif-
ferent variables (or code) for each execution of
the program.

(b) Dereferencing uninitialized pointers. This
case differs from the first case only when a mem-
ory object is reallocated. In the absence of
our transformation, the contents of uninitialized
pointers may become predictable if the previous
use of the same memory location can be identi-
fied. For instance, suppose that during an invo-
cation of a function f, its local variable v holds a
valid pointer value. If f is invoked immediately
by its caller, then v will continue to contain the
same valid pointer even before its initialization.
By introducing random gaps in the stack, our
approach changes the location of v across dif-
ferent invocations of f, thereby making the re-
sult of uninitialized pointer dereferences unpre-
dictable. A similar argument applies to real-
location within the heap, as our transformation
introduces random-sized gaps between heap ob-
jects.

(c) Valid pointers used with invalid pointer arith-
metic. The most common form of memory ac-
cess error, namely, out-of-bounds array access,
falls in this category. Since the relative dis-

tances between memory objects are randomized
in our approach, one cannot determine the tar-
get object that will be accessed as a result of
invalid pointer arithmetic.

II. A temporal error occurs when dereferencing a
pointer whose referent no longer exists, i.e., it has
been freed previously. If the invalid access goes
to an object in free memory, then it causes no
errors. But if the memory has been reallocated,
then temporal errors allow the contents of the re-
allocated object to be corrupted using the invalid
pointer. Note that this case is essentially the same
as case I(b), in that the results of such errors be-
come predictable only when the purpose of reuse
of the memory location is predictable. Since our
transformation makes this unpredictable, there is
no way for attackers to predict the result of mem-
ory dereferences involving temporal errors.

It may appear that temporal errors, and errors in-
volving uninitialized pointers, are an unlikely target
for attackers. In general, it may be hard to exploit
such errors if they involve heap objects, as heap al-
locations tend to be somewhat unpredictable even
in the absence of any randomizations. However,
stack allocations are highly predictable, so these
errors can be exploited in attacks involving stack-
allocated variables. Our randomization technique
reduces this likelihood.

We point out that previous techniques for ASR
address case I(a), but not the other three cases, and
hence the approach presented in this paper is the
first randomization technique that has the potential
to defend against all memory exploits.

1.3 Benefits of Our Approach

Our approach provides the following benefits:

• Ease of use. Our approach is implemented as an
automatic, source-to-source transformation, and
is fully compatible with legacy C code. It can
interoperate with preexisting (untransformed) li-
braries. Finally, it doesn’t change the current
model of distributing identical copies of software
(on CDs or via downloads) to all users.

• Comprehensive randomization. At runtime, the
absolute as well as relative distances between all
memory-resident objects are randomized. Hence
the approach presented in this paper can address
the full range of attacks that exploit memory
errors. This contrasts with previous ASR ap-
proaches [25, 4] that are vulnerable to relative-
address-dependent attacks.

• Portability across multiple platforms. The vast
majority of our randomizations are OS and archi-



tecture independent. This factor eases portability
of our approach to different platforms. Of par-
ticular significance is the fact that our approach
sidesteps the binary disassembly and rewriting
problems that have proven to be the Achilles’ heel
of other techniques that attempt transformations
or randomization of binary code.

• Low runtime overhead. Our approach produces
low overheads, typically in the range of 10%. It
is interesting to note that, in spite of provid-
ing much more comprehensive randomization, our
overheads are comparable to that of [4, 25].

• Ease of deployment. Our approach can be ap-
plied to individual applications without requiring
changes to the OS kernel, system libraries or the
software distribution models. It empowers code
producers and code consumers to improve secu-
rity of individual applications without requiring
cooperation of the OS vendors. This ability to
deploy at an application granularity provides an
incremental deployment path, where computers
can gradually become more robust against mem-
ory error exploits even when their operating sys-
tems aren’t upgraded for years.

1.4 Paper Organization

The rest of the paper is organized as follows. In
Section 2, we describe transformations to introduce
various randomizations. Section 3 describes our
implementation of these transformations. Runtime
overheads introduced by our approach are discussed
in Section 4. Section 5 discusses the effectiveness of
our approach against different attacks, and analyzes
the probability of mounting successful attacks. Re-
lated work is covered in Section 6. Finally, conclud-
ing remarks appear in Section 7.

2 Transformation Approach

2.1 Static Data Transformations

One possible approach to randomize the location
of static data is to recompile the data into position-
independent code (PIC). This is the approach taken
in PaX ASLR [25], as well as in [4]. A drawback
of this approach is that it does not protect against
relative address attacks, e.g., an attack that over-
flows past the end of a buffer to corrupt security-
critical data that is close to the buffer. Moreover,
an approach that relies only on changes to the base
address is very vulnerable to information leakage
attacks, where an attacker may mount a success-
ful attack just by knowing the address of any static
variable, or the base address of the static area. Fi-
nally, on operating systems such as Linux, the base

address of different memory sections for any process
is visible to any user with access to that system, and
hence the approach does not offer much protection
from this class of attacks.

For the reasons described above, our approach
is based on permuting the order of static variables
at the beginning of program execution. In particu-
lar, for each static variable v, an associated (static)
pointer variable v ptr is introduced in the trans-
formed program. All accesses to the variable v are
changed to reference (*v ptr) in the transformed
program. Thus, the only static variables in the
transformed program are these v ptr variables, and
the program no longer makes any reference to the
original variable names such as v.

At the beginning of program execution, con-
trol is transferred to an initialization function intro-
duced into the transformed program. This function
first allocates a new region of memory to store the
original static variables. This memory is allocated
dynamically so that its base address can be chosen
randomly. Next, each static variable v in the origi-
nal program is allocated storage within this region,
and v ptr is updated to point to the base of this
storage.

To permute the order of variables, we proceed
as follows. If there are n static variables, a random
number generator is used to generate a number i
between 1 and n. Now, the ith variable is allocated
first in the newly allocated region. Now, there are
n − 1 variables left, and one can repeat the process
by generating a random number between 1 and n−1
and so on.

Note that bounds-checking errors dominate
among memory errors. Such errors occur either due
to the use of an array subscript that is outside its
bounds, or more generally, due to incorrect pointer
arithmetic. For this reason, our transformation sep-
arates buffer-type variables, which can be sources
of bounds-checking errors, from other types of vari-
ables. Buffer-type variables include all arrays and
structures containing arrays. In addition, they in-
clude any variable whose address is taken, since it
may be used in pointer arithmetic, which can in turn
lead to out-of-bounds access.

All buffer-type variables are allocated sepa-
rately from other variables. Inaccessible memory
pages (neither readable nor writable) are intro-
duced before and after the memory region contain-
ing buffer variables, so that any buffer overflows
from these variables cannot corrupt non-buffer vari-
ables. The order of buffer-type variables is random-
ized as mentioned above. In addition, inaccessible
pages are also introduced periodically within this re-



gion to limit the scope of buffer-to-buffer overflows.
Finally, all of the v ptr variables are write-

protected. Note that the locations of these variables
are predictable, but this cannot be used as a basis
for attacks due to write-protection.

2.2 Code Transformations

As with static data, one way to randomize code lo-
cation is to generate PIC code, and map this at a
randomly chosen location at runtime. But this ap-
proach has several drawbacks as mentioned before,
so our approach involves randomizing at a much
finer granularity. Specifically, our randomization
technique works at the granularity of functions. To
achieve this, a function pointer f ptr is associated
with each function f. It is initialized with the value
of f. All references to f are replaced by (*f ptr).

The above transformation avoids calls using ab-
solute addresses, thereby laying the foundation for
relocating function bodies in the binary. But this
is not enough: there may still be jumps to absolute
addresses in the code. With C-compilers, such abso-
lute jumps are introduced while translating switch
statements. In particular, there may be a jump to
location jumpTable[i], where i is the value of the
switch expression, and jumpTable is a constant table
constructed by the compiler. The ith element of
this table contains the address of the corresponding
case of the switch statement. To avoid absolute ad-
dress dependency introduced in this translation, we
transform a switch into a combination of if-then-else
and goto statements. Efficient lookup of case values
can be implemented using binary search, which will
have O(log N) time complexity. However, in our
current implementation we use sequential search. In
theory, this transformation can lead to decreased
performance, but we have not seen any significant
effect due to this change in most programs.

On a binary, the following actions are per-
formed to do the actual randomization. The en-
tire code from the executable is read. In addition,
the location of functions referenced by each f ptr

variable is read from the executable. Next, these
functions are reordered in a random manner, using
a procedure similar to that used for randomizing
the order of static variables. Random gaps and in-
accessible pages are inserted periodically during this
process in order to introduce further uncertainty in
code locations, and to provide additional protection.
The transformation ensures that these gaps do not
increase the overall space usage for the executable
by more than a specified parameter (which has the
value of 100% in our current implementation). This
limit can be exceeded if the original code size is

smaller than a threshold (32K).
After relocating functions, the initializations of

f ptr variables are changed so as to reflect the new
location of each function. The transformed binary
can then be written back to the disk. Alternatively,
the transformation could be done at load-time, but
we have not implemented this option so far.

It is well known that binary analysis and trans-
formation are very hard problems [26]. To ease this
problem, our transformation embeds “marker” el-
ements, such as an array of integers with prede-
fined values, to surround the function pointer table.
These markers allow us to quickly identify the ta-
ble and perform the above transformation, without
having to rely on binary disassembly.

As a final step, the function pointer table needs
to be write-protected.

2.3 Stack Transformations

To change the base address of the stack, our trans-
formation adds initialization code that subtracts a
large random number (of the order of 108) from the
stack pointer. In addition, all of the environment
variables and command line arguments are copied
over, and the original contents erased to avoid leav-
ing any data that may be useful to attackers (such
as file names) at predictable locations. Finally, the
contents of the stack above the current stack pointer
value are write-protected. (An alternative to this
approach is to directly modify the base address of
the stack, but this would require changes to the OS
kernel, which we want to avoid. For instance, on
Linux, this requires changes to execve implementa-
tion.)

The above transformation changes the absolute
locations of stack-resident objects, but has no effect
on relative distances between objects. One possi-
ble approach to randomize relative distances is to
introduce an additional level of indirection, as was
done for static variables. However, this approach
will introduce high overheads for each function call.
Therefore we apply this approach only for buffer-
type local variables. (Recall that buffer-type vari-
ables also include those whose address is explicitly
or implicitly used in the program.) Specifically, for
each buffer-type variable, we introduce a pointer
variable to point to it, and then allocate the buffer
itself on a second stack called the shadow stack.
Consider a local variable declaration char buf[100]

within a function, func. This variable can be re-
placed by a pointer with the following definition:

char (*buf ptr)[100]

On entry of func, memory for buf is allocated using:



buf ptr = shadow alloc(sizeof(char [100]))

Allocations of multiple buffers are performed in a
random order similar to static variables. Also, the
allocator function allocates extra memory of a ran-
dom size (currently limited to a maximum of 30%)
between buffers, thereby creating random gaps be-
tween adjacent buffers. Finally, all occurrences of
buf in the body of func are replaced with (*buf ptr).

Our transformation does not change the way
other types of local variables are allocated, so they
get allocated in the same order. However, since the
addresses of these variables never get taken, they
cannot be involved in attacks that exploit knowledge
of relative distances between variables. In particu-
lar, stack-smashing attacks become impossible, as
the return address is on the regular stack, whereas
the buffer overflows can only corrupt the shadow
stack. In addition, attacks using absolute addresses
of stack variables do not work, as the absolute ad-
dresses are randomized by the (random) change to
the base address of the stack.

Note that function parameters may be buffer-
type variables. To eliminate the risk of overflowing
them, we copy all buffer-type parameters into local
variables, and use only the local variables from there
on. Buffer type parameters are never accessed in
code, so there is no possibility of memory errors
involving them. (An alternative to this approach is
to ensure that no buffer-type variables are passed by
value. But this requires the caller and callee code to
be transformed simultaneously, thereby potentially
breaking separate compilation.)

As a final form of stack randomization, we in-
troduce random gaps between stack frames. This
makes it difficult to correlate the locations of local
variables across function invocations, thereby ran-
domizing the effect of uninitialized pointer access
and other temporal errors. Before each function
call, code is added to decrements stack pointer by
a small random value. After the function call, this
padding is removed. The padding size is a random
number generated at runtime, so it will vary for each
function invocation.

2.4 Heap Transformations

To modify the base address of the heap, code is
added to make a request for a large data block before
the first heap allocation request is made. The details
of this step will vary with the underlying malloc

implementation, and are described later on.
To randomize the relative distance between

heap objects, calls to malloc() are intercepted by
a wrapper function, and the size of the request in-
creased by a random amount, currently between 0%

and 30%.
Additional randomizations are possible as well.

For instance, we can intercept calls to free, so that
some of the freed memory is not passed on to mal-
loc, but simply result in putting the the buffer in a
temporary buffer. The implementation of the mal-
loc wrapper can be modified to perform allocations
from this buffer, instead of passing on the request to
malloc. Since heap objects tend to exhibit a signif-
icant degree of randomness naturally, we have not
experimented with this transformation.

2.5 DLL Transformations

Ideally, DLLs should be handled in the same way as
executable code: the order of functions should be
randomized, and the order of static variables within
the libraries should be randomized. However, DLLs
are shared across multiple programs. Randomiza-
tion at the granularity of functions, if performed at
load time on DLLs, will create copies of these DLLs,
and thus rule out sharing. To enable sharing, ran-
domization can be performed on the disk image of
the library rather than at load time. Such random-
ization has to be performed periodically, e.g., at ev-
ery restart of the system.

A second potential issue with DLLs is that their
source code may not be available. In this case, the
base address of the DLL can be randomized in a
manner similar to [25, 4]. However, this approach
does not provide sufficient range of randomization
on 32-bit architectures. In particular, with a page
size of 4096 (= 212) bytes on Linux, uncertainty in
the base address of a library cannot be much larger
than 216, which makes them susceptible to brute-
force attacks [29]. We address this problem by a
link-time transformation to prepend each DLL with
junk code of random size between 0 and page size.
The size of this junk code must be a multiple of 4, so
this approach increases the space of randomization
to 216 ∗ 212/4 = 226.

2.6 Other Randomizations

Randomization of PLT and GOT. In a dynami-
cally linked ELF executable, calls to shared library
functions are resolved at runtime by the dynamic
linker. The GOT (global offset table) and PLT
(procedure linkage table) play crucial roles in res-
olution of library functions. The GOT stores the
addresses of external functions, and is part of the
data segment. The PLT, which is part of the code
segment, contains entries that call addresses stored
in the GOT.

From the point of view of an attacker looking
to access system functions such as execve, the PLT



and GOT provide “one-stop shopping,” by conve-
niently collecting together the memory locations of
all system functions in one place. For this reason,
they have become a common target for attacks. For
instance,

• if an attacker knows the absolute location of the
PLT, then she can determine the location within
the PLT that corresponds to the external function
execve, and use this address to overwrite a return
address in a stack-smashing attack. Note that
this attack works even if the locations of all func-
tions in the executable and libraries have been
randomized

• if an attacker knows the absolute location of the
GOT, she can calculate the location correspond-
ing to a commonly used function such as the read

system call, and overwrite it with a pointer to at-
tack code injected by her. This would result in
the execution of attack code when the program
performs a read.

It is therefore necessary to randomize the locations
of the PLT and GOT, as well as the relative order
of entries in these tables. However, since the GOT
and PLT are generated at link-time, we cannot con-
trol them using source code transformation. One
approach for protecting the GOT is to use the ea-
ger linking option, and then write-protect it at the
beginning of the main program. An alternative ap-
proach that uses lazy linking (which is the default
on Linux) is presented in [33].

The main complication in relocating the PLT
is to ensure that any references in the program code
to PLT entries be relocated. Normally, this can be
very difficult, because there is no way to determine
through a static analysis of a binary whether a con-
stant value appearing in the code refers to a func-
tion, or is simply an integer constant. However, our
transformation has already addressed this problem:
every call to an entry e in the PLT will actually be
made using a function pointer e ptr in the trans-
formed code. As a result, we treat each entry in the
PLT as if it is a function, and relocate it freely, as
long as the e ptr is correctly updated.

Randomization of read-only data. The read-only
data section of a program’s executable consists of
constant variables and arrays whose contents are
guaranteed not to change when the program is being
run. Attacks which corrupt data cannot harm read-
only data. However, if their location is predictable,
then they may be used in some attacks that need
meaningful argument values, e.g., a typical return-
to-libc attack will modify a return address on the
stack to point to execve, and put pointer arguments

to execve on the stack. For this attack to succeed,
an attacker has to know the absolute location of a
string constant such as /bin/bash which may exist
in the read-only section.

Note that our approach already makes return-
to-libc attacks very difficult. Nevertheless, it is pos-
sible to make it even more difficult by randomizing
the location of potential arguments in such attacks.
This can be done by introducing variables in the
program to hold constant values, and then using
the variables as arguments instead of the constants
directly. When this is done, our approach will au-
tomatically relocate these constants.

3 Implementation

The main component of our implementation is a
source code transformer which uses CIL [23] as the
front-end, and Objective Caml as the implementa-
tion language. CIL translates C code into a high-
level intermediate form which can be transformed
and then emitted as C source code, considerably fa-
cilitating the implementation of our transformation.

Our implementation also includes a small
platform-specific component that supports transfor-
mations involving code and DLLs.

The implementation of these components are
described in greater detail below. Although the
source-code transformation is fairly easy to port to
different OSes, the description below refers specif-
ically to our implementation on an x86/Linux sys-
tem.

3.1 Static Data Transformations

Static data can be initialized or uninitialized. In an
ELF executable, the initialized data is stored in the
.data section, and the uninitialized data is stored
in the .bss section. For uninitialized data, there is
no physical space required in the executable. In-
stead, the executable only records the total size of
the .bss section. At load-time, the specified amount
of memory is allocated and initialized with zeroes.

In the transformed program, initializations
have to be performed explicitly in the code. First,
all newly introduced pointer variables should be ini-
tialized to point to the locations allocated to hold
the values of the original static variables. Next,
these variables need to be initialized. We illustrate
these transformations through an example:

int a = 1;

char b[100];

extern int c;

void f() {

while (a < 100) b[a] = a++;



}

We transform the above declarations, and also add
an initialization function to allocate memory for the
variables defined in the source file as shown below:

int *a_ptr;

char (*b_ptr) [100];

extern int *c_ptr;

void __attribute__ ((constructor)) data_init(){

struct {

void *ptr;

unsigned int size;

BOOL is_buffer;

} alloc_info[2];

alloc_info[0].ptr = (void *) &a_ptr;

alloc_info[0].size = sizeof(int);

alloc_info[0].is_buffer = FALSE;

alloc_info[1].ptr = (void *) &b_ptr;

alloc_info[1].size = sizeof(char [100]);

alloc_info[1].is_buffer = TRUE;

static_alloc(alloc_info, 2);

(*a_ptr) = 1;

}

void f() {

while ((*a_ptr) < 100)

(*b_ptr)[(*a_ptr)] = (*a_ptr)++;

}

For the initialization function data init(), we
use constructor attribute so that it is invoked au-
tomatically before execution enters main(). Each
element in the array alloc info stores information
about a single static variable, including the loca-
tion of its pointer variable, its size, etc. Mem-
ory allocation is done by the function static alloc,
which works as follows. First, it allocates the re-
quired amount of memory by using a mmap. (Note
that mmap allows its caller to specify the start ad-
dress and length of a segment, and this capabil-
ity is used to randomize the base address of static
variables.) Second, it randomly permutes the or-
der of static variables specified in alloc info, and
introduces gaps and protected memory sections in-
between some variables. Finally, it zeroes out the
memory allocated to static variables. After the call
to static alloc, code is added to initialize those
static variables that are explicitly initialized.

Other than the initialization step, the rest of
the transformation is very simple: replace the oc-
currence of each static variable to use its associ-
ated pointer variable, i.e., replace occurrence of v

by (*v ptr).
The data segment might contain other sec-

tions included by the static linker. Of these sec-
tions, .ctors, .dtors and .got contain code point-
ers. Therefore we need to protect these sections,
or otherwise attackers can corrupt them to hijack
program control. The sections .dtors and .ctors,
which contain global constructors and destructors,
can be put into a read-only segment by changing a
linker script option.

Section .got contains GOT, whose randomiza-
tion was discussed in the previous section in the
context of randomization of PLT (See Section 2.6).

All of the v ptr variables are write-protected
by initialization code that is introduced into main.
This code first figures out the boundaries of the data
segment, and then uses the mprotect system call to
apply the write protection.

3.2 Code Transformations

Code transformation mainly involves converting di-
rect function calls into indirect ones. We store func-
tion pointers in an array, and dereference elements
from this array to make the function calls. The de-
tails can be understood with an example. Consider
a source file containing following piece of code:

char *f();

void g(int a) { ... }

void h() {

char *str;

char *(*fptr)();

...

fptr = &f;

str = (*fptr)();

g(10);

}

The above code will be transformed as follows:

void *const func_ptrs[] =

{M1, M2, M3, M4, (void *)&f, (void *)&g,

M5, M6, M7, M8};

char *f();

void g(int a) { ... }

void h() {

char *str;

char *(*fptr)();

...

fptr = (char *(*)())func_ptrs[4];

str = (*fptr)();

(*((void (*)(int)) (func_ptrs[5])))(10);

}

The function pointer array in each source file
contains locations of functions used in that file.
Due to the const modifier, the array becomes part
of the .rodata section in the code segment of the



corresponding ELF executable, and is hence write-
protected.

The func ptrs array is bounded on each end
with a distinctive, 128-bit pattern that is recorded
in the marker variables M1 through M8. This pat-
tern is assumed to be unique in the binary, and
can be easily identified when scanning the binary.
These markers simplify binary transformations, as
we no longer need to disassemble the binary for the
purpose of function-reordering transformation. In-
stead, the original locations of functions can be iden-
tified from the contents of this array. By sorting
the array elements, we can identify the beginning
as well as the end of each function. (The end of a
function is assumed to just precede the beginning
of the next function in the sorted array.) Now, the
binary transformation simply needs to randomly re-
order function bodies, and change the content of the
func ptr array to point to these new locations. We
adapted the LEEL binary-editing tool [35] for per-
forming this code transformation.

In our current implementation, we do not re-
order functions at load time. Instead, the same
effect is achieved by modifying the executable pe-
riodically.

3.3 Stack Transformations

In our current implementation, the base of the
stack is randomized by decrementing a large num-
ber from the stack pointer value. This is done in the
libc start main routine, and hence happens before

the invocation of main. Other stack-related transfor-
mations are implemented using a source-code trans-
formation. Transformation of buffer-type local vari-
ables is performed in a manner similar to that of
static variables. The only difference is that their
memory is allocated on the shadow stack.

Introduction of random-sized gaps between
stack frames is performed using the alloca function,
which is converted into inline assembly code by gcc.
There are two choices on where this function is in-
voked: (a) immediately before calling a function, (b)
immediately after calling a function, i.e., at the be-
ginning of the called function. Note that option (b)
is weaker than option (a) in a case where a function
f is called repeatedly within a loop. With (a), the
beginning of the stack frame will differ for each call
of f . With (b), all calls to f made within this loop
will have the same base address. Nevertheless, our
implementation uses option (b), as it works better
with some of the compiler optimizations.

Handling setjmp/longjmp. The implementation of
shadow stack needs to consider subroutines such

as setjmp() and longjmp(). A call to setjmp()

stores the program context which mainly includes
the stack pointer, the frame pointer and the pro-
gram counter. A subsequent call to longjmp() re-
stores the program context and the control is trans-
ferred to the location of the setjmp() call. To re-
flect the change in the program context, the shadow
stack needs to be modified. Specifically, the top
of shadow stack needs to be adjusted to reflect the
longjmp. This is accomplished by storing the top of
the shadow stack as a local variable in the regular
stack and restoring it at the point of function return.
As a result, the top of shadow stack will be prop-
erly positioned before the first allocation following
the longjmp. (Note that we do not need to change
the implementation of setjmp or longjmp.)

3.4 Heap Transformations

Heap-related transformations may have to be imple-
mented differently, depending on how the underly-
ing heap is implemented. For instance, suppose that
a heap implementation allocates as much as twice
the requested memory size. In this case, randomly
increasing a request by 30% will not have much ef-
fect on many memory allocation requests. Thus,
some aspects of randomization have to be matched
to the underlying heap implementation.

For randomizing the base of heap, we could
make a dummy malloc() call at the beginning of
program execution, requesting a big chunk of mem-
ory. However, this would not work for malloc() as
implemented in GNU libc: for any chunk larger
than 4K, GNU malloc returns a separate memory
region created using the mmap system call, and hence
this request doesn’t have any impact on the loca-
tions returned by subsequent malloc’s.

We note that malloc uses the brk system call
to allocate heap memory. This call simply changes
the end of the data segment. Subsequent requests to
malloc are allocated from the newly extended region
of memory. In our implementation, a call to brk is
made before any malloc request is processed. As
a result, locations returned by subsequent malloc

requests will be changed by the amount of memory
requested by the previous brk. The length of the
extension is a random number between 0 and 108.
The extended memory is write-protected using the
mprotect system call.

In addition, each malloc request is increased by
a random factor as described earlier. This change is
performed in a wrapper to malloc that is incorpo-
rated in the modified C library used by our imple-
mentation.



Program Workload

Apache-1.3.33 Webstone 2.5, client connected over 100Mbps network.

sshd-OpenSSH 3.5p1 Run a set of commands from ssh client.

wu-ftpd-2.8.0 Run a set of different ftp commands.

bison-1.35 Parse C++ grammar file.

grep-2.0 Search a pattern in files of combined size 108MB.

bc-1.06 Find factorial of 600.

tar-1.12 Create a tar file of a directory of size 141MB.

patch-2.5.4 Apply a 2MB patch-file on a 9MB file.

enscript-1.6.4 Convert a 5.5MB text file into a postscript file.

ctags-5.4 Generate tag file of 6280 C source code files with total 17511 lines.

gzip-1.2.4 Compress a 12 MB file.

Figure 1: Test programs and workloads

3.5 DLL transformations

In our current implementation, DLL transforma-
tions are limited to changing their base addresses.
Other transformations aimed at relative address
randomization are not performed currently.

Base address randomization is performed at
load-time and link-time. Load-time randomization
has been implemented by modifying the dynamic
linker ld.so so that it ignores the “preferred ad-
dress” specified in a DLL, and maps it at a random
location. Note that there is a boot-strapping prob-
lem with randomizing ld.so itself. To handle this
problem, our implementation modifies the preferred
location of ld.so, which is honored by the operat-
ing system loader. This approach negatively im-
pacts the ability to share ld.so among executables,
but this does not seem to pose a significant perfor-
mance problem due to the relatively small size and
infrequent use (except during process initialization)
of this library.

Link-time transformation is used to address the
limited range of randomization that can be achieved
at load-time. In particular, the load-time addresses
are limited to be multiples of page size. To pro-
vide finer granularity changes to the base address,
our implementation uses the “-r” option of ld to
generate a relocatable object file for the DLL. Peri-
odically, the relocatable version of the DLL is linked
with random-sized (between 0 and 4K bytes) junk
code to produce a new DLL that is used by all pro-
grams. We envision that this relinking step will be
performed periodically, or perhaps once on every
system restart.

Note that this approach completely avoids dis-
tribution of source code and (expensive) recompi-
lation of libraries. Moreover, it allows sharing of
library code across multiple processes.

3.6 Other Implementation Issues

Random number generation. Across all the trans-
formations, code for generation of random numbers
is required to randomize either the base addresses
or the relative distances. For efficiency, we use a
pseudo-random numbers rather than cryptographi-
cally random numbers. The pseudo-random number
generator is seeded with a real random number read
from /dev/urandom.

Debugging support. Our transformation provides
support for some of the most commonly used debug-
ging features such as printing a stack trace. Note
that no transformations are made to normal (i.e.,
non-buffer) stack variables. Symbol table informa-
tion is appropriately updated after code rewriting
transformations. Moreover, conventions regarding
stack contents are preserved. These factors enable
off-the-shelf debuggers to produce stack traces on
transformed executables.

Unfortunately, it isn’t easy to smoothly han-
dle some aspects of transformation for debugging
purposes. Specifically, note that accesses to global
variables (and buffer-type local variables) are made
using an additional level of indirection in the trans-
formed code. A person attempting to debug a trans-
formed program needs to be aware of this. In partic-
ular, if a line in the source code accesses a variable v,
he should know that he needs to examine (*v ptr)

to get the contents of v in the untransformed pro-
gram. Although this may seem to be a burden, we
point out that our randomizing transformation is
meant to be used only in the final versions of code
that are shipped, and not in debugging versions.

4 Performance Results

We have collected data on the performance impact
of the randomizing transformations. The transfor-
mations were divided into the following categories,
and their impact studied separately.



Degradation (%)
#clients Connection Response

Rate Time

2-clients 1 0

16-clients 0 0

30-clients 0 1

Figure 2: Performance overhead for Apache.

Orig. % Overheads
Program CPU Stack Static Code All

time

grep 0.33 0 0 0 2

tar 1.06 2 2 1 4

patch 0.39 2 0 0 4

wu-ftpd 0.98 2 0 6 9

bc 5.33 7 1 2 9

enscript 1.44 8 3 0 10

bison 0.65 4 0 7 12

gzip 2.32 6 9 4 17

sshd 3.77 6 10 2 19

ctags 9.46 10 3 8 23

Avg. Overhead 5 3 3 11

Figure 3: Performance overheads for benchmarks.

• Stack: transformations which randomize the
stack base, move buffer-type variables into the
shadow stack, and introduce gaps between stack
frames.

• Static data: transformations which randomize
locations of static data.

• Code: transformations which reorder functions.

• All: all of the above, plus randomizing transfor-
mations on heap and DLLs.

Figure 1 shows the test programs and their
workloads. Figure 3 shows performance overheads
due to each of the above categories of transforma-
tions. The original and the transformed programs
were compiled using gcc 3.2.2 with -O2 optimization,
and executed on a desktop running Red Hat Linux
9.0 with 1.7GHz Pentium IV processor, and 512MB
RAM. Execution times were averaged over 10 runs.

For Apache server, we studied its performance
separately after applying all the transformations.
To measure performance of the Apache server ac-
curately, heavy traffic from clients is required. We
generated this using WebStone [32], a standard web
server benchmark. We used version 2.5 of this
benchmark, and ran it on a separate computer that
was connected to the server through a 100Mbps net-
work. We ran the benchmark with two, sixteen and
thirty clients. In the experiments, the clients were
simulated to access the web server concurrently, ran-

Program %age of variable accesses
Local Global

(non-buffer) (buffer) (static)

grep 99.9 0.004 0.1

bc 99.3 0.047 0.6

tar 96.5 0.247 3.2

patch 91.8 1.958 6.2

enscript 90.5 0.954 8.5

bison 88.2 0.400 10.9

ctags 72.9 0.186 26.9

gzip 59.2 0.018 40.7

Figure 4: Distribution of variable accesses

Program # calls calls/ Shadow
sec. stack

allocations
×106

×106 per sec. per call

grep 0.02 0.06 24K 0.412

tar 0.43 0.41 57K 0.140

bison 2.69 4.11 423K 0.103

bc 22.56 4.24 339K 0.080

enscript 9.62 6.68 468K 0.070

patch 3.79 9.75 166K 0.017

gzip 26.72 11.52 0K 0.000

ctags 251.63 26.60 160K 0.006

Figure 5: Calls and shadow stack allocations

domly fetching html files of size varying from 500
bytes to 5MB. The benchmark was run for a dura-
tion of 30 minutes, and the results were averaged
across ten such runs. Results were finally rounded
off to the nearest integral values.

We analyzed the performance impact further
by studying the execution profile of the programs.
For this, we instrumented programs to collect ad-
ditional statistics on memory accesses made by the
transformed program. Specifically, the instrumen-
tation counts the total number of accesses made
to local variables, variables on shadow stack, global
variables and so on.

Figure 4 shows the dynamic profile information.
(We did not consider servers in this analysis due
to the difficulties involved in accurately measuring
their runtimes.) From this result, we see that for
most programs, the vast majority of memory ac-
cesses are to local variables. Our transformation
doesn’t introduce any overheads for local variables,
which explains the low overheads for most programs
in Figure 3. Higher overheads are reported for pro-
grams that perform a significant number of global
variable accesses, where an additional memory ac-
cess is necessitated by our transformation.



A second source of overhead is determined by
the number of function calls made by a program.
This includes the overhead due to the additional
level of indirection for making function calls, the
number of allocations made on shadow stack, and
the introduction of inter-stack-frame gap. To ana-
lyze this overhead, we instrumented the transformed
programs to collect number of function calls and
number of shadow stack allocations. The results,
shown in Figure 5, illustrate that programs that
make a large number of function calls per second,
e.g., ctags and gzip incur higher overheads. Surpris-
ingly, bison also incurs high overheads despite mak-
ing small number of function calls per second. So
we analyzed bison’s code, and found that it contains
several big switch statements. This could be the
main reason behind the high overheads, because our
current implementation performs sequential lookup
for the case values. However, with binary search
based implementation, we should be able to get bet-
ter performance.

We point out that the profile information can-
not fully explain all of the variations in overheads,
since it does not take into account some of the fac-
tors involved, such as compiler optimizations and
the effect of cache hits (and misses) on the addi-
tional pointer dereferences introduced in the trans-
formed program. Nevertheless, the profile informa-
tion provides a broad indication of the likely perfor-
mance overheads due to each program.

5 Effectiveness

Effectiveness can be evaluated experimentally or an-
alytically. Experimental evaluation involves run-
ning a set of well-known exploits (such as those
reported on Securityfocus.com) against vulnera-
ble programs, and showing that our transforma-
tion stops these exploits. We have not carried out
a detailed experimental evaluation of effectiveness
because today’s attacks are quite limited, and do
not exercise our transformation at all. In particu-
lar, they are all based on a detailed knowledge of
program memory layout. We have manually ver-
ified that our transformation changes the memory
locations of global variables, local variables, heap-
allocated data and functions for each of the pro-
grams discussed in the previous section. It follows
from this that none of the existing buffer overflow
attacks will work on the transformed programs.

In contrast with the limitations of an exper-
imental approach, an analytical approach can be
based on novel attack strategies that haven’t been
seen before. Moreover, it can provide a measure of

protection (in terms of the probability of a success-
ful attack), rather than simply providing an “yes”
or “no” answer. For this reason, we rely primar-
ily on an analytical approach in this section. We
first analyze memory error exploits in general, and
then discuss attacks that are specifically targeted at
randomization.

5.1 Memory Error Exploits

All known memory error exploits are based on cor-
rupting some data in the writable memory of a pro-
cess. These exploits can be further subdivided based
on the attack mechanism and the attack effect. The
primary attack mechanisms known today are:

• Buffer overflows. These can be further sub-
divided, based on the memory region affected:
namely, stack, heap or static area overflows. We
note that integer overflows also fall into this cat-
egory.

• Format string vulnerabilities.

Attack effects can be subdivided into:

• Non-pointer corruption. This category includes
attacks that target security-critical data, e.g., a
variable holding the name of a file executed by a
program.

• Pointer corruption. Attacks in this category are
based on overwriting data or code pointers. In the
former case, the overwritten value may point to
injected data that is provided by the attacker, or
existing data within the program memory. In the
latter case, the overwritten value may correspond
to injected code that is provided by the attacker,
or existing code within the process memory.

Given a specific vulnerability V , the probability
of its successful exploitation is given by P (Owr) ∗
P (Eff), where P (Owr) denotes the probability that
V can be used to overwrite a specific data item of in-
terest to the attacker, and P (Eff) denotes the prob-
ability that the overwritten data will have the effect
intended by the attacker. In arriving at this for-
mula, we make either of the following assumptions:

• (a) the program is re-randomized after each failed
attack. This happens if the failure of the effect
causes the victim process to crash, (say, due to a
memory protection fault), and it has to be explic-
itly restarted.

• (b) the attacker cannot distinguish between the
failure of the overwrite step from the failure of
the effect. This can happen if (1) the overwrite
step corrupts critical data that causes an imme-
diate crash, making it indistinguishable from a
case where target data is successfully overwrit-
ten, but has an incorrect value that causes the



program to crash, or (2) the program incorpo-
rates error-handling or defense mechanisms that
explicitly masks the difference between the two
steps.

Note that (a) does not hold for typical server
programs that spawn children to handle requests,
but (b) may hold. If neither of them hold, then
the probability of a successful attack is given by
min(P (Owr), P (Eff)).

5.1.1 Estimating P (Owr)

We estimate P (Owr) separately for each attack
type.

5.1.1.1 Buffer overflows

Stack buffer overflows. These overflows typically
target the return address, saved base pointer or
other pointer-type local variables. Note that the
shadow stack transformation makes these attacks
impossible, since all buffer-type variables are on the
shadow stack, while the target data is on a different
stack.

Attacks that corrupt one buffer-type variable
by overflowing the previous one are possible, but
unlikely. As shown by our implementation results,
very few buffer-type variables are allocated on the
stack. Moreover, it is unusual for these buffers to
contain pointers (or other security-critical data) tar-
geted by an attacker.

Static buffer overflows. As in the case of stack
overflows, the likely targets are simple pointer-type
variables. However, such variables have been sepa-
rated by our transformation from buffer-type vari-
ables, and hence they cannot be attacked.

For attacks that use overflow from one buffer
to the next, the randomization introduced by our
transformation makes it difficult to predict the tar-
get that will be corrupted by the attack. Moreover,
unwritable pages have been introduced periodically
in-between buffer-type static variables, and these
will completely rule out some overflows. To estimate
the probability of successful attacks, let M denote
the maximum size of a buffer overflow, and S de-
note the granularity at which inaccessible pages are
introduced between buffer variables. Then the max-
imum size of a useful attack is min(M, S). Let N
denote the total size of memory allocated for static
variables. The probability that the attack success-
fully overwrites a data item intended by the attacker
is given by min(M, S)/N . With nominal values of
4KB for the numerator and 1MB for the denomi-
nator, the likelihood of success is about 0.004.

Heap overflows. In general, heap allocations are
non-deterministic, so it is hard to predict the effect
of overflows from one heap block to the next. This
unpredictability is further increased by our trans-
formation to randomly increase the sizes of heap al-
location requests. However, there exist control data
in heap blocks, and these can be more easily and re-
liably targeted. For instance, heap overflow attacks
generally target two pointer-valued variables that
are used to chain free blocks together, and appear
at their beginning.

The transformation to randomly increase
malloc requests makes it harder to predict the start
address of the next heap block, or its allocation
state. However, the first difficulty can be easily
overcome by writing alternating copies of the tar-
get address and value many times, which ensures
that the control data will be overwritten with 50%
probability. We believe that the uncertainty on allo-
cation state doesn’t significantly decrease the prob-
ability of a successful attack, and hence we con-
clude that our randomizations do not significantly
decrease P (Owr). However, as discussed below,
P (Eff) is very low for such attacks.

5.1.1.2 Format string attacks. These attacks ex-
ploit the (obscure) "%n" format specifier. The spec-
ifier needs an argument that indicates the address
into which the printf-family of functions will store
the number of characters that have been printed.
This address is specified by the attacker as part
of the attack string. Note that in the trans-
formed program, the argument corresponding to the
"%n" format specifier will be taken from the main
stack, whereas the attack string will correspond to
a buffer-type variable, and be held on the shadow
stack (or the heap or in a global variable). As a re-
sult, there is no way for the attacker to directly con-
trol the address into which printf-family of functions
will write, and hence the usual form of format-string
attack will fail.

It is possible, however, that some useful data
pointers may be on the stack, and they could be
used as the target of writes. The likelihood of
finding such data pointers on the stack is relatively
low, but even when they do exist, the inter-stack
frame gaps of the order of 28 bytes reduces the
likelihood of successful attacks to 4/28 = 0.016.
This factor can be further decreased by increasing
the size of inter-frame gaps in functions that call
printf-family of functions.

In summary, the approach described in this paper
significantly reduces the success probability of most
likely attack mechanisms, which include (a) over-



flows from stack-allocated buffers to corrupt return
address or other pointer-type data on the stack, (b)
overflows from static variable to another, and (c)
format-string attacks. This should be contrasted
with previous ASR techniques that have no effect
at all on P (Owr). Their preventive ability is based
entirely on reducing P (Eff) discussed in the next
section.

5.1.2 Estimating P (Eff)

5.1.2.1 Corruption of non-pointer data. This
class of attacks target security-critical data such as
user-ids and file names used by an application. With
our technique, as well as previous ASR techniques, it
can be seen that P (Eff) = 1, as they have no bear-
ing on the interpretation of non-pointer data. The
most likely location of such security-critical data is
the static area, where our approach provides protec-
tion in the form of a small P (Owr). This contrasts
with previous ASR approaches that provide no pro-
tection from this class of attacks.

5.1.2.2 Pointer corruption attacks.

Corruption with pointer to existing data. The
probability of correctly guessing the absolute ad-
dress of any data object is determined primarily by
the amount of randomization in the base addresses
of different data areas. This quantity can be in
the range of 227, but since the objects will likely
be aligned on a 4-byte boundary, the probability of
successfully guessing the address of a data object is
in the range of 2−25.

Corruption with pointer to injected data. Guess-
ing the address of some buffer that holds attacker-
provided data is no easier than guessing the address
of existing data objects. However, the odds of suc-
cess can be improved by repeating the attack data
many times over. If it is repeated k times, then the
odds of success is given by k × 2−25. If we assume
that the attack data is 16 bytes and the size of the
overflow is limited to 4K, then k has the value of
28, and P (Eff) is 2−17.

Corruption with pointer to existing code. The
probability of correctly guessing the absolute ad-
dress of any code object is determined primarily by
the amount of randomization in the base addresses
of different code areas. In our current implemen-
tation, the uncertainty in the locations of functions
within the executable is 216/4 = 214. We have al-
ready argued that the randomization in the base
address of DLLs can be as high as 2−26, so P (Eff)
is bounded by 2−14.

This probability can be decreased by perform-

ing code randomizations at load-time. When code
randomizations are performed on disk images, the
amount of “gaps” introduced between functions is
kept low (on the order of 64K in the above calcu-
lation), so as to avoid large increases in file sizes.
When the randomization is performed in main mem-
ory, the space of randomization can be much larger,
say, 128MB, thereby reducing the probability of suc-
cessful attacks to 2−25.

Corruption with pointer to injected code. Code can
be injected only in data areas, and it does not have
any alignment requirements (on x86 architectures).
Therefore, the probability of guessing the address
of the injected code is 2−27. The attacker can in-
crease the success probability by using a large NOP-
padding before the attack code. If a padding of
the order of 4KB is used, then P (Eff) becomes
4K × 2−27 = 2−15.

5.2 Attacks Targeting ASR

Previous ASR approaches were vulnerable to the
classes of attacks described below. We describe how
the approach presented in this paper fares against
them.

5.2.1 Information leakage attacks

Programs may contain vulnerabilities that allow an
attacker to “read” the memory of a victim pro-
cess. For instance, the program may have a for-
mat string vulnerability such that the vulnerable
code prints into a buffer that is sent back to the
attacker. (Such vulnerabilities are rare, as pointed
out in [29].) Armed with this vulnerability, the at-
tacker can send a format string such as "%x %x %x

%x", which will print the values of 4 words near the
top of the stack at the point of the vulnerability. If
some of these words are known to point to specific
program objects, e.g., a function in the executable,
then the attacker knows the locations of these ob-
jects.

We distinguish between two kinds of informa-
tion leakage vulnerabilities: chosen pointer leakage
and random pointer leakage. In the former case, the
attacker is able to select the object whose address
is leaked. In this case, the attacker can use this
address to overwrite a vulnerable pointer, thereby
increasing P (Eff) to 1. With random pointer leak-
age, the attacker knows the location of some object
in memory, but not the one of interest to him. Since
relative address randomization makes it impossible
in general to guess the location of one memory ob-
ject from the location of another memory object,
random pointer leakages don’t have the effect of in-



creasing P (Eff) significantly.
For both types of leakages, note that the at-

tacker still has to successfully exploit an overflow
vulnerability. The probability of success P (Owr)
for this stage was previously discussed.

The specific case of format-string information
leakage vulnerability lies somewhere between ran-
dom pointer leakage and chosen pointer leakage.
Thus, the probability of mounting a successful at-
tack based on this vulnerability is bounded by
P (Owr).

5.2.2 Brute force and guessing attacks

Apache and similar server programs pose a chal-
lenge for address randomization techniques, as they
present an attacker with many simultaneous child
processes to attack, and rapidly re-spawn processes
which crash due to bad guesses by the attacker. This
renders them vulnerable to attacks in which many
guesses are attempted in a short period of time. In
[29], these properties were exploited to successfully
attack a typical Apache configuration within a few
minutes. This attack doesn’t work with our ap-
proach, as it relies on stack smashing. A somewhat
similar attack could be mounted by exploiting some
other vulnerability (e.g., heap overflow) and making
repeated attempts to guess the address of some ex-
isting code. As discussed earlier, this can be done
with a probability between 2−14 to 2−26. However,
the technique used in [29] for passing arguments to
this code won’t work with heap overflows.

5.2.3 Partial pointer overwrites

Partial pointer overwrites replace only the lower
byte(s) of a pointer, effectively adding a delta to
the original pointer value. These are made possible
by off-by-one vulnerabilities, where the vulnerable
code checks the length of the buffer, but contains an
error that underestimates the size of buffer needed
by 1.

These attacks are particularly effective against
randomization schemes which only randomize the
base address of each program segment and preserve
the memory layout. By scrambling the program lay-
out, our approach negates any advantage of a partial
overwrite over a full overwrite.

6 Related Work

Runtime Guarding These techniques transform
a program to prevent corruption of return addresses
or other specific values. Stackguard [10] provides
a gcc patch to generate code that places canary
values around the return address at runtime, so

that any overflow which overwrites the return ad-
dress will also modify the canary value, enabling
the overflow to be detected. StackShield [2] and
RAD [7] provide similar protection, but keep a sep-
arate copy of the return address instead of using
canary values. Libsafe and Libverify [2] are dy-
namically loaded libraries which provide protection
for the return address without requiring recompi-
lation. ProPolice [13] further improves these ap-
proaches to protect pointers among local variables.
FormatGuard [8] transforms source code to provide
protection from format-string attacks.

The PointGuard [9] approach randomizes (“en-
crypts”) stored pointer values. It provides protec-
tion against pointer-related attacks, but not against
attacks that modify non-pointer data. Moreover,
the approach does not consider features of the C lan-
guage, such as type casts between pointers and in-
tegers, and aliasing of pointer-valued variables with
variables of other types. As a result, PointGuard
may break such programs.

Runtime Bounds and Pointer Checking Sev-
eral techniques [21, 1, 30, 18, 16, 19, 24, 28, 34] have
been developed to prevent buffer overflows and re-
lated memory errors by checking every memory ac-
cess. These techniques currently suffer from one or
more of the following drawbacks: runtime overheads
that can often be over 100%, incomaptibility with
legacy C-code, and changes to the memory model
or pointer semantics.

Compile-Time Analysis Techniques These
techniques [15, 27, 31, 11, 22] analyze a program’s
source code to detect potential array and pointer
access errors. Although useful for debugging, they
are not very practical since they suffer from high
false alarm rates, and often do not scale to large
programs.

Randomizing Code Transformations Address
randomization is an instance of the broader idea
of introducing diversity in nonfunctional aspects of
software, an idea suggested by Forrest, Somayaji,
and Ackley [14]. Recent works have applied it to
randomization of address space [25, 4, 33], operating
system functions [6], and instruction sets [20, 3]. As
compared to instruction set randomization, which
offers protection from injected code attacks, address
space randomization offers broader protection – it
can defend against existing code attacks, as well as
attacks that corrupt security-critical data.

Previous approaches in address space random-
ization were focused only on randomizing the base
address of different sections of memory. In contrast,
the approach developed in this paper implements



randomization at a much finer granularity, achieving
relative as well as absolute address randomization.
Moreover, it makes certain types of buffer overflows
impossible. Interestingly, our implementation can
achieve all of this, while incurring overheads that
are about the same as the previous techniques [4].

7 Conclusion

Address space randomization (ASR) is an tech-
nique which provides broad protection from mem-
ory error exploits in C and C++ programs. How-
ever, previous implementations of ASR have pro-
vided a relatively coarse granularity of randomiza-
tion, with many program objects sharing the same
address mapping, so that the relative distance be-
tween any two objects is likely to be the same in
both the original and randomized program. This
leaves the randomized program vulnerable to guess-
ing, partial pointer overwrite and information leak-
age attacks, as well as attacks that modify security-
critical data without corrupting any pointers. To
address this weakness, we presented a new ap-
proach in this paper that performs randomization
at the granularity of individual program objects
— so that each function, static variable, and lo-
cal variable has a uniquely randomized address, and
the relative distances between objects are highly
unpredictable. Our approach is implemented us-
ing a source-to-source transformation that produces
a self-randomizing program, which randomizes its
memory layout at load-time and runtime. This ran-
domization makes it very difficult for memory er-
ror exploits to succeed. We presented an analysis
to show that our approach can provide protection
against known as well as unknown types of memory
error exploits. We also analyzed the success prob-
abilities of typical attacks, and showed that they
are all very small. Our experimental results estab-
lish that comprehensive address space randomiza-
tion can be achieved with overheads that are com-
parable to coarser forms of ASR. Furthermore, the
approach presented in this paper is portable, com-
patible with legacy code, and supports basic debug-
ging capabilities that will likely be needed in soft-
ware deployed in the field. Finally, it can be se-
lectively applied to security-critical applications to
achieve an increase in overall system security even
in the absence of security updates to the underlying
operating system.
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