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Abstract
Program instrumentation techniques form the basis of many
recent software security defenses, including defenses against
common exploits and security policy enforcement. As com-
pared to source-code instrumentation, binary instrumenta-
tion is easier to use and more broadly applicable due to the
ready availability of binary code. Two key features needed
for security instrumentations are (a) it should be applied
to all application code, including code contained in various
system and application libraries, and (b) it should be non-
bypassable. So far, dynamic binary instrumentation (DBI)
techniques have provided these features, whereas static bi-
nary instrumentation (SBI) techniques have lacked them.
These features, combined with ease of use, have made DBI
the de facto choice for security instrumentations. However,
DBI techniques can incur high overheads in several common
usage scenarios, such as application startups, system-calls,
and many real-world applications. We therefore develop a
new platform for secure static binary instrumentation (PSI)
that overcomes these drawbacks of DBI techniques, while
retaining the security, robustness and ease-of-use features.
We illustrate the versatility of PSI by developing several
instrumentation applications: basic block counting, shadow
stack defense against control-flow hijack and return-oriented
programming attacks, and system call and library policy en-
forcement. While being competitive with the best DBI tools
on CPU-intensive SPEC 2006 benchmark, PSI provides an
order of magnitude reduction in overheads on a collection of
real-world applications.

1. Introduction
Program instrumentation has played a central role in exploit
detection/prevention, security policy enforcement, applica-
tion monitoring and debugging. Such instrumentation may
be performed either on source or binary code. Source code
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instrumentations can be more easily and extensively opti-
mized by exploiting higher level information such as types.
However, binary instrumentations are more widely applica-
ble since users have ready access to binaries. Moreover, se-
curity instrumentations should be applied to all code, includ-
ing all libraries, inline assembly code, and any code inserted
by the compiler/linker. Here again, binary based techniques
are advantageous.

Binary instrumentation can either be static or dynamic.
Static binary instrumentation (SBI) is performed offline on
binary files, whereas dynamic binary instrumentation (DBI)
operates on code already loaded into main memory. DBI
techniques disassemble and instrument each basic block just
before its first execution. DBI has been the technique of
choice for security instrumentation of COTS binaries. Pre-
vious works have used DBI for sandboxing [15, 17], taint-
tracking [23, 28], defense from return-oriented program-
ming (ROP) attacks [11, 12], and other techniques for hard-
ening benign code [16, 26]. This is because DBI platforms
provide several features that simplify instrumentation devel-
opment, while ensuring their security:
• Non-bypassable instrumentation. DBI tools check every

control-transfer to ensure that the target is instrumented,
and hence can block attempts to escape security checks
enforced by the instrumentation, e.g., by returning/jump-
ing to (i) data (code injection attacks), (ii) middle of an
instruction (typical ROP attacks), or (iii) into the middle
of added instrumentation or past its end.

• Completeness. DBI techniques instrument all executed
code, regardless of whether they reside in executables or
libraries. The alternative of omitting library instrumenta-
tion is unsatisfactory because the vast majority of code
executed by today’s applications resides in libraries, and
all of this code will remain unprotected.

• Ease of use. Instrumenting an application is as simple
as prefixing its invocation with the name of a wrapper
program. There is no need to explicitly instrument the
application prior to its run, nor is there a need to know
(and instrument) the libraries used by it. Moreover, DBI
platforms such as Pin [19], DynamoRIO [8] and Valgrind
[22] provide a convenient API that greatly simplifies the
development of new instrumentations (also called tools).

Previous SBI techniques have lacked these features, and
moreover, were targeted at specific problems such as control-
flow integrity (CFI) [2] or software fault isolation (SFI) [32].
Consequently, they don’t address the issues in developing a
general-purpose platform for binary instrumentation.



Main Results and Contributions
We present a general-purpose binary instrumentation plat-
form PSI that addresses the shortcomings of previous SBI
techniques. It combines the benefits of DBI with the advan-
tages that are unique to SBI, including:
• the ability to trade off increased (offline) analysis/instru-

mentation time for faster runtime performance, and
• avoiding reliance on a potentially large and complex vir-

tual environment at runtime
Moreover, PSI provides low overheads across a wide range
of benchmarks, while avoiding some pitfalls of DBI plat-
forms such as high application startup times and high over-
heads for systems applications. Our key contributions are
summarized below.

Secure static instrumentation. Two key features needed
for security instrumentations are completeness (instrumenta-
tion should be applied to all code that can get executed) and
non-bypassability (instrumented code should not be able to
bypass or subvert the added instrumentation). Many previ-
ous SBI techniques, including Native Client [35], PittSFIeld
[20], PEBIL [18] and many others [2, 6, 14, 24, 36, 37], are
not complete for COTS binaries since they require additional
information (such as symbol or relocation information) for
correctly instrumenting binaries.

Among techniques applicable to stripped binaries, Reins
[33] and SecondWrite [4, 13] don’t instrument all libraries.
Moreover, several of these techniques, including Dyninst
[10], SecondWrite and Binary stirring [34], do not prevent
execution from escaping instrumentation since they do not
check the validity of targets such as return addresses. Al-
though our BinCFI [38] system performs such checks, it
implements a single hard-coded instrumentation, and hence
there is no general discussion or treatment of instrumenta-
tion non-bypassability.

A versatile, easy-to-use static instrumentation platform.
Our platform provides an easy-to-use API with convenient
abstractions for low-level instrumentation, including data
structures to capture instructions, basic blocks, and control-
flow graphs. We illustrate the API and demonstrate its ver-
satility by developing several instrumentation tools:
• Counting basic blocks: This conceptually simple example

has been used frequently to illustrate DBI platforms.
• System call policy enforcement: These policies are com-

monly used in security hardening and related applications.
• Shadow stack: This technique has been used by several

previous works to defend against stack-smashing [27] and
ROP [12]. While our instrumentation is similar to that of
ROPdefender [12], it provides much better performance.

On-demand instrumentation of libraries. SBI techniques
require all library dependences to be identified statically, and
these libraries need to be instrumented ahead of time; other-
wise, an instrumented application can fail at runtime. Tools

for determining library dependencies (e.g., ldd on Linux)
cannot identify libraries that are loaded after an application
begins execution. For a collection of popular real-world ap-
plications, more that 40% of library loads occurred after the
commencement of application execution. To support seam-
less instrumentation of such libraries, we have developed an
on-demand static instrumentation technique.

Good performance across a wide range of applications
We present a comparative performance evaluation of PSI
against the two leading DBI tools, namely DynamoRIO and
Pin. We summarize our results below:
• BB counting on SPEC 2006. PSI incurs an average over-

head of 69% on SPEC 2006 for basic-block counting,
compared with 53% for DynamoRIO and 97% for Pin.

• Shadow stack. PSI’s overhead is less than a quarter of that
reported by ROPdefender (18% vs 74%).

• lmbench Microbenchmark. The average overhead of PSI
is about 10 times smaller than DynamoRIO, and 200 times
smaller than Pin.

• A collection of real-world applications. PSI’s overheads
are about 7 to 13 times lower than DynamoRIO, and 60
times lower than Pin on several real-world applications,
including compilation, software updates, etc.
Our PSI platform will be available for download from

http://seclab.cs.stonybrook.edu/download.

Scope and Limitations. PSI is a general platform for the
instrumentation of COTS applications. It is targeted at be-
nign COTS binaries that do not employ obfuscation. If a
binary employs obfuscation (as is common with malware),
our disassembly technique can fail to detect all of its code, or
perform incorrect disassembly. However, since control flows
are checked at runtime, PSI will block all attempts to exe-
cute code that wasn’t disassembled and instrumented. Thus,
binaries employing obfuscation may fail at runtime due to
control-flow transfers being blocked, but they won’t be able
to bypass PSI.

Similar to most SBI techniques, PSI does not support self-
modifying code. In particular, any attempt to modify existing
code (or to transfer control to runtime-generated code) will
be denied, causing such applications to fail.

Our implementation targets x86/Linux, but our tech-
niques are generally applicable to other architectures as well.

2. Background
Disassembly. Two of the basic algorithms used for disas-
sembly are linear sweep and recursive disassembly. Linear
sweep begins at the binary entry point, and sequentially dis-
assembles instructions until the end. Data or padding embed-
ded within code will also get disassembled. With variable-
length instruction sets, this error can cascade past the data
region. Recursive disassembly avoids this problem by fol-
lowing the control-flow, and limiting disassembly to those
code fragments that are known to be reachable. However, it

http://seclab.cs.stonybrook.edu/download


often fails to discover all code, since some code is reach-
able only via code pointers whose values aren’t known stat-
ically. As a result, accurate disassembly of stripped binaries
has been a challenging problem for variable-length instruc-
tion sets such as x86. Indeed, this is another reason for the
popularity of DBI platforms, since they can side-step these
difficulties by limiting disassembly to one basic block at a
time, just before the block is executed for the first time.

Our BinCFI [38] work and binary stirring [34] have
shown that robust instrumentation can be achieved despite
the above challenges. Like many previous efforts in static
disassembly, these works combine elements of linear sweep
and recursive disassembly. Specific advances made in these
works were: (a) expanding the coverage of recursive dis-
assembly using static analysis techniques for code pointer
discovery, and (b) the development of instrumentation tech-
niques that tolerate disassembly of data. Our efforts were
also helped by the fact that compilers have become more
strict in avoiding data within code segments. As a result, we
have achieved 100% disassembly accuracy on many com-
plex binaries [38]. In PSI, we reused this disassembler.

Resolving Indirect Control Transfers. Insertion of instru-
mentation will cause the locations of subsequent code to
change. This means that statically computed function point-
ers will have incorrect values in an instrumented program,
pointing to code locations in the original rather than the in-
strumented code. DBI techniques solve this problem by per-
forming address translation of indirect control flow targets
at runtime. Our BinCFI work [38] uses the same approach,
and we reused it in PSI. When an address is not found in the
translation table, that indicates an attempt to transfer control
to an invalid destination, which will be blocked by PSI.

We point out BinCFI’s address translation approach is
modular, and is performed in two steps. In the first step, a
global translation table (GTT), maintained by our modified
loader, is used to translate the upper 20-bits of an address to
the entry point of a module-specific translation table (MTT)
routine. This MTT, which is generated at the time the module
is transformed by PSI, uses the remaining bits to look up the
corresponding address in the transformed module.

3. System Overview
PSI instruments executables as well as all of the shared li-
braries used by them. On each invocation, PSI takes a binary
file (executable or library) as input, and outputs an instru-
mented version of this binary. This invocation may occur
before execution, or on-the-fly during program execution.

Figure 1 shows the architecture of PSI. It consists of three
main components: a binary analyzer, an instrumentor and a
binary generator. The binary analyzer takes a binary as input,
disassembles it, and then constructs a control-flow graph.
This control-flow graph becomes the input for static analysis
and instrumentation components.
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Figure 1. Architecture Overview of PSI

The heart of PSI is the instrumentor, which provides an
expressive API for static binary instrumentation. Two lev-
els of API are supported. The low-level API operates at the
instruction level, and supports operations for inserting as-
sembly language snippets at desired points. The high-level
API allows insertion of calls to instrumentation functions
that may be written in a language such as C. This code is
compiled into a shared library, and our platform ensures that
these functions can be called in a secure manner from (and
only from) the calls inserted using the high-level instrumen-
tation API. This API is further described in Section 3.2.

PSI uses the address translator from BinCFI [38], but its
behavior can be modified using the instrumentation API.

The actual task of instrumentation is performed by in-
strumentation tools, which are programs that use the API
provided by the platform to instrument applications and the
libraries used by them.

Our API not only allows tools to control the instrumen-
tation phase, but also other phases such as static analysis,
address translation, etc. This allows instrumentation tools to
enhance these phases.

3.1 Non-bypassable Instrumentation
PSI ensures that the added instrumentation is non-bypassable
by enforcing the following properties.
• All direct and indirect control-flow transfers made from

the original code must target instructions in the original
code that were validly disassembled by the disassembler.

• If a snippet was specified for insertion before an instruc-
tion I , then all (direct or indirect) control-flow transfers
targeting I will instead be made to target the first instruc-
tion of the added snippet.



• Only the added instrumentation code can transfer control
to libraries containing instrumentation support functions.
(Recall that the high-level instrumentation API relies on
inserting calls to this library.)

All indirect branches, including jumps, calls and returns, are
checked at runtime to ensure the above properties. Direct
branches are checked at the time of generating the instru-
mented binary.

In addition to the above, our loader denies requests for
loading uninstrumented libraries. If on-demand instrumenta-
tion option is turned on, the request isn’t denied; instead, an
instrumented version of the library is generated and loaded.

The above properties overlap with coarse-granularity CFI
that limits control transfers to instruction boundaries. Specif-
ically, we have enhanced such a CFI property with additional
restrictions intended to protect the integrity of added instru-
mentation, as well as to deal with problems such as runtime
loading of libraries, disassembly problems, etc.

Our platform is geared for instrumenting benign appli-
cations — applications that may contain vulnerabilities, but
are not malicious themselves. For such applications, these
checks ensure that control-flow cannot “escape” instrumen-
tation. A non-exhaustive list of attacks prevented by PSI is
as follows.
• Branching to data segments. As described above, the list

of valid targets can only include addresses within validly
instrumented code. Thus, data segments cannot appear in
this table of valid targets.

• Branching to code sections that were not recognized and
instrumented. If the disassembler fails to recognize some
code fragments, they won’t be instrumented. However,
since branch targets are restricted to be valid instruction
boundaries in disassembled code, any attempt to execute
undiscovered code will be blocked.

• Branching to middle of instructions. ROP attacks are a
prime example here. Since the targets are checked to be
valid instruction boundaries, these attacks are stopped.

• Bypassing the instrumentation code. As noted above, if an
instrumentation snippet was specified for insertion before
an instruction, that instruction is no longer permitted to be
a branch target.

• Corrupting the integrity of instrumentation logic by jump-
ing into its middle, or by accessing functions intended to
be used exclusively by instrumentation. As noted above,
branches will be checked to preclude these targets.

Threats posed by untrusted code. Instrumentation of un-
trusted (and potentially malicious) applications can be sup-
ported, but it requires more extensive (and expensive) checks
on instrumented code. Specifically, untrusted code can at-
tempt to subvert PSI using one of the following means:
• corrupting PSI data. Untrusted code could intentionally

corrupt data used by PSI instrumentations.

• using race conditions. Untrusted code may use data races
to carry out time-of-check-to-time-of-use attacks on poli-
cies enforced by PSI, such as system call policies.

• subverting the loader. By subverting the loader, untrusted
code may be able to load and execute uninstrumented
libraries.

All of these threats can be addressed by isolating the mem-
ory used by the instrumented applications, using a technique
such as software fault isolation (SFI) [32]. However, mem-
ory isolation incurs significant additional costs, and hence
is typically not enabled on most instrumentation platforms,
including most DBI platforms.

3.2 Instrumentation API
Our platform provides a simple API for custom instrumen-
tation of binaries. This API is designed to operate at roughly
the same level of abstraction as Pin and DynamoRIO. How-
ever, being a static rewriting tool, all instrumentation opera-
tions occur in one shot on our platform: the entire CFG for a
binary is presented to the code instrumentor, which traverses
the CFG and adds all the desired instrumentation. This con-
trasts with DBI tools where instructions and basic blocks are
discovered one by one, just before their first execution, and
the code instrumentor invoked separately on the newly dis-
covered basic block.

After disassembly, PSI constructs a control-flow graph
(CFG) of the program. The nodes in the CFG are basic
blocks, each of which consists of a sequence of instructions.
All incoming control transfers into a basic block go to its
first instruction, while all control transfers out of the block
occur on its last statement. Note that every indirect control
flow target computed by our static analysis is considered in
defining these basic blocks. Since this analysis estimates a
superset of possible indirect targets, the basic blocks com-
puted by our technique can be smaller than those computed
by a compiler.

The entire CFG can be accessed using the API function
getCFG, while the list of all basic blocks and instructions
can be obtained using the functions getBBs and getInsns.
The API also provides operations to iterate through instruc-
tions and basic blocks in a CFG, and instructions in a ba-
sic block. Also supported are operations to examine instruc-
tions. These operations are based on the Intel’s xed2 instruc-
tion encoder/decoder library. Some of the most commonly
used operations are isCall, isRet, isTest, isSysCall,
isMemRead, isMemWrite, getTarget, and getSrc.

Insertion of Assembly Code Snippets. Instrumentation
can be performed at a low or high level. At the low level,
an instrumentation snippet is inserted as follows:

ins snippet(target, location, snippet)

Here, target is a reference to an instruction or a basic block,
and is specified using a reference to the corresponding ob-
ject, or by using a label. The parameter location is one



of BEFORE or AFTER, and snippet is a string consisting of
assembly code that is to be inserted. For call instructions,
one extra location AFTER CALL is defined. To ensure trans-
parency of return addresses on the stack, a call is translated
into a push instruction that pushes the original return ad-
dress, followed by a jump that transfers control to the tar-
get function. AFTER CALL corresponds to the point between
push and jump.

Instead of inserting additional instrumentation, some ap-
plications may require replacement of existing instructions.
This is done using the following API function:

replace ins(target, new snippet)

Instruction emulation is a purpose for which this API func-
tion comes handy: we replace the original instruction with a
snippet that emulates it.

PSI provides a private thread local storage (TLS) area
that can be used by assembly snippets to store their data.
This private TLS, which is independent of the one used
by glibc, is organized into two arrays TS and GS that are
both initialized with all zeros. The size of these arrays is
configurable, but they default to one memory page. Snippet
code can use the identifiers TS n and GS n to access the nth
word of the arrays TS and GS respectively. Example uses of
these arrays can be found in Figures 2 and 3.

Insertion of Calls to Instrumentation Functions. The
benefit of the snippet API is that it can be more efficient
since the instrumentation writer can minimize the number of
instructions executed. Its downside is that instrumentation
has to be performed in assembly, and that it is more complex.
In contrast, the higher level API simplifies instrumentation
but is generally less efficient. It enables the insertion of calls
to handler functions in a shared library defined by the instru-
mentor. Several low level details are handled automatically
by the high-level API. These include saving/restoring of reg-
isters and flags, switching to a different stack, resolving the
symbolic name of the user-defined handler function, making
the program state available through a high-level data struc-
ture called Context, and so on. These factors simplify the
instrumentation task, and allows the handler code to be writ-
ten in higher level languages (currently, C/C++). This API is
accessed using the following function:

ins call(target, location, name, args)

Here, target and location have the same meaning as the
snippet API. The name of the function to be invoked is
specified using the string parameter name. This function
should have the following prototype:

void handler(struct Context ∗c, . . .)

It takes a first parameter that represents the runtime context
of the instrumented program, including all of the CPU regis-
ters, stack, etc. The subsequent parameters are exactly those
that were included in the args parameter to ins call.

Controlling Address Translation. As described earlier,
address translation instrumentation, which regulates ICF
transfers, is automatically added by our platform. We pro-
vide some API functions so that an instrumentation devel-
oper can exercise finer control over ICF transfers. These
functions can be used by an instrumentation tool that im-
plements a more sophisticated ICF target analysis to further
restrict indirect branches. Even without performing more
static analysis, an instrumentation tool may enforce a more
restrictive policy, e.g.,
• all returns should go to instructions following calls
• (some or all) indirect jumps should not target addresses

outside the current module
These restrictions can be specified using the API function:

rm indirect target(src addrs, target addrs)

The argument src addrs is a list of the labels of the ICF
transfer instructions whose targets should be restricted. If it
is empty, then the operation is applied to all ICF transfer
instructions in the module. The second argument is also a
list of labels, but may include a special label NONLOCAL
that causes non-local addresses to be deleted from the list of
valid targets.

Custom address translation instrumentation can also be
used to relax a previously specified policy. This is done using
the following API function:

add indirect target(src addrs, target addrs)

Any number of rm indirect target and add indirect

target calls may be made. The platform will keep track of
possible targets for each source address, and will generate a
unique address translation trampoline for each set of source
addresses that share the same set of possible targets.

Runtime event handling. Finally, the API supports regis-
tration of instrumentation functions that will be called when
certain events occur at runtime, such as program/thread
startup or exit, loading of libraries, and system calls:
• register pre syscall handler()
• register post syscall handler()
• register library load handler()
• register thread start handler()
• register thread terminate handler()
• register program start handler()
• register program terminate handler()
These API calls take a function name as their argument.

Development of Instrumentation tools. To develop an in-
strumentation tool, user provides the tool code, and option-
ally, a client library. The tool code uses the API provided
by our platform to realize an instrumentation tool. Tools that
use the high-level API need a mechanism to provide the def-
initions of function calls inserted using that API. This is the
role of the client library. Note that the tool code is used at



the time of instrumenting a binary, whereas the client library
functions are used during the execution of the instrumented
applications. This is why tool code is separated from the
client library.

The instrumentation tool code should be stored in a
source file, say, bbcount.c. To instrument a binary file xyz,
the tool developer will first compile this into a shared library,
and then apply it to the binary. Specifically, the following
sequence of commands is used for developing a instrumen-
tation tool using the low-level API:

psic −o bbcount.so bbcount.c
psi_loader -t bbcount.so -- xyz

If a high-level API is used, the client library needs to be
compiled first. At runtime, calls made by instrumentation
to client library functions need to be resolved. In princi-
ple, resolving a client function name is straight-forward: use
the standard C-compiler to produce a shared library from
the client library source, and include this library in the de-
pendency list for the instrumented binary. However, such
an approach will violate our security requirement because
client library functions would be callable by original code.
Instead, we want these functions to be callable only from
the added instrumentation. To satisfy this requirement, we
have developed a dedicated symbol resolution technique for
resolving function names in the client library.

To resolve client functions, the basic idea is to create a
global address table (GAT) that contains the memory loca-
tions where the client functions have been loaded. To sim-
plify the look-up process, we translate function names in the
client library to integer indices. This enables GAT to be a
simple array indexed by these integer indices. A mapping
file specifying a name-to-index mapping is generated during
the compilation of the client library:

psic −m bbclient.map −o bbclient.so bbclient.c

Now, this mapping file will be used by the instrumentor to
translate calls to client library functions made in the instru-
mentation code. The mapping file is also used by our mod-
ified loader, which uses this mapping to populate the GAT.
Specifically, for each function f defined in the client library,
the loader finds its index if from the mapping file, and stores
the location where f is loaded in GAT[if ]. After populating
GAT, it is made read-only. In addition, none of the locations
in the client library are ever added to the translation tables.
These two steps ensure that code in the client libraries can
never be invoked by the original code.

Resolution of the variable names could be accomplished
in a similar way with the help of another GAT and a corre-
sponding name-to-index mapping.

3.3 On-demand Instrumentation
One of the drawbacks of a purely static instrumentation
approach is that the user has to compute the list of all shared
libraries that may be used when an instrumented program

is run, and create instrumented version of these libraries.
This is a difficult task, since many libraries are loaded long
after program execution begins. Some of these libraries may
reside at user-specified locations known only at runtime. In
order to support seamless instrumentation of such libraries,
our platform provides an option to generate instrumented
libraries on-the-fly. In particular, we modified the loader
to support an option to specify a configuration file that is
consulted when an instrumented application requests to load
an uninstrumented library. (If this option is not specified,
then any request to load an uninstrumented library will be
denied.) This configuration file must specify the name of the
libraries containing the tool code, client library code, and
the mapping file. The loader will then invoke PSI to create
an instrumented version of the uninstrumented library, and
then load this version.

Instrumented libraries are stored in a disk cache for sub-
sequent uses. This cache can store multiple versions of the
same library, each corresponding to a different tool.

In principle, PSI could be deployed on a system-wide
basis, and use a shared cache across all users. However,
currently we rely on a simpler scheme that uses a per-user
cache. The cache is simply a directory owned by the user,
say, /var/psi/bob/.

When the loader is asked to load a library, say, /usr/lib/
abc.so by a process instrumented with a tool bbcount and
owned by bob, the loader concatenates the library name to
the cache location, i.e., looks for the file

/var/psi/bob/bbcount/usr/lib/abc.so.

If found, this file is loaded. If not, the loader invokes psi

to instrument /usr/lib/abc.so with the tool bbcount and
stores this result in the cache, and loads the instrumented
version from the cache.

Note that libraries with the same instrumentation but with
different compilation options or client libraries may cause
compatibility problems. To avoid these, the loader checks
the library version, compilation options, as well as the client
library version. It also checks the timestamps on the tool
code and client library code, and if they are newer than the
cached version, then a new, instrumented version is gener-
ated and the copy in the cache is updated.

On-demand instrumentation can be applied to executa-
bles as well, and serve to support seamless instrumentation
of applications that involve running multiple executables.

4. Instrumentation Applications
We illustrate the API described in the preceding section us-
ing several examples. These examples illustrate the flexibil-
ity, versatility and the ease-of-use benefits of PSI.

4.1 Basic Block Counting
Basic block counting has been used to illustrate previous
DBI tools such as Pin and DynamoRIO. Moreover, an op-



unopt = “mov%eax, TS 0;

lahf;

incl TS 1;

sahf;

movTS 0, %eax”

opt = “incl TS 1”

foreach bb in getBBs() {
found = false
foreach insn in bb {

if isTest(insn) or isCmp(insn) {
found = true
ins snippet(insn, BEFORE, opt)

break
}
}
if !found
ins snippet(bb, BEGIN, unopt)

}

Figure 2. An instrumentation tool for Basic Block Counting

timized version of this tool is available for these platforms,
thus providing a good basis for performance comparison.
For this reason, we illustrate our platform and API using this
example. (See Figure 2.) The core of the instrumentation is
to increment a memory location. However, since this oper-
ation affects CPU flags, it is necessary to save and restore
them. This is performed in the snippet unopt.

It would be safe to avoid flag save/restore, and use the
optimized snippet opt, if the flags aren’t live at the snippet
insertion point. To simplify the example, we avoid a general
liveness analysis. Instead, we find two common instances of
instructions that set the flags, namely, test and cmp, and
insert the increment instruction just before them.

For brevity, we have omitted the code for printing results.
This can be done by registering a thread termination handler
that will accumulate the count from thread-local TS 1 into
a global location, say, GS 1. Finally, a program termination
handler needs to be registered that prints the value of GS 1.

4.2 System Call Policy Enforcement
System call policy enforcement is a well-known protection
technique for sandboxing. Our platform provides a simple
API to enforce system call policies. Performance overheads
are minimal, comparable to library interposition. At the
same time, it provides security comparable to ptrace, a much
heavier-weight mechanism used in tools such as strace.

System call policy enforcement is implemented by regis-
tering system call event handlers register pre syscall

handler() and register post syscall handler(). Our
platform is able to identify system calls that use int 0x80

mechanism as well as the faster method that uses the
sysenter instruction. The handler function can use its
Context argument to determine system call arguments,
which are stored in registers. The handler can examine
and/or modify these arguments.

4.3 Library Load Policy Enforcement
Unsafe library loading is a well known strategy employed by
security exploits to circumvent injected code defenses such
as those that prevent execution of data.

A library loading policy is implemented using a tool that
registers a handler for the event register library load

handler(). The handler can then examine the name of the
library being loaded, and disallow it if need be. In our tool,
rather than enforcing a policy, we simply logged a mes-
sage that can be processed subsequently to identify how
many libraries are loaded by an application, and what frac-
tion of them are loaded after the application begins execu-
tion. We used this tool to on a collection of commonly used
command-line and GUI applications and found that a sig-
nificant fraction of libraries (specifically, over 40% in this
experiment) were loaded after the commencement of appli-
cation execution.

4.4 Shadow stack
Shadow stack [27] is a well-known technique for defending
against return address corruption. The idea is to maintain a
second copy of return addresses on a “shadow” stack, and
check the two copies for consistency before each return. Suc-
cessful exploits now require both copies of the return address
to be compromised, which is harder than circumventing pro-
tection mechanisms such as stack canaries.

Binary based return address defender [27] was the first
to use binary instrumentation to implement shadow stacks.
It inserts additional code at function prologue and epilogue
to respectively push and check return addresses on shadow
stack. While their approach is useful against buffer overflow
attacks on return addresses, they are not effective against
ROP attacks that mainly use unintended return instructions,
as there will be no shadow stack checks preceding such
“instructions.” Note that the initial exploit can be triggered
without compromising a return address, e.g., by corrupting a
function pointer.

ROPdefender [12] addresses this weakness using DBI.
As DBI techniques ensure instrumentation of all code be-
fore execution, their approach will instrument unintended re-
turns as well, and hence prevent ROP attacks. We compare
the performance of their implementation, which is based on
Pin, with our platform. For this purpose, we developed the
shadow stack instrumentation tool shown in Figure 3. Our
implementation emphasizes ease of development and com-
patibility with legacy software, and we did not make any sig-
nificant effort at optimizing it. Thus, our performance results
reflect the performance strengths of our platform, rather than
the efficiency of our instrumentation tool.

Note that being a static instrumentation technique, our
technique will not instrument unintended return instructions.
However, our runtime checks on indirect targets will stop
any attempts to jump to such instructions. Moreover, attacks
aimed at evading shadow stack checks, such as those based



/* shadow stack pointer is stored in TS 2 */
chk init shadowstk= “

cmp $0x0, TS 2;
jnz L001;
call $alloc stack;

L001: ”;

push shadowstk = “
mov %eax, TS 0; mov %ebx, TS 1;
subl $4, TS 2;
mov TS 2, %eax;
mov (%esp), %ebx; mov %ebx, (%eax)
mov TS 0, %eax; mov TS 1, %ebx;”

check return(Context∗ctxt) {
shadow sp = ctxt−>TS[2]
ret = getmem(ctxt−>ESP )
while !empty(shadow sp)

if (pop(shadow sp) == ret) {
ctxt−>TS[2] = shadow sp
return
}

abort()
}
foreach insn in getInsns()

if isCall(insn) {
ins snippet(insn, BEFORE, chk init shadowstk)
ins snippet(insn, BEFORE, push shadowstk)
}
else if isRet(insn)
ins call(insn, AFTER CALL, check return)

Figure 3. Shadow Stack Defense

on jumping into the middle of (or past the end of) checking
code will be defeated as well.

In Figure 3, the shadow stack could be initialized at
the time a new thread is spawned. However, we opted for
a simpler (but less efficient) approach where the validity
of shadow stack is checked on each call instruction, us-
ing chk init shadowstk. This snippet uses another support
function to allocate a shadow stack if it is not already set up.
Once the shadow stack is in place, push shadowstk is used
to push a copy of the return address to the shadow stack.

Checking the integrity of returns is more complex, so we
use a high-level function to perform this action. Note that
uses of longjmp can cause a mismatch between shadow
and main stack. This occurs because stack frames have been
popped off the main stack. The solution to this problem, used
in previous works [12, 27], is to successively pop off entries
from the shadow stack until the two match. However, if the
bottom of shadow stack is reached, that implies an attack,
and the program is aborted.

As noted by the authors of ROPdefender, real-world pro-
grams introduce a few benign violations of shadow stack
checks, and these need to be handled. We already described
how violations due to longjmp are handled. Other vio-
lations occur due to lazy binding used by the dynamic
loader, the occurrence of C++ exceptions, UNIX signals,
and System V thread context switches due to functions such
as setcontext and getcontext. The core idea used in
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Figure 4. Overhead of basic block counting application of
PSI, DynamoRIO, and Pin on SPEC 2006.

ROPdefender is that of recognizing which return instruc-
tions in the binary cause these exceptions (each of them oc-
cur within a specific routine in the loader or libc), and mod-
ifying the instrumentation of those instructions. We used
the same idea in our implementation, but have omitted the
details to conserve space.

5. Experimental Evaluation
5.1 Basic block counting on SPEC2006
Our instrumentation tool incorporates a simple optimization
to skip flag saving in some common cases, but lacks a sys-
tematic liveness analysis. In spite of lacking this optimiza-
tion, performance of PSI (average overhead of 69%) is only
a slightly worse than DynamoRIO (53%), and better than
Pin (97%). The result is shown in Figure 4. For this exper-
iment, we used the most optimized version of basic-block
counting applications distributed with Pin and DynamoRIO
platforms.

Although PSI is designed for offline instrumentation, we
turned on the on-demand instrumentation feature, emptied
the library cache and reran the benchmark. In addition, we
added back the time for instrumenting the executables to
the totals. In this way, we can measure the total runtime
that includes instrumentation time. This change causes the
overhead to increase by another 3%.

5.2 Performance of shadow stack application
Figure 5 depicts the overhead of the shadow stack implemen-
tation using our platform in comparison to that of ROPde-
fender, which is based on Pin. While ROPdefender reports
an overhead of 74%, PSI incurs just one-fourth of this over-
head (18%).



-15
 0

 15
 30
 45
 60
 75
 90

 105
 120
 135
 150
 165
 180
 195
 210
 225
 240
 255

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

473.astar

433.m
ilc

444.nam
d

470.lbm

482.sphinx3

average

%
 O

ve
rh

ea
d

Shadow Stack (PSI)
ROPdefender (Pin)
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Prasad et al [27] report lower overheads, as low as a few
percent. But as mentioned earlier, their technique does not
defend against ROP attacks.

5.3 Evaluation of system call policy
On SPEC 2006 benchmark, our baseline system call policy
enforcement introduced an average of 1.6% overhead. This
is with a policy function registered for each system call, but
the function body being empty.

5.4 Microbenchmark Evaluation
Although DynamoRIO performs well on CPU-intensive
SPEC2006, real world programs can often exhibit differ-
ent characteristics. To compare PSI with DynamoRIO and
Pin for workloads that are system-call intensive, we used
the lmbench [1] benchmark. Since lmbench (as well as the
real-world evaluation in the next section) cause some DBI
platforms to slow to the point where experiments take far too
long to complete, we used the null instrumentation in these
experiments to minimize their runtime.

Figure 6 shows the lmbench performance numbers. Note
that the histogram is drawn to logarithmic scale on Y axis.
The average system call overhead for PSI is 16.9%, whereas
for DynamoRIO it is 312%, and for Pin it is 3300%. On
system calls related to communication, PSI achieves almost
native performance, whereas DynamoRIO has 36.1% over-
head, and Pin has 378%. System calls related to signal han-
dling and process spawning slow down PSI by 43.3% and
79.7% respectively, which increase to 222% and 948% for
DynamoRIO, and 104x and 198x for Pin.

To summarize, the average overhead across the tests
shown in Figure 6, while counting only one of the select

operations (for 10 fds), is 33% for PSI (geometric mean:
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30%), while for DynamoRIO it is 413% (geometric mean:
309%) and for Pin it is 7873% ( geometric mean: 4083%).

DBI platforms are complex, and hence the reasons for
their high overheads on lmbench (and the real-world applica-
tions discussed in the next section) aren’t all obvious. But we
can identify several factors that contribute to the high over-
head. First, and most obvious, is that runtime disassembly
and instrumentation incurs nontrivial overheads, unless this
cost is amortized across many executions of instrumented
code. Such amortization occurs on CPU-intensive bench-
marks, but the real-world applications discussed in the next
section tend to load much more code, and execute it far fewer
times, thus causing the overheads of runtime instrumenta-
tion to rise significantly. This is one of the main reasons for
the high overhead of applications that make frequent calls to
execve.

A second factor that contributes to the overhead is the in-
creased memory footprint of dynamically instrumented pro-
grams. We have observed that DynamoRIO can frequently
use a code cache that is over a 100MB in size. We have also
observed that such increased use of data memory can signif-
icantly slow down fork due to factors such as the increased
time for copying page tables.

A third factor relates to threads and locking that is needed
to ensure that accesses to data used by the DBI platform
(including the code cache) are free of concurrency errors.

5.5 Performance on Real-world Applications
In this section, we compare the performance of PSI with that
of Pin and DynamoRIO on a collection of commonly used
applications. Once again we used the null instrumentation to
minimize the runtime for the experiments.

We first measured the performance for two tasks that are
commonly undertaken by typical Unix users: compilation of
software, and running scripts that invoke other programs.



Program PSI Dynamo- Pin Description
(%) RIO (%) (%)

coreutils 97% 1922% 3509% Coreutils testsuite
gcc 63% 1376% 10250% Compile openssh.
apt− get 2% 326% 411% Run command 5
update times.
enscript 211% 5292% 15153% Convert text and

source code files
to ps and pdf. a

postmark 2% 22% 64% Run benchmark.
gpg 24% 382% 5994% Operate on pdfs

with an avg size
of 500KB.

tar 19% 79% 1107% Tar /usr/include.
find 21% 34% 38% Find a file in /.
scp -1% 18% 31% Copy 10 mp3s,

with an avg size
of 5MB.

mplayer 32% 67% 211% Play 10 mp3s.
vim 56% 92% 615% Search and replace

strings in 18MB
text file.

latex 51% 185% 1806% Compile tex files
with an avg size
of 17KB to dvi.

readelf 62% 71% 197% Parse the DWARF
sections of glibc.

python 33% 85% 96% Run pystone 1.1
benchmark.

Average 53% 887% 3421%

a We used a bunch of text files such that the their file sizes average to 8K.
We used 2 types of source files for our purpose: C programs and Python
programs. We averaged C file sizes from Openssl source package and used
the same average of 18K for our test purpose. For Python, we averaged
sizes of Python scripts found on a typical Ubuntu machine and used the
same average of 8K for our test purpose.

Figure 7. Real World Program Performance

Specifically, we compiled OpenSSH with GNU make and
gcc tool chain, and used the built-in testsuite of coreutils.

When testing gcc compilation with PSI, we instrumented
all the executables in the gcc toolchain, including gcc, g++,
cc1, cc1plus, f951, lto, ar, ranlib, as, ld.bfd, and
collect2. We also instrumented make and all external
tools used in makefile such as echo, sed, cat, perl, and
gawk. Note that all libraries used by these programs were
transformed too. The overhead incurred by PSI was 63%,
while DynamoRIO and Pin incurred overheads of 1376%
and 10250% respectively.

In the case of coreutils, for PSI, we transformed all
coreutils binaries as well as other programs used in the
coreutils test suite. But due to difficulties in invoking Dy-
namoRIO on each coreutils program inside the test script,
we used DynamoRIO to run make so that it will subsequently
instrument all programs invoked from there. DynamoRIO
incurred a 19.2x slowdown, as compared to 97% for PSI.
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When we tested Pin, unfortunately, the testsuite did not stop
after running for over an hour. We stopped the experiment at
this point, and used that figure as the runtime of Pin, which
worked out to be 3509%.

In addition to the above tests, we measured the overhead
for several commonly used programs. The results are shown
in Figure 7. It is worth mentioning that apt-get update
invoked several executables including http, gpgv, dpkg and
touch. All of the executables as well as libraries used were
transformed in the tests.

Note that for about half the applications, there is more
than 10x difference between PSI and DynamoRIO. The dif-
ference drops down to 3x to 5x for about a quarter of the
applications, and for the remaining, the overhead difference
is within a factor of two. When averaged across all of the ap-
plications, PSI’s overhead was 53% (45% geometric mean),
DynamoRIO’s overhead was 887% (322% geometric mean),
and Pin’s overhead was 3421% (924% geometric mean).

5.6 Space Overhead
In addition to the runtime overhead on SPEC 2006 bench-
mark, we also measured the space overhead of our platform.
Figure 8 describes the space overhead of our platform for
SPEC 2006 benchmark. From the figure, the virtual mem-
ory overhead of our platform is 19.79%, while the physical
memory overhead is merely 1.68%. In addition to the space
overhead for physical and virtual memory, we also measured
that our platform increased the on-disk size of the executa-
bles and shared libraries by around 139%. This is because
PSI instruments a copy of original code, leaving the origi-
nal code in place. However, this original copy is seldom ac-
cessed, which explains why the resident memory overhead
is very small, at around 2%.

In comparison, we also measured the space overhead of
DynamoRIO and PIN. We discover that their address space



overhead is 272% and 72%. This is mainly because the DBI
tools need to reserve address space for code cache allocation.
The physical memory overhead is 7.5% and 34%, higher
than our platform.

6. Related Work
This section is aimed at discussing related works that have
not already been adequately described earlier in this paper.

Static Binary Rewriting A number of efforts in exploit
protection and hardening of binaries have been based on
static binary rewriting. However, supporting large and com-
plex COTS binaries has proved elusive due to the twin chal-
lenges of accurate disassembly, and safe rewriting in the
presence of embedded code pointers within binaries. To
overcome the disassembly problem, most previous works
have relied on a cooperative compiler [35], or worked on
assembly code [6, 20, 24], or binary code containing sym-
bol [18, 29], debugging [2, 14], or relocation information
[36, 37].

SecondWrite [3] uses static binary rewriting to harden bi-
naries, but applicability to large and complex binaries was
not established. Recently, they showed that their platform
can handle real world applications [4]. They develop pow-
erful analysis and optimization techniques that provide ex-
cellent performance. However, this improved platform does
not target security instrumentations that need to worry about
low-level attacks such as return address corruption, or other
attacks that may invalidate static analysis results.

Several earlier works such as BIRD [21] and Dyninst [10]
used a combination of analysis, compiler idioms and heuris-
tics to disassemble binaries. BIRD further improves results
by incorporating a runtime disassembly component. How-
ever, use of heuristics means that there could be disassem-
bly errors, and these can lead to instrumentation subversion,
e.g., by jumping to the middle of an instruction. In-place ran-
domization [25] also has this same drawback, but mitigates
it through randomization of the binary, which significantly
reduces the likelihood of finding exploit code within the bi-
nary. However, in-place transformations are insufficient for
instrumentation.

Reins [33] targets sandboxing of untrusted COTS exe-
cutables on Windows. Like us, they can also ensure that
sandboxed code can never escape instrumentation (except to
invoke certain trusted functions), but unlike our technique,
their approach does not target instrumentation of all libraries
used by the application. Moreover, their evaluation does not
consider as many or as large applications as ours.

PSI builds on our earlier BinCFI work [38]. In particu-
lar, we reused the disassembler and ELF-related tools devel-
oped in that work. The main focus of this paper is the devel-
opment of a general-purpose platform for static binary in-
strumentation. We demonstrated the power and flexibility of
this platform by developing a variety of security instrumen-
tations. In contrast, BinCFI targets just a single instrumen-

tation, namely, control-flow integrity. This instrumentation
is hardcoded into the BinCFI platform, whereas this paper
decouples the instrumentation platform for instrumentation
tools. Another important contribution of this paper is a de-
tailed performance comparison with DBI platforms.

Binary Analysis Binary Analysis Platform [9] is a plat-
form that targets COTS binaries, but its main focus is so-
phisticated analysis rather than efficient instrumentation. For
example, they have developed interesting applications such
as automatic exploit generation [5]. BitBlaze [31] is also tar-
geting powerful static and dynamic analysis of binary code,
including malware. These and other binary analysis works
are complementary to ours: whereas their focus is on accu-
rate and powerful analysis techniques, ours is on robust and
efficient instrumentation.

Dynamic Binary Instrumentation As mentioned earlier,
several DBI platforms [7, 8, 19, 22, 30] are currently avail-
able. Many of these, including DynamoRIO [8], Pin [19],
Strata [30] and StarDBT [7] are geared for efficient support
of light-weight instrumentation, while Valgrind [22] targets
heavy-weight instrumentations, e.g., memory debugging.

DBI techniques have formed the basis of many research
proposals for hardening and securing COTS binaries. Pro-
gram shepherding [17] enforces several low-level policies
using DynamoRIO. Libdetox [26] improves on this work by
supporting a more refined control-flow policy, including a
shadow stack. They also provide an API for specifying cus-
tomized system call policies. We also provide an easy-to-
use API for specifying system call policies, but in addition,
provide a low-level instrumentation API as well, so as to
ease the development of customized inline security checks.
Whereas Libdetox targets vulnerable but benign code, Vx32
[15] uses DBI techniques to sandbox untrusted code.

While PSI seeks to achieve many of the same goals of
DBI platforms, in terms of the underlying techniques, PSI
is mostly complementary to those of DBI: we emphasize
static disassembly, static analysis and static transformation,
whereas DBI tools excel in runtime disassembly, dynamic
analyses and optimizations.

7. Summary and Conclusions
DBI platforms have been popular for instrumentation of
COTS binaries because of their ability to handle large and
complex binaries, instrument all code, ensure that applica-
tions cannot escape instrumentation, and easy-to-use APIs.
SBI techniques have complementary strengths, such as the
ability to perform offline instrumentation and the ability to
support more powerful static analysis techniques. Unfortu-
nately, previous SBI platforms have lacked some of main
features needed to support robust security-related instrumen-
tations on large and complex binaries.

The work presented in this paper demonstrates that in-
deed it is possible to realize the best of both worlds: PSI



retains most of the advantages of DBI platforms, while also
providing the central benefits of static instrumentation. The
resulting platform can thus retain most of the strengths of
DBI and SBI, while mitigating their drawbacks.

We illustrated the power of our platform and the simplic-
ity of its programming model by developing several instru-
mentation tools. Among these is an implementation of effi-
cient shadow stack defense that is resistant to ROP attacks.
For many real-world usage scenarios, our platform achieves
about an order of magnitude performance improvement over
DBI platforms. Based on these results, we conclude that
static binary rewriting can provide a powerful alternative to
the popular dynamic rewriting platforms.
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