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ABSTRACT
Due to the high popularity of Cross-Site Scripting (XSS)
attacks, most major browsers now include or support filters
to protect against reflected XSS attacks. Internet Explorer
and Google Chrome provide built-in filters, while Firefox
supports extensions that provide this functionality. In this
paper, we analyze the two most popular open-source XSS
filters, XSSAuditor for Google Chrome and NoScript for
Firefox. We point out their weaknesses, and present a new
browser-resident defense called XSSFilt. In contrast with
previous browser defenses that were focused on the detec-
tion of whole new scripts, XSSFilt can also detect partial
script injections, i.e., alterations of existing scripts by inject-
ing malicious parameter values. Our evaluation shows that
a significant fraction of sites vulnerable to reflected XSS can
be exploited using partial injections. A second strength of
XSSFilt is its use of approximate rather than exact string
matching to detect reflected content, which makes it more
robust for web sites that employ custom input sanitizations.
We provide a detailed experimental evaluation to compare
the three filters with respect to their usability and protec-
tion.

Categories and Subject Descriptors
D.4.6 [Security And Protection]: Information Flow Con-
trols

1. INTRODUCTION
Cross-site scripting (XSS) has emerged as one of the most

serious threats on the Web. CWE/SANS Top-25 [25] lists
XSS fourth in its list of “Top 25 Most Dangerous Software
Errors,” while the web-application focused OWASP [26] lists
XSS second in its list of top-10 security risks. In terms
of raw numbers, it is one of the most commonly reported
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vulnerabilities in 2011, accounting for 14.7% of all reported
CVE vulnerabilities.

The increase in prevalence and severity of XSS attacks has
spawned several research efforts into XSS defenses. Many of
these efforts [12, 13, 15, 27, 11, 28, 3, 23] have focused on the
server-side, and attempt to detect (or prevent) unauthorized
scripts from being included in the server output. Modern
web-browsers incorporate very complex logic to “fix” HTML
syntax errors and hence provide an acceptable rendering of
syntactically incorrect pages. Several researchers [11, 15,
27, 13] have eloquently argued that no server-side logic can
accurately account for all such “browser quirks.” As a result,
hybrid approaches that combine client-side support with a
primarily server-side XSS defense have been developed [27,
15, 23].

Since XSS is a server-side vulnerability, it seems natural
to employ a server-side defense. Unfortunately, the party
that is most directly affected by an XSS attack is a browser-
user that accesses a vulnerable server. Consequently, there
may not be enough of an incentive for some web sites to
implement XSS defenses — this is one reason why XSS vul-
nerabilities are so easy to find. Client-side protections are
thus desirable, despite their limitation to so-called reflected
XSS: in these attacks, the output of a vulnerable server in-
cludes some script content provided in a malicious request.

Reflected XSS attacks are launched via invalid (and ma-
licious) values for parameters in a HTTP request. Conse-
quently, NoScript1, a Firefox plug-in, defends against these
attacks by filtering out parameter values that look suspi-
cious. Specifically, it uses regular expressions to identify the
presence of JavaScript code in HTTP request parameters,
and sanitizes them before submitting the request.

An important difficulty with NoScript’s approach (of client-
side parameter sanitization) is that it should work without
any knowledge about how a server may use a parameter. In
particular, it needs to prevent XSS attacks regardless of how
the server-side may use a parameter value. This may lead to
overly strict filtering that can prevent some web pages from
being used, or interfere with their functionality. In contrast,
an approach that can examine both the request and the re-
sponse from the server can be more discriminating about

1NoScript is mainly thought of as a tool that blocks the ex-
ecution of scripts from most sites. However, blocking script
execution is not a realistic option for web sites trusted by
a user, which will be the ones targeted in a reflected XSS.
For this reason, NoScript also contains a client-side XSS fil-
ter that sanitizes requests submitted by the browser. From
here on, we will refer to this XSS filter when we use the term
“NoScript filter.”



<script >
document.write(

’<a href ="../ plugin.php?passed_id=’ +
’ <?=$_GET["id"];?>"></a>’);

</script >

id:
’); do_xss(); document.write(’

Figure 1: An example server-side script (abstracted from the popular SquirrelMail web-based email program)
with partial injection vulnerability (left) and a malicious parameter value to exploit it (right).

which requests are unsafe. Microsoft’s IE8 uses such an ap-
proach for client-side XSS defense. It first marks requests
that look suspicious. Responses to such requests are then
scanned for script content that may be derived from sus-
picious parameters, and this content is then “sanitized” to
prevent its interpretation as a script.

Unfortunately, identification of unsafe content is very hard
because of a browser’s HTML parsing quirks. Researchers
have shown [16] that there are several ways to bypass de-
tection by IE8 filter. Worse, the sanitization technique used
in IE8 could be exploited [17] to perpetrate XSS attacks on
some sites that weren’t previously vulnerable! In particu-
lar, the sanitization technique caused some other part of the
page that was previously interpreted as passive content to be
interpreted as a script. Although the specific vulnerability
reported in [17] has been fixed, the nature of their architec-
ture makes it difficult to rule out similar vulnerabilities in
the future.

Google Chrome’s XSSAuditor [3] is based on the same
approach, but employs a different architecture that avoids
“browser quirks”problem by directly interposing at the Java-
Script engine interface. Consequently, XSSAuditor does not
rely on guess work, but gets to examine content that is ac-
tually interpreted as a script. If this script “resembles” a re-
quest submitted by the browser, XSSAuditor skips its execu-
tion. This simple approach avoids IE8’s sanitization pitfall,
since preventing the execution of a script does not change
the interpretation of the rest of the page. Moreover, this
new architecture can address DOM-based XSS vulnerabili-
ties that can arise in pages which are created dynamically as
the result of client-side script execution. (With the advent
of Web 2.0, such dynamic pages are increasingly becoming
the norm.)

1.1 Limitations of existing filters
Although XSSAuditor overcomes the main drawbacks of

the IE8 filter, it does not address the following problems:

• Whole Vs partial script injection: XSSAuditor is geared
towards detecting the most common form of XSS, where
an entire script is injected into a victim page. However,
damage can also be effected by altering the structure of
an existing script. Figure 1 shows an example abstracted
from the web application SquirrelMail, where a GET pa-
rameter named id is inserted into a document.write call
in an existing script (left frame). Even though the intent
of the developers is to dynamically write an anchor tag,
the logic can be subverted to inject arbitrary JavaScript
code. Note the similarity of the malicious input (right
frame) with those used in SQL injections: first, the string
argument previously opened by benign code is closed;
then the payload is inserted; finally, tokens are inserted
to synchronize the syntax with the rest of the benign
script and thus avoid syntax errors. In nearly all cases

(including the example presented), the vulnerability al-
lows for arbitrary code injection into the existing script,
thus being as severe as a whole script injection.

These sorts of vulnerabilities arise naturally in template-
based web application development frameworks and in
dynamic web applications in general. Our experimental
results (see Section 7) demonstrate that partial injection
vulnerabilities are common, accounting for 8% and 18%
respectively in two collections of vulnerabilities. More-
over, as the first generation client-side defenses (against
whole-script injection) get deployed, attackers are bound
to try evading them through partial script injections.

• Accurate algorithms for detecting injections: XSSAudi-
tor uses an exact string matching algorithm to detect
components of a web application’s output that have been
derived from the input request. Character encoding and
sanitizations incorporated into typical web applications
are performed before string matching. However, this ap-
proach does not handle application-specific sanitizations
that may take place. A more systematic approach would
rely on approximate string matching in order to (a) bet-
ter cope with application-specific sanitizations, and (b) to
more precisely identify the beginning and end of injected
strings in the presence of sanitizations.

NoScript’s approach suffers from a different set of problems:

• False positives: since NoScript sanitizes outgoing requests
rather than incoming responses, it cannot confirm whether
the offending content actually appears in the response,
let alone whether it leads to the execution of JavaScript
code. These filters, in effect, have to be stringent enough
to handle the worst-case server behavior. Hence NoScript
can have a higher rate of false positives, a result confirmed
by our experiments.

• Complex Policies: NoScript’s detection is largely based
on regular expressions. Unfortunately, covering all cor-
ner cases while avoiding false positives requires very com-
plex detection logic. Manual analysis of NoScript’s code
revealed more than 40 non-trivial regular expressions in-
volved in detection and sanitization of XSS attacks. Clearly,
these can be very cumbersome to maintain.

• Usability Impact: NoScript’s false positives normally cause
more disruption to users compared to XSSAuditor. Since
NoScript sanitizes the outgoing request URL, the browser
may end up making a request with very different set
of parameter values. These new parameter values can
cause the request to fail on the server side, corrupt data
that is stored on the server-side, or return an incorrect
page. In contrast, XSSAuditor only prevents the offend-
ing script from executing, and this can impact dynami-
cally constructed elements such as advertisements, com-
ment frames, etc, but will usually not prevent the main
content of the page from being displayed.
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Figure 2: XSSFilt architecture

1.2 Overview of XSSFilt and Contributions
We present XSSFilt, a new client-side XSS defense that

addresses the above-mentioned drawbacks of previous filters.
In particular, this paper makes the following contributions:

• In Section 3, we present the architecture of XSSFilt, a
browser-resident XSS defense. Unlike previous browser-
resident defenses that all relied on exact string match-
ing, XSSFilt uses approximate string matching. (See Sec-
tion 4.) This enables our defense to cope with web appli-
cations that perform application-specfic sanitizations.

• In Section 5, we present a set of policies to detect XSS
attacks. These policies detect attacks involving injection
of whole scripts, or those occurring due to injection of
parameters within scripts (partial injections).

•We present a discussion of the full range of attacks pos-
sible on XSSFilt, and ensure that our design can success-
fully defend against these attacks (see Section 6).

• In Section 7, we present a comparative study of the pro-
tection and usability of XSSFilt (implemented for the lat-
est development version of Firefox), XSSAuditor (readapted
for Firefox) and NoScript (XSS filter only). In particular,
our evaluation shows:

– the importance of addressing partial script injections,
which accounted for 8% of the 400 vulnerabilities we
studied from xssed.com, and 18% of the 10K vulnera-
bilities we discovered on the web using an XSS vulner-
ability discovery tool that we built.

– that scripts generated dynamically from input param-
eters, the necessary condition for partial script injec-
tions, are commonplace. Our results suggest that more
than 9% of web pages contain dynamic scripts.

– the benefits of using an approximate string matching
algorithm over the exact matching algorithm employed
by XSSAuditor: our false negatives were decreased
five-fold due to approximate matching.

– that false positives generated by XSSAuditor and XSS-
Filt are more likely to be symptoms of underlying injec-
tion vulnerabilities rather than mere annoyances: 85%
of the false positives reported by XSSFilt were in fact
caused by an underlying XSS vulnerability. On the
other hand, all NoScript false positives were benign

strings that matched its regular expressions.

2. BACKGROUND ON XSS ATTACKS
This section provides a short overview of XSS attacks, and

may be skipped by readers that are very familiar with them.
An XSS attack involves three entities: a web-site that has
an XSS vulnerability, a legitimate user of this web-site, and
the attacker. The attacker’s goal is to be able to perform
sensitive operations on the web-site using the credentials of
the legitimate user.

Although an attacker is able to run her code on the user’s
browser, the same-origin policy (SOP) of the browser pre-
vents her code from stealing the user’s credentials, or observ-
ing any data exchanged between the user and the web-site.
To overcome this restriction, the attacker needs to inject her
code into a page returned by the web-site to the user. An
XSS vulnerability in the web-site allows this to happen.

Exploiting an XSS vulnerability involves three steps. First,
the attacker uses some means to deliver her malicious pay-
load to the vulnerable web-site. Second, this payload is used
by the web site during the course of generating a web page
(henceforth called a victim page) sent to the user’s browser.
The left side of Figure 1 shows an example of a vulnerable
page that uses a user-supplied parameter id to construct
the href parameter via document.write, while the right
side shows an example payload. In this case, the payload
does not need to open a new script tag because it is already
contained in one; rather, it closes the string where the pa-
rameter is supposed to be confined and writes additional
JavaScript code.

If the web site is not XSS-vulnerable, it would either dis-
card the malicious payload, or at least ensure that it does
not contribute to code content in its output. However, if the
site is vulnerable, then, in the third step, the user’s browser
would end up executing attacker-injected code in the page
returned by the web site.

In a reflected XSS attack, an attacker lures a user to the
attacker’s web page, or to click on a link in an email. At
this point, the user’s browser launches a GET (or, in some
cases, POST) request with attacker-chosen parameter val-
ues. When a vulnerable web site uses these parameters in
the construction of its response (e.g., it echoes these param-
eters into the response page without adequate sanitization),



the attacker’s code is able to execute on this response page.

3. XSSFilt OVERVIEW
To illustrate XSSFilt’s design, consider the sequence of

operations that take place from the time the user’s browser
submits a request to a web server to the time the web page
loads. The steps in this sequence are identified using num-
bers in Figure 2, and we describe them in more detail below.

In Step 1, the browser submits a request to a web site.
This submission may be in response to a user clicking on a
hyperlink in a web page or email, or may be the result of
execution of scripts on a page that is currently being dis-
played. This submission may use a GET or POST request,
and will include parameter data that is under the control of
the web page or email containing the link.

In Step 2, the web site returns a response to the browser’s
request. This leads to Step 3, when a new document is
created by the browser. In this step, the browser invokes the
Init method of XSSFilt, providing information about the
request submitted in Step 1. XSSFilt parses the URL and
POST data for parameters and converts them into a list of
(name, value) pairs, which enables more accurate techniques
for inferring reflected content as compared to XSSAuditor.
The filter then returns control to the browser so as to start
rendering the page.

In Step 4, the web browser’s internal HTML parser is used
to parse the document received in Step 2. This causes the
creation of various nodes in the document tree, including
script and text nodes in Step 5. In Step 6, a script node
would normally be sent to the JavaScript engine, but the
browser intercepts the script and sends it to the Permits

method of XSSFilt. At Step 7, XSSFilt uses an approximate
substring matching algorithm to search for one or more of
the GET/POST parameters inside the script. Any match-
ing content is deemed reflected or tainted. Further details
on this detection technique can be found in Section 4. If the
tainted components of a script violate the policies described
in Section 5 then the execution of the script is blocked. Oth-
erwise, it is handed over to the JavaScript engine in Step 8.

Note that new script content may be created during script
execution, e.g., due to the execution of the eval operation.
Our architecture ensures that such newly created scripts are
passed to the permit operation of XSSFilt in Step 9, thus
ensuring that these dynamically created scripts are checked
for XSS in the same manner as the scripts included statically.

It is also possible for script execution to result in the
creation of new HTML content, e.g., as a result of docu-

ment.write or setting innerHTML attribute of some DOM
nodes. In all these cases, the HTML parser will be invoked
in Step 10, and Steps 5 through 8 will be repeated. This
ensures that DOM-based XSS attacks are handled the same
way as XSS attacks contained within static content received
in Step 2.

4. IDENTIFYING REFLECTED CONTENT
Detection of reflected content is a taint analysis problem,

where the response page components that are directly de-
rived from request data are to be considered tainted. XSS
defenses implemented on the server side can rely on taint-
tracking instrumentation on the server code for accurate
detection of taint, but this is obviously not a choice for a
browser-resident defense. Thus, the only option is to infer

possible taint by comparing the input to the server and its
output. A known limitation of such an approach is that
if data goes through complex transformations, then there
would be no match between the input and output and hence
no taint can be inferred. Fortunately, the transformations
used by most web applications seem to consist of character
encodings and simple sanitizations, and these can be accom-
modated in a taint inference algorithm.

The core of our taint inference algorithm is the same as
that of Reference [21]. However, since XSSFilt is resident on
a browser, there are differences in terms of identifying taint
sources, recognizing tainted content, and a few additional
optimizations.

1. The URL is parsed into a list of (name, value) parame-
ters. The parameter name is used for reporting purposes,
but is of no other interest to XSSFilt. This decomposi-
tion into parameters is necessary to detect partial script
injections. If the URL cannot be parsed properly, or if
special characters are present in the URL path (or if they
span more than one parameter), the entire path is also
appended as a single parameter. This step ensures that
the technique would not fail for applications that use non-
standard parameter encoding, but instead will operate in
a degraded mode where it can detect whole-script injec-
tion.

2. As an optimization, parameters whose content cannot
possibly include JavaScript or HTML code are omitted
from further consideration. Specifically, we discard pa-
rameters shorter than 8 characters, and parameters con-
taining only alphanumeric characters, underscores, spaces,
dots and dashes. These characters are commonly used in
benign URLs. However, even if these parameter values
are included in the returned page, the resulting content
will not match the policies described in Section 5, and
hence ignoring them will not cause attacks to be missed.

3. Before any inline script is executed, an approximate sub-
string matching algorithm is used to establish a relation-
ship between the parameters and the script. If the param-
eter is longer than the script, then the script is searched
within the parameter, to detect whole script injection.
On the other hand, if the script is longer than the param-
eter, then the parameter is searched within the script, to
detect partial script injection.

A similar check is performed before an external script is
fetched for execution. If the script URL is longer than
the parameter, then the parameter is searched within
the URL to detect hijacking of existing external scripts,
where the attacker is able to point them to a malicious
domain. Otherwise the URL is searched within the pa-
rameter to account for whole script injection of an exter-
nal script name.

Previous browser-resident techniques for XSS detection, in-
cluding XSSAuditor [3] and noXSS [10] use exact substring
matching rather than an approximate substring matching to
identify reflected content. Another difference is that XS-
SAuditor does not parse parameters and hence it can only
detect those cases where an entire script is injected, while
XSSFilt can detect partial script injections as well. The
main advantages of XSSAuditor’s approach are:

• Faster runtime performance: exact substring matching
has linear-time complexity, and hence can provide better



performance over the quadratic-time worst-case complex-
ity of approximate matching.

• Lower false positive rate: This is because (a) exact match-
ing is stricter than approximate matching, and (b) like-
lihood of coincidental matches for the entire script is
smaller than that for any of its substrings.

Our approach, on the other hand, has complementary strengths:

• Coping with application-specific sanitizations: Approxi-
mate string matching is better able to cope with application-
specific sanitizations that may take place, e.g., when a
‘*’ character is replaced by a space. In contrast, an ex-
act matching algorithm will fail to match even if a single
such substitution takes place. Our results in Section 7, as
well the results of References [1] and [21] show that such
application-specific sanitizations do occur in practice.

• Partial script injections: As described in the introduction
(Figure 1), template-based web application frameworks
create natural opportunities where an existing script could
be modified by injecting a parameter value into its mid-
dle. In this case, there would not be a match for the whole
script, and hence XSSAuditor would miss such injections.
As we show in the evaluation section, such partial script
injection vulnerabilities are relatively common.

Although the results in Reference [21] seem to indicate that
the above benefits could be obtained without undue perfor-
mance overheads or false positives, a more careful examina-
tion indicates that those results are not necessarily applica-
ble for client-side XSS defense:

• The false positive evaluation in Reference [21] was done
in the context of SQL injection, specifically on simple
web applications. In contrast, a browser-side XSS defense
needs to avoid false positives on virtually all applications
that have been deployed on the web.

• In terms of performance as well, the results in Refer-
ence [21] were obtained using a SQL injection data set.
The volume of data subjected to approximate matching
and policy checking are thus much smaller than that in-
volved in HTTP requests and responses, and hence per-
formance constraints are more stringent for XSS-defense
within a browser.

Thus, it was unknown, prior to this work, whether a client-
side XSS defense can benefit from the strengths of approx-
imate matching without incurring its drawbacks. Our eval-
uation answers this question affirmatively. Section 7 shows
that XSSFilt benefits from the increased power of approxi-
mate matching, while minimizing its drawbacks.

5. XSS POLICIES
XSSFilt is targeted at inexperienced users who are not

expected to deal with false positives. We seek to provide a
filter reliable enough to be enabled by default on a main-
stream browser.

Previous research on injection attacks on web applications
showed that a few generic policies can detect a wide range
of attacks. In particular, Su et al [24] proposed the syntactic
confinement policy that confines tainted data to be entirely
within certain types of nodes of a parse tree for the target
language (e.g., SQL or JavaScript). A lexical confinement
policy has been used successfully by others [21]. However,
these works primarily targeted SQL injection, which is rel-

atively simple. In contrast, XSS is more challenging due to
the diversity of injection vectors and the many evasion tech-
niques available to attackers. Below, we describe policies
that address these difficulties in a systematic manner.

5.1 Inline Policy
The inline policy is used for protecting against XSS at-

tacks embedded in inline content. Specifically, the following
types of content are addressed.

A. Inline code: This category includes code embedded di-
rectly in the web page using one of the following mecha-
nisms:

i. Inline scripts: Script content, enclosed between <script>

and </script> tags

ii. Event listeners: Code enclosed in an event handler
specification, e.g., <a onclick="alert(...)">

iii. JavaScript URLs: Code provided using JavaScript pro-
tocol, e.g., <a href="javascript:alert(...)">

iv. Data URL: These provide a general mechanism to in-
clude inline data, which may be text, images, HTML
documents, etc. The following data URL embeds the
text “Hello” in base64 encoding:
data:text/plain,SGVsbG8=

B. Dynamically created code: New code may come into
being when a value stored in a variable is eval’d or used
in an operation such as setTimeout.

The simplest (and most restrictive) inline policy is one
that prohibits any part of a script from being tainted. Unfor-
tunately, this policy produces many false positives because
it is common for scripts to contain data from HTTP parame-
ters. For this reason, we implemented a lexical confinement
policy that restricts tainted data to be contained entirely
within a limited set of tokens. In practice, we discovered
that the data injected is normally inside strings. All of the
attacks in our dataset consisted of such injections within
strings. We therefore specialized the policy to ensure that
tainted data appears only within string literals, and does not
extend before or after the literal. This policy was sufficient
to avoid false positives.

5.2 External Policy
This policy is enforced on external code that is specified

by a name, i.e., injection vector (C) described below.

C. External code: Code that is referenced by its name us-
ing one of the following mechanisms:

i. External scripts: Script name provided using a script
tag, e.g., <script src="xyz.js"></script>

ii. Base tags: These can be used to achieve an effect sim-
ilar to external script injection by implicitly chang-
ing the URL from where scripts in the document are
loaded.

iii. Objects: Similar to external scripts, but embedded be-
tween <object> and </object> tags.

External policy addresses these injection vectors. It is ap-
plied to the name of external scripts or objects as follows.

1. If the host portion of the URL is untainted, then the
script is allowed. Note that an attacker cannot typi-
cally upload a malicious script onto a server controlled
or trusted by a web application. For this reason, the



attacker needs to control the host portion of the URL.

Unlike the host component, our policy permits the path
component of a URL to be tainted, since some web appli-
cations may derive script names from parameter values.

2. Even if the host portion of the URL is tainted, our policy
permits the script if it is from the same origin. We use
a relaxed same-origin check [5] which verifies if the regis-
tered domains of the URLs match. Thus, www.google.com
is considered same-origin with reader.google.com.

3. Finally, if the tainted domain was previously involved in
a check that was deemed safe, then it is allowed. Intu-
itively, XSSFilt assigns trust on a per-domain basis, and
considers all requests from the same domain as trusted
or untrusted.

6. SECURITY ANALYSIS
In this section we identify possible attack vectors and

strategies that may be used for an XSS attack, and argue
how our design addresses these threats.

We expect an attacker to deploy the full range of tech-
niques available to evade detection by XSSFilt. There are
two logical steps involved in the operation of XSSFilt: (I)
recognizing script content in the victim page, (II) identify-
ing if this code is derived from request data. The following
techniques may be used to defeat Step I:

1. Exploit all of the above-mentioned vectors to inject code,
hoping that one of more of the vectors may not be (cor-
rectly) handled by XSSFilt. However, the filter archi-
tecture makes it very simple to enforce complete media-
tion [20], since there is a very small number of code paths
that call into the JavaScript engine. IE and NoScript rely
on the completeness of their regular expressions, which
need to strike a complicated balance between usability
and protection.

2. Exploit various browser parsing quirks to prevent XSS-
Filt from recognizing one or more of the scripts in the
victim page. Note, however, that browser quirks pose
a problem for techniques that attempt to detect scripts
by statically parsing HTML. In contrast, XSSFilt oper-
ates by intercepting scripts dispatched to the Javascript
engine, and hence does not suffer from this problem.

3. Exploit DOM-based attacks: If the victim page uses a
script to dynamically construct the page, e.g., by setting
the innerHTML attribute, then try to defer script injec-
tion until this time. This technique defeats filters that
scan for scripts at the point the response page is received.
However, XSSFilt’s architecture ensures that all scripts,
regardless of the time of their creation, are checked before
their execution. Hence, XSSFilt is not fooled by DOM-
based attacks.

4. Exploit sanitization to modify the parse tree and force
the parser to interpret another part of the page as script.
This vulnerability existed in Internet Explorer [17], whose
filter deactivated script nodes by modifying the <script>
tag, and can potentially exist in NoScript. In contrast,
XSSFilt’s decision to block the execution of a script has
no effect on how the rest of the page is parsed.

To defeat Step II, an attacker may use the following tech-
niques:

5. Employ partial rather than whole script injection: We

have already described how our taint inference implemen-
tation (Section 4), together with the policies described in
Section 5, can detect partial injections.

6. Employ character encodings such as UTF-7 to throw off
techniques for matching requests and responses. Note
that by the time a browser interprets script content, it has
already determined the character encoding to be used.
Therefore XSSFilt applies the corresponding decoding
operation before the taint inference step, and thus thwarts
this evasion technique. NoScript might get confused be-
cause the encoding of the response is not known at re-
quest time.

7. Exploit custom sanitizations performed by an application
to evade taint inference. As described before, XSSFilt
uses approximate substring matching, which provides a
degree of resilience against application-specific sanitiza-
tions employed by web applications. However, if a web
application makes extensive use of non-standard charac-
ter transformations, it may be possible to exploit them to
evade XSSFilt. It seems unlikely that any purely client-
side defense can address this evasion. Moreover, note that
the attacker cannot induce such behavior on arbitrary ap-
plications — he can only exploit applications that already
perform extensive, non-standard transformations.

8. Employ second order attacks that operate by injecting
malicious parameters into links or forms contained in the
victim web page. An XSS attack would be effected when
these forms are subsequently submitted. Note, however,
that XSSFilt will apply policies to these submissions as
well, and hence detect second (or higher order) order
attacks. IE has an exception for same-origin links and
would be vulnerable to this attack.

7. EVALUATION AND COMPARISON
In this seciton, we evaluate and compare the protection

and compatibility offered by XSSFilt, XSSAuditor and No-
Script. Our results demonstrate that the techniques used in
XSSFilt provide better compatibility as well as protection.
In addition, we provide data that shows the prevalence of
partial injection attacks.

7.1 Implementation
We implemented XSSFilt by modifying the Content Se-

curity Policies (CSPs) [23] implementation in Firefox. This
allowed us to leverage the CSP interface and code, which
include most of the required interposition callbacks.

CSPs implement the nsIContentSecurityPolicy inter-
face, which is only used to check the URL of external re-
sources being loaded, including scripts. We added a new
method permits to check inlined resources for XSS injec-
tions.

We modified the existing CSP callbacks to pass the script
content to permits where appropriate. We also added new
callbacks for Base elements and Data URLs, which CSPs do
not need to address for technical reasons.

To test NoScript, we downloaded the latest version (2.2.3)
and disabled all features except for XSS protection, which
we turned on for all requests.

To test XSSAuditor, we reimplemented it in Firefox to
avoid instrumenting a second browser. XSSFilt is based on
XSSAuditor’s architecture, so reimplementing its policies is
rather simple.



Dataset XSSFilt XSSAuditor NoScript
xssed 399/400 379/400 400/400
cheatsheet 20/20 18/20 20/20

Figure 3: Results for xssed and cheatsheet dataset

7.2 Protection Evaluation
We tested the three filters against two sources of XSS

attack data that have been widely used in previous research.

xssed: xssed.com [6] contains reports of websites vulnerable
to XSS, along with a URL for a sample attack. Since the
dataset is very large, we randomly selected a subset of 400
recent, working attacks among these in order to estimate
the effectiveness of our filter against real-world attacks.

XSS cheatsheet: The xssed dataset is biased towards very
simple attack payloads, since most of them simply inject
a script tag. To assess the filter’s protection for more
complex attacks, we created a web page with multiple
XSS vulnerabilities and tried attack vectors from the XSS
Cheat Sheet [8], a well-known and oft-cited source for
XSS filter circumvention techniques.

To automatically test this large set of attacks, we modified
Firefox to log XSS violations to a file and used its extension
API to automatically navigate the browser to all URLs in
the two datasets.

Figure 3 summarizes the results for both datasets. XSS-
Filt successfully stopped all but one of the attacks from the
xssed dataset and all attacks from the cheatsheet dataset.
Its lone failure is attributed to a limitation of taint-inference
previously explained: when the web application applies ex-
tensive string transformations, the algorithm might fail to
find a relationship between the parameter and the content.
In this specific example, the filter failed because the param-
eter:
alert("HaCkEd By N2n -HaCkEr - 3rd@live");

was transformed to
alert("HaCkEd N2n -HaCkEr 3rd@live");

by the web application. Some (but not all) spaces and dashes
had been deleted, along with the word “By”. In these sit-
uations, no client-side filter can realistically be expectd to
detect the attack.

The 100% coverage on the cheatsheet dataset is not sur-
prising: these attacks are designed to bypass server-side
sanitization functions, which look for specific patterns in
text and are vulnerable to browser quirks and unusual XSS
vectors. Since this filter architecture is immune to browser
quirks and covers all vectors uniformly, none of these attacks
succeeded.

XSSAuditor missed several attacks in these datasets. Fig-
ure 4 identifies the underlying causes:

Partial Script Injection: XSSAuditor does not detect this
type of attack because, unlike XSSFilt, it does not per-
form URL parsing and substring matching.

String Transformation: XSSAuditor relies on canonical-
ization to account for common string transformations in
web applications. This approach can break when an un-
common transformation takes place. Taint-inference re-
lies on approximate substring matching, which is more
tolerant of exceptions.

The results report that the protection offered by XSSAu-

Dataset Partial Script Injection String Transformation
xssed 16 5

cheatsheet 2 0

Figure 4: XSSAuditor failures

ditor over the xssed dataset is 95% vs 99.75% for XSSFilt.
However, the xssed dataset is biased towards simple vulner-
abilities that inject a script tag, and a 4% prevalence of
partial script injections does not necessarily imply that this
is the case for XSS vulnerabilities in general.

NoScript’s XSS filter did well against both datasets. The
reason is that, unlike XSSAuditor and XSSFilt, NoScript
specifically looks for JavaScript syntax and common Java-
Script functions such as alert. Since most attacks on xssed
simply attempt to open a script tag and popup an alert

box, it is clear that NoScript should have no trouble in de-
tecting them. Even though considerable skills and efforts
may be required to transform the payload until it bypasses
the filter, it has been shown to be possible [22, 16]. In our
own experiments, we were able to bypass the filter in some
cases by substituting the alert call with another JavaScript
identifier. Had the web application bound that identifier to
a suitable function, we could have carried out a successful
XSS attack.

7.3 Partial Injection Prevalence
Compared to XSSAuditor, XSSFilt is able to detect par-

tial script injection vulnerabilities. Therefore, it is impor-
tant to assess how prevalent these are. To estimate their
prevalence, we used three different methods.

7.3.1 Partial Injections in xssed.com Data Set
Out of 400 real-world live XSS attacks, 4% were targeting

partial injection vulnerabilities. We analyzed the rest of the
vulnerable pages attacked through whole script injections to
discover if they contained partial injection vulnerabilities as
well, and we discovered that an additional 4% of pages are
vulnerable, for a total of 8% of pages vulnerable to partial
script injection.

Thus, even though the coverage against attacks on the
xssed dataset for XSSAuditor was 95%, the actual cover-
age on vulnerabilities is lower at 91%. However, the size of
this dataset is quite limited for the purpose of extrapolating
statitics about the nature of XSS attacks in general. More-
over, the website does not review submissions and does not
reward contributors for creative or complex attacks. For this
reason, the dataset is biased towards simple vulnerabilities
that can be discovered automatically.

7.3.2 Partial Injection Vulnerabilities in the Wild
We have developed a tool/scanner called gD0rk [18] to

study the prevalence of XSS vulnerabilities in deployed sites.
Although gD0rk was not developed for the purpose of this
paper, we believe that it is very helpful for assessing the
prevalence of partial injection vulnerabilities:

• gD0rk analyzed a much larger collection of web sites
as compared to xssed.com data, and hence provides a
broader basis for drawing inferences about vulnerabilities
in deployed sites.

• gD0rk uses a mechanical procedure for finding vulnera-
bilities, with no built-in bias for partial injections.

xssed.com


We note that, due to the nature of reflected XSS attacks,
we are targeting ourselves in these attacks, and hence be-
lieve that the web sites scanned by gD0rk were in no way
subjected to any harm.

gD0rk uses Google’s advanced search capabilities to short
list candidate web sites that are likely to be vulnerable,
probes them for reflected content by modifying the URL,
and examines the context in which the content is injected
in the web pages returned to build an attack. The exact
details of the tool are not important for the purposes of this
paper, but we do want to note that it is sophisticated enough
to detect and circumvent many sanitizations performed by
web applications where possible. For example, if a reflection
is inside a JavaScript string in a script tag, the scanner
attempts to write

"; payload (); //

through the filter to exploit the partial injection vulnerabil-
ity. However, if the application sanitizes double quotes, the
scanner attempts to close the script tag instead and open a
new script node with

</script ><script >payload ();</script >

We describe an example from this dataset that contains a
partial injection vulnerability. The server-side code for this
page can be abstracted as:

<script ><!--
select1 =

" <?=sanitize (\$_GET["select1"])?>";
...
--></script >

The scanner detects that the sanitization function trans-
forms %22 into double quotes, and derives the following string
for an XSS attack:

\%22; alert (1); //

We ran gD0rk for one month and identified 272,051 vul-
nerable websites. For scalability and performance reasons,
we did not validate the generated attacks for all these vulner-
abilities. Instead, we used statistical sampling to estimate
the fraction of these sites that were actually vulnerable. In
particular, a random subset of 1000 vulnerabilities among
these were selected, and then we were able to verify that
98% of the generated attacks worked on this subset. We
then selected a random subset of 10000 vulnerable websites
and used the scanner to identify the context of the vulnera-
ble reflections. We found that 18% of these reflections were
included within script tags or event handlers, and thus rep-
resent partial script injection vulnerabilities.

7.3.3 Dynamically Generated Scripts
Intuitively, the necessary requirement for a partial injec-

tion vulnerability is a script that is assembled dynamically
from input parameters by the web application. We believe
that it is reasonable to expect developers to fail to sani-
tize parameters which appear inside scripts just as often as
they fail to sanitize them anywhere else in the page. Un-
der this hyphothesis, the rate of pages that construct scripts
dynamically is a good estimator for the ratio of partial injec-
tion vulnerabilities to whole script injection vulnerabilities.
The benefit of this indirect approach over the previous one is
that the dataset is not made out of vulnerable pages, which
represents a skewed sample from mostly unpopular websites.

For this reason, we built a browser-resident crawler for
Firefox and bootstrapped it with the 1000 most popular

websites according to the Alexa rankings. When the crawler
processes a page with non-trivial HTTP parameters and de-
tects that a parameter appears in a script, it substitutes the
parameter value with a placeholder, requests the page with
the newly constructed URL and then attempts to find the
original value and the new placeholder in the response. If
the placeholder is found in the same script and the original
parameter value is not found, then the relationship between
script and parameter is confirmed and the page is marked as
containing a dynamic script. When we stopped the crawler,
it had crawled a total of 35145 pages, of which 9% contained
dynamically generated scripts. Given the strictness of the
requirements, we believe this is a conservative estimate.

7.4 Compatibility Evaluation
Browser-resident reflected XSS defenses restrict the ca-

pabilities of browsers with respect to content found in in-
put parameters, such as GET parameters from the querys-
tring. As a result, they have the potential to break some web
pages, and thus lead to compatibility problems. To estimate
the compatibility of these defenses, we instrumented Fire-
fox to log information about XSS checks while performing
the aforementioned crawl on major websites. The browser-
resident crawler was developed using the new Addon-SDK
[14] for Firefox. This allowed us not only to support discov-
ery of dynamically constructed links and forms, but also to
check all the resources loaded by the web page (including
scripts and advertisements inserted through DOM manipu-
lation) for XSS violations.

Overall, all filters reported very few false positives. This
is due to the benign nature of the dataset, which contains
very few special characters to begin with: only 26 URLs
contained any of the characters in the following set: {”,’,<}.
However, not all filters performed equally:

• NoScript’s 15 false positives are complex URLs contain-
ing long identifiers that erroneously match NoScript reg-
ular expressions. For example: the following (simplified)
URL triggers a violation:

http://domain.com/dir/page.php?

n=PHNjcmlwdP25plJmo9MCI%2BPC9zY3JpcHQ%2B&

h=55e1652a183.

An interesting property of NoScript’s XSS filter is that
if a parameter triggers a false positive in one web ap-
plication, it will do so in every other web application,
because the actual HTTP response does not matter. For
this reason, when we devised the heuristics to fill and
submit forms, we chose not to submit suspicious strings
that would trigger XSS violations on every web applica-
tion. Had we configured the crawler to fill forms with
values such as alert(1), NoScript would have triggered
many more policy violations.

• XSSFilt initially reported a much higher number of false
positives than NoScript. Most of them were either due
to a URL being supplied as a parameter and then used
by an existing script to construct a new script tag (for
advertisements), or by a parameter being passed to a
string-to-code function such as eval. These practices
would be safe if the application code checked the value
against a whitelist of pre-approved URLs for the former
case or JavaScript snippets for the latter, and the viola-
tion could be indeed considered spurious. However, we
found that out of 51 XSSFilt notifications, only 8 did



Filter XSSFilt XSSAuditor NoScript
# of violations 8 6 15

Figure 5: Compatibility Comparison

such checks; the remaining violations were in fact due to
vulnerable pages that could be subverted to load a script
from an arbitrary host or execute arbitrary code. This
set of pages include important websites such as wsj.com,
weather.com and tripadvisor.com. For this reason, we
do not consider these scenarios as false positives.

• XSSAuditor behaved similarly to XSSFilt, reporting the
same vulnerable pages as XSS violations. We disconted
them from XSSAuditor results as well. A couple of ac-
tual false positives produced by XSSFilt involving partial
script injection were not notified by XSSAuditor.

Figure 5 reports the number of false positives for each fil-
ter. Note that while XSSAuditor and XSSFilt offer roughly
the same compatibility, the latter protects against a wider
range of threats. Also, as previously explained, NoScript’s
false positives tend to cause greater disruption for the user.

7.5 Performance Evaluation
The performance evaluation is focused on XSSFilt only.

XSSAuditor’s performance has already been evaluated in
Reference [3], while NoScript overhead is trivially low, since
it only examines one URL per request, unlike XSSFilt and
XSSAuditor which have to perform checks for each script
contained in the page.

Unfortunately, calculating the overhead imposed by the
filter is a significant challenge. This is because XSSFilt con-
tains many optimizations that bypass policy enforcement if
parameters do not contain special characters, if they are too
short or if an external script is fetched on the same origin of
the page.

The Mozilla framework includes two performance tests:
tp4 is an automated test that can be run on patches to the
mozilla codebase, to estimate the overhead that these can
impose on the browser. The test estimates the time required
to load a set of predefined pages that are saved locally to
produce consistent results over time. The overhead esti-
mated by tp4 for XSSFilt is negligle. Unfortunately, since
tp4 fetches homepages saved locally, it overestimates the
effect of the filter’s optimizations: requests don’t have pa-
rameters to check, and all external scripts are from the same
origin.

To produce more meaningful results, we used pageloader,
the Firefox extension that is used internall by tp4 to mea-
sure load times. Instead of using the standard set of local
pages used by tp4, we loaded 20 times a custom set of 120
URLs to be fetched remotely that also included many GET
parameters2. We used an aggressive caching proxy to factor
out network delay while transparently providing pageloader
with remote resources. This way, we can avoid overestimat-
ing the speedup due to XSSFilt’s optimizations. This test
showed an overhead of 2.5%.

However, even though the dataset clearly triggered many
XSSFilt checks, the figure is not necessarily representative
of the overhead normally experienced by users, because this

2The set of URLs can be found at http://pastebin.com/
kYqas9ae.

is a) heavily dependent on the amount of parameters in web
applications and b) ultimately diluted when factoring in the
delay involved with fetching a webpage off the network. For
this reason, we used profiling data available from an ordi-
nary user session consisting of 3000 unique pages. Since a
web browser is a multithreaded execution environment, the
overhead cannot be estimated by simply timing the calls to
XSSFilt: the same call will take longer if the user is simul-
taneously watching a video on YouTube on a different tab.
Therefore, the profiler logged the actual parameters of XSS
checks, and given that the only expensive operation is ap-
proximate substring matching, we can perform the approx-
imate string matching computations offline to estimate the
time spent during XSS checks for each page load. This yields
an average overhead of 0.5%, which shows that the overhead
is almost negligible when factoring in network latency.

8. RELATED WORK
Server-Side Approaches: Earlier works in XSS defense

have been mostly in the form of server-side defenses. Given
that the vulnerability exists solely on the server-side, this is
natural. Moreover, techniques based on taint-tracking can
be naturally applied on the server-side.

XSSDS [12] describes two server-side approaches: a re-
flected XSS filter based on string matching and a generic
XSS filter that builds a whitelist of scripts during a training
phase. Similar to IE8, the reflected filter compares input
parameters and HTML output to look for untrusted input
in scripts. However, it is a network-based filter, unable to
detect DOM-based attacks. It leverages the Firefox parser,
which is able to defeat browser quirks against Firefox clients;
however, this parser comes with a higher overhead and can-
not reliably handle quirks from other clients.

[29] uses string matching and taint-aware policies to stop
generic injection attacks (SQL injection, XSS, Shell Injec-
tion). However, it uses heavyweight, precise taint-tracking.
This limits its applicability to the server side, and it has
the drawbacks associated with taint-tracking: high overhead
and possible loss of reliability. Their policies are based on
syntactic confinement : tainted tokens of sensitive operations
should not span multiple syntactical constructs.

[21] is a server-side defense against injection attacks (SQL
injection, XSS, Shell Injection). It offers server-side protec-
tion through library interposition, using taint-inference and
taint-aware policies. An exclusively server-side protection
can only be a static, network-based defense. Therefore, it
cannot protect against DOM-based attacks. It also suffers
from false positives and negatives as a result of parsing differ-
ences with a browser. Moreover, sanitization of the detected
attacks is not discussed.

XSS-GUARD [4] uses the program transformation ap-
proach also found in Candid [2] to detect which scripts are
intended by the web application, inferring a whitelist for
each request before sending out the response to the client:
the application is instrumented to build an alternative re-
sponse along with the ordinary one; instead of using HTTP
parameters to assemble the response, the alternative appli-
cation logic uses dummy inputs. Once both responses have
been built, XSS-GUARD checks that every script present
in the real page is also present in the alternative page. Al-
though XSS-GUARD is a server-side defense, the idea of
sending a dummy request along with the original request
for XSS protection has been used on the client-side as well

http://pastebin.com/kYqas9ae
http://pastebin.com/kYqas9ae


by [9].
Blueprint [13] is a server side defense which converts the

untrusted HTML embedded in a page into JavaScript code.
The purpose of this transformation is to fix the browser’s in-
terpretation of the page at the server-side, adding JavaScript
code to reliably reconstruct the parse tree once the page is
rendered by the browser. This sidesteps one of the biggest
issues with XSS, which is browsers’ leniency towards errors,
which opens many chances to overcome input sanitization.
With this technique, the interpretation of untrusted input
can be determined by the server, which also decides what
type of content is allowed for each piece of untrusted infor-
mation.

Client-Side Approaches: Client-side approaches pro-
tect users against XSS vulnerabilities without waiting for
websites to fix them. Two major browsers now ship with an
XSS filter.

Internet Explorer 8 [19] comes with built-in XSS protec-
tion. IE8’s approach also uses the idea of matching inputs
and outputs, but does so in a more simplistic way: from in-
puts, regular expressions of possibly malicious injections are
created using heuristics, compiled and matched against the
HTML output. IE8’s goal is to provide a usable protection
for ordinary users, thwarting basic attacks (which constitute
the vast majority of attacks in the wild) without incurring
false positives. Their regular expressions have been shown
to be insufficient for protection: [16] shows that in case of
an XSS vulnerability there are many ways to bypass the fil-
ter. Moreover, their choice of sanitization technique opens
up further holes, which have been described in [17]. Finally,
in spite of its implementation within the browser, it oper-
ates like a network-based filter, and hence does not detect
DOM-based attacks.

XSSAuditor [3] is the name of the XSS filter integrated
into Webkit (and consequently Google Chrome). This fil-
ter proposes a new architecture, which is only possible on
browser defenses: instead of interposing on the network
data, this solution interposes on the JavaScript engine inter-
face. This approach has many advantages, the most impor-
tant being interposing on all requests of script evaluation,
defeating browser quirks and unusual attack vectors. XSS-
Filt too enjoys this advantage. However, unlike XSSFilt,
XSSAuditor relies on exact string matching, and hence can
miss attacks due to application-specific sanitizations. More-
over, XSSAuditor does not detect partial script injections.

NoScript [7] is a popular Firefox plugin which allows users
to execute JavaScript only on trusted websites manually
added to a whitelist. NoScript also includes an XSS fil-
ter: like IE8, it relies on regular expressions on parameters.
However, regular expressions are used to extract and identify
malicious data from the URL; NoScript does not actually
check if malicious data is actually present in the response,
but rather sanitizes the request before it is sent to the server.
Thus, it can suffer from a higher rate of false positives.

Hybrid Approaches: Hybrid approaches are an in-
teresting alternative: they can enforce the policy on the
browser, defeating browser quirks, and rely on the server
to provide a policy or taint information. However, while the
two previous classes of defenses can be practically deployed,
these solutions require a critical mass of browsers and web-
sites willing to deploy the defense.

BEEP [11] is a hybrid defense framework which allows the
server to supply a policy for the page through a JavaScript

function. This function can interpose on script execution: it
receives the script content and its DOM node as arguments,
and can deny the script execution. Using the two argu-
ments provided to the hook, BEEP also provides two sample
policies. A whitelisting policies, where the web developers
checks every script with a set of known script hashes, and
a containment policy, where nodes can be prevented from
having script content in descendants.

DSI [15] and Noncespaces [27] protect against injection
attacks by providing an isolation primitive for HTTP. Us-
ing this primitive, the server can securely isolate untrusted
content and trasmit it to the browser along with the HTML
response. The browser can then refuse to execute untrusted
content. This combines the advantages of server-side de-
fenses with respect to identification of untrusted content
(support for taint-tracking and developer annotation) and
of client-side defenses with respect to enforcement (immu-
nity to browser quirks, support for DOM-Based attacks).

Mozilla CSPs [23] is a feature added in Firefox 4.0 to sup-
port server-supplied content restrictions, to further limit the
resources that can be embedded in a web page. For each
content type, the web developer can specify a list of trusted
hosts allowed to provide content for the web page. These
policies can provide XSS protection by allowing scripts to be
served solely by servers under the control of the web applica-
tion. Unfortunately, inlined content (such as inline scripts)
cannot be considered same-origin: it has to be considered
untrusted and cannot be executed.

Reference [28] presents a modification to Firefox’s JavaScript
engine that prevents data leaks using fine grained taint-
tracking, refusing to transfer sensitive information (e.g. cook-
ies) to third parties.

9. CONCLUSIONS
This paper presented a thorough study of two popular

XSS filters, NoScript and XSSAuditor, identifying their weak-
nesses and proposing a new filter, XSSFilt. Through ex-
tensive testing, we showed that XSSFilt covers more attack
vectors and is more resilent in case of string transformations
applied to reflected content.
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