
Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Propositions (Textbook Chapter 1)

A proposition is a statement that is either true or false

Non-propositions

Sky is beautiful!

Tomorrow will be sunny.

Examples of propositions

2+ 3 = 5

n2 + n+ 41 is always prime

1 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

2 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

3 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

4 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

5 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

6 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

7 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

8 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Propositions and conjectures

Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true
1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.

9 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Logical Formulas (Textbook Chapter 3)

Obtained by combining propositions using logical connectives (aka logical
operators)
∧ (“and” operation)
∨ (“or” operation)
¬ (“not” operation)
→ (“implies” operation)

10 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Properties of ∨, ∧ and ¬

Commutativity P ∨ Q ↔ Q ∨ P P ∧ Q ↔ Q ∧ P

Associativity P ∨ (Q ∨ R) ↔ (P ∨ Q) ∨ R P ∧ (Q ∧ R) ↔ (P ∧ Q) ∧ R
Distributivity P ∨ (Q ∧ R) ↔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R)
De Morgan’s Laws ¬(P ∨ Q) ↔ ¬P ∧ ¬Q ¬(P ∧ Q) ↔ ¬P ∨ ¬Q

Compare these laws with those for arithmetic, with ‘+’ for ‘∨’ and ‘∗’ for ‘∧’.

Which of the properties hold? Which ones don’t?

11 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Properties of ∨, ∧ and ¬

Commutativity P ∨ Q ↔ Q ∨ P P ∧ Q ↔ Q ∧ P
Associativity P ∨ (Q ∨ R) ↔ (P ∨ Q) ∨ R P ∧ (Q ∧ R) ↔ (P ∧ Q) ∧ R

Distributivity P ∨ (Q ∧ R) ↔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R)
De Morgan’s Laws ¬(P ∨ Q) ↔ ¬P ∧ ¬Q ¬(P ∧ Q) ↔ ¬P ∨ ¬Q

Compare these laws with those for arithmetic, with ‘+’ for ‘∨’ and ‘∗’ for ‘∧’.

Which of the properties hold? Which ones don’t?

12 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Properties of ∨, ∧ and ¬

Commutativity P ∨ Q ↔ Q ∨ P P ∧ Q ↔ Q ∧ P
Associativity P ∨ (Q ∨ R) ↔ (P ∨ Q) ∨ R P ∧ (Q ∧ R) ↔ (P ∧ Q) ∧ R
Distributivity P ∨ (Q ∧ R) ↔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R)

De Morgan’s Laws ¬(P ∨ Q) ↔ ¬P ∧ ¬Q ¬(P ∧ Q) ↔ ¬P ∨ ¬Q

Compare these laws with those for arithmetic, with ‘+’ for ‘∨’ and ‘∗’ for ‘∧’.

Which of the properties hold? Which ones don’t?

13 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Properties of ∨, ∧ and ¬

Commutativity P ∨ Q ↔ Q ∨ P P ∧ Q ↔ Q ∧ P
Associativity P ∨ (Q ∨ R) ↔ (P ∨ Q) ∨ R P ∧ (Q ∧ R) ↔ (P ∧ Q) ∧ R
Distributivity P ∨ (Q ∧ R) ↔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R)
De Morgan’s Laws ¬(P ∨ Q) ↔ ¬P ∧ ¬Q ¬(P ∧ Q) ↔ ¬P ∨ ¬Q

Compare these laws with those for arithmetic, with ‘+’ for ‘∨’ and ‘∗’ for ‘∧’.

Which of the properties hold? Which ones don’t?

14 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Properties of ∨, ∧ and ¬

Commutativity P ∨ Q ↔ Q ∨ P P ∧ Q ↔ Q ∧ P
Associativity P ∨ (Q ∨ R) ↔ (P ∨ Q) ∨ R P ∧ (Q ∧ R) ↔ (P ∧ Q) ∧ R
Distributivity P ∨ (Q ∧ R) ↔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R)
De Morgan’s Laws ¬(P ∨ Q) ↔ ¬P ∧ ¬Q ¬(P ∧ Q) ↔ ¬P ∨ ¬Q

Compare these laws with those for arithmetic, with ‘+’ for ‘∨’ and ‘∗’ for ‘∧’.

Which of the properties hold? Which ones don’t?

15 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

De Morgan’s Law Examples for Practice

¬(P ∨ Q)

¬(P ∧ Q ∧ R)

¬(P ∧ (Q → R))

16 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

17 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

18 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

19 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

20 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

21 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

22 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

23 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

24 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Additional Useful Identities on ∨, ∧ and ¬

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

25 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Propositional formula simplifications and programming

Is there way to simplify

if (!((x >= 0) && (x <= 10)) || (x >= 20))

What about

if !((x <= 20) || ((x >= 30) && (x <= 39)))

if ((x >= 20) && (x <= 30)) || (x >= 40))

26 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Conditional statement (P → Q)

P is the hypothesis/premise/antecendent, Q is the conclusion/consequence

P → Q is also called:

“if P , then Q” “P implies Q”

“Q follows from P” “Q, provided that P”

· · · · · ·

27 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Understanding Conditionals

What is the intuitive meaning of P → Q?

Conditional statement is like a promise

Under what circumstances is the promise kept/broken?

Example: “If tomorrow is sunny, I will take you to the beach.”

P Q P → Q

Tomorrow is sunny Go to the beach Promise is kept (T)

Tomorrow is sunny Did not go to the beach Promise is broken (F)

Tomorrow is not sunny Go to the beach Promise is not broken (T)

Tomorrow is not sunny Did not go to the beach Promise is not broken (T)

P → Q being true because P is false is called vacuously true or true by default

28 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

English to Logic Formulas

P ::= “you get an A in the final exam”

Q ::= “you do every problem in the book”

R ::= “you get an A in the course”

If you do every problem in the book, you will get an A in the final exam

You got an A in the course but you did not do every problem in the book

To get an A in the class, it is necessary to get an A on the final.

29 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Contrapositive, Inverse and Converse

Definitions
Contrapositive of P → Q is ¬q → ¬p

Converse of P → Q is q → p

Inverse of P → Q is ¬p → ¬q

Identities
Conditional ≡ Contrapositive ▷ Useful for proofs

Conditional ̸≡ Converse

Conditional ̸≡ Inverse

Converse ≡ Inverse

30 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Contrapositive, Inverse and Converse

Definitions
Contrapositive of P → Q is ¬q → ¬p

Converse of P → Q is q → p

Inverse of P → Q is ¬p → ¬q

Identities
Conditional ≡ Contrapositive ▷ Useful for proofs

Conditional ̸≡ Converse

Conditional ̸≡ Inverse

Converse ≡ Inverse
31 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Examples of Contrapositive, Inverse and Converse

Conditional ≡ Contrapositive.
“If tomorrow is sunny, we will go to the beach.”
“If we don’t go to the beach tomorrow, then it is not sunny.”

Converse ≡ Inverse.
“If we go to the beach tomorrow, then it is sunny.”
“If tomorrow is not sunny, then we will not go to the beach.”

Conditional ≡ Contrapositive.
“If x > 2, then x2 > 4.” ▷ True
“If x2 ≤ 4, then x ≤ 2.” ▷ True

Converse ≡ Inverse.
“If x2 > 4, then x > 2.” ▷ False
“If x ≤ 2, then x2 ≤ 4.” ▷ False

32 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Necessary and Sufficient Conditions

P is a sufficient condition for Q means P → Q

P is a necessary condition for Q means ¬P → ¬Q
Equivalently, Q → P

P only if Q means P → Q

Equivalently, if P then Q

33 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Necessary and Sufficient Conditions

P is a sufficient condition for Q means P → Q

P is a necessary condition for Q means ¬P → ¬Q
Equivalently, Q → P

P only if Q means P → Q

Equivalently, if P then Q

34 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary ∨,∧ and ¬ Conditionals English to Logic Converse/inverse, Necessary/sufficient, ...

Necessary and Sufficient Conditions

P is a sufficient condition for Q means P → Q

P is a necessary condition for Q means ¬P → ¬Q
Equivalently, Q → P

P only if Q means P → Q

Equivalently, if P then Q

35 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary

Truth Tables

P Q P → Q P Q ¬P ¬P ∨ Q

36 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary

Using Truth Tables to Evaluate Logical Formulas

Does P → Q imply ¬Q → ¬P?

All the two formulas equivalent?

37 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary

Using Truth Tables to Evaluate Logical Formulas

Does P → Q imply ¬P → ¬Q?

38 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary

Using Truth Tables to Show Equivalence

What about ¬(P ∧ Q) and ¬P ∨ ¬Q?

P Q ¬P ¬Q ¬(P ∧ Q) ¬P ∨ ¬Q
F F T T T T
F T T F T T
T F F T T T
T T F F F F

The truth tables for ¬(P ∧Q) and ¬P ∨¬Q match, so we conclude they are equivalent:

¬(P∧Q) ↔ ¬P∨¬Q [De Morgan’s Law]

39 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Validity and satisfiability.

Validity, Satisfiability and Equivalence

A formula φ is valid iff it is true for all possible values of propositions in them

Example: P ∨ ¬P

A formula φ is satisfiable iff it is true for some values of the propositions in them

Most formulas are satisfiable

Example: P → Q

A formula φ is equivalent to ψ iff they have the exact same value for all possible
values of the propositions contained in them

In other words, the truth tables for φ and ψ match fully

We saw several examples in the previous slides
40 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Validity and satisfiability.

Disjunctive Normal Form (DNF)

Example: (P ∧ ¬Q ∧ R) ∨ ¬P ∨ (¬P ∧ R)

The only operator permitted at the top level is disjunction (∨)
Only the conjunction (∧) operator is permitted at the next level
Only propositional variables or their negations at the third level
no variable is repeated within a conjunction

Any propositional formula can be transformed into an equivalent formula in DNF.

Conversion repeatedly uses the identities from previous slides.

But this may take time exponential in formula size

All DNF formulas are satisfiable.

41 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Validity and satisfiability.

Disjunctive Normal Form (DNF)

Example: (P ∧ ¬Q ∧ R) ∨ ¬P ∨ (¬P ∧ R)

The only operator permitted at the top level is disjunction (∨)
Only the conjunction (∧) operator is permitted at the next level
Only propositional variables or their negations at the third level
no variable is repeated within a conjunction

Any propositional formula can be transformed into an equivalent formula in DNF.

Conversion repeatedly uses the identities from previous slides.

But this may take time exponential in formula size

All DNF formulas are satisfiable.

42 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Validity and satisfiability.

Disjunctive Normal Form (DNF)

Example: (P ∧ ¬Q ∧ R) ∨ ¬P ∨ (¬P ∧ R)

The only operator permitted at the top level is disjunction (∨)
Only the conjunction (∧) operator is permitted at the next level
Only propositional variables or their negations at the third level
no variable is repeated within a conjunction

Any propositional formula can be transformed into an equivalent formula in DNF.

Conversion repeatedly uses the identities from previous slides.

But this may take time exponential in formula size

All DNF formulas are satisfiable.

43 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Validity and satisfiability.

Conjunctive Normal Form (CNF) and the SAT problem

Example: (P ∨ ¬Q ∨ R) ∧ ¬P ∧ (¬P ∨ R)

The only operator permitted at the top level is conjunction (∧)
Only the disjunction (∨) operator is permitted at the next level
Only propositional variables or their negations at the third level
no variable is repeated within a conjunction

SAT problem: Given a CNF formula, determine if it is satisfiable.

No efficient algorithm known
Forms the basis of NP-completeness, used to prove that a problem is hard
Any efficient algorithm for solving one NP-complete problem can be used to solve all other
NP-complete problems!

44 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Validity and satisfiability.

Conjunctive Normal Form (CNF) and the SAT problem

Example: (P ∨ ¬Q ∨ R) ∧ ¬P ∧ (¬P ∨ R)

The only operator permitted at the top level is conjunction (∧)
Only the disjunction (∨) operator is permitted at the next level
Only propositional variables or their negations at the third level
no variable is repeated within a conjunction

SAT problem: Given a CNF formula, determine if it is satisfiable.

No efficient algorithm known
Forms the basis of NP-completeness, used to prove that a problem is hard
Any efficient algorithm for solving one NP-complete problem can be used to solve all other
NP-complete problems!

45 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Validity and satisfiability.

Conjunctive Normal Form (CNF) and the SAT problem

Example: (P ∨ ¬Q ∨ R) ∧ ¬P ∧ (¬P ∨ R)

The only operator permitted at the top level is conjunction (∧)
Only the disjunction (∨) operator is permitted at the next level
Only propositional variables or their negations at the third level
no variable is repeated within a conjunction

SAT problem: Given a CNF formula, determine if it is satisfiable.

No efficient algorithm known
Forms the basis of NP-completeness, used to prove that a problem is hard
Any efficient algorithm for solving one NP-complete problem can be used to solve all other
NP-complete problems!

46 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Axioms, Inference Rules, Theorems and Proofs (Textbook §1.3)

Axiom: a proposition accepted to be true.
Usually, no way to prove them; and they seem obviously true.
Example: there exists a straight line between any two points

Inference rule: an axiom to derive new propositions from existing ones
⊢ P, ⊢ P → Q

⊢ Q
(modus ponens)

Theorems, Lemmas: Propositions that can be derived from axioms using inference
rules

(Formal) Proof: The exact manner in which a theorem was derived from axioms.

47 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Axioms, Inference Rules, Theorems and Proofs (Textbook §1.3)

Axiom: a proposition accepted to be true.
Usually, no way to prove them; and they seem obviously true.
Example: there exists a straight line between any two points

Inference rule: an axiom to derive new propositions from existing ones
⊢ P, ⊢ P → Q

⊢ Q
(modus ponens)

Theorems, Lemmas: Propositions that can be derived from axioms using inference
rules

(Formal) Proof: The exact manner in which a theorem was derived from axioms.

48 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Axioms, Inference Rules, Theorems and Proofs (Textbook §1.3)

Axiom: a proposition accepted to be true.
Usually, no way to prove them; and they seem obviously true.
Example: there exists a straight line between any two points

Inference rule: an axiom to derive new propositions from existing ones
⊢ P, ⊢ P → Q

⊢ Q
(modus ponens)

Theorems, Lemmas: Propositions that can be derived from axioms using inference
rules

(Formal) Proof: The exact manner in which a theorem was derived from axioms.

49 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Axioms, Inference Rules, Theorems and Proofs (Textbook §1.3)

Axiom: a proposition accepted to be true.
Usually, no way to prove them; and they seem obviously true.
Example: there exists a straight line between any two points

Inference rule: an axiom to derive new propositions from existing ones
⊢ P, ⊢ P → Q

⊢ Q
(modus ponens)

Theorems, Lemmas: Propositions that can be derived from axioms using inference
rules

(Formal) Proof: The exact manner in which a theorem was derived from axioms.

50 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Common Proof Techniques

(Boolean formula simplification)

Proof by cases

For an implication P → Q, assume P and then prove Q

Proof by contradiction

Proof by induction

51 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Cases

To prove P → Q when P is complex

We can simplify the proof by “breaking up” P into cases:

Find P1, P2 such that P → P1 ∨ P2
Prove P1 → Q and P2 → Q

Note P1 and P2 can overlap, i.e., they can simultaneously be true.
But most proofs consider mutually exclusive cases

Pi’s must be exhaustive, i.e., cover every possible case when P could be true

52 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Cases

To prove P → Q when P is complex

We can simplify the proof by “breaking up” P into cases:

Find P1, P2 such that P → P1 ∨ P2
Prove P1 → Q and P2 → Q
Note P1 and P2 can overlap, i.e., they can simultaneously be true.
But most proofs consider mutually exclusive cases

Pi’s must be exhaustive, i.e., cover every possible case when P could be true

53 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Cases

To prove P → Q when P is complex

We can simplify the proof by “breaking up” P into cases:

Find P1, P2 such that P → P1 ∨ P2
Prove P1 → Q and P2 → Q
Note P1 and P2 can overlap, i.e., they can simultaneously be true.
But most proofs consider mutually exclusive cases

Pi’s must be exhaustive, i.e., cover every possible case when P could be true

54 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Cases

Example: max(r, s) +min(r, s) = r + s

55 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proving an Implication P → Q

Strategy 1: Assume P , show that Q follows

Example:If 2 < x < 4 then x2 − 6x + 8 < 0

56 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proving an Implication P → Q

Strategy 2: Prove the contrapositive ¬Q → ¬P

Example:If r is irrational then
√
r is irrational

57 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proving Equivalence (“P if and only if Q”)

P ↔ Q is proved by showing P → Q and then Q → P

Example: 2 < x < 4 iff x2 − 6x + 8 < 0

58 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Contradiction

If P is false, then P → ¬P holds (vacuously).

i.e., ¬P → (P → ¬P)

Take the contrapositive of this, you get

i.e., (P → ¬P) → ¬P

Basis of proof-by-contradiction strategy:
Assume P , prove ¬P
Thus, we have proved P → ¬P

From this and the fact that (P → ¬P) → ¬P we conclude ¬P .
i.e., we have proved P is false.

59 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Contradiction

If P is false, then P → ¬P holds (vacuously).

i.e., ¬P → (P → ¬P)

Take the contrapositive of this, you get

i.e., (P → ¬P) → ¬P

Basis of proof-by-contradiction strategy:
Assume P , prove ¬P
Thus, we have proved P → ¬P

From this and the fact that (P → ¬P) → ¬P we conclude ¬P .
i.e., we have proved P is false.

60 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Contradiction

If P is false, then P → ¬P holds (vacuously).

i.e., ¬P → (P → ¬P)

Take the contrapositive of this, you get

i.e., (P → ¬P) → ¬P

Basis of proof-by-contradiction strategy:
Assume P , prove ¬P
Thus, we have proved P → ¬P

From this and the fact that (P → ¬P) → ¬P we conclude ¬P .
i.e., we have proved P is false.

61 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Contradiction

If P is false, then P → ¬P holds (vacuously).

i.e., ¬P → (P → ¬P)

Take the contrapositive of this, you get

i.e., (P → ¬P) → ¬P

Basis of proof-by-contradiction strategy:
Assume P , prove ¬P
Thus, we have proved P → ¬P

From this and the fact that (P → ¬P) → ¬P we conclude ¬P .
i.e., we have proved P is false.

62 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Proof by Contradiction

If P is false, then P → ¬P holds (vacuously).

i.e., ¬P → (P → ¬P)

Take the contrapositive of this, you get

i.e., (P → ¬P) → ¬P

Basis of proof-by-contradiction strategy:
Assume P , prove ¬P
Thus, we have proved P → ¬P

From this and the fact that (P → ¬P) → ¬P we conclude ¬P .
i.e., we have proved P is false.

63 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Knights (truth tellers) and knaves (liars)

There is an island that consists of knights and knaves:

Knights always tell the truth.

Knaves always lie.

You visit the island and are approached by two natives A and B:

A says: B is a knight.

B says: A and I are of opposite types.

What are A and B?

64 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Knights (truth tellers) and knaves (liars)

There is an island that consists of knights and knaves:

Knights always tell the truth.

Knaves always lie.

You visit the island and are approached by two natives A and B:

A says: B is a knight.

B says: A and I are of opposite types.

What are A and B?

65 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Knights (truth tellers) and knaves (liars)

There is an island that consists of knights and knaves:

Knights always tell the truth.

Knaves always lie.

You visit the island and are approached by two natives A and B:

A says: B is a knight.

B says: A and I are of opposite types.

What are A and B?

66 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Solution: Case-splitting + Proof by contradiction

Suppose A is a knight.
What A says is true. ▷ by definition of knight
So B is also a knight. ▷ That’s what A said.
So, what B says is true. ▷ by definition of knight
So, A and B are of opposite types. ▷ That’s what B said.
Contradiction: A and B are both knights and A and B are of opposite type.

So, initial assumption is false. ▷ by the contradiction rule
So A is not a knight. ▷ negation of assumption
So A is a knave. ▷ by elimination: All inhabitants are knights or knaves, so since A is not a
knight, A is a knave.
So What A says is false.
So B is not a knight.
So B is also a knave. ▷ by elimination

Final answer: A and B are both knaves
67 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Case-splitting Implication Contradiction

Another proof by Contradiction

Example: Show that there are infinitely many primes

68 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Idea: Circuits and logic are related

Open or off or false
Closed or on or true

69 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Idea: Circuits and logic are related

Switches Light bulb

P Q State

closed closed on

closed open off

open closed off

open open off

Switches Light bulb

P Q State

closed closed on

closed open on

open closed on

open open off

70 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Evolution of electronic computers

Vacuum tube switches (1940s on)

Semiconductor switches (transistors) from 1950s ...

Integrated circuits from 1960s

The number of transistors have increased by 2x every two years

Predicted by Gordon Moore (Moore’s Law) (1965)

Intel 4004 processor had 2250 gates in 1971, about 10µm

Today’s microprocessors have more than 10 to 100 billion transistors, about 10nm in size!

Solid state drives have several trillion transistors

71 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Complicated logic gates as black boxes

A black box focuses on the functionality and ignores
the hardware implementation details

Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

72 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Simple logic gates

Complicated logic gates can be built using a collection of simple logic gates such as
NOT-gate, AND-gate, and OR-gate

Input Output

P R

1 0

0 1

R ≡ ¬P

Input Output

P Q R

1 1 1

1 0 0

0 1 0

0 0 0

R ≡ P ∧ Q

Input Output

P Q R

1 1 1

1 0 1

0 1 1

0 0 0

R ≡ P ∨ Q
73 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Combinational Vs Sequential Logic

Combinational circuit: output is purely a function of current inputs

Combines inputs using a series of gates

No output of a gate can eventually feed back into that gate.

Sequential circuits: output feeds back into input, so it depends on current and
previous inputs.
Basis of memory and sequential instruction processing
Basic unit is called a flip-flop, which in turn is realized using gates

Divides computation into steps

Progress from one step to next is governed by a clock

74 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Combinational Vs Sequential Logic

Combinational circuit: output is purely a function of current inputs

Combines inputs using a series of gates

No output of a gate can eventually feed back into that gate.

Sequential circuits: output feeds back into input, so it depends on current and
previous inputs.
Basis of memory and sequential instruction processing
Basic unit is called a flip-flop, which in turn is realized using gates

Divides computation into steps

Progress from one step to next is governed by a clock

75 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Given a circuit, compute its input/output function

Circuit→ expression

Simplify expression: (P ∨ Q) ∧ ¬(P ∧ Q) ≡ P ⊕ Q ▷ Exclusive or

76 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Given a circuit, compute its input/output function

Circuit→ expression

Simplify expression: (P ∨ Q) ∧ ¬(P ∧ Q) ≡ P ⊕ Q ▷ Exclusive or

77 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Design a circuit for realizing a given truth table

Input Output Expression

P Q R S S

1 1 1 1 P ∧ Q ∧ R

1 1 0 0 P ∧ Q ∧ ¬R
1 0 1 1 P ∧ ¬Q ∧ R

1 0 0 1 P ∧ ¬Q ∧ ¬R
0 1 1 0 ¬P ∧ Q ∧ R

0 1 0 0 ¬P ∧ Q ∧ ¬R
0 0 1 0 ¬P ∧ ¬Q ∧ R

0 0 0 0 ¬P ∧ ¬Q ∧ ¬R

Equivalent expression in DNF: (P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R)

78 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Design a circuit for realizing a given truth table

Input Output Expression

P Q R S S

1 1 1 1 P ∧ Q ∧ R

1 1 0 0 P ∧ Q ∧ ¬R
1 0 1 1 P ∧ ¬Q ∧ R

1 0 0 1 P ∧ ¬Q ∧ ¬R
0 1 1 0 ¬P ∧ Q ∧ R

0 1 0 0 ¬P ∧ Q ∧ ¬R
0 0 1 0 ¬P ∧ ¬Q ∧ R

0 0 0 0 ¬P ∧ ¬Q ∧ ¬R

Equivalent expression in DNF: (P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R)
79 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Better Version

Simplify expression

(P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R)
to

P ∧ (¬Q ∨ R)
Leads to the circuit:

80 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Equivalence of logic circuits

Two digital logic circuits are called equivalent if and only if their input-output tables
are identical

We can use boolean simplification as well!

Show that the following two logic circuits are equivalent.

81 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

Equivalence of logic circuits

Write this 8-input AND gate using 2-input AND gates only.

82 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary Intro Gates Logic circuits Circuit synthesis

NAND and NOR gates

NAND: ¬(P ∧ Q) NOR: ¬(P ∨ Q)

Note: Every boolean function can be realized entirely using NAND gates
Same holds for NOR as well

Input Output

P Q R = P | Q
1 1 0

1 0 1

0 1 1

0 0 1

Input Output

P Q R = P ↓ Q

1 1 0

1 0 0

0 1 0

0 0 1

83 / 84

Intro Formulas Truth tables Satisfiability Proof methods Digital circuits Summary

Unit Summary

Propositions, claims, conjectures and theorems
Logical formulas
English to logical formulas

Truth tables: construction and use

Validity, satisfiability and equivalence

Proof methods

Digital circuits

84 / 84

	Intro
	Propositions and conjectures

	Formulas
	, and
	Conditionals
	English to Logic
	Converse/inverse, Necessary/sufficient, ...

	Truth tables
	Satisfiability
	Validity and satisfiability.

	Proof methods
	Case-splitting
	Implication
	Contradiction

	Digital circuits
	Intro
	Gates
	Logic circuits
	Circuit synthesis

	Summary

