R. Sekar

1/19

Solving Recurrences

2/19

Expand the recurrence out for a few steps

Identify the pattern
Guess a solution based on the pattern
Check the solution for a few small values of n

Verify using induction

3/19

T(n)=2T(n—1)+1, T(0)=0

4/19

Solving Linear Recurrences

@ Homogeneous linear recurrences are of the form
d

fln) =2 af(n—1i)
i=1
o Example: Fibonacci series F(n) = F(n— 1) + F(n — 2)
@ They are known to have an exponential solution f(n) = x" for some x

e Substitute this solution into the recurrence and solve for x:
d

x" = E aix"!

i=1
d

x? = Z aix?~" (Dividing all terms by x"~%)

i=1
Z ax?™" = 0 (Rearrange terms to arrive at a polynomial, with ap = 1)

5/19

Solving Homogeneous Linear Recurrences (Contd.)

@ Find the roots ry, ..., ry of of this polynomial Z?:O ax?™ =0

@ The general solution to the recurrence is

@ Solve for k; using known values for £(0) through f(d — 1).

e Note: if the polynomial has fewer than d roots, the general form of the solution gets

more complicated — we will ignore this case here.

6/19

f(n) =f(n=1)+f(n-2)

7/19

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n) =f(n=1)+f(n-2)

1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x*> = x + 1

2. Solve this quadratic equation to obtain roots p = H\[and ¢ = = ‘[

3. By the homogeneous linear recurrence method, the general solution is f(n) = kip" + kq"

4. Plugin f(0) = 0 and f(1) = 1 to obtain the following equations:
o kip® + kg =f(0)=0
o kip' +hag' = ki (55) + ke (255) = F(1) = 1

8/19

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n)=f(n—=1)+f(n-2)
1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1

”\[andq_‘ V5

2. Solve this quadratic equation to obtain roots p =
3. By the homogeneous linear recurrence method, the general solution is f(n) = kip” + k2q"

4. Plugin f(0) = 0 and f(1) = 1 to obtain the following equations:
o kip’ + kog° = ki + ko = f£(0) = 0 which means k, = —k;
o kip' +haq' = ki (52) + ko (58) = (ki + ko) /24 VBl — k) /2 = £(1) = 1
o Substituting k, = —k; in this equation and simplifying, we get k; = 1/+/5.

=35 (%) -5 (57)

5. Thus, the solution is

9/19

Observations about Fibonacci Recurrence Solution

e All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

o No wonder that this solution was unknown for six centuries!
e Note that |q| = |%§| = 0.6180 < 1so ¢" rapidly approaches zero. For instance,
g*° =~ 0.00006, and the error in f(n) due to ignoring g is less than one in 1075,
1+xﬁ>n

@ So, for larger n, f(n) is determined almost entirely by the first term \/ig (5

o p"/+/5is very close to an integer value, although p is irrational!

@ The ratio between successive Fibonacci numbers converges to p = 1.618, which is

called the golden ratio

10/19

Asymptotic Complexity

e Expressing complexity in terms of “number of steps” is a simplification
o Each such operation may in fact take a different amount of time
e But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

11/19

Asymptotic Complexity

e Expressing complexity in terms of “number of steps” is a simplification
o Each such operation may in fact take a different amount of time
e But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

@ Why not simplify further?

o Capture just the growth rate of T(n) as a function of n

e Ignore constant factors
@ No need to count operations in a loop (their number should be bounded by a constant)

o Ignore exceptions from the formula for small values of n

12/19

Given functions f, g : R — R, we say
f = 0(g), i.e, “f grows no faster than g,
iff

Ii_)m f(x)/g(x) < c for some constant c

2n+20

13/19

e 10n= O(n)

@ 0.0001m° + n = O(n*)
e 2"+ 10"+ n* 4+ 2 = 0(10")
@ 0.0001nlog n+ 10000n = O(nlog n)

14/19

If T(n) = aT (%) + O(n") for constants a > 0, b > 1, and d > 0, then

O(n?), if d > log, a
T(n) = q O(n?logn) ifd=log,a
O(n#:) ifd < log, a

15/19

T(n)=2T(n/2)+n
T(n) = aT (4) 4+ O(n")

o(n), if d > log, a
T(n) = q O(n?logn) ifd=log,a
O(n'°&%) ifd < log, a

16/19

T(n) =4T(n/2) +
T(n) = aT (4) 4+ O(n")

o(n), if d > log, a
T(n) = q O(n?logn) ifd=log,a
O(n'°&%) ifd < log, a

17/19

T(n)=3T(n/2)+n
T(n) = aT (4) 4+ O(n")

o(n), if d > log, a
T(n) = q O(n?logn) ifd=log,a
O(n'°&%) ifd < log, a

18/19

Summary

@ Recursion and induction

o Examples

@ Recurrence Solving Techniques
e Plug-and-Chug

e Homogeneous linear equations
@ Recurrences for algorithm runtimes

e Asymptotic complexity

o Divide-and-Conquer recurrences and Master theorem

19/19

