
Recurrences and Algorithmic Complexity

R. Sekar

1 / 19

Solving Recurrences

2 / 19

Solving Recurrences: Plug and Chug

Expand the recurrence out for a few steps

Identify the pattern

Guess a solution based on the pattern

Check the solution for a few small values of n

Verify using induction

3 / 19

Plug and Chug for Tower of Hanoi Recurrence

T (n) = 2T (n− 1) + 1, T (0) = 0

4 / 19

Solving Linear Recurrences
Homogeneous linear recurrences are of the form

f (n) =
d∑

i=1

aif (n− i)

Example: Fibonacci series F (n) = F (n− 1) + F (n− 2)
They are known to have an exponential solution f (n) = xn for some x
Substitute this solution into the recurrence and solve for x :

xn =
d∑

i=1

aixn−i

xd =
d∑

i=1

aixd−i (Dividing all terms by xn−d)

d∑
i=0

aixd−i = 0 (Rearrange terms to arrive at a polynomial, with a0 = 1)

5 / 19

Solving Homogeneous Linear Recurrences (Contd.)

Find the roots r1, ..., rd of of this polynomial
∑d

i=0 aix
d−i = 0

The general solution to the recurrence is

f (n) =
d∑

i=1

kirni

Solve for ki using known values for f (0) through f (d − 1).

Note: if the polynomial has fewer than d roots, the general form of the solution gets
more complicated — we will ignore this case here.

6 / 19

Solving Homogeneous Linear Recurrences: Fibonacci Example

f (n) = f (n− 1) + f (n− 2)

7 / 19

Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = f (0) = 0

k1p1 + k2q1 = k1
(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= f (1) = 1

8 / 19

Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = k1 + k2 = f (0) = 0 which means k2 = −k1
k1p1 + k2q1 = k1

(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= (k1 + k2)/2+

√
5(k1 − k2)/2 = f (1) = 1

Substituting k2 = −k1 in this equation and simplifying, we get k1 = 1/
√
5.

5. Thus, the solution is

f (n) =
1√
5

(
1+

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

9 / 19

Observations about Fibonacci Recurrence Solution

All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

No wonder that this solution was unknown for six centuries!

Note that |q| = | 1−
√
5

2 | = 0.6180 < 1 so qn rapidly approaches zero. For instance,
q20 ≈ 0.00006, and the error in f (n) due to ignoring q is less than one in 10−8.

So, for larger n, f (n) is determined almost entirely by the first term 1√
5

(
1+

√
5

2

)n

pn/
√
5 is very close to an integer value, although p is irrational!

The ratio between successive Fibonacci numbers converges to p = 1.618, which is
called the golden ratio

10 / 19

Asymptotic Complexity

Expressing complexity in terms of “number of steps” is a simplification

Each such operation may in fact take a different amount of time

But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

Why not simplify further?

Capture just the growth rate of T (n) as a function of n
Ignore constant factors
No need to count operations in a loop (their number should be bounded by a constant)

Ignore exceptions from the formula for small values of n

11 / 19

Asymptotic Complexity

Expressing complexity in terms of “number of steps” is a simplification

Each such operation may in fact take a different amount of time

But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

Why not simplify further?

Capture just the growth rate of T (n) as a function of n
Ignore constant factors
No need to count operations in a loop (their number should be bounded by a constant)

Ignore exceptions from the formula for small values of n

12 / 19

Asymptotic Complexity: Big-O notation

Definition
Given functions f , g : R −→ R, we say
f = O(g), i.e., “f grows no faster than g,”

iff

lim
x→∞

f (x)/g(x) < c for some constant c

Figure 0.2Which running time is better?

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

n

2n+20

n2

Now another algorithm comes along, one that uses f3(n) = n + 1 steps. Is this better
than f2? Certainly, but only by a constant factor. The discrepancy between f2 and f3 is tiny
compared to the huge gap between f1 and f2. In order to stay focused on the big picture, we
treat functions as equivalent if they differ only by multiplicative constants.
Returning to the definition of big-O, we see that f2 = O(f3):

f2(n)

f3(n)
=

2n + 20

n + 1
≤ 20,

and of course f3 = O(f2), this time with c = 1.

Just as O(·) is an analog of ≤, we can also define analogs of ≥ and = as follows:

f = Ω(g) means g = O(f)

f = Θ(g) means f = O(g) and f = Ω(g).

In the preceding example, f2 = Θ(f3) and f1 = Ω(f3).

Big-O notation lets us focus on the big picture. When faced with a complicated function
like 3n2 + 4n + 5, we just replace it with O(f(n)), where f(n) is as simple as possible. In this
particular example we’d use O(n2), because the quadratic portion of the sum dominates the
rest. Here are some commonsense rules that help simplify functions by omitting dominated
terms:

1. Multiplicative constants can be omitted: 14n2 becomes n2.

2. na dominates nb if a > b: for instance, n2 dominates n.

3. Any exponential dominates any polynomial: 3n dominates n5 (it even dominates 2n).

16

13 / 19

Big-O notation: Examples

10n = O(n)

0.0001n3 + n = O(n3)

2n + 10n + n2 + 2 = O(10n)

0.0001n log n+ 10000n = O(n log n)

14 / 19

Solving Divide-and-Conquer Recurrences: Master Theorem

If T (n) = aT
(
n
b

)
+ O(nd) for constants a > 0, b > 1, and d ≥ 0, then

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

15 / 19

Solving Recurrences: Examples Using Master Theorem

T (n) = aT
(
n
b

)
+ O(nd)

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

T (n) = 2T (n/2) + n

16 / 19

Solving Recurrences: Examples Using Master Theorem

T (n) = aT
(
n
b

)
+ O(nd)

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

T (n) = 4T (n/2) + n3

17 / 19

Solving Recurrences: Examples Using Master Theorem

T (n) = aT
(
n
b

)
+ O(nd)

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

T (n) = 3T (n/2) + n

18 / 19

Summary

Recursion and induction

Examples

Recurrence Solving Techniques

Plug-and-Chug

Homogeneous linear equations

Recurrences for algorithm runtimes

Asymptotic complexity

Divide-and-Conquer recurrences and Master theorem

19 / 19

