
Recursion and DML Programming

R. Sekar

1 / 38

Recursion

One of the most fundamental techniques in programming

exceptionally versatile

Closely related to induction:

Like induction, has a base case and inductive (recursive) case.

Correctness of recursive algorithms proved by induction!

Example 1: Factorial:

Base case(s): fac(0) = 1

Recursive case: fac(n) = n ∗ fac(n− 1)

Example 2: Fibonacci numbers:

Base case(s): fib(0) = 0, fib(1) = 1

Recursive case: fib(n) = fib(n− 1) + fib(n− 2)
2 / 38

Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis

Base Case: T (1) = 1

Recursive Case: T (n) = 2T (n/2) + n

Recursive functions: Used in programming

Base Case: sum(0) = 0

Recursive Case: sum(n) = n+ sum(n− 1)

3 / 38

Estimating Runtime of Fibonacci

For runtime, we don’t look for exact numbers

Approximation will do, as long as they are not too far off

Each call of fib performs just 3 operations, other than recursive calls

So, number of calls is a good estimate of runtime of fib

Start with exact number of calls:

Base case(s): N(0) = 0, N(1) = 0

Recursive case: N(n) = N(n− 1) + N(n− 2) + 2

Now, approximate: N(n) ≈ 2N(n− 1) + 2

Approximation also removes the need for the second base case of n=1

Often, such recurrences are solvable to obtain a closed form expression

Later on, we will learn how. Meanwhile, DML can help! 4 / 38

Why is Fibonacci So Slow?

In a call to fib(n), only n distinct Fibonacci numbers are computed.

But there are 2
n
calls to fib!

We are calling fib(k) for the same k many, many times!

Idea: What if we “remember” Fibonacci numbers we computed already?

This avoids repeated calls to the same fib(k)
This technique is called dynamic programming or memoing

Approach: define ffib(n) to return [fib(0), fib(1), . . . , fib(n)]
fun ffib(n) = if n = 0

then [0]
else if n = 1

then [0, 1]
else let prev = ffib(n-1)

in prev ++ [prev[-1]+prev[-2]]

5 / 38

What do these functions do?

Base case(s): h(0) = 1

Recursive case: h(n) = 2 ∗ h(n/2)

Base case(s): m(n) = n− 10, if n > 100

Recursive case: m(n) = m(m(n+ 11)), otherwise

6 / 38

Tower of Hanoi Problem
“mcs” — 2017/6/5 — 19:42 — page 705 — #713

16.4. Solving Linear Recurrences 705

Figure 16.1 The initial configuration of the disks in the Towers of Hanoi problem.

16.4.2 The Towers of Hanoi

According to legend, there is a temple in Hanoi with three posts and 64 gold disks
of different sizes. Each disk has a hole through the center so that it fits on a post.
In the misty past, all the disks were on the first post, with the largest on the bottom
and the smallest on top, as shown in Figure 16.1.

Monks in the temple have labored through the years since to move all the disks
to one of the other two posts according to the following rules:

� The only permitted action is removing the top disk from one post and drop-
ping it onto another post.

� A larger disk can never lie above a smaller disk on any post.

So, for example, picking up the whole stack of disks at once and dropping them on
another post is illegal. That’s good, because the legend says that when the monks
complete the puzzle, the world will end!

To clarify the problem, suppose there were only 3 gold disks instead of 64. Then
the puzzle could be solved in 7 steps as shown in Figure 16.2.

The questions we must answer are, “Given sufficient time, can the monks suc-
ceed?” If so, “How long until the world ends?” And, most importantly, “Will this
happen before the final exam?”

A Recursive Solution

The Towers of Hanoi problem can be solved recursively. As we describe the pro-
cedure, we’ll also analyze the minimum number tn of steps required to solve the
n-disk problem. For example, some experimentation shows that t1 D 1 and t2 D 3.
The procedure illustrated above uses 7 steps, which shows that t3 is at most 7.

The recursive solution has three stages, which are described below and illustrated
in Figure 16.3. For clarity, the largest disk is shaded in the figures.

Stage 1. Move the top n�1 disks from the first post to the second using the solution
for n � 1 disks. This can be done in tn�1 steps.

Goal: Move all disks from one post to another.

Rules:

Only the top-most disk can be moved.

No disk can be placed on a smaller disk.

Questions:

How do you solve the puzzle?

How many moves will be needed?

7 / 38

Tower of Hanoi Problem: Example with Three Disks

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

8 / 38

A Recursive Algorithm for Tower of Hanoi Problem

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

MoveStack(n, frm, to, spare):

Base Case: n = 0

Nothing needs to be done

Recursive Case: n > 0

1. MoveStack(n− 1, frm, spare, to)

2. Move disk n from frm to to

3. MoveStack(n− 1, spare, to, frm)

9 / 38

DML program for Towers of Hanoi

fun MoveStack(n, frm, to, spr) =

if n = 0

then []

else MoveStack(n-1, frm, spr, to) ++

[("Move disk", n, "from stack", frm, "to", to)] ++

MoveStack(n-1, spr, to, frm)

fun pp(l) = {print(e) for e in l}

10 / 38

A Recurrence for the Runtime of Towers of Hanoi Algorithm

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

MoveStack(n, frm, to, spare):

Base Case: n = 0

T (0) = 0

Recursive Case: n > 0

1. MoveStack(n− 1, frm, spare, to)

2. Move disk n from frm to to

3. MoveStack(n− 1, spare, to, frm)

T (n) = 2T (n− 1) + 1

11 / 38

More Runtime Recurrence Examples: Exponentiation

exp(x, n) =

1, if n = 0

x ∗ exp(x, n− 1), otherwise

T (1) = 1

T (n) = T (n− 1) + 1

12 / 38

A Divide-and-Conquer Algorithm for Exponentiation

fexp(x, n) =


1, if n = 0

fexp(x ∗ x, n/2), if n is even

fexp(x ∗ x, n/2) ∗ x, if n is odd

T (1) = 1

T (n) = T (n/2) + 1

13 / 38

Prime Numbers

Simple version:

fun is_prime(x) = forall (y in 2..x-1) x % y != 0

fun primes(N) = {x for x in 2..N if is_prime(x)}

Faster version:

fun is_prime2(x) = forall (y in 2..sqrt(x)) x % y != 0

fun primes2(N) = {x for x in 2..N if is_prime2(x)}

14 / 38

Sieve of Eratosthenes (sieve)

1. Start with integer lists L:
L = [2, 3, ..., n] for some n ∈ N.

2. Invariant: At all times:

L contains no multiples of primes

discovered so far.

3. Output the first number m in L as the

next prime.

4. Remove multiples of m from L
Use a helper function rm_mult.

5. Repeat Steps 3 and 4 until L is empty

Implemented by calling sieve
recursively

fun rm_mult(L, m) =
[x for x in L if x % m != 0]

fun sieve(L) =
if (L = [])
then []

else let
next = L[0]
newL = rm_mult(L, next)

in
sieve(newL) ++ [next]

fun primes3(N) =
sieve(range(2,N+1))

15 / 38

Quicksort (qs): A Divide-and-Conquer Sort Algorithm

1. Pick a pivot element at random

2. Divide input list L into 3 parts:

Use qsplit to divide into elements

less, equal to or greater than pivot

3. Sort each part

Invoke recursion!

4. Concatenate the sorted parts

If each part is already sorted, then

the concatenation will be sorted too!

5. Recurrence:

T (1) = 1

T (n) = n+ 2T (n/2) (On average)

fun qsplit(L, pivot) =
let less = [x for x in L if x < pivot]

more = [x for x in L if x > pivot]
eq = [x for x in L if x = pivot]

in (less, eq, more)

fun qs(L) =
if len(L) <= 1 then L
else let p = rand() % (len(L) - 1)

split = qsplit(L, L[p])
in qs(split[0]) ++ split[1] ++ qs(split[2])

16 / 38

Merge Sort: Another Divide-and-Conquer Sort Algorithm

1. Divide input list L into two halves

Use helper function split
It does not matter how you split.

2. Sort each half

Invoke recursion!

3. Merge the sorted halves into one

Use helper merge
Takes time linear in len(L)

4. Recurrence:

T (1) = 1

T (n) = n+ 2T (n/2)

fun split(L) = #split into odd, even-numbered elements
([L[i] for i in range(1,len(L),2)],
[L[i] for i in range(0,len(L),2)])

fun ms(L) =
if len(L) <= 1 then L
else
let halves = split(L)

i = len(halves[0])
j = len(halves[1])

in merge(ms(halves[0]), i, ms(halves[1]), j)

fun merge(L1, i, L2, j) =
if i=0 then [L2[k] for k in 0..j-1]
else if j=0 then [L1[k] for k in 0..i-1]
else let m1 = L1[i-1]; m2 = L2[j-1]

in
if m1 < m2
then merge(L1, i, L2, j-1) ++ [m2]

else merge(L1, i-1, L2, j) ++ [m1]

17 / 38

DML Overview

18 / 38

Integers

19 / 38

Reals

Can be written in:

fixed point, e.g., -1.53, or

scientific format, e.g., 1.53e-27 for 1.53× 10
−27

.

Support the same set of operations as integers, except formod

Conversion to integers

20 / 38

Booleans

Distinct from integers, and can’t be intermixed

Arise mainly from comparisons

but can also define variables and constants of boolean types

Boolean operators

21 / 38

Strings

22 / 38

Sets

Set construction

Sets of consecutive integers: 7..100
Sets with enumerated elements:

{1, 7, 100, 33}
{"Alex", "Dana", "John", "Jennifer"}

DML directly supports most set operations

Dml Symbol Math equivalent Explanation

in ∈ Membership check

union ∪ Set union

inter ∩ Set intersection

subseteq ⊆ Subset operators

- − Set difference

* × Cartesian product

pow ℘ Power Set

23 / 38

Set Builder Notation in Math and DML

Set of odd numbers ≤ 100

Math: E ::= {n2 | n ∈ N ∧ (n < 100) ∧ (n mod 2 = 1)}
DML: E = {n^2 for n in 0..99 if (n % 2 = 1)}

Set of numbers that satisfy a given condition

Math: E ::= {n ∈ N | (n ≤ 100) ∧ (n2 − 41n− 40 > 0)}
DML: E = {n for n in 0..100 if (n^2 - 41*n - 40 > 0)}

Set of Pythagorean triples ≤ 10

Math: E ::= {(x, y, z) ∈ N× N× N | x2 + y2 = z2}
DML: {(x,y,z) for x in 1..10 for y in 1..10 for z in 1..10

if x^2 + y^2 = z^2}

24 / 38

DML Lists

Lists are enclosed in square brackets, and are ordered

[1,2] is different from [2,1]

Use built-in function range to construct integer lists:

range(7, 11) = [7, 8, 9, 10]
Unlike sets, the largest element is one less than the higher limit

An optional third parameter specifies the step:

range(7, 17, 5) = [7, 12]

range(7, 18, 5) = [7, 12, 17]

List builder notation is similar to set builder notation:

[x for x in {1,2,3,2,1}] = [1,2,3]

[y for y in range(1,50,2) if y % 7 = 0] = [7,14,21,28,35,42,49]

[5*z+1 for z in 1..6] = [6, 11, 16, 21, 26, 31]
25 / 38

Tuples and Records

Tuples in math (and DML) correspond to cartesian products of sets:

dml> x = (1, ’w’, 2.0)

x:(int, string, real) = (1, "w", 2.0)

Ordering matters in cartesian product (and in DML tuples)

Elements of a tuple can be accessed using a index

dml> x[0]

1

index starts from 0, can’t be a variable or an expression

Records are tuple variants that have field names

dml> y = {ival=1, sval=’w’, rval=2.0}

y:{ival:int, rval:real, sval:string} = {ival=1, rval=2.0, sval="w"}
26 / 38

Dictionaries

27 / 38

Function Definitions and Let Statements

New functions are introduced using the fun keyword:

fun square(x) = x*x

let statements enable a function definition to be broken up into simpler steps:

fun mypoly(x, y) =

let t1 = x*x

t2 = y*y

in t1 + t2

There should be a newline or a semicolon before the in keyword

fun mypoly(x,y) = let t1 = x*x; t2 = y*y in t1 + t2

will result in an error message (that can be hard to understand)

28 / 38

Commonly Used DML Functions

abs: Returns absolute value of a number

avg, sum: Returns the average or sum of a set or list of numbers

concat: Takes a list of lists or strings, concatenates them.

Note: ++ is the binary concatenation operator on lists/strings

len: Returns the length of a set/list/dict/string

insert: Insert new element into a set/list/string

min, max: Returns the min or max element in a set or list.

print: Prints all arguments with spaces between them

printr: Raw print, does not implicitly print spaces or newlines

29 / 38

More Commonly Used DML Functions

rand: Returns a pseudorandom number. Changes on each call.

remove: Remove specified set element or dictionary key. Expensive.

removeat: Remove list element at specified index. Expensive.

sortaz, sortza: Input is a set or list, returns a list in sorted order.

See the DML manual for the full list and additional explanation.

30 / 38

DML Application to CSE 150 Topics

31 / 38

DML and Summations and Series

Numeric computation of any series or sum

Check if a closed form you derived produces the correct answer.

Use numeric computation to identify a pattern in the summation

The pattern can suggest a closed form solution.

To be sure, you will need to prove the correctness of your guess using mathematical

induction.

Where DML does not help

Directly giving you those closed form solutions!

Perform symbolic operations in algebra

32 / 38

DML and Sets

All set operations in math have a direct equivalent in DML

What DML can’t do:

Work with infinite sets

Draw Venn diagrams

Directly help with proofs

33 / 38

DML and Propositional Formulas

DML can do pretty much anything on propositional formulas

Check implications for validity

Construct truth tables

Satisfiability of propositional formulas

Validity of propositional formulas

Main limitations

Formulas have to be small, less than 30 or so variables.

It can check if a formula P is equivalent to another simpler formula Q, but it cannot

produce Q from P
Again, no symbolic or algebraic simplification capability

34 / 38

DML and Predicate Logic Formulas

Can check satisfiability of predicated logic formulas over finite (and relatively small)

sets.

Can give you counter examples when formulas are not true

Understand quantified formulas

Help you to translate from English to Logic or vice-versa

Debug your formulas

Use quantified formulas in computations

35 / 38

DML and Functions and Relations

Define binary relations R : X → Y by enumerating the subset of X × Y included in R

Functions can also be defined as dictionaries

Write simple functions to

Compute support, range, image, ...

Check for properties: function, total, partial, injective, surjective, bijective

Compute the composition of two relations or inverse of a relation

Check for properties such as reflexivity, symmetry, transitiviity, partial order, linear order

and equivalence relation

Compute reflexive, symmetric or transitive closures.

Compute walks, paths, and cycles in graphs.

36 / 38

Counting and Probability

Like summations, numerically solve counting and probability problems

Brute-force enumeration of sets or sequences, apply len on enumeration to count.

Very helpful for checking formulas

Brute-force nature of enumeration minimizes chances of error

Brute-force enumeration can solve counting problems that require a variety of

techniques

product rule, disjoint or overlapping set union rule, division rule, complement rule,

permutation and combination rules, binary strings, birthday problem, and pigeonhole

principle

Use numeric computation to identify a pattern in counting results

The pattern can suggest a closed form solution.

Where DML does not help

Directly giving you those closed form solutions!
37 / 38

Where DML does not help

Dealing with infinite sets

Including counting problems on them

Proofs

You can often use DML to check if a formula is true

If the formula involves finite domains

Or, by checking it on finite domains to get more insight

Computing closed-form, symbolic solutions.

38 / 38

