Sets (Textbook §4.1)

Informally, a set is a collection of things:

```
A = \{Alex, Tippy, Shells, Shadow\} Pet names

B = \{red, blue, yellow\} Primary colors

C = \{\{a, b\}, \{b, c\}, \{a, d\}, \{a, b, c\}\} A set of sets
```

- The order of elements is irrelevant a set is an unordered collection
- There are no repeated elements in a set

Infinite Sets and Set Builder Notation

Here is an example of an infinite set:

$$T ::= \{0, 3, 6, 9, 12, \ldots\}$$

We can state this more precisely as

$$T ::= \{x \in \mathbb{N} | x \text{ is a multiple of 3} \}$$

or more compactly as:

$$T ::= \{3n | n \in \mathbb{N}\}$$

Predefined Sets

Ø	The empty set	
N	The set of natural numbers, i.e., $\{0, 1, 2, 3, \ldots\}$	
\mathbb{Z}	The set of integers, i.e., $\{0, -1, 1, -2, 2,\}$	
Q	The set of rational numbers	
\mathbb{R}	The set of real numbers	
\mathbb{C}	The set of Complex numbers	

Set Operators

Operation	Operator	Definition/Example
"belongs to"	\in	$2\in\mathbb{N},\sqrt{5} otin\mathbb{Q}$
Union	U	$A \cup B = \{x x \in A \text{ or } x \in B\}$
Intersection	\cap	$A \cap B = \{x x \in A \text{ and } x \in B\}$
Difference	_	$A - B = \{x x \in A \text{ and } x \notin B\}$
Subset	\subseteq	$A \subseteq B$ iff for all $x \in A, x \in B$
Proper Subset	\subset	$A \subset B \text{ iff } A \subseteq B \text{ and } A \neq B$

Showing Two Sets *A* and *B* are Equal

- Show that $x \in A$ implies $x \in B$ and vice-versa
- Show $A \subseteq B$ and $B \subseteq A$

Universal Set and Complement

- If all the sets being considered are a subset of a larger set *U*, we call that a *universal* set
- In the presence of a universal set, we can define a *complement* \overline{A} as follows:

$$\overline{A} = U - A$$

Alternatively:

$$\overline{A} = \{x \in U | x \notin A\}$$

Some properties of Set Operators

- \bullet \cup and \cap are commutative and associative
 - Follows from the definition of these operators, and the fact that the boolean connectives
 or and and are both associative and commutative
- U distributes over ∩ and vice-versa

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- Can be established from the definition of \cup and \cap
- De Morgan's Law

$$\frac{\overline{A \cup B}}{\overline{A \cap B}} = \frac{\overline{A}}{\overline{A}} \cap \frac{\overline{B}}{\overline{B}}$$

Power Set

Given a set A, the *power set* of A, denoted $\wp(A)$ is

$$\wp(A) = \{x | x \subseteq A\}$$

- ullet A powerset always includes \emptyset
- $\wp(A)$ always includes A

Size of Power Set

If the size of A, denoted |A|, is n, what is the size of $\wp(A)$?

Products and Tuples

Cartesian Product of sets A and B:
$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Example: Let
$$A = \{1, 4, 9\}, B = \{a, e, i, o, u\}$$

$$A \times B = \{ (1, a), (1, e), (1, i), (1, o), (1, u), (4, a), (4, e), (4, i), (4, o), (4, u), (9, a), (9, e), (9, i), (9, o), (9, u)\}$$

Products and Tuples

- (x, y) is called an (ordered) pair
- (x, y, z) is a *triple*, or a 3-way product
- More generally, (x_1, x_2, \dots, x_n) is an *n*-tuple, or just a *tuple*
 - It is a cartesian product on n sets, denoted \times_n
- Unlike sets, the order of components is important in a tuple. $A \times B \neq B \times A$
- A^n is short hand for an *n*-way product

$$\times_n(A,A,\ldots A)$$

• Technically, $A \times (A \times A) \neq \times_3(A, A, A)$

$$A \times (A \times A) = \{(a, (b, c)) | a, b, c \in A\}$$

$$\times_3(A, A, A) = \{(a, b, c) | a, b, c \in A\}$$

Sets: Summary

- Definition of sets
- Set builder notation
- Set operators: membership, subset, union, intersection, difference
 - Properties of set operators: commutativity, associativity, distributivity
- Set equality
- Universal set, set complement and De Morgan's Laws
- Power Set
- Cartesian Product and Tuples