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@ Often, we need to find closed form solutions of a series

o Applications arise in algorithm analysis, data analysis, financial applications, etc.

e Examples

n(n+ 1
142434 4n= 0T
1_2Xn+1
T+x+ x4 +x"=
1—x

e Sometimes, we are interested in products, and in reasonable approximations

n\n
Sterling’s approximation: n! = +/2mn (—)
e

o Interestingly, m and e appear in what is ultimately an integer!

o Approximation error is just 1% for n = 6, decreasing to 0.1% at n = 100
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@ You won the a large cash award. (Congratulations!)

@ You are given the option of either one large payout of $20M, or annual payments of

$1M per year for ever.

@ Which one should you take?
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@ To make an informed decision, you need to consider:

o the interest your lump sum payment will earn

@ Let us assume you can earn 6% with very safe investments

e Compare what you will have after, say, 100 years in each case
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Alternative: Current Value of Future Money

e Key idea: $1M you receive next year is worth only $1/1.06M worth today
o Reason: At 6% interest, $1/1.06 will become $1/1.06 * (1 + 0.06) = 1M next year

@ So, current value of all monies you will get

= 1+1/1.06 4+ 1/1.06* + 1/1.06> + - - -
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Current Price of Future Cash Flow

@ This is how annuities are priced
o Retirees often purchase annuities using part (or all) of their retirement savings
e Financial institutions calculate the price to charge using a calculation similar to the above

e Annuities are paid only while the purchaser is alive

@ Modify calculation to use finite rather than infinite sum

@ Pensions are also calculated in a similar way
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@ Let us use the above calculation to price a 20-year annuity:

= 1+ 1/1.06 +1/1.06* + 1/1.06* + - - - 1/1.06"

1
= zx wherex— —
.06

1 - . . .
= usmg the formula for geometric series
X

1= (3)”
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Summation Techniques: Perturbation Method

Find a “perturbation” that makes all terms identical:

LetS=14+2+3+---+n

Create another instance of S by reversing the order of terms

S = 1 + 2 + 3 + + n

S= n + (n=1) 4+ (n-2) + --- + 1

25 = (n4+1) + (n+1) + (n+1) + + (n+1)
e Simplifying, we get S= n(n+ 1)/2
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Summation Techniques: Perturbation Method

Find a “perturbation” that can cancel out most terms:
o letS=1+4+x+x>+--+x"
o Now,xS= x+x*+ -+ x" 4 x"!

Subtract one from the other:

Simplifying, we get:

Voila! We have derived the formula for sum of geomeric series!
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Alternative Perturbation for Arithmetic Progression

@ Sometimes, you perturb a seemingly unrelated sequence in order to get your sum

@ Start with sum of squares, and perturb to cancel out most terms:

> i P = 2+ 2 4+ . 4+ (n=1?% +
D (i—12 = 0 + 12 + 22 + -+ + (n—1)7?
i, (F=@G-1%) =0 + 0 + 0 + - + 0 P2

@ Simplifying Ihs using the identity a®> — b* = (a — b)(a + b), we get

zn:iz—(i—1)2:zn:(i—(i—1 (i+i—1) Zz: 1—22:—21—2<ni)—

i=1 i=1 =

=
@ Setting this equal to the rhs and then simplifying, we get: 2(>_7_, i) — n = n?

. n+n_n(n+1)
@ ie,y i i= = =5
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Summation of i¥

@ Forany > ik, you can use the same method! Let us examine > /2
POy 2 = P+ 2+ 0+ (n=1)P7 + 9
Py (i—1)3 =0 + 1B + 2 + - + (n—1)°
Yim (P=(i=1)) = n’
@ Simplifying |hs using the identity a®> — b®> = (a — b)(a® + b* + ab), we get
Y P = (=1 = YL (== 0)) P+ (=) +i(i 1))
= Y0 .37 =3i+1
= 3P =3 i+ =n
@ Further simplifying, >-7_ i = (0 —n+3Y."_,i)/3

@ Substituting for > 7, i from previous slide into rhs and simplifying:

iiz _ n(n+ 1)6(2n+ 1)
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Perturbing By Differentiation: Arithmetico Geometric Prog.

@ How do you find the following sum?
n—1
Zixi:x+2x2+3x3—|—--~(n— 1)x"!
i=1

@ This looks kind of similar to geometric progression, so start with that:
n—1
Zx":x—f-x2+x3—i-~~-x”_1 _1=x

=1

1—x

e Each term ix’ in AGP seems like it’s obtained by differentiating the term x'*' in GP!
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Perturbing By Differentiation: Arithmetico Geometric Prog.

d [~ p d [(1—X"
a(ZX) - ==

S —nx" (1= x) = (=1)(1 = x")
IZ_;IX = -
="+ (n—1)x"
N (1—x)?
C (n=1)x" = nx""T 1
S (P

The AGP we want is not exactly the lhs here. But if we multiply both sides by x, we

will be there:
n—1

Z,, (n—1)x"" — nx" 4+ x
ix' =
— (1 — x)?
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center of mass

NN 2=
table\\ |
N\




How much overhang do you get with nth block?

M N center of mass tOp n books
: .

of topn books
center of mass | : |

of all n+1 books

table\\ 2n+1)
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Hanging Blocks: The Final Picture

1/2
1/4
1/6
Table 1/8
1T 1 1 T 1
The summation we need: — + - + -+ -+ . = — _
2 + 4 + 6 + 2 ; i

The sum 7 | 1 is called the n” Harmonic number H,. But how do we compute it?
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Integration: The Master Technique for Approximating Sums

e Consider N

e We can’t use any tricks here — in fact, no closed from expression is known for this

summation.

@ Idea: Approximate using integration
o Integral [\ f(x) dx yields the area under the curve f(x) between x = 1and x = n

o Can we relate it to the discrete sum >_"_, f(x)?
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Pictorial representation of Discrete Sum

@ The discrete sum represents the area of the shaded region:
fn) —
fin=1)—

f3) -
Q) -
fay =

0 1 2 3 n—2 n—1 n
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Pictorial Comparison of Discrete Sum and Integral

@ The integral f1 ) dx represents the area of the shaded region:
fn) —
fin—1)—
; J)

6) -
@ -
Ay =

| | | | | | |

0 1 2 3 oo n—2 n-—l1 n

@ Unshaded region within the boxes represents the difference between the integral
and discrete sum ZZ_JC(X)

e So, > 7_ f(x) ) + [;" f(x) dx is an under-approximation of the discrete sum.
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Pictorial Comparison of Discrete Sum and Integral

@ Let us shift f one unit to the left, i.e., plot f(x + 1) instead.

fln) —

fin—1)— flx+1)

/3 -

@ -

S —
| | | | | | |
0 1 2 3 n—2 n—1 n

o > " f(x) n) + [ f(x) dx is an over-approximation in this case.
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A function f : RT™ — R¥ is weakly increasing iff x < y — f(x) < f(y).

Let f : RT — R™, and let S and [ be defined as follows:
S:u= Zf(l) [ = / f(x)dx
i=1 x=1

o If f is weakly increasing then I+ f(1) < S < I+ f(n)
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Dotting the i’s ...

Weakly Increasing and Decreasing Functions
A function f : R™ — R is weakly increasing iff x < 'y — f(x) < f(y).
A function f : RT™ — R™ is weakly decreasing iff x < y — f(x) > f(y).

Summation By Integration
Let f : RT — R™, and let S and [ be defined as follows:

Su= Zf(l) o= /;f(x)dx

o If f is weakly increasing then I + f(1) < § < I+ f(n)

o If f is weakly decreasing then I + f(1) > S > I+ f(n)
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Back to the hangling blocks example ...

We need to integrate 1/x. Specifically:

/1% dx = Inx)|” = In(n) — Infy

Noting that f(1) = 1 and f(n) = 1/n, we have the bound:

1 o1
-+ < - < 1
n—i—n(n)_;i_ n(n) +

@ The maximum overhang is infinite!

@ We get overhang longer than one full block when n =4

'Since 1/x is a decreasing function, so we need to use the bound I+ f(n) < S < I+ f(1)
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Approximating Factorial ...

Can we turn this into a summation?

Inn!:|n1—|—|n2+~--|nn:Z|ni
=0

Now we can apply our integration trick! But first we need to integrate In x:

/1n|n(x)dx:x|n(x)—x::nln(n)—n—J/lﬂ{/]’)—F] =nln(n) — n+1
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Approximating Factorial ...

Using the formula for approximating sums using integration,

Inf1) + nlin(n) —n+1<Z|n ) < nln(n) —n+ 1+ In(n)

Let us take the average of the two bounds as our estimate:(n + 0.5) In(n) — n+ 1

Now, take the exponent of every term so as to get rid of the In operations.

Our result: n! =

= ev/n <—> Sterling’s approx:  n! = v/2m/n (g)n
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{ x for x in 2..n
if forall (y in 2..(x-1)) x %2y != 0 }

@ What is its runtime, as a function of n

e Note: If you replace n with an integer that is not too large, this is a valid DML

program.

26/30



More efficient computation of primes

o If x is nonprime, then x = y X z where y,z > 1.

@ This means that both y and z cannot be greater than /x
o Orelse,y X z> /x X y/x =x

@ So, the inner loop can stop at y/x instead of x — 1

{ x for x in 2..n
if forall (y in 2..floor(sqrt(x))) x %y != 0 }

e What is the runtime of this program?
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Sum of square roots using integrals

o Integral:
32|

2 3/2
/\/_dx— TR G

3

@ So, the actual value is bounded between the under and over approximations:
2, 35 32
14 5(n Z VxS VAt (1)

(Note: The square root function is weakly increasing.)

e For larger nvalues, /> dominates over y/n, so the approximation is pretty good.

o e.g., the error is about 1/n,
e i.e. about 10% for n > 10, about 1% for n > 100, etc.
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Summary of Summation Techniques

@ Perturbation Method

o Example 1: Geometric Progression: ) 7 x' = X';:TT
o Example 2: Arithmetic Progression: ) 7 i = @
o Example 3: Sum of i*: 77 | = w 2

e Using differentiation

o Example 4: Arithmetico Geometric Progression: » ;| ! ixi=

@ Using integration

- (o0’

(n 1)x"—nx"" 141

(1=x)?

o Example5: 1+ 2(n*2—1) < |37 /x| < /n+3(n*/2-1)
+1 <

o Example 6: Factorial: nln(n) —n

YoioIn(i)| < nin(n) —n+1+In(n)

o Example 7: Hanging blocks: 1 +In(n) < |37, 1| <lIn(n)+1
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A point about in-class mathematical derivations ...

@ For many math derivations, you need to work them out yourself in order to fully
understand every step.
e There is absolutely no reason to feel discouraged if you don’t follow every step of a

derivation in class

@ But | do want you to understand the steps to a degree that you feel you can fill in
any gaps offline.

o Or else, stop and ask questions.

e Often, the main challenge students face is that they may not have understood some
of the basic concepts in math as clearly as they thought.
o We need to make a concerted and concious effort to understand these gaps and improve

our understanding in order to do well in college.
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