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Optimization Techniques
The most complex component of modern compilers
Must always be sound, i.e., semantics-preserving
• Need to pay attention to exception cases as well
• Use a conservative approach: risk missing out optimization rather 

than changing semantics
Reduce runtime resource requirements (most of the time)‏
• Usually, runtime, but there are memory optimizations as well
• Runtime optimizations focus on frequently executed code 

• How to determine what parts are frequently executed?
• Assume: loops are executed frequently
• Alternative: profile-based optimizations

• Some optimizations involve trade-offs, e.g., more memory for 
faster execution

Cost-effective, i.e., benefits of optimization must be worth 
the effort of its implementation
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Code Optimizations
High-level optimizations
• Operate at a level close to that of source-code
• Often language-dependent

Intermediate code optimizations
• Most optimizations fall here
• Typically, language-independent

Low-level optimizations
• Usually specific to each architecture
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High-level optimizations
• Inlining
•Replace function call with the function body

• Partial evaluation
•Statically evaluate those components of a 

program that can be evaluated

• Tail recursion elimination
• Loop reordering
• Array alignment, padding, layout
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Intermediate code optimizations
• Common subexpression elimination
• Constant propagation
• Jump-threading
• Loop-invariant code motion
• Dead-code elimination
• Strength reduction
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Constant Propagation
Identify expressions that can be evaluated at 
compile time, and replace them with their 
values.
x = 5;         =>    x =    5;      =>   x =    5;
y = 2;                 y = 2;                 y = 2;
v = u + y;           v = u + y;           v = u + 2;
z = x * y;            z = x * y;            z = 10;
w = v + z + 2;    w = v + z + 2;    w = v + 12;
...                       ...                      ...
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Strength Reduction
•Replace expensive operations with equivalent
cheaper (more efficient) ones.

y = 2;       =>      y = 2;
z = x^y;              z = x*x;
...                       ...

•The underlying architecture may determine
which operations are cheaper and which 
ones are more expensive.
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Loop-Invariant Code Motion
•Move code whose effect is independent of 
the loop's iteration outside the loop.
for (i=0; i<N; i++) {     =>      for (i=0; i<N; i++) {

for (j=0; j<N; i++) {               base = a + (i * dim1);
... a[i][j] ...                          for (j=0; j<N; i++) {

... (base + j) ...
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Low-level Optimizations
• Register allocation
• Instruction Scheduling for pipelined machines.
• loop unrolling
• instruction reordering
• delay slot filling

• Utilizing features of specialized components,
e.g., floating-point units.

• Branch Prediction
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Peephole Optimization
• Optimizations that examine small code sections at a time,
and transform them
• Peephole: a small, moving window in the target program
• Much simpler to implement than global optimizations
• Typically applied at machine code, and some times at
intermediate code level as well
• Any optimization can be a peephole optimization, 
provided it operates on the code within the peephole.
• redundant instruction elimination
• flow-of control optimizations
• algebraic simplifications
• ...
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Profile-based Optimization
• A compiler has difficulty in predicting:
• likely outcome of branches
• functions and/or loops that are most frequently 
executed
• sizes of arrays
• or more generally, any thing that depends on 
dynamic rogram behavior.
• Runtime profiles can provide this missing information,
making it easier for compilers to decide when certain
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Example Program: Quicksort
Most optimizations 
opportunities arise in 
intermediate code
• Several aspects of 

execution (e.g., address 
calculation for array 
access) aren’t exposed in 
source code

Explicit representations 
provide most 
opportunities  for 
optimization
It is best for programmers 
to focus on writing 
readable code, leaving 
simple optimizations to a 
compiler
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3-address code for Quicksort
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Organization of Optimizer
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Flow Graph for Quicksort
B1,…,B6 are basic blocks
• sequence of statements where 

control enters at beginning, 
with no branches in the middle

Possible optimizations
• Common subexpression

elimination (CSE)‏
• Copy propagation

• Generalization of constant 
folding to handle assignments 
of the form x = y

• Dead code elimination
• Loop optimizations

• Code motion
• Strength reduction
• Induction variable elimination

15

Common Subexpression Elimination
Expression 
previously 
computed
Values of all 
variables in 
expression have 
not changed.
Based on 
available 
expressions 
analysis
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Copy Propagation
Consider

x = y;
z = x*u;
w = y*u;

Clearly, we can replace 
assignment on w by

w = z
This requires recognition of 
cases where multiple variables 
have same value (i.e., they are 
copies of each other) ‏
One optimization may expose 
opportunities for another
• Even the simplest 

optimizations can pay off
• Need to iterate optimizations 

a few times
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Dead Code Elimination
Dead variable: a 
variable whose value is 
no longer used
Live variable: opposite 
of dead variable
Dead code: a statement 
that assigns to a dead 
variable
Copy propagation turns 
copy statement into 
dead code.
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Induction Vars, Strength Reduction 
and IV Elimination

Induction Var: a variable whose value 
changes in lock-step with a loop index
If expensive operations are used for 
computing IV values, they can be replaced 
by less expensive operations
When there are multiple IVs, some can be 
eliminated
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Strength Reduction on IVs
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After IV Elimination …
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Program Analysis
Optimization is usually expressed as a 
program transformation

C1 ⇔ C2 when property P holds
Whether property P holds is determined by a 
program analysis
Most program properties are undecidable in 
general
• Solution: Relax the problem so that the answer is 

an “yes” or “don’t know”
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Applications of Program Analysis
Compiler optimization
Debugging/Bug-finding
• “Enhanced” type checking

• Use before assign
• Null pointer dereference
• Returning pointer to stack-allocated data

Vulnerability analysis/mitigation
• Information flow analysis

• Detect propagation of sensitive data, e.g., passwords
• Detect use of untrustworthy data in security-critical context 

• Find potential buffer overflows
Testing – automatic generation of test cases
Verification: Show that program satisfies a specified 
property, e.g., no deadlocks
• model-checking
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Dataflow Analysis
Answers questions relating to how data flows 
through a program
•What can be asserted about the value of a variable (or 

more generally, an expression) at a program point
Examples
•Reaching definitions: which assignments reach a 

program statement
• Available expressions
• Live variables
•Dead code
•…
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Dataflow Analysis
Equations typically of the form

out[S] = gen[S] ∪ (in[S] – kill[S])
where the definitions of out, gen, in and kill
differ for different analysis
When statements have multiple 
predecessors, the equations have to be 
modified accordingly
Procedure calls, pointers and arrays require 
careful treatment
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Points and Paths
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Reaching Definitions
A definition of a variable x is a statement that 
assigns to x
• Ambiguous definition: In the presence of aliasing, a 

statement may define a variable, but it may be impossible to 
determine this for sure.

A definition d reaches a point p provided:
• There is a path from d to p, and this definition is not “killed”

along p
• “Kill” means an unambiguous redefinition

Ambiguity approximation
• Need to ensure that approximation is in the right direction, 

so that the analysis will be sound
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DFA of Structured Programs
S id := E 

| S;S 
| if E then S else S
| do S while E

E E + E
| id

28

DF Equations for Reaching Defns
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DF Equations for Reaching Defns
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Direction of Approximation
Actual kill is a superset of the set computed by 
the dataflow equations
Actual gen is a subset of the set computed by 
these equations
Are other choices possible?
• Subset approximation of kill, superset approximation of gen
• Subset approximation of both
• Superset approximation of both

Which approximation is suitable depends on the 
intended use of analysis results
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Solving Dataflow Equations
Dataflow equations are recursive
Need to compute so-called fixpoints, to solve 
these equations
Fixpoint computations uses an interative
procedure
• out0 =  φ
• outi is computed using the equations by 

substituting outi-1 for occurrences of out on the rhs

• Fixpoint is a solution, i.e., outi = outi-1
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Computing Fixpoints: Equation for Loop
Rewrite equations using more compact notation, with:

J standing for in[S] and 
I, G, K, and O for in[S1], gen[S1], kill[S1] and out[S1]:

I = J ∪ O,
O = G ∪ (I – K)

Letting I0 = O0 = φ, we have:
I1 = J O1 = G ∪ (I0 – K) = G
I2 = J ∪ O1 = J ∪ G O2 = G ∪ (I1 – K) = G ∪ (J – K)
I3 = J ∪ O2 O3 = G ∪ (I2 – K)

= J ∪ G ∪ (J – K) = G ∪ (J ∪ G – K)
= J ∪ G = I2 = G ∪ (J – K) = O2

(Note that for all sets A and B, A U (A-B) = A, and
for all sets A, B and C, A U (A U C –B) = A U (C-B).)

Thus, we have a fixpoint.
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Use-Definition Chains
Convenient way to represent reaching 
definition information
ud-chain for a variable links each use of the 
variable to its reaching definitions
• One list for each use of a variable
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Available Expressions
An expression e is available at point p if 
• every path to p evaluates e
• none of the variables in e are assigned after last 

computation of e
A block kills e if it assigns to some variable in e 
and does not recompute e.
A block generates e if it computes e and doesn’t 

subsequently assign to variables in e
Exercise: Set up data-flow equations for 
available expressions. Give an example use for 
which your equations are sound, and another 
example for which they aren’t
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Available expressions -- Example

a := b+c

b := a-d

c := b+c

d := a-d
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Live Variable Analysis
A variable x is live at a program point p if the 
value of x is used in some path from p
Otherwise, x is dead.
Storage allocated for dead variables can be 
freed or reused for other purposes.
in[B] = use[B] ∪ (out[B] – def[B])‏

out[B] = ∪ in[S], for S a successor of B
Equation similar to reaching definitions, but 
the role of in and out are interchanged
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Def-Use Chains
du-chain links the definition of a variable with 
all its uses
• Use of a definition of a variable x at a point p 

implies that there is a path from this definition to p 
in which there are no assignments to x

du-chains can be computed using a dataflow 
analysis similar to that for live variables
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Optimizations and Related Analyses
Common subexpression elimination
• Available expressions

Copy propagation
• In every path that reaches a program point p, the variables 

x and y have identical values
Detection of loop-invariant computation
• Any assignment x := e where the definition of every variable 

in e occurs outside the loop.
Code reordering: A statement x := e can be moved
• earlier before statements that (a) do not use x, (b) do not 

assign to variables in e
• later after statements that (a) do not use , (b) do not assign 

to variables in e
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Difficulties in Analysis
Procedure calls

Aliasing
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Difficulties in Analysis
Procedure calls
• may modify global variables

• potentially kill all available expressions involving global 
variables 

• modify reaching definitions on global variables

Aliasing
• Create ambiguous definitions
• a[i] = a[j] --- here, i and j may have same value, so 

assignment to a[i] can potentially kill a[j]
• *p = q + r --- here, p could potentially point to q, r or any 

other variable
• creates ambiguous redefinition for all variables in the program!


