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CSE 504

Course Summary
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Symbol Tables
Bindings
Attributes
Binding Time
Scopes
Visibility
Lexical scoping
Implementation of symbol tables
Static Vs Dynamic scoping
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Organization of a Compiler
Lexical analysis
Parsing (syntax analysis) 
Abstract Syntax Tree (AST)
Semantic Analysis (type checking etc.)
Syntax-directed definitions (attribute grammars) 
Intermediate code generation
Code optimization
Final code generation
Runtime Environment
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Lexical Analysis: Foundations
Token, Lexeme, Pattern, String
Regular expressions
• Syntax, semantics
• Finite-state automata

• NFA vs DFA
• Recognition using NFA
• NFA to DFA translation
• Optimization of DFAs

• Properties of regular languages
• Closed under complementation, union, intersection

• RE to FSA translation
• RE NFA DFA optimal DFA
• Direct construction of DFA
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Lexical Analysis
Goal: convert character stream to token stream
• Recognize “words” in language

• Keywords, identifiers, constants (literals), ..
• Ignore “irrelevant” input

• White spaces, comments, …
• Maintain association between lexer output and input

• Line numbers, column numbers, …

Flex: A lexical analyzer generator
• Use of Flex in compilers
• Use of regular expressions as well as start states

• Ability to freely intermix automata-based and RE based 
specifications of lexical analysis

• Very powerful capability, makes Flex a very versatile tool for 
any application requiring efficient recognition of REs
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Syntax Analysis: CFGs
Types of grammars
• Regular, context-free, context-sensitive, unrestricted

CFGs
• Terminals, Nonterminals, Productions, Start symbol
• Sentence, Sentential form, String
• Notational conventions
• L(G) 
• Equivalence of grammars
• Two sides of grammars: generation and acceptance
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CFGs
Derivations
• Single-step, multistep
• Left-most, right-most, canonical

Parse trees
Ambiguity
Disambiguation rules
• Operator precedence
• dangling-else and shift/reduce conflict
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CFGs (continued)
Equivalence of grammars (and how to establish this)
Recognizing grammars
• Push-down automata (PDA)
• NPDA Vs DPDA

Properties
• Closed under union, but not complementation or intersection
• Note: CFGs recognizable using DPDAs are closed under all 

these operations.
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Top-Down Parsing
Derive sentence from start symbol
• Next step in derivation is guided by input

Predictive Parsing
• Left-recursion elimination and left-factoring
• Parsing with back-tracking
• Recursive descent parsing

Non-recursive parsing
• Table-driven
• Construction of LL(1) parsing tables

• FIRST and FOLLOW

LL(1) grammars
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Bottom-Up Parsing
Reduce sentence to start symbol
• Next reduction is guided by PDA stack and input

Handles
Shift-Reduce parsing
• Structure and operation of an SR parser

Identification of handles
Viable prefixes
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LR Parsing
Structure and operation of an LR parser
Action and Goto tables
LR Vs LL parsing
Construction of SLR(1) parsing tables
• Items and Item sets
• Viable prefixes
• DFA for recognizing viable prefixes
• Generation of LR parsing tables from DFA

LR(1) and LALR(1) parsing
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Parser Generators
Bison/Yacc
• LALR(1) Parser generator
• Integrates nicely with Lex/Flex

Use of Bison to specify a parser
Conflicts 
• How to interpret them
• How to fix them

• Operator precedence

Bison is a versatile tool
• Can be used for a variety of language processing 

applications
Error recovery
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Syntax-Directed Translation
The concept and its use
Syntax-directed translation using Bison
Attribute grammars --- acceptance by AG
Synthesized Vs inherited attributes
• Flow of attribute information

L-attributed definitions
S-attributed definitions
Maintaining attributes during parsing
• Top-down parsing
• Bottom-up parsing
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Semantic Analysis
Semantic analysis takes place during
• AST construction
• Type-checking
• Intermediate code generation

ASTs vs Parse trees
Syntax-directed construction of AST using 
Bison/C++

15

Types
What is a type
Data types in modern languages
• Simple types
• Compound types

• Products, unions (tagged Vs untagged), arrays, functions, pointers
• Type expressions

Polymorphism
• Parametric polymorphism Vs overloading
• Code reuse

Type equivalence
• Structural Vs Name based Vs declaration based

Type compatibility
Type checking Vs type inference
Type conversions
• Explicit, implicit, coercion

Static Vs Dynamic typing
Strong Vs Weak typing 16

Type-Checking
Syntax-directed definitions for type-checking
• Expressions
• Assignment
• Function calls/returns
• Other statements

Subtype principle
Name resolution
• Overloading resolution
• Resolution of methods in OO languages

Type-checker for E--
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Expression Evaluation
Semantics of Expressions
• Order of evaluation
• Use of properties of arithmetic operators
• Problems with side-effects

Boolean expression evaluation
• Short-cirtcuit evaluation

Control-flow statement evaluation
• Switch-statement
• While statement
• For statement
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Procedure calls
Parameter-passing mechanisms
• Call-by-Value
• Call-by-Reference
• Call-by-Name
• Call-by-Need
• Macros
• Difficulties with parameter passing mechanisms

Semantics of parameter passing
Implementation of procedure calls
• Stack, activation records
• Caller Vs Callee responsibilities

Exception-handling
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Memory allocation
Simple types Vs structures and arrays
Global/static variables
Stack allocation
• How local variables and parameters are accessed
• Accessing nonlocal variables 

Structure of activation records
Heap allocation
• Explicit Vs Automatic management
• Fragmentation
• Garbage collection

• Reference-counting Vs mark/sweep Vs copying collection
• Conservative GC
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Implementation Aspects OO 
Languages

Layout of structures and objects
• Accessing data members

Efficient implementation of virtual functions
Subtype principle and how it dictates the 
implementation of OO languages
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Code Generation
Intermediate code formats
Syntax-directed definition for IC generation
• Declarations
• Expressions
• Assignments

• l- and r-values
• accessing arrays and other complex data types

• Function calls
• Conditionals

• Short-circuit evaluation of boolean expressions and 
handling of conditionals

• Loops
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Machine Code Generation
Assembly code versus machine code generation issues
• Linkers, shared libraries, executables, symbol tables, etc.

Register allocation
• Cost savings due to use of registers
• Graph-coloring based algorithm and heuristics
• Works well in practice, no sense in using “register” declarations in 

your program, which will likely lead to less efficient code
Instruction selection
• Instruction set specification
• Automated generation of assembly code from specifications
• Optimal code generation using dynamic programming

• Combines register allocation with assembly code generation
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Code Optimization
High-level, intermediate code and low-level 
optimizations
High-level optimizations
• Inlining, partial evaluation, tail call elimination, loop 

reordering, ...

Intermediate code optimizations
• CSE
• constant and copy propagation
• strength reduction, loop-invariant code motion
• dead-code elimination
• jump-threading 24

Code Optimizations
Low-level optimizations
• Register allocation
• Instruction scheduling

• loop-unrolling, instruction reordering
• delay-slot filling and branch-prediction
• RISC Vs CISC processors

• Peep-hole optimization
• redundant instructions
• flow-of-control
• algebraic simplification

• Profile-based optimization
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Dataflow Analysis
Formulation
Setting-up dataflow equations
Approximation, direction of approximation, 
and soundness 
Recursion and fixpoint iteration
Applications
• Reaching definitions
• Available expressions (CSE) 
• Live variables

Difficulties
• Procedure calls
• Aliasing


