
1

1

CSE 504

Course Summary

2

Symbol Tables
Bindings
Attributes
Binding Time
Scopes
Visibility
Lexical scoping
Implementation of symbol tables
Static Vs Dynamic scoping

3

Organization of a Compiler
Lexical analysis
Parsing (syntax analysis) 
Abstract Syntax Tree (AST)
Semantic Analysis (type checking etc.)
Syntax-directed definitions (attribute grammars) 
Intermediate code generation
Code optimization
Final code generation
Runtime Environment

4

Lexical Analysis: Foundations
Token, Lexeme, Pattern, String
Regular expressions
• Syntax, semantics
• Finite-state automata

• NFA vs DFA
• Recognition using NFA
• NFA to DFA translation
• Optimization of DFAs

• Properties of regular languages
• Closed under complementation, union, intersection

• RE to FSA translation
• RE NFA DFA optimal DFA
• Direct construction of DFA



2

5

Lexical Analysis
Goal: convert character stream to token stream
• Recognize “words” in language

• Keywords, identifiers, constants (literals), ..
• Ignore “irrelevant” input

• White spaces, comments, …
• Maintain association between lexer output and input

• Line numbers, column numbers, …

Flex: A lexical analyzer generator
• Use of Flex in compilers
• Use of regular expressions as well as start states

• Ability to freely intermix automata-based and RE based 
specifications of lexical analysis

• Very powerful capability, makes Flex a very versatile tool for 
any application requiring efficient recognition of REs

6

Syntax Analysis: CFGs
Types of grammars
• Regular, context-free, context-sensitive, unrestricted

CFGs
• Terminals, Nonterminals, Productions, Start symbol
• Sentence, Sentential form, String
• Notational conventions
• L(G) 
• Equivalence of grammars
• Two sides of grammars: generation and acceptance

7

CFGs
Derivations
• Single-step, multistep
• Left-most, right-most, canonical

Parse trees
Ambiguity
Disambiguation rules
• Operator precedence
• dangling-else and shift/reduce conflict

8

CFGs (continued)
Equivalence of grammars (and how to establish this)
Recognizing grammars
• Push-down automata (PDA)
• NPDA Vs DPDA

Properties
• Closed under union, but not complementation or intersection
• Note: CFGs recognizable using DPDAs are closed under all 

these operations.



3

9

Top-Down Parsing
Derive sentence from start symbol
• Next step in derivation is guided by input

Predictive Parsing
• Left-recursion elimination and left-factoring
• Parsing with back-tracking
• Recursive descent parsing

Non-recursive parsing
• Table-driven
• Construction of LL(1) parsing tables

• FIRST and FOLLOW

LL(1) grammars

10

Bottom-Up Parsing
Reduce sentence to start symbol
• Next reduction is guided by PDA stack and input

Handles
Shift-Reduce parsing
• Structure and operation of an SR parser

Identification of handles
Viable prefixes

11

LR Parsing
Structure and operation of an LR parser
Action and Goto tables
LR Vs LL parsing
Construction of SLR(1) parsing tables
• Items and Item sets
• Viable prefixes
• DFA for recognizing viable prefixes
• Generation of LR parsing tables from DFA

LR(1) and LALR(1) parsing
12

Parser Generators
Bison/Yacc
• LALR(1) Parser generator
• Integrates nicely with Lex/Flex

Use of Bison to specify a parser
Conflicts 
• How to interpret them
• How to fix them

• Operator precedence

Bison is a versatile tool
• Can be used for a variety of language processing 

applications
Error recovery



4

13

Syntax-Directed Translation
The concept and its use
Syntax-directed translation using Bison
Attribute grammars --- acceptance by AG
Synthesized Vs inherited attributes
• Flow of attribute information

L-attributed definitions
S-attributed definitions
Maintaining attributes during parsing
• Top-down parsing
• Bottom-up parsing

14

Semantic Analysis
Semantic analysis takes place during
• AST construction
• Type-checking
• Intermediate code generation

ASTs vs Parse trees
Syntax-directed construction of AST using 
Bison/C++

15

Types
What is a type
Data types in modern languages
• Simple types
• Compound types

• Products, unions (tagged Vs untagged), arrays, functions, pointers
• Type expressions

Polymorphism
• Parametric polymorphism Vs overloading
• Code reuse

Type equivalence
• Structural Vs Name based Vs declaration based

Type compatibility
Type checking Vs type inference
Type conversions
• Explicit, implicit, coercion

Static Vs Dynamic typing
Strong Vs Weak typing 16

Type-Checking
Syntax-directed definitions for type-checking
• Expressions
• Assignment
• Function calls/returns
• Other statements

Subtype principle
Name resolution
• Overloading resolution
• Resolution of methods in OO languages

Type-checker for E--



5

17

Expression Evaluation
Semantics of Expressions
• Order of evaluation
• Use of properties of arithmetic operators
• Problems with side-effects

Boolean expression evaluation
• Short-cirtcuit evaluation

Control-flow statement evaluation
• Switch-statement
• While statement
• For statement

18

Procedure calls
Parameter-passing mechanisms
• Call-by-Value
• Call-by-Reference
• Call-by-Name
• Call-by-Need
• Macros
• Difficulties with parameter passing mechanisms

Semantics of parameter passing
Implementation of procedure calls
• Stack, activation records
• Caller Vs Callee responsibilities

Exception-handling

19

Memory allocation
Simple types Vs structures and arrays
Global/static variables
Stack allocation
• How local variables and parameters are accessed
• Accessing nonlocal variables 

Structure of activation records
Heap allocation
• Explicit Vs Automatic management
• Fragmentation
• Garbage collection

• Reference-counting Vs mark/sweep Vs copying collection
• Conservative GC

20

Implementation Aspects OO 
Languages

Layout of structures and objects
• Accessing data members

Efficient implementation of virtual functions
Subtype principle and how it dictates the 
implementation of OO languages



6

21

Code Generation
Intermediate code formats
Syntax-directed definition for IC generation
• Declarations
• Expressions
• Assignments

• l- and r-values
• accessing arrays and other complex data types

• Function calls
• Conditionals

• Short-circuit evaluation of boolean expressions and 
handling of conditionals

• Loops
22

Machine Code Generation
Assembly code versus machine code generation issues
• Linkers, shared libraries, executables, symbol tables, etc.

Register allocation
• Cost savings due to use of registers
• Graph-coloring based algorithm and heuristics
• Works well in practice, no sense in using “register” declarations in 

your program, which will likely lead to less efficient code
Instruction selection
• Instruction set specification
• Automated generation of assembly code from specifications
• Optimal code generation using dynamic programming

• Combines register allocation with assembly code generation

23

Code Optimization
High-level, intermediate code and low-level 
optimizations
High-level optimizations
• Inlining, partial evaluation, tail call elimination, loop 

reordering, ...

Intermediate code optimizations
• CSE
• constant and copy propagation
• strength reduction, loop-invariant code motion
• dead-code elimination
• jump-threading 24

Code Optimizations
Low-level optimizations
• Register allocation
• Instruction scheduling

• loop-unrolling, instruction reordering
• delay-slot filling and branch-prediction
• RISC Vs CISC processors

• Peep-hole optimization
• redundant instructions
• flow-of-control
• algebraic simplification

• Profile-based optimization



7

25

Dataflow Analysis
Formulation
Setting-up dataflow equations
Approximation, direction of approximation, 
and soundness 
Recursion and fixpoint iteration
Applications
• Reaching definitions
• Available expressions (CSE) 
• Live variables

Difficulties
• Procedure calls
• Aliasing


