
Functional Programming for Imperative Programmers

R. Sekar

This document introduces functional programming for those that are used to imperative languages, but are
trying to come to terms with recursion and other techniques used in functional programming. We use OCaml as the
primary language, and we assume that the reader has been introduced to its basic syntax and features. The goal of
this document is to help these programmers get more comfortable with functional programming techniques, while
addressing the following topics:

• Understanding and visualizing recursion

• Iteration as a special case of recursion

– Imperative programming in functional languages by “threading” state through functions

• Higher-order functions and iteration

• Writing efficient functional code

• Functional programming in imperative languages

1 Simple Vs Mutual Recursion

Recursion can be simple recursion, which means that a function f is recursive with itself. In other words, f is defined
in terms of f and h1, . . . , hn, where h1, . . . , hn have no dependence on f . In OCaml, such a function f can be defined
using a single let rec. The factorial function defined below is one such example:

l et rec fact n =
i f n=0

then 1
else n ∗ (fact (n−1))

In this case, fact is defined in terms of itself and two other functions, if and the subtraction function on integers.
As a second example, consider the Fibonacci function, where each invocation of fib makes two recursive invoca-

tions of fib.

l et rec fib n =
i f n=0

then 0
else i f n=1

then 1
else (fib (n−1)) + (fib (n−2))

In a more complex case of recursion, functions can be mutually recursive, i.e., f is defined in terms of another function
g, which is in turn defined in terms of f . A set of mutually recursive functions are defined in OCAML using a single
let rec, with a connective and separating these function definitions.

l et rec
odd x =

i f x = 0
then fa l se

else (even (x−1))
and

even x =
i f x = 0

then true
else (odd (x−1))

A more realistic example is one that involves searching an n-ary tree:

1

fact 4

fact 3

fact 2

fact 1

fact 0

Figure 1: Recursive invocations of fact

fib 4

fib 3

fib 2

fib 1fib 0

fib 1

fib 2

fib 1fib 0

Figure 2: Recursive invocations of fib

type naryTree =
Leaf of int

| Node of naryTree list

Thus, an internal node of an n-ary tree has an arbitrary number of subtrees, and these subtrees are stored in a list.
With this definition, we can define a search function as follows:

l et rec
search t v = match t with
| Leaf v1 −> v = v1

| Node ls −> searchList ls v

and
searchList l v = match l with
| [] −> fa l se
| l1 : : ls −> (search l1 v) | | (searchList ls v)

2 Bottom-up vs Top-down Recursive Computation

We can characterize a recursive function as top-down or bottom-up, based on whether the bulk of computation
happens before or after the recursive call. For instance, in the case of the factorial example above, the bulk of
computation happens after the recursive call: a simple decrement operation on the argument is performed before the
recursive call, while a more substantive multiplication operation takes place afterwards.

To understand the term “bottom-up” vs “top-down” recursion, imagine the activation tree of recursive calls
unfolding. Figures 1 and 2 show these trees for the calls fact 4 and fib 4 respectively. When fact 0 returns, fact
1 performs a multiplication and then returns to its caller, fact 2, which in turn performs another multiplication
and returns to its caller, and so on. Thus, not much computation happens in top-down phase when the tree of
activations is being constructed from top to bottom. Instead, it happens as the activation tree unwinds from the
leaf to root, i.e. in the bottom-up phase. A similar observation can be made about fib, i.e., the “interesting” part
of the computation happens as the recursion unwinds from leaf-to-root.

Now that we have discussed a couple of examples where most of the action occurs after the return of recursive calls,
we can ask what “top-down” computation looks like. With top-down computation, nontrivial part of the computation
occurs before a recursive call, and, moreover, the results of this computation are passed into the recursive invocation1

In other words, partial results computed during a node’s invocation flow down the activation tree to its descendants.
The function itself needs to take additional parameters through which these partial results can be passed into a
recursive invocation. We will illustrate this using an alternative version of the factorial function. (Note that single
quotes are valid within identifiers in OCaml — so fact’ is a valid function name.)

l et rec fact2 n p =
i f n=0

1Without the second requirement, the computation could be performed after the recursive call returns, and hence it would be an
instance of bottom-up computation.

2

fact’ 4

fact2 4 1

fact2 3 4

fact2 2 12

fact2 1 24

fact 0

Figure 3: Recursive invocations of fact2

then p

else fact2 (n−1) (p∗n)
l et fact ’ n = fact2 n 1

Note that fact2 computes the product operation as the recursion unfolds: unlike fact n which postpones the
multiplication by n until fact (n-1) returns, fact2 computes the product involving n before making a recursive
call. The tree of activations looks as shown in Figure 3: This version of factorial function, which computes and
passes partial results into recursive calls, is said to follow an accumulating style. (Partial results are accumulated
and passed down.) For some problems, accumulating style can yield faster implementations, as we discuss later on.

3 Tail Recursion

In general, “top-down” recursion can involve nontrivial computation before and after a recursive invocation, i.e.,
computation occurs while the activation tree grows from the top to bottom, and again as the recursion unfolds
bottom-up2. However, there are those extreme cases where no computation is performed in the bottom-up phase.
This is true of the fact2 function above: the very last operation performed by an invocation of fact2 is to make a
recursive call. When the call returns, the results are immediately passed on up the activation tree.

A recursive function f such that each call of f results in at most one recursive call, and moreover, this call is the
very last operation in the body of f , is said to be tail-recursive. For instance, fact2 is tail-recursive. In contrast,
fact needs to perform a multiplication operation after the recursive call returns, and hence fact is not tail-recursive.

Since a tail-recursive function f does not access any of variables (or parameters) after the recursive call returns,
there is no need to preserve the environment or the activation record after the recursive call. In other words, the callee
can make use of the same activation record as the caller! Consequently, functions such as fact2 n p can be computed
while using just a single activation record, as opposed to the n activation records needed to compute fact n.

For tail-recursive functions, since the recursive invocation is to the same function and uses the same environment
and store, its effect can be achieved by simply jumping back to the beginning of the function, rather than making
a call. In other words, tail recursion can be replaced by iteration. Such an optimization, called tail-recursion
elimination, plays an important role is functional languages. Compilers for imperative languages have also begun to
incorporate this optimization.

4 Iteration

Based on the above discussion, we can say that

• iteration is nothing but a special case of recursion where the recursive call appears as the very last step in a
function body.

2This contrasts with our definition of bottom-up recursion, where all nontrivial computations occur only in the bottom-up phase.

3

• iteration corresponds to an extreme case of top-down recursion where no computation occurs in the bottom-up
phase.

Now that we have established that recursion is more general than iteration, let us try to define a function repeat

that captures the behavior of the familiar repeat–until loop in imperative languages. Recall that the behavior of
repeat S until C is to execute S once. At this point, if the condition C holds, we are done. Otherwise, we reexecute
the entire repeat–until statement. Let us try to capture this behavior as follows:

l et rec repeat s c =
l et s1 = s

in
i f c

then s1

else repeat s1 c

Are we done? Can we now go back to using iteration to write our programs, rather than recursion that seems less
familiar? If you tried this approach, you will very quickly realize it does not work. In fact, repeat either terminates
with one iteration, or it never terminates at all! So what happened? The problem is that in a functional language,
the condition c always evaluates to the same value, regardless of how many recursive invocations it has been passed
through. As a result, if c initially evaluates to true, then the function terminates immediately. Otherwise, it loops
for ever since c remains false for ever. This problem does not occur in an imperative language because C is an
expression on variables whose values are stored in memory, and these values can change due to the execution of S.
In other words, the reason why iteration works in imperative languages is because of the reliance of these languages
on side-effects!

Since OCaml is free of side-effects, we need to explicitly pass any “state changes” from one iteration to the next
through parameters. In particular, we can (i) make c and s to be functions that accept an additional parameter
that represents this state, and (ii) make s produce a new value for this state. Thus, the new version of repeat is as
follows:

l et rec repeatt s c st =
l et st ’ = (s st)
in

i f (c st ’)
then st ’

else repeatt s c st ’

Note how the state st that captures the “effect of executing” s gets passed in from repeatt to s, and the resulting
new state routed to c and then the recursive invocation of repeatt. This manner of passing the state through the
functions is called threading. (This is why this “threaded” version of repeat function has been named repeatt.)

Now, consider the following iterative program, which computes
∑n

i=1 i:

i = n ; v = 0 ;
repeat

v = v + i ;
i = i − 1 ;

until (i == 0)

We can easily express this in OCaml:

type state = {i : int ; v : int}
l et s st =

l et v ’ = st . v + st . i in
let i ’ = st . i − 1 in
{v = v ’ ; i = i ’}

and c st = (st . i = 0)
in
repeatt s c {i=n ; v=0}

The function c captures the “until” condition, while the function s captures the body of the repeat/until loop. Other
than the fact that we needed to define a record type in order to conveniently represent the state, the code in OCaml
looks very close to the imperative version.

4

fac = 1 ;
fsum = 0 ;
i = 1 ;
repeat

fac = fac ∗ i ;
fsum = fsum + fac ;
i = i + 1 ;

until (i > n)

Figure 4: facsum in
Pascal

type state = {fac : int ; fsum : int ; i : int}
let c st = (st . i > n)
and s st =

let fac ’ = st . fac ∗ st . i in
let fsum ’ = st . fsum + fac ’ in
let i ’ = st . i + 1 in
{fac = fac ’ ; fsum = fsum ’ ; i = i ’}

in
(repeatt s c {fac=1; fsum=0; i=1}). fsum

Figure 5: facsum in OCaml using iteration

let rec facsum1 fac fsum i n =
i f i > n

then fsum

else
let fac ’ = fac ∗ i in
let fsum ’ = fsum + fac ’ in
let i ’ = i + 1 in

facsum1 fac ’ fsum ’ i ’ n

let fsum n = facsum1 1 0 1 n

Figure 6: facsum in OCaml using re-
cursion

It seems inconvenient to have to think through exactly what state needs to be threaded through the loop: it
seems so convenient if “every thing” is threaded through, which is what happens in imperative languages. In general,
though, being explicit about changes, instead of relying on side-effects, is better in many ways. It leads to programs
where the effects are clearer because they are explicit. Such programs are easier to understand, formally reason
about, and optimize. Moreover, such programs are easier to reuse correctly, as opposed to imperative languages
where one often encounters hidden assumptions in software. So, while it is more effort to identify and thread through
the relevant effects, it is all worth the trouble.

In a manner similar to repeat/until loops, we can define OCaml functions that capture the behavior of for-loops
and while-loops. After this is done, we can use iteration without having to define any recursive functions at all: as
in the above example, we will only be defining non-recursive functions such as c and s.

The purpose of the discussion is to show that iterative constructs can be captured in a straight-forward manner in
OCaml. But we certainly do not suggest that it is the best way to solve problems in OCaml. Indeed, there are many
problems that can be more succinctly solved using general recursion rather than iteration, which, as we observed
earlier, is a special case of recursion. However, for problems where the iterative style happens to be natural, the
above discussion illustrates how to use iteration in OCaml. For instance, consider the example facsum in Figures 4
to 6 for computing

∑n
i=1 i!.

Figure 4 shows an implementation in an imperative language. A straight-forward translation to OCaml using the
repeat function is shown in Figure 5. Alternatively, we can express the same algorithm in a form that looks more
native to OCaml by taking the following steps:

• Replace the use of repeat with an explicitly recursive function fsum1

• Pass the components of st above as explicit parameters to this function

The new program is shown in Figure 6.

5 Iteration and Higher-Order Functions

The iterators, such as the repeatt function defined above, are in fact higher order functions: they take functions such
as c and s as arguments. Much like the repeat-loop construct, which can perform different computations depending
on the body of the statement, repeatt’s behavior is dictated entirely by the behavior of its function parameters.

Iterative constructs such as repeatt operate by emulating an imperative style of programming, where the “state”
is threaded through all of the functions. As noted earlier, this is neither natural nor a recommended style of
programming in OCaml. However, there are other specialized iterative constructs that do not resort to such an
imperative style, and are hence much more natural for OCaml. The most important among these are the following
functions for iterating through lists. All these functions take a function f and a list l as parameters:

• map, which iterates through every element in l, and applies f to each element,

• filter, which iterates through each element x in l, outputting those elements for which fx holds, and

• reduce, which iterates through successive elements of l and uses f to combine them.

Their behaviors can be precisely understood from their definitions below. (Most functional languages include built-in
implementations of these functions, so it is usually not necessary to define them — in OCaml, they can be accessed
as List.map, List.filter, etc.)

5

l et rec map f l =
match l with
| [] −> []
| x : : xs −> (f x) : : (map f xs) ; ;

val map : (’ a −> ’b) −> ’a list −> ’b list = <fun>

As an example, suppose you want to multiply each element of a list l by a factor. This can be achieved using
map (fun x -> 2 * x) l. Note the use of an unnamed function that is constructed on the fly and passed to map.
This feature, called an anonymous function, lambda abstraction, or lambda expression used to be available only in
functional language, but is beginning to appear in most recently designed or updated languages, including C++,
Java, JavaScript, Python, Ruby and so on. Nevertheless, its use is much less common on conventional imperative
languages such as Java and C++, but more common in functional languages (e.g., OCaml and Haskell) and languages
strongly influenced by the functional style (e.g., Python and JavaScript).

The same example can be written without the use of lambda expressions as let f x = 2*x in (map f l), but
the result is a bit less concise. However, if the function definition gets to be complicated, then a named function is
preferred, because a meaningful name can make the function much more readable as compared to its code.

The type information shows that map is polymorphic: its first argument is any unary function f , and its second
argument is a list whose elements have the same type as the input type of f . The output type of map is also a list,
but the elements have the output type of f .

The function filter is very similar to map in terms of its structure:

l et rec filter f l =
match l with
| [] −> []
| x : : xs −> i f (f x)

then x : : (filter f xs)
else (filter f xs)

val filter : (’ a −> bool) −> ’a list −> ’a list = <fun>

As an example, (filter (fun x -> x mod 2 = 1) l) will return all of the odd numbers from l.
Finally, the higher order function reduce can be used to iterate through a list to compute a single value from all

the elements:

l et rec reduce f l i =
match l with
| [] −> i

| x : : xs −> reduce f xs (f x i)
val reduce : (’ a −> ’b −> ’b) −> ’a list −> ’b −> ’b = <fun>

Since reduce does not return a list, it needs an additional argument i that should be returned when it is called on
an empty list. Now, reduce can be used to iterate through a list l and add up the elements as follows:

(reduce (fun x y −> x+y) l 0)

These functions can operate on a single list, but often, we want to iterate through two lists in parallel, combining
them into one. For instance, we may want to add corresponding elements of a list. An additional function called zip

serves as a useful intermediate in coding such functions:

l et rec zip l1 l2 =
match (l1 , l2) with
| (x : : xs , y : : ys) −> (x , y) : : (zip xs ys)
| ([] , []) −> []

val zip : ’a list −> ’b list −> (’ a ∗ ’b) list = <fun>

Note that we have chosen to leave the behavior of zip to be undefined when it is given lists of unequal length. An
alternative would have been to simply truncate the longer list, but the approach we have taken is better, since it
will raise a runtime match failure exception — an exception that can be detected and handled, while the alternative
approach will silently suppress what is potentially an erroneous use of zip.

The following example illustrates zip:

(zip [1 ; 2 ; 3] [’ a ’ ; ’ b ’ ; ’ c ’]) = [(1 , ’a ’) ; (2 , ’b ’) ; (3 , ’c ’)]

6

Using zip, we can define the following functions very easily:

l et listsum l1 l2 = map (fun (x , y) −> x+y) (zip l1 l2)
l et listprod l1 l2 = map (fun (x , y) −> x∗y) (zip l1 l2)
l et dotprod l1 l2 = reduce (fun x y −> x+y) (listprod l1 l2) 0

Note that listsum adds corresponding elements of two lists, while listprod multiplies them. If l1 and l2 are
viewed as two vectors, then dotprod computes their vector dot product, also known as the inner product or scalar
product. In other words, corresponding elements of two lists are multiplied, and the results added. It is illustrated
by the following example:

(dotprod [3 ; 7 ; 4] [1 0 0 ; 10 ; 1]) = 374

5.1 List Comprehension

List comprehension provides a way to combine map and filter functions using the familiar notation used in math-
ematics for defining sets. For instance, the set of squares of odd natural numbers is given by

Y = {x2|x ∈ N ∧ odd(x)}

After defining square and odd as follows:

l et square x −> x ∗ x

l et odd x −> x mod 2 = 1

we can define the set Y in OCaml using a notation very similar to the set construction notation above:

l et y = map square (filter odd x)

More generally, the set construction operation in mathematics takes the form

Y = {f(x)|x ∈ X ∧ p(x)}

where f is a function and p a predicate. This general form is captured in OCaml as:

l et y = map f (filter p x)

Since this way of constructing new lists is concise enough, OCaml does not introduce a special syntax for this purpose.
Other languages, such as Haskell and Python do introduce a special notation. The benefit of the special notation is
that it can be more readable than the above form that uses map and filter. For instance, in Python, the above set
will be defined using the notation

y = [f (z) for z in x i f odd (z)]

5.2 Illustrative Examples

To illustrate the concepts discussed so far, consider the implementation of Sieve of Eratosthenes algorithm for
computing prime numbers shown in Figure 7 and 8. The first version is a purely functional OCaml version, while
the second uses a functional style but is written in Python.

let delMult x l = filter (fun y−> y mod x !=0) l

let rec collectPrimes l p = match l with
| []−> p

| l1 : : ls−> collectPrimes (delMult l1 ls) (l1 : : p)
let rec range l h =

i f h=l then [l] else l : : (range (l+1) h)
let sieve n = collectPrimes (range 2 n) []

Figure 7: Sieve of Eratosthenes in OCaml

def delMult (x , l) :
return [y for y in l i f y % x != 0]

def collectPrimes (l , p) :
i f l==[]: return p ;
else :

p . append (l [0]) ;
return collectPrimes (delMult (l [0] , l) , p)

def sieve (n) : return collectPrimes (range (2 , n) , [])

Figure 8: Sieve of Eratosthenes in Python

7

A more complex example, involving matrix multiplication, is shown below. Assume that a matrix is represented
in row-major format, i.e., it is a list of rows, where each row is a list of integers. Matrix multiplication requires
computing the inner product of the rows of a first matrix with the columns of the second matrix. We have already
written the function dotprod for computing this inner product, but to use this function, we need to first convert
the second matrix into column-major form. The following code performs this function. (Note that computing the
column-major form of a matrix is equivalent to computing its transpose in row-major form, and hence the name
trans.)

l et rec trans l =
l et getFirst l = map List . hd l and

getRest l = map List . tl l

in match l with
| [] −> []
| [] : : ls −> []
| ls −> (getFirst ls) : : (trans (getRest ls))

Note that getFirst extracts and returns the first element of each row in a matrix, while getRest returns the
remaining elements. On input [[1;2;3];[4;5;6]], getFirst yields [1;4], while getRest yields [[2;3][5;6]].

Note that the ith row of the product matrix is obtained by computing the inner product of the ith row with each
of the columns of the second matrix, so we can use the following code to perform this function:

l et rowmult row cols =
(map (fun col −> dotprod row col) cols)

Now, we simply need to iterate through the rows of the first matrix in order to compute the entire product matrix:

l et matmult rows rows2 =
l et cols = (trans rows2) in

(map (fun row −> rowmult row cols) rows)

6 Efficiency of Functional Programs

In the class, we discussed the idea that some times, the most obvious implementations in functional style can be
inefficient. Most often, efficiency problems can be traced back to the same fundamental problem in all languages: the
use of bad algorithms. For instance, the function fib n makes of the order of 2n recursive calls. Another example
of inefficiency discussed in class was the straight-forward implementation of the sum of factorials:

l et rec facsum n =
i f n == 0 then 0
else (fact n) + (facsum (n−1))

Since a call fact i performs i recursive calls, and since facsum n calls fact a total of n times, the number of
recursive calls is of the order of n2.

Algorithmic inefficiencies can only be fixed by changing the algorithm. For instance, facsum is inefficient because
it is not sharing the i − 1 multiplications that are common between the computations of fact i and fact (i-1).
We can address this by computing the factorial of i by multiplying factorial of i − 1 by i. This is what is done in
the implementation shown in Figure 6. In this version, fsum n makes of the order of n recursive calls, and performs
just one multiplication and a couple of addition/subtraction operations per invocation. Thus, its runtime is linear
in n, which is a major improvement over the quadratic runtime of facsum above.

A second important source of inefficiency is due to the fact that some operations that are very efficient in
imperative languages are inefficient in purely functional languages. For instance, lists in imperative languages can
be implemented to provide constant time access to the beginning as well as the end of the list3. In contrast, only the
first element can be accessed in constant time in OCaml lists. Accessing the last element requires time proportional
to the size of the list. Similarly, an operation to append to a list l takes time linear in the size of l in OCaml, but can
be performed in constant time in imperative languages. As a result, some seemingly simple functions can become
expensive. For instance, consider the following (typical) implementation of reverse:

3Python lists rely on the imperative nature of the language — they use an array-based implementation that provides constant-time
access to any element. However, modification operations are expensive, taking time that is linear in the size of the list.

8

@

[1]@

[2]@

[3]@

[4]@

[5][]

Figure 9: Append operations in reverse [1;2;3;4;5]

rev1 [1;2;3;4;5] []

rev1 [2;3;4;5] [1]

rev1 [3;4;5] [2;1]

rev1 [4;5] [3;2;1]

rev1 [5] [4;3;2;1]

rev1 [] [5;4;3;2;1]

Figure 10: Recursive invocations of rev [1;2;3;4;5]

l et rec reverse l = match l with
| [] −> []
| x : : xs −> (reverse xs) @ [x]

Figure 9 shows the structure of an expression tree resulting from a call to reverse [1;2;3;4;5]. It is obvious from
this picture that reversing a list with n elements will result in n invocations of append. It is also apparent that the
ith append operation (counting from left to right) is appending to a list with i elements. Adding up the times for
each append, we arrive at a total runtime of n(n − 1)/2 for reverse. This is surprising: our intuition tells us that
we can reverse a list in linear time, but reverse is quadratic!

To speed up reversal operation, we need to avoid the inefficient operation of accessing the last element of a list.
In fact, this is easy, if we realize that the list is more akin to a stack that provides efficient access to the top but not
the bottom. And we can reverse a stack by using a second (empty) stack: pop off elements one by one from the first
stack, and then push them onto the second. The function rev1 shown below uses this approach. It relies on rev to
call it with the stack to be reversed as the first argument, and an empty stack as the second argument.

l et rec rev1 l l2 = match l with
| [] −> l2

| x : : xs −> rev1 xs (x : : l2)
l et rev l = rev1 l []

Figure 10 illustrates the recursive calls made by rev. Note that the innermost rev1 invocation returns the answer,
which is its second argument. From the figure, it is obvious that only n recursive invocations are involved, and each
of them perform only a constant number of operations. Thus, this version of list reversal takes only linear time!

(A careful reader would have noticed that the OCaml version of Sieve of Eratosthenes ends up generating the
prime numbers in reverse order. This is because we wanted to avoid appending new prime numbers to the end of
the list, since append is expensive. If prime numbers are needed in increasing order, we can reverse the list at the
end — this will be faster than maintaining the list in increasing order at every step of the computation.)

We can speed up fib in a similar way using a faster algorithm. The standard way to speed up Fibonacci series
computation is to recognize that for any given i, fib calls fib i far too many times. If we avoided these duplicate
calls and instead stored all results in an array, then fib n can be computed using a single addition from the results
of fib (n-1) and fib (n-2) that were previously computed and stored in the array. We can apply the same idea
to speed up our OCaml version of fib, with two minor modifications: (a) we will use lists instead of arrays, and (b)
to avoid expensive operations to access the last element of this list, the list will be in the reverse order as compared
to the array:

l et fib n =
l et rec fib2 n l = match l with

x1 : : x2 : : xs −>
i f n == 0 then x1

else (fib2 (n−1) ((x1+x2) : : l))

9

in
i f n == 0 then 0
else i f n == 1 then 1
else fib2 (n−1) [1 ; 0]

Note that fib just handles the base cases and then sets up the parameters for fib2 that performs the real work. It
stores successive Fibonacci numbers in its list argument, with the most recent ones at the front. Here again, it is
useful to think of the list as a stack. The way fib2 is called, this stack always has two or more elements. Each step
of fib2 picks out the top two elements of the stack, which correspond to the two most recently computed Fibonacci
numbers, adds them to compute the next Fibonacci number, which is then pushed to the top of the stack. The first
argument is used to keep track of how many such numbers to compute. When it reaches zero, we are done, and we
simply return the number at the top of the stack. It is quite easy to see that fib2 n l takes time linear in n.

7 Functional Programming in Imperative Languages

There are several key elements/features associated with purely functional languages:

• Absence of side-effects. Functions in these languages behave like functions in mathematics. They are referen-
tially transparent, which ensures that an invocation of a function with the same argument values will always
return the same value.

• Recursive programming style.

• Rich type system that supports:

– parametric polymorphism,

– versatile built-in types such as lists and tuples,

– algebraic data types and pattern-matching, and

– type inference.

• First-class functions, i.e., the language permits functions to appear in any context as any other data. In
particular, this means support for:

– higher-order functions that can take other functions as parameters

– lambda abstractions that enable new functions to be created on the fly, and possibly returned as return
values of functions.

– currying that enables partial application of functions.

Limiting side-effects. Avoiding updates and side-effects leads to programs that are more reliable. More impor-
tantly, functions and modules in functional programs are much easier to reuse correctly because they do not permit
side-effects, which prevents one caller of a function from modifying its future behavior. Moreover, the absence of
side-effects permits efficient and correct sharing of data structures without requiring copying. Some of these benefits
can be realized through the const keyword in C and C++. Both these languages allow immutable objects as well
as immutable references to mutable objects, although support for immutable objects in C is limited due to its lack
of encapsulation. Dynamic languages such as Python and JavaScript do not support “const” because the concept
is philosophically more closely aligned with static typing. Java too has only limited support for const, requiring
additional programmer effort to create immutable references.

Richer types. While recursion was included in almost all programming languages designed in the last several
decades, it has taken a much longer time for other features (first-class functions and richer type systems) to find their
way into today’s imperative languages. C++ support for parametric polymorphism, through its template types,
became available in the 1990’s. Java’s support for parametric polymorphism came with the introduce of generics
in 2000’s. Parameterized list types that provide features similar to OCaml lists became available right away, as did
tuples of fixed arity. But tuples in their full generality (arbitrary number of components) are still not available in
Java, and have been available in C++ only since its 2011 standard. Full type inference has not arrived yet, but
C++11’s auto keyword enables types to be inferred in the most common cases, which involve initialized variables.

10

In C++14, these features have been further enhanced to support inference of function return types. The addition
of type inference has been a great relief for the frustrations surrounding the declaration and use of nested template
classes in C++. For instance, the complex declaration

std : : vector<int > : : const_iterator itr = myvec . cbegin () ;

can be replaced by the much more concise

auto itr = myvec . cbegin () ;

Unfortunately, this feature has not yet found its way into Java4. The type systems of dynamically typed languages
such as Python and JavaScript are already more flexible than statically typed languages, so there is no need to add
features such as templates to such languages. However, the downside of dynamic typing is that almost all errors
can be detected only at runtime, and most working programs will likely contain some type errors that may manifest
when unexpected inputs are provided.

Other type-related features, such as algebraic data types and pattern-matching, are still not available in most
imperative languages. This is one of the main reasons why it is easier to develop (and teach) interpreters in functional
languages such as OCaml5.

First-class functions. Most higher order features have also been slow to arrive in imperative languages, but
by now, mainstream languages have incorporated many of them. Functions as parameters, realized using function
pointers, was the first to arrive. It has been included in virtually every imperative language designed since the 1970’s.
Although Java does not directly support function pointers, the effect can be realized by defining the function within
a class, and passing references to objects of this class. Direct support for method references was added in Java 8.

Anonymous functions, also called lambda abstractions, were introduced in C++11, with further improvements
(to support type inference) in C++14. They are defined using the square bracket notation as follows:

[] (int x , int y) { return x + y ; }

They were also added to Java in a limited form in Java 8.
While currying may not be supported directly in many imperative languages, the closely related concept of

closures is critical for supporting lambda abstractions. Closures allow a newly created function to contain references
to variables in its surrounding context. These references need to be preserved until such time this function is invoked.
C++ requires such variables to be explicitly specified within the square brackets denoting the lambda abstraction.
Closures enable programmers to implement curried functions:

int add (int y) {
return [y] (int x) { return x + y ; } ;

}

Note that y will be resolved to its binding in the scope surrounding the definition of the anonymous function. (If y is
not included within the square brackets, a compile time error will result.) When add is supplied a single argument,
it returns a function that can be passed around to other functions, which can then provide its second argument and
cause its evaluation. Alternatively, both arguments could be provided right away, as in add(2)(3). Support for
closures have been added, in a somewhat limited form, to Java 8.

Higher order features are fully supported in Javascript, including the ability to pass functions as arguments and
return values, lambda abstractions, closures and so on. Lambda abstractions are defined using the keyword function:

function add (x) {
return function (y) { return x+y ; } ;

}

As in the C++ example above, this JavaScript example creates a curried function add. When supplied with its
first parameter, it returns an anonymous function that can take another argument and return the sum of the two
arguments. Note that y is a parameter to the anonymous function, but x is a variable that is coming from the context
surrounding this function definition.

Python’s anonymous functions rely on the keyword lambda. Here is an example of a lambda abstraction being
used to implement curried functions:

4Java allows omission of template parameters, thus reducing clutter a bit, but the gains in the C++ example will be minimal —
replacement of std::vector<int>::const iterator with std::vector<>::const iterator.

5Of course, the other important reason is that the interpreter is written using the language of mathematical functions, which makes
it much easier to reason (or simply convince ourselves) about its correctness.

11

def add (x) : return lambda y : x+y

Now, add can take two arguments, one at a time. A call add(1) will return a function object that can accept a
second argument. Thus, add(1)(2) yields 3.

In summary, JavaScript and Python provide full support for first-class functions.(There is a minor technical
limitation in Python that the body of a lambda abstraction should be an expression, but this restriction would be
there is any purely functional language as well.) C++ also provides full support for first-class functions.

12

